Merge branch 'master' into upstream-fixes
[linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_window", &kvm_stat.irq_window_exits },
62         { "halt_exits", &kvm_stat.halt_exits },
63         { "request_irq", &kvm_stat.request_irq_exits },
64         { "irq_exits", &kvm_stat.irq_exits },
65         { 0, 0 }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81         struct segment_descriptor s;
82         u32 base_higher;
83         u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90         struct descriptor_table gdt;
91         struct segment_descriptor *d;
92         unsigned long table_base;
93         typedef unsigned long ul;
94         unsigned long v;
95
96         if (selector == 0)
97                 return 0;
98
99         asm ("sgdt %0" : "=m"(gdt));
100         table_base = gdt.base;
101
102         if (selector & 4) {           /* from ldt */
103                 u16 ldt_selector;
104
105                 asm ("sldt %0" : "=g"(ldt_selector));
106                 table_base = segment_base(ldt_selector);
107         }
108         d = (struct segment_descriptor *)(table_base + (selector & ~7));
109         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111         if (d->system == 0
112             && (d->type == 2 || d->type == 9 || d->type == 11))
113                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115         return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121         return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125                              gva_t addr,
126                              unsigned long size,
127                              void *dest)
128 {
129         unsigned char *host_buf = dest;
130         unsigned long req_size = size;
131
132         while (size) {
133                 hpa_t paddr;
134                 unsigned now;
135                 unsigned offset;
136                 hva_t guest_buf;
137
138                 paddr = gva_to_hpa(vcpu, addr);
139
140                 if (is_error_hpa(paddr))
141                         break;
142
143                 guest_buf = (hva_t)kmap_atomic(
144                                         pfn_to_page(paddr >> PAGE_SHIFT),
145                                         KM_USER0);
146                 offset = addr & ~PAGE_MASK;
147                 guest_buf |= offset;
148                 now = min(size, PAGE_SIZE - offset);
149                 memcpy(host_buf, (void*)guest_buf, now);
150                 host_buf += now;
151                 addr += now;
152                 size -= now;
153                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154         }
155         return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160                              gva_t addr,
161                              unsigned long size,
162                              void *data)
163 {
164         unsigned char *host_buf = data;
165         unsigned long req_size = size;
166
167         while (size) {
168                 hpa_t paddr;
169                 unsigned now;
170                 unsigned offset;
171                 hva_t guest_buf;
172
173                 paddr = gva_to_hpa(vcpu, addr);
174
175                 if (is_error_hpa(paddr))
176                         break;
177
178                 guest_buf = (hva_t)kmap_atomic(
179                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180                 offset = addr & ~PAGE_MASK;
181                 guest_buf |= offset;
182                 now = min(size, PAGE_SIZE - offset);
183                 memcpy((void*)guest_buf, host_buf, now);
184                 host_buf += now;
185                 addr += now;
186                 size -= now;
187                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188         }
189         return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195         return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199  * Switches to specified vcpu, until a matching vcpu_put()
200  */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205         mutex_lock(&vcpu->mutex);
206         if (unlikely(!vcpu->vmcs)) {
207                 mutex_unlock(&vcpu->mutex);
208                 return 0;
209         }
210         return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         kvm_arch_ops->vcpu_put(vcpu);
216         mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222         int i;
223
224         if (!kvm)
225                 return -ENOMEM;
226
227         spin_lock_init(&kvm->lock);
228         INIT_LIST_HEAD(&kvm->active_mmu_pages);
229         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232                 mutex_init(&vcpu->mutex);
233                 vcpu->kvm = kvm;
234                 vcpu->mmu.root_hpa = INVALID_PAGE;
235                 INIT_LIST_HEAD(&vcpu->free_pages);
236         }
237         filp->private_data = kvm;
238         return 0;
239 }
240
241 /*
242  * Free any memory in @free but not in @dont.
243  */
244 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
245                                   struct kvm_memory_slot *dont)
246 {
247         int i;
248
249         if (!dont || free->phys_mem != dont->phys_mem)
250                 if (free->phys_mem) {
251                         for (i = 0; i < free->npages; ++i)
252                                 if (free->phys_mem[i])
253                                         __free_page(free->phys_mem[i]);
254                         vfree(free->phys_mem);
255                 }
256
257         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
258                 vfree(free->dirty_bitmap);
259
260         free->phys_mem = 0;
261         free->npages = 0;
262         free->dirty_bitmap = 0;
263 }
264
265 static void kvm_free_physmem(struct kvm *kvm)
266 {
267         int i;
268
269         for (i = 0; i < kvm->nmemslots; ++i)
270                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
271 }
272
273 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
276         kvm_mmu_destroy(vcpu);
277         vcpu_put(vcpu);
278         kvm_arch_ops->vcpu_free(vcpu);
279 }
280
281 static void kvm_free_vcpus(struct kvm *kvm)
282 {
283         unsigned int i;
284
285         for (i = 0; i < KVM_MAX_VCPUS; ++i)
286                 kvm_free_vcpu(&kvm->vcpus[i]);
287 }
288
289 static int kvm_dev_release(struct inode *inode, struct file *filp)
290 {
291         struct kvm *kvm = filp->private_data;
292
293         kvm_free_vcpus(kvm);
294         kvm_free_physmem(kvm);
295         kfree(kvm);
296         return 0;
297 }
298
299 static void inject_gp(struct kvm_vcpu *vcpu)
300 {
301         kvm_arch_ops->inject_gp(vcpu, 0);
302 }
303
304 /*
305  * Load the pae pdptrs.  Return true is they are all valid.
306  */
307 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
308 {
309         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
310         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
311         int i;
312         u64 pdpte;
313         u64 *pdpt;
314         int ret;
315         struct kvm_memory_slot *memslot;
316
317         spin_lock(&vcpu->kvm->lock);
318         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
319         /* FIXME: !memslot - emulate? 0xff? */
320         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
321
322         ret = 1;
323         for (i = 0; i < 4; ++i) {
324                 pdpte = pdpt[offset + i];
325                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
326                         ret = 0;
327                         goto out;
328                 }
329         }
330
331         for (i = 0; i < 4; ++i)
332                 vcpu->pdptrs[i] = pdpt[offset + i];
333
334 out:
335         kunmap_atomic(pdpt, KM_USER0);
336         spin_unlock(&vcpu->kvm->lock);
337
338         return ret;
339 }
340
341 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
342 {
343         if (cr0 & CR0_RESEVED_BITS) {
344                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
345                        cr0, vcpu->cr0);
346                 inject_gp(vcpu);
347                 return;
348         }
349
350         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
351                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
352                 inject_gp(vcpu);
353                 return;
354         }
355
356         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
357                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
358                        "and a clear PE flag\n");
359                 inject_gp(vcpu);
360                 return;
361         }
362
363         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
364 #ifdef CONFIG_X86_64
365                 if ((vcpu->shadow_efer & EFER_LME)) {
366                         int cs_db, cs_l;
367
368                         if (!is_pae(vcpu)) {
369                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
370                                        "in long mode while PAE is disabled\n");
371                                 inject_gp(vcpu);
372                                 return;
373                         }
374                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
375                         if (cs_l) {
376                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
377                                        "in long mode while CS.L == 1\n");
378                                 inject_gp(vcpu);
379                                 return;
380
381                         }
382                 } else
383 #endif
384                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
385                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
386                                "reserved bits\n");
387                         inject_gp(vcpu);
388                         return;
389                 }
390
391         }
392
393         kvm_arch_ops->set_cr0(vcpu, cr0);
394         vcpu->cr0 = cr0;
395
396         spin_lock(&vcpu->kvm->lock);
397         kvm_mmu_reset_context(vcpu);
398         spin_unlock(&vcpu->kvm->lock);
399         return;
400 }
401 EXPORT_SYMBOL_GPL(set_cr0);
402
403 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
404 {
405         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
406         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
407 }
408 EXPORT_SYMBOL_GPL(lmsw);
409
410 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
411 {
412         if (cr4 & CR4_RESEVED_BITS) {
413                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
414                 inject_gp(vcpu);
415                 return;
416         }
417
418         if (is_long_mode(vcpu)) {
419                 if (!(cr4 & CR4_PAE_MASK)) {
420                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
421                                "in long mode\n");
422                         inject_gp(vcpu);
423                         return;
424                 }
425         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
426                    && !load_pdptrs(vcpu, vcpu->cr3)) {
427                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
428                 inject_gp(vcpu);
429         }
430
431         if (cr4 & CR4_VMXE_MASK) {
432                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
433                 inject_gp(vcpu);
434                 return;
435         }
436         kvm_arch_ops->set_cr4(vcpu, cr4);
437         spin_lock(&vcpu->kvm->lock);
438         kvm_mmu_reset_context(vcpu);
439         spin_unlock(&vcpu->kvm->lock);
440 }
441 EXPORT_SYMBOL_GPL(set_cr4);
442
443 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
444 {
445         if (is_long_mode(vcpu)) {
446                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
447                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
448                         inject_gp(vcpu);
449                         return;
450                 }
451         } else {
452                 if (cr3 & CR3_RESEVED_BITS) {
453                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
454                         inject_gp(vcpu);
455                         return;
456                 }
457                 if (is_paging(vcpu) && is_pae(vcpu) &&
458                     !load_pdptrs(vcpu, cr3)) {
459                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
460                                "reserved bits\n");
461                         inject_gp(vcpu);
462                         return;
463                 }
464         }
465
466         vcpu->cr3 = cr3;
467         spin_lock(&vcpu->kvm->lock);
468         /*
469          * Does the new cr3 value map to physical memory? (Note, we
470          * catch an invalid cr3 even in real-mode, because it would
471          * cause trouble later on when we turn on paging anyway.)
472          *
473          * A real CPU would silently accept an invalid cr3 and would
474          * attempt to use it - with largely undefined (and often hard
475          * to debug) behavior on the guest side.
476          */
477         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
478                 inject_gp(vcpu);
479         else
480                 vcpu->mmu.new_cr3(vcpu);
481         spin_unlock(&vcpu->kvm->lock);
482 }
483 EXPORT_SYMBOL_GPL(set_cr3);
484
485 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
486 {
487         if ( cr8 & CR8_RESEVED_BITS) {
488                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
489                 inject_gp(vcpu);
490                 return;
491         }
492         vcpu->cr8 = cr8;
493 }
494 EXPORT_SYMBOL_GPL(set_cr8);
495
496 void fx_init(struct kvm_vcpu *vcpu)
497 {
498         struct __attribute__ ((__packed__)) fx_image_s {
499                 u16 control; //fcw
500                 u16 status; //fsw
501                 u16 tag; // ftw
502                 u16 opcode; //fop
503                 u64 ip; // fpu ip
504                 u64 operand;// fpu dp
505                 u32 mxcsr;
506                 u32 mxcsr_mask;
507
508         } *fx_image;
509
510         fx_save(vcpu->host_fx_image);
511         fpu_init();
512         fx_save(vcpu->guest_fx_image);
513         fx_restore(vcpu->host_fx_image);
514
515         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
516         fx_image->mxcsr = 0x1f80;
517         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
518                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
519 }
520 EXPORT_SYMBOL_GPL(fx_init);
521
522 /*
523  * Creates some virtual cpus.  Good luck creating more than one.
524  */
525 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
526 {
527         int r;
528         struct kvm_vcpu *vcpu;
529
530         r = -EINVAL;
531         if (!valid_vcpu(n))
532                 goto out;
533
534         vcpu = &kvm->vcpus[n];
535
536         mutex_lock(&vcpu->mutex);
537
538         if (vcpu->vmcs) {
539                 mutex_unlock(&vcpu->mutex);
540                 return -EEXIST;
541         }
542
543         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
544                                            FX_IMAGE_ALIGN);
545         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
546
547         vcpu->cpu = -1;  /* First load will set up TR */
548         r = kvm_arch_ops->vcpu_create(vcpu);
549         if (r < 0)
550                 goto out_free_vcpus;
551
552         r = kvm_mmu_create(vcpu);
553         if (r < 0)
554                 goto out_free_vcpus;
555
556         kvm_arch_ops->vcpu_load(vcpu);
557         r = kvm_mmu_setup(vcpu);
558         if (r >= 0)
559                 r = kvm_arch_ops->vcpu_setup(vcpu);
560         vcpu_put(vcpu);
561
562         if (r < 0)
563                 goto out_free_vcpus;
564
565         return 0;
566
567 out_free_vcpus:
568         kvm_free_vcpu(vcpu);
569         mutex_unlock(&vcpu->mutex);
570 out:
571         return r;
572 }
573
574 /*
575  * Allocate some memory and give it an address in the guest physical address
576  * space.
577  *
578  * Discontiguous memory is allowed, mostly for framebuffers.
579  */
580 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
581                                            struct kvm_memory_region *mem)
582 {
583         int r;
584         gfn_t base_gfn;
585         unsigned long npages;
586         unsigned long i;
587         struct kvm_memory_slot *memslot;
588         struct kvm_memory_slot old, new;
589         int memory_config_version;
590
591         r = -EINVAL;
592         /* General sanity checks */
593         if (mem->memory_size & (PAGE_SIZE - 1))
594                 goto out;
595         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
596                 goto out;
597         if (mem->slot >= KVM_MEMORY_SLOTS)
598                 goto out;
599         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
600                 goto out;
601
602         memslot = &kvm->memslots[mem->slot];
603         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
604         npages = mem->memory_size >> PAGE_SHIFT;
605
606         if (!npages)
607                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
608
609 raced:
610         spin_lock(&kvm->lock);
611
612         memory_config_version = kvm->memory_config_version;
613         new = old = *memslot;
614
615         new.base_gfn = base_gfn;
616         new.npages = npages;
617         new.flags = mem->flags;
618
619         /* Disallow changing a memory slot's size. */
620         r = -EINVAL;
621         if (npages && old.npages && npages != old.npages)
622                 goto out_unlock;
623
624         /* Check for overlaps */
625         r = -EEXIST;
626         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
627                 struct kvm_memory_slot *s = &kvm->memslots[i];
628
629                 if (s == memslot)
630                         continue;
631                 if (!((base_gfn + npages <= s->base_gfn) ||
632                       (base_gfn >= s->base_gfn + s->npages)))
633                         goto out_unlock;
634         }
635         /*
636          * Do memory allocations outside lock.  memory_config_version will
637          * detect any races.
638          */
639         spin_unlock(&kvm->lock);
640
641         /* Deallocate if slot is being removed */
642         if (!npages)
643                 new.phys_mem = 0;
644
645         /* Free page dirty bitmap if unneeded */
646         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
647                 new.dirty_bitmap = 0;
648
649         r = -ENOMEM;
650
651         /* Allocate if a slot is being created */
652         if (npages && !new.phys_mem) {
653                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
654
655                 if (!new.phys_mem)
656                         goto out_free;
657
658                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
659                 for (i = 0; i < npages; ++i) {
660                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
661                                                      | __GFP_ZERO);
662                         if (!new.phys_mem[i])
663                                 goto out_free;
664                         new.phys_mem[i]->private = 0;
665                 }
666         }
667
668         /* Allocate page dirty bitmap if needed */
669         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
670                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
671
672                 new.dirty_bitmap = vmalloc(dirty_bytes);
673                 if (!new.dirty_bitmap)
674                         goto out_free;
675                 memset(new.dirty_bitmap, 0, dirty_bytes);
676         }
677
678         spin_lock(&kvm->lock);
679
680         if (memory_config_version != kvm->memory_config_version) {
681                 spin_unlock(&kvm->lock);
682                 kvm_free_physmem_slot(&new, &old);
683                 goto raced;
684         }
685
686         r = -EAGAIN;
687         if (kvm->busy)
688                 goto out_unlock;
689
690         if (mem->slot >= kvm->nmemslots)
691                 kvm->nmemslots = mem->slot + 1;
692
693         *memslot = new;
694         ++kvm->memory_config_version;
695
696         spin_unlock(&kvm->lock);
697
698         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
699                 struct kvm_vcpu *vcpu;
700
701                 vcpu = vcpu_load(kvm, i);
702                 if (!vcpu)
703                         continue;
704                 kvm_mmu_reset_context(vcpu);
705                 vcpu_put(vcpu);
706         }
707
708         kvm_free_physmem_slot(&old, &new);
709         return 0;
710
711 out_unlock:
712         spin_unlock(&kvm->lock);
713 out_free:
714         kvm_free_physmem_slot(&new, &old);
715 out:
716         return r;
717 }
718
719 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
720 {
721         spin_lock(&vcpu->kvm->lock);
722         kvm_mmu_slot_remove_write_access(vcpu, slot);
723         spin_unlock(&vcpu->kvm->lock);
724 }
725
726 /*
727  * Get (and clear) the dirty memory log for a memory slot.
728  */
729 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
730                                        struct kvm_dirty_log *log)
731 {
732         struct kvm_memory_slot *memslot;
733         int r, i;
734         int n;
735         int cleared;
736         unsigned long any = 0;
737
738         spin_lock(&kvm->lock);
739
740         /*
741          * Prevent changes to guest memory configuration even while the lock
742          * is not taken.
743          */
744         ++kvm->busy;
745         spin_unlock(&kvm->lock);
746         r = -EINVAL;
747         if (log->slot >= KVM_MEMORY_SLOTS)
748                 goto out;
749
750         memslot = &kvm->memslots[log->slot];
751         r = -ENOENT;
752         if (!memslot->dirty_bitmap)
753                 goto out;
754
755         n = ALIGN(memslot->npages, 8) / 8;
756
757         for (i = 0; !any && i < n; ++i)
758                 any = memslot->dirty_bitmap[i];
759
760         r = -EFAULT;
761         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
762                 goto out;
763
764
765         if (any) {
766                 cleared = 0;
767                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
768                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
769
770                         if (!vcpu)
771                                 continue;
772                         if (!cleared) {
773                                 do_remove_write_access(vcpu, log->slot);
774                                 memset(memslot->dirty_bitmap, 0, n);
775                                 cleared = 1;
776                         }
777                         kvm_arch_ops->tlb_flush(vcpu);
778                         vcpu_put(vcpu);
779                 }
780         }
781
782         r = 0;
783
784 out:
785         spin_lock(&kvm->lock);
786         --kvm->busy;
787         spin_unlock(&kvm->lock);
788         return r;
789 }
790
791 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
792 {
793         int i;
794
795         for (i = 0; i < kvm->nmemslots; ++i) {
796                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
797
798                 if (gfn >= memslot->base_gfn
799                     && gfn < memslot->base_gfn + memslot->npages)
800                         return memslot;
801         }
802         return 0;
803 }
804 EXPORT_SYMBOL_GPL(gfn_to_memslot);
805
806 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
807 {
808         int i;
809         struct kvm_memory_slot *memslot = 0;
810         unsigned long rel_gfn;
811
812         for (i = 0; i < kvm->nmemslots; ++i) {
813                 memslot = &kvm->memslots[i];
814
815                 if (gfn >= memslot->base_gfn
816                     && gfn < memslot->base_gfn + memslot->npages) {
817
818                         if (!memslot || !memslot->dirty_bitmap)
819                                 return;
820
821                         rel_gfn = gfn - memslot->base_gfn;
822
823                         /* avoid RMW */
824                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
825                                 set_bit(rel_gfn, memslot->dirty_bitmap);
826                         return;
827                 }
828         }
829 }
830
831 static int emulator_read_std(unsigned long addr,
832                              unsigned long *val,
833                              unsigned int bytes,
834                              struct x86_emulate_ctxt *ctxt)
835 {
836         struct kvm_vcpu *vcpu = ctxt->vcpu;
837         void *data = val;
838
839         while (bytes) {
840                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
841                 unsigned offset = addr & (PAGE_SIZE-1);
842                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
843                 unsigned long pfn;
844                 struct kvm_memory_slot *memslot;
845                 void *page;
846
847                 if (gpa == UNMAPPED_GVA)
848                         return X86EMUL_PROPAGATE_FAULT;
849                 pfn = gpa >> PAGE_SHIFT;
850                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
851                 if (!memslot)
852                         return X86EMUL_UNHANDLEABLE;
853                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
854
855                 memcpy(data, page + offset, tocopy);
856
857                 kunmap_atomic(page, KM_USER0);
858
859                 bytes -= tocopy;
860                 data += tocopy;
861                 addr += tocopy;
862         }
863
864         return X86EMUL_CONTINUE;
865 }
866
867 static int emulator_write_std(unsigned long addr,
868                               unsigned long val,
869                               unsigned int bytes,
870                               struct x86_emulate_ctxt *ctxt)
871 {
872         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
873                addr, bytes);
874         return X86EMUL_UNHANDLEABLE;
875 }
876
877 static int emulator_read_emulated(unsigned long addr,
878                                   unsigned long *val,
879                                   unsigned int bytes,
880                                   struct x86_emulate_ctxt *ctxt)
881 {
882         struct kvm_vcpu *vcpu = ctxt->vcpu;
883
884         if (vcpu->mmio_read_completed) {
885                 memcpy(val, vcpu->mmio_data, bytes);
886                 vcpu->mmio_read_completed = 0;
887                 return X86EMUL_CONTINUE;
888         } else if (emulator_read_std(addr, val, bytes, ctxt)
889                    == X86EMUL_CONTINUE)
890                 return X86EMUL_CONTINUE;
891         else {
892                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
893                 if (gpa == UNMAPPED_GVA)
894                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
895                 vcpu->mmio_needed = 1;
896                 vcpu->mmio_phys_addr = gpa;
897                 vcpu->mmio_size = bytes;
898                 vcpu->mmio_is_write = 0;
899
900                 return X86EMUL_UNHANDLEABLE;
901         }
902 }
903
904 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
905                                unsigned long val, int bytes)
906 {
907         struct kvm_memory_slot *m;
908         struct page *page;
909         void *virt;
910
911         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
912                 return 0;
913         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
914         if (!m)
915                 return 0;
916         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
917         kvm_mmu_pre_write(vcpu, gpa, bytes);
918         virt = kmap_atomic(page, KM_USER0);
919         memcpy(virt + offset_in_page(gpa), &val, bytes);
920         kunmap_atomic(virt, KM_USER0);
921         kvm_mmu_post_write(vcpu, gpa, bytes);
922         return 1;
923 }
924
925 static int emulator_write_emulated(unsigned long addr,
926                                    unsigned long val,
927                                    unsigned int bytes,
928                                    struct x86_emulate_ctxt *ctxt)
929 {
930         struct kvm_vcpu *vcpu = ctxt->vcpu;
931         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
932
933         if (gpa == UNMAPPED_GVA)
934                 return X86EMUL_PROPAGATE_FAULT;
935
936         if (emulator_write_phys(vcpu, gpa, val, bytes))
937                 return X86EMUL_CONTINUE;
938
939         vcpu->mmio_needed = 1;
940         vcpu->mmio_phys_addr = gpa;
941         vcpu->mmio_size = bytes;
942         vcpu->mmio_is_write = 1;
943         memcpy(vcpu->mmio_data, &val, bytes);
944
945         return X86EMUL_CONTINUE;
946 }
947
948 static int emulator_cmpxchg_emulated(unsigned long addr,
949                                      unsigned long old,
950                                      unsigned long new,
951                                      unsigned int bytes,
952                                      struct x86_emulate_ctxt *ctxt)
953 {
954         static int reported;
955
956         if (!reported) {
957                 reported = 1;
958                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
959         }
960         return emulator_write_emulated(addr, new, bytes, ctxt);
961 }
962
963 #ifdef CONFIG_X86_32
964
965 static int emulator_cmpxchg8b_emulated(unsigned long addr,
966                                        unsigned long old_lo,
967                                        unsigned long old_hi,
968                                        unsigned long new_lo,
969                                        unsigned long new_hi,
970                                        struct x86_emulate_ctxt *ctxt)
971 {
972         static int reported;
973         int r;
974
975         if (!reported) {
976                 reported = 1;
977                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
978         }
979         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
980         if (r != X86EMUL_CONTINUE)
981                 return r;
982         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
983 }
984
985 #endif
986
987 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
988 {
989         return kvm_arch_ops->get_segment_base(vcpu, seg);
990 }
991
992 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
993 {
994         return X86EMUL_CONTINUE;
995 }
996
997 int emulate_clts(struct kvm_vcpu *vcpu)
998 {
999         unsigned long cr0;
1000
1001         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1002         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1003         kvm_arch_ops->set_cr0(vcpu, cr0);
1004         return X86EMUL_CONTINUE;
1005 }
1006
1007 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1008 {
1009         struct kvm_vcpu *vcpu = ctxt->vcpu;
1010
1011         switch (dr) {
1012         case 0 ... 3:
1013                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1014                 return X86EMUL_CONTINUE;
1015         default:
1016                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1017                        __FUNCTION__, dr);
1018                 return X86EMUL_UNHANDLEABLE;
1019         }
1020 }
1021
1022 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1023 {
1024         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1025         int exception;
1026
1027         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1028         if (exception) {
1029                 /* FIXME: better handling */
1030                 return X86EMUL_UNHANDLEABLE;
1031         }
1032         return X86EMUL_CONTINUE;
1033 }
1034
1035 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1036 {
1037         static int reported;
1038         u8 opcodes[4];
1039         unsigned long rip = ctxt->vcpu->rip;
1040         unsigned long rip_linear;
1041
1042         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1043
1044         if (reported)
1045                 return;
1046
1047         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1048
1049         printk(KERN_ERR "emulation failed but !mmio_needed?"
1050                " rip %lx %02x %02x %02x %02x\n",
1051                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1052         reported = 1;
1053 }
1054
1055 struct x86_emulate_ops emulate_ops = {
1056         .read_std            = emulator_read_std,
1057         .write_std           = emulator_write_std,
1058         .read_emulated       = emulator_read_emulated,
1059         .write_emulated      = emulator_write_emulated,
1060         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1061 #ifdef CONFIG_X86_32
1062         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1063 #endif
1064 };
1065
1066 int emulate_instruction(struct kvm_vcpu *vcpu,
1067                         struct kvm_run *run,
1068                         unsigned long cr2,
1069                         u16 error_code)
1070 {
1071         struct x86_emulate_ctxt emulate_ctxt;
1072         int r;
1073         int cs_db, cs_l;
1074
1075         kvm_arch_ops->cache_regs(vcpu);
1076
1077         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1078
1079         emulate_ctxt.vcpu = vcpu;
1080         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1081         emulate_ctxt.cr2 = cr2;
1082         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1083                 ? X86EMUL_MODE_REAL : cs_l
1084                 ? X86EMUL_MODE_PROT64 : cs_db
1085                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1086
1087         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1088                 emulate_ctxt.cs_base = 0;
1089                 emulate_ctxt.ds_base = 0;
1090                 emulate_ctxt.es_base = 0;
1091                 emulate_ctxt.ss_base = 0;
1092         } else {
1093                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1094                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1095                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1096                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1097         }
1098
1099         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1100         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1101
1102         vcpu->mmio_is_write = 0;
1103         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1104
1105         if ((r || vcpu->mmio_is_write) && run) {
1106                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1107                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1108                 run->mmio.len = vcpu->mmio_size;
1109                 run->mmio.is_write = vcpu->mmio_is_write;
1110         }
1111
1112         if (r) {
1113                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1114                         return EMULATE_DONE;
1115                 if (!vcpu->mmio_needed) {
1116                         report_emulation_failure(&emulate_ctxt);
1117                         return EMULATE_FAIL;
1118                 }
1119                 return EMULATE_DO_MMIO;
1120         }
1121
1122         kvm_arch_ops->decache_regs(vcpu);
1123         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1124
1125         if (vcpu->mmio_is_write)
1126                 return EMULATE_DO_MMIO;
1127
1128         return EMULATE_DONE;
1129 }
1130 EXPORT_SYMBOL_GPL(emulate_instruction);
1131
1132 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1133 {
1134         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1135 }
1136
1137 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1138 {
1139         struct descriptor_table dt = { limit, base };
1140
1141         kvm_arch_ops->set_gdt(vcpu, &dt);
1142 }
1143
1144 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1145 {
1146         struct descriptor_table dt = { limit, base };
1147
1148         kvm_arch_ops->set_idt(vcpu, &dt);
1149 }
1150
1151 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1152                    unsigned long *rflags)
1153 {
1154         lmsw(vcpu, msw);
1155         *rflags = kvm_arch_ops->get_rflags(vcpu);
1156 }
1157
1158 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1159 {
1160         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1161         switch (cr) {
1162         case 0:
1163                 return vcpu->cr0;
1164         case 2:
1165                 return vcpu->cr2;
1166         case 3:
1167                 return vcpu->cr3;
1168         case 4:
1169                 return vcpu->cr4;
1170         default:
1171                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1172                 return 0;
1173         }
1174 }
1175
1176 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1177                      unsigned long *rflags)
1178 {
1179         switch (cr) {
1180         case 0:
1181                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1182                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1183                 break;
1184         case 2:
1185                 vcpu->cr2 = val;
1186                 break;
1187         case 3:
1188                 set_cr3(vcpu, val);
1189                 break;
1190         case 4:
1191                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1192                 break;
1193         default:
1194                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1195         }
1196 }
1197
1198 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1199 {
1200         u64 data;
1201
1202         switch (msr) {
1203         case 0xc0010010: /* SYSCFG */
1204         case 0xc0010015: /* HWCR */
1205         case MSR_IA32_PLATFORM_ID:
1206         case MSR_IA32_P5_MC_ADDR:
1207         case MSR_IA32_P5_MC_TYPE:
1208         case MSR_IA32_MC0_CTL:
1209         case MSR_IA32_MCG_STATUS:
1210         case MSR_IA32_MCG_CAP:
1211         case MSR_IA32_MC0_MISC:
1212         case MSR_IA32_MC0_MISC+4:
1213         case MSR_IA32_MC0_MISC+8:
1214         case MSR_IA32_MC0_MISC+12:
1215         case MSR_IA32_MC0_MISC+16:
1216         case MSR_IA32_UCODE_REV:
1217         case MSR_IA32_PERF_STATUS:
1218                 /* MTRR registers */
1219         case 0xfe:
1220         case 0x200 ... 0x2ff:
1221                 data = 0;
1222                 break;
1223         case 0xcd: /* fsb frequency */
1224                 data = 3;
1225                 break;
1226         case MSR_IA32_APICBASE:
1227                 data = vcpu->apic_base;
1228                 break;
1229 #ifdef CONFIG_X86_64
1230         case MSR_EFER:
1231                 data = vcpu->shadow_efer;
1232                 break;
1233 #endif
1234         default:
1235                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1236                 return 1;
1237         }
1238         *pdata = data;
1239         return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1242
1243 /*
1244  * Reads an msr value (of 'msr_index') into 'pdata'.
1245  * Returns 0 on success, non-0 otherwise.
1246  * Assumes vcpu_load() was already called.
1247  */
1248 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1249 {
1250         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1251 }
1252
1253 #ifdef CONFIG_X86_64
1254
1255 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1256 {
1257         if (efer & EFER_RESERVED_BITS) {
1258                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1259                        efer);
1260                 inject_gp(vcpu);
1261                 return;
1262         }
1263
1264         if (is_paging(vcpu)
1265             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1266                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1267                 inject_gp(vcpu);
1268                 return;
1269         }
1270
1271         kvm_arch_ops->set_efer(vcpu, efer);
1272
1273         efer &= ~EFER_LMA;
1274         efer |= vcpu->shadow_efer & EFER_LMA;
1275
1276         vcpu->shadow_efer = efer;
1277 }
1278
1279 #endif
1280
1281 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1282 {
1283         switch (msr) {
1284 #ifdef CONFIG_X86_64
1285         case MSR_EFER:
1286                 set_efer(vcpu, data);
1287                 break;
1288 #endif
1289         case MSR_IA32_MC0_STATUS:
1290                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1291                        __FUNCTION__, data);
1292                 break;
1293         case MSR_IA32_UCODE_REV:
1294         case MSR_IA32_UCODE_WRITE:
1295         case 0x200 ... 0x2ff: /* MTRRs */
1296                 break;
1297         case MSR_IA32_APICBASE:
1298                 vcpu->apic_base = data;
1299                 break;
1300         default:
1301                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1302                 return 1;
1303         }
1304         return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1307
1308 /*
1309  * Writes msr value into into the appropriate "register".
1310  * Returns 0 on success, non-0 otherwise.
1311  * Assumes vcpu_load() was already called.
1312  */
1313 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1314 {
1315         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1316 }
1317
1318 void kvm_resched(struct kvm_vcpu *vcpu)
1319 {
1320         vcpu_put(vcpu);
1321         cond_resched();
1322         /* Cannot fail -  no vcpu unplug yet. */
1323         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_resched);
1326
1327 void load_msrs(struct vmx_msr_entry *e, int n)
1328 {
1329         int i;
1330
1331         for (i = 0; i < n; ++i)
1332                 wrmsrl(e[i].index, e[i].data);
1333 }
1334 EXPORT_SYMBOL_GPL(load_msrs);
1335
1336 void save_msrs(struct vmx_msr_entry *e, int n)
1337 {
1338         int i;
1339
1340         for (i = 0; i < n; ++i)
1341                 rdmsrl(e[i].index, e[i].data);
1342 }
1343 EXPORT_SYMBOL_GPL(save_msrs);
1344
1345 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1346 {
1347         struct kvm_vcpu *vcpu;
1348         int r;
1349
1350         if (!valid_vcpu(kvm_run->vcpu))
1351                 return -EINVAL;
1352
1353         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1354         if (!vcpu)
1355                 return -ENOENT;
1356
1357         if (kvm_run->emulated) {
1358                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1359                 kvm_run->emulated = 0;
1360         }
1361
1362         if (kvm_run->mmio_completed) {
1363                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1364                 vcpu->mmio_read_completed = 1;
1365         }
1366
1367         vcpu->mmio_needed = 0;
1368
1369         r = kvm_arch_ops->run(vcpu, kvm_run);
1370
1371         vcpu_put(vcpu);
1372         return r;
1373 }
1374
1375 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1376 {
1377         struct kvm_vcpu *vcpu;
1378
1379         if (!valid_vcpu(regs->vcpu))
1380                 return -EINVAL;
1381
1382         vcpu = vcpu_load(kvm, regs->vcpu);
1383         if (!vcpu)
1384                 return -ENOENT;
1385
1386         kvm_arch_ops->cache_regs(vcpu);
1387
1388         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1389         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1390         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1391         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1392         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1393         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1394         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1395         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1396 #ifdef CONFIG_X86_64
1397         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1398         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1399         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1400         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1401         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1402         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1403         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1404         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1405 #endif
1406
1407         regs->rip = vcpu->rip;
1408         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1409
1410         /*
1411          * Don't leak debug flags in case they were set for guest debugging
1412          */
1413         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1414                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1415
1416         vcpu_put(vcpu);
1417
1418         return 0;
1419 }
1420
1421 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1422 {
1423         struct kvm_vcpu *vcpu;
1424
1425         if (!valid_vcpu(regs->vcpu))
1426                 return -EINVAL;
1427
1428         vcpu = vcpu_load(kvm, regs->vcpu);
1429         if (!vcpu)
1430                 return -ENOENT;
1431
1432         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1433         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1434         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1435         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1436         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1437         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1438         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1439         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1440 #ifdef CONFIG_X86_64
1441         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1442         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1443         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1444         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1445         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1446         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1447         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1448         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1449 #endif
1450
1451         vcpu->rip = regs->rip;
1452         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1453
1454         kvm_arch_ops->decache_regs(vcpu);
1455
1456         vcpu_put(vcpu);
1457
1458         return 0;
1459 }
1460
1461 static void get_segment(struct kvm_vcpu *vcpu,
1462                         struct kvm_segment *var, int seg)
1463 {
1464         return kvm_arch_ops->get_segment(vcpu, var, seg);
1465 }
1466
1467 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1468 {
1469         struct kvm_vcpu *vcpu;
1470         struct descriptor_table dt;
1471
1472         if (!valid_vcpu(sregs->vcpu))
1473                 return -EINVAL;
1474         vcpu = vcpu_load(kvm, sregs->vcpu);
1475         if (!vcpu)
1476                 return -ENOENT;
1477
1478         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1479         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1480         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1481         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1482         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1483         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1484
1485         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1486         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1487
1488         kvm_arch_ops->get_idt(vcpu, &dt);
1489         sregs->idt.limit = dt.limit;
1490         sregs->idt.base = dt.base;
1491         kvm_arch_ops->get_gdt(vcpu, &dt);
1492         sregs->gdt.limit = dt.limit;
1493         sregs->gdt.base = dt.base;
1494
1495         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1496         sregs->cr0 = vcpu->cr0;
1497         sregs->cr2 = vcpu->cr2;
1498         sregs->cr3 = vcpu->cr3;
1499         sregs->cr4 = vcpu->cr4;
1500         sregs->cr8 = vcpu->cr8;
1501         sregs->efer = vcpu->shadow_efer;
1502         sregs->apic_base = vcpu->apic_base;
1503
1504         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1505                sizeof sregs->interrupt_bitmap);
1506
1507         vcpu_put(vcpu);
1508
1509         return 0;
1510 }
1511
1512 static void set_segment(struct kvm_vcpu *vcpu,
1513                         struct kvm_segment *var, int seg)
1514 {
1515         return kvm_arch_ops->set_segment(vcpu, var, seg);
1516 }
1517
1518 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1519 {
1520         struct kvm_vcpu *vcpu;
1521         int mmu_reset_needed = 0;
1522         int i;
1523         struct descriptor_table dt;
1524
1525         if (!valid_vcpu(sregs->vcpu))
1526                 return -EINVAL;
1527         vcpu = vcpu_load(kvm, sregs->vcpu);
1528         if (!vcpu)
1529                 return -ENOENT;
1530
1531         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1532         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1533         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1534         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1535         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1536         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1537
1538         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1539         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1540
1541         dt.limit = sregs->idt.limit;
1542         dt.base = sregs->idt.base;
1543         kvm_arch_ops->set_idt(vcpu, &dt);
1544         dt.limit = sregs->gdt.limit;
1545         dt.base = sregs->gdt.base;
1546         kvm_arch_ops->set_gdt(vcpu, &dt);
1547
1548         vcpu->cr2 = sregs->cr2;
1549         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1550         vcpu->cr3 = sregs->cr3;
1551
1552         vcpu->cr8 = sregs->cr8;
1553
1554         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1555 #ifdef CONFIG_X86_64
1556         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1557 #endif
1558         vcpu->apic_base = sregs->apic_base;
1559
1560         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1561
1562         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1563         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1564
1565         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1566         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1567         if (!is_long_mode(vcpu) && is_pae(vcpu))
1568                 load_pdptrs(vcpu, vcpu->cr3);
1569
1570         if (mmu_reset_needed)
1571                 kvm_mmu_reset_context(vcpu);
1572
1573         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1574                sizeof vcpu->irq_pending);
1575         vcpu->irq_summary = 0;
1576         for (i = 0; i < NR_IRQ_WORDS; ++i)
1577                 if (vcpu->irq_pending[i])
1578                         __set_bit(i, &vcpu->irq_summary);
1579
1580         vcpu_put(vcpu);
1581
1582         return 0;
1583 }
1584
1585 /*
1586  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1587  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1588  *
1589  * This list is modified at module load time to reflect the
1590  * capabilities of the host cpu.
1591  */
1592 static u32 msrs_to_save[] = {
1593         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1594         MSR_K6_STAR,
1595 #ifdef CONFIG_X86_64
1596         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1597 #endif
1598         MSR_IA32_TIME_STAMP_COUNTER,
1599 };
1600
1601 static unsigned num_msrs_to_save;
1602
1603 static __init void kvm_init_msr_list(void)
1604 {
1605         u32 dummy[2];
1606         unsigned i, j;
1607
1608         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1609                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1610                         continue;
1611                 if (j < i)
1612                         msrs_to_save[j] = msrs_to_save[i];
1613                 j++;
1614         }
1615         num_msrs_to_save = j;
1616 }
1617
1618 /*
1619  * Adapt set_msr() to msr_io()'s calling convention
1620  */
1621 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1622 {
1623         return set_msr(vcpu, index, *data);
1624 }
1625
1626 /*
1627  * Read or write a bunch of msrs. All parameters are kernel addresses.
1628  *
1629  * @return number of msrs set successfully.
1630  */
1631 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1632                     struct kvm_msr_entry *entries,
1633                     int (*do_msr)(struct kvm_vcpu *vcpu,
1634                                   unsigned index, u64 *data))
1635 {
1636         struct kvm_vcpu *vcpu;
1637         int i;
1638
1639         if (!valid_vcpu(msrs->vcpu))
1640                 return -EINVAL;
1641
1642         vcpu = vcpu_load(kvm, msrs->vcpu);
1643         if (!vcpu)
1644                 return -ENOENT;
1645
1646         for (i = 0; i < msrs->nmsrs; ++i)
1647                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1648                         break;
1649
1650         vcpu_put(vcpu);
1651
1652         return i;
1653 }
1654
1655 /*
1656  * Read or write a bunch of msrs. Parameters are user addresses.
1657  *
1658  * @return number of msrs set successfully.
1659  */
1660 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1661                   int (*do_msr)(struct kvm_vcpu *vcpu,
1662                                 unsigned index, u64 *data),
1663                   int writeback)
1664 {
1665         struct kvm_msrs msrs;
1666         struct kvm_msr_entry *entries;
1667         int r, n;
1668         unsigned size;
1669
1670         r = -EFAULT;
1671         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1672                 goto out;
1673
1674         r = -E2BIG;
1675         if (msrs.nmsrs >= MAX_IO_MSRS)
1676                 goto out;
1677
1678         r = -ENOMEM;
1679         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1680         entries = vmalloc(size);
1681         if (!entries)
1682                 goto out;
1683
1684         r = -EFAULT;
1685         if (copy_from_user(entries, user_msrs->entries, size))
1686                 goto out_free;
1687
1688         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1689         if (r < 0)
1690                 goto out_free;
1691
1692         r = -EFAULT;
1693         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1694                 goto out_free;
1695
1696         r = n;
1697
1698 out_free:
1699         vfree(entries);
1700 out:
1701         return r;
1702 }
1703
1704 /*
1705  * Translate a guest virtual address to a guest physical address.
1706  */
1707 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1708 {
1709         unsigned long vaddr = tr->linear_address;
1710         struct kvm_vcpu *vcpu;
1711         gpa_t gpa;
1712
1713         vcpu = vcpu_load(kvm, tr->vcpu);
1714         if (!vcpu)
1715                 return -ENOENT;
1716         spin_lock(&kvm->lock);
1717         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1718         tr->physical_address = gpa;
1719         tr->valid = gpa != UNMAPPED_GVA;
1720         tr->writeable = 1;
1721         tr->usermode = 0;
1722         spin_unlock(&kvm->lock);
1723         vcpu_put(vcpu);
1724
1725         return 0;
1726 }
1727
1728 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1729 {
1730         struct kvm_vcpu *vcpu;
1731
1732         if (!valid_vcpu(irq->vcpu))
1733                 return -EINVAL;
1734         if (irq->irq < 0 || irq->irq >= 256)
1735                 return -EINVAL;
1736         vcpu = vcpu_load(kvm, irq->vcpu);
1737         if (!vcpu)
1738                 return -ENOENT;
1739
1740         set_bit(irq->irq, vcpu->irq_pending);
1741         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1742
1743         vcpu_put(vcpu);
1744
1745         return 0;
1746 }
1747
1748 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1749                                      struct kvm_debug_guest *dbg)
1750 {
1751         struct kvm_vcpu *vcpu;
1752         int r;
1753
1754         if (!valid_vcpu(dbg->vcpu))
1755                 return -EINVAL;
1756         vcpu = vcpu_load(kvm, dbg->vcpu);
1757         if (!vcpu)
1758                 return -ENOENT;
1759
1760         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1761
1762         vcpu_put(vcpu);
1763
1764         return r;
1765 }
1766
1767 static long kvm_dev_ioctl(struct file *filp,
1768                           unsigned int ioctl, unsigned long arg)
1769 {
1770         struct kvm *kvm = filp->private_data;
1771         int r = -EINVAL;
1772
1773         switch (ioctl) {
1774         case KVM_GET_API_VERSION:
1775                 r = KVM_API_VERSION;
1776                 break;
1777         case KVM_CREATE_VCPU: {
1778                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1779                 if (r)
1780                         goto out;
1781                 break;
1782         }
1783         case KVM_RUN: {
1784                 struct kvm_run kvm_run;
1785
1786                 r = -EFAULT;
1787                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1788                         goto out;
1789                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1790                 if (r < 0 &&  r != -EINTR)
1791                         goto out;
1792                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1793                         r = -EFAULT;
1794                         goto out;
1795                 }
1796                 break;
1797         }
1798         case KVM_GET_REGS: {
1799                 struct kvm_regs kvm_regs;
1800
1801                 r = -EFAULT;
1802                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1803                         goto out;
1804                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1805                 if (r)
1806                         goto out;
1807                 r = -EFAULT;
1808                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1809                         goto out;
1810                 r = 0;
1811                 break;
1812         }
1813         case KVM_SET_REGS: {
1814                 struct kvm_regs kvm_regs;
1815
1816                 r = -EFAULT;
1817                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1818                         goto out;
1819                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1820                 if (r)
1821                         goto out;
1822                 r = 0;
1823                 break;
1824         }
1825         case KVM_GET_SREGS: {
1826                 struct kvm_sregs kvm_sregs;
1827
1828                 r = -EFAULT;
1829                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1830                         goto out;
1831                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1832                 if (r)
1833                         goto out;
1834                 r = -EFAULT;
1835                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1836                         goto out;
1837                 r = 0;
1838                 break;
1839         }
1840         case KVM_SET_SREGS: {
1841                 struct kvm_sregs kvm_sregs;
1842
1843                 r = -EFAULT;
1844                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1845                         goto out;
1846                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1847                 if (r)
1848                         goto out;
1849                 r = 0;
1850                 break;
1851         }
1852         case KVM_TRANSLATE: {
1853                 struct kvm_translation tr;
1854
1855                 r = -EFAULT;
1856                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1857                         goto out;
1858                 r = kvm_dev_ioctl_translate(kvm, &tr);
1859                 if (r)
1860                         goto out;
1861                 r = -EFAULT;
1862                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1863                         goto out;
1864                 r = 0;
1865                 break;
1866         }
1867         case KVM_INTERRUPT: {
1868                 struct kvm_interrupt irq;
1869
1870                 r = -EFAULT;
1871                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1872                         goto out;
1873                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1874                 if (r)
1875                         goto out;
1876                 r = 0;
1877                 break;
1878         }
1879         case KVM_DEBUG_GUEST: {
1880                 struct kvm_debug_guest dbg;
1881
1882                 r = -EFAULT;
1883                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1884                         goto out;
1885                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1886                 if (r)
1887                         goto out;
1888                 r = 0;
1889                 break;
1890         }
1891         case KVM_SET_MEMORY_REGION: {
1892                 struct kvm_memory_region kvm_mem;
1893
1894                 r = -EFAULT;
1895                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1896                         goto out;
1897                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1898                 if (r)
1899                         goto out;
1900                 break;
1901         }
1902         case KVM_GET_DIRTY_LOG: {
1903                 struct kvm_dirty_log log;
1904
1905                 r = -EFAULT;
1906                 if (copy_from_user(&log, (void *)arg, sizeof log))
1907                         goto out;
1908                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1909                 if (r)
1910                         goto out;
1911                 break;
1912         }
1913         case KVM_GET_MSRS:
1914                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1915                 break;
1916         case KVM_SET_MSRS:
1917                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1918                 break;
1919         case KVM_GET_MSR_INDEX_LIST: {
1920                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1921                 struct kvm_msr_list msr_list;
1922                 unsigned n;
1923
1924                 r = -EFAULT;
1925                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1926                         goto out;
1927                 n = msr_list.nmsrs;
1928                 msr_list.nmsrs = num_msrs_to_save;
1929                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1930                         goto out;
1931                 r = -E2BIG;
1932                 if (n < num_msrs_to_save)
1933                         goto out;
1934                 r = -EFAULT;
1935                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1936                                  num_msrs_to_save * sizeof(u32)))
1937                         goto out;
1938                 r = 0;
1939                 break;
1940         }
1941         default:
1942                 ;
1943         }
1944 out:
1945         return r;
1946 }
1947
1948 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1949                                    unsigned long address,
1950                                    int *type)
1951 {
1952         struct kvm *kvm = vma->vm_file->private_data;
1953         unsigned long pgoff;
1954         struct kvm_memory_slot *slot;
1955         struct page *page;
1956
1957         *type = VM_FAULT_MINOR;
1958         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1959         slot = gfn_to_memslot(kvm, pgoff);
1960         if (!slot)
1961                 return NOPAGE_SIGBUS;
1962         page = gfn_to_page(slot, pgoff);
1963         if (!page)
1964                 return NOPAGE_SIGBUS;
1965         get_page(page);
1966         return page;
1967 }
1968
1969 static struct vm_operations_struct kvm_dev_vm_ops = {
1970         .nopage = kvm_dev_nopage,
1971 };
1972
1973 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1974 {
1975         vma->vm_ops = &kvm_dev_vm_ops;
1976         return 0;
1977 }
1978
1979 static struct file_operations kvm_chardev_ops = {
1980         .open           = kvm_dev_open,
1981         .release        = kvm_dev_release,
1982         .unlocked_ioctl = kvm_dev_ioctl,
1983         .compat_ioctl   = kvm_dev_ioctl,
1984         .mmap           = kvm_dev_mmap,
1985 };
1986
1987 static struct miscdevice kvm_dev = {
1988         MISC_DYNAMIC_MINOR,
1989         "kvm",
1990         &kvm_chardev_ops,
1991 };
1992
1993 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1994                        void *v)
1995 {
1996         if (val == SYS_RESTART) {
1997                 /*
1998                  * Some (well, at least mine) BIOSes hang on reboot if
1999                  * in vmx root mode.
2000                  */
2001                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2002                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2003         }
2004         return NOTIFY_OK;
2005 }
2006
2007 static struct notifier_block kvm_reboot_notifier = {
2008         .notifier_call = kvm_reboot,
2009         .priority = 0,
2010 };
2011
2012 static __init void kvm_init_debug(void)
2013 {
2014         struct kvm_stats_debugfs_item *p;
2015
2016         debugfs_dir = debugfs_create_dir("kvm", 0);
2017         for (p = debugfs_entries; p->name; ++p)
2018                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2019                                                p->data);
2020 }
2021
2022 static void kvm_exit_debug(void)
2023 {
2024         struct kvm_stats_debugfs_item *p;
2025
2026         for (p = debugfs_entries; p->name; ++p)
2027                 debugfs_remove(p->dentry);
2028         debugfs_remove(debugfs_dir);
2029 }
2030
2031 hpa_t bad_page_address;
2032
2033 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2034 {
2035         int r;
2036
2037         if (kvm_arch_ops) {
2038                 printk(KERN_ERR "kvm: already loaded the other module\n");
2039                 return -EEXIST;
2040         }
2041
2042         if (!ops->cpu_has_kvm_support()) {
2043                 printk(KERN_ERR "kvm: no hardware support\n");
2044                 return -EOPNOTSUPP;
2045         }
2046         if (ops->disabled_by_bios()) {
2047                 printk(KERN_ERR "kvm: disabled by bios\n");
2048                 return -EOPNOTSUPP;
2049         }
2050
2051         kvm_arch_ops = ops;
2052
2053         r = kvm_arch_ops->hardware_setup();
2054         if (r < 0)
2055             return r;
2056
2057         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
2058         register_reboot_notifier(&kvm_reboot_notifier);
2059
2060         kvm_chardev_ops.owner = module;
2061
2062         r = misc_register(&kvm_dev);
2063         if (r) {
2064                 printk (KERN_ERR "kvm: misc device register failed\n");
2065                 goto out_free;
2066         }
2067
2068         return r;
2069
2070 out_free:
2071         unregister_reboot_notifier(&kvm_reboot_notifier);
2072         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2073         kvm_arch_ops->hardware_unsetup();
2074         return r;
2075 }
2076
2077 void kvm_exit_arch(void)
2078 {
2079         misc_deregister(&kvm_dev);
2080
2081         unregister_reboot_notifier(&kvm_reboot_notifier);
2082         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2083         kvm_arch_ops->hardware_unsetup();
2084         kvm_arch_ops = NULL;
2085 }
2086
2087 static __init int kvm_init(void)
2088 {
2089         static struct page *bad_page;
2090         int r = 0;
2091
2092         kvm_init_debug();
2093
2094         kvm_init_msr_list();
2095
2096         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2097                 r = -ENOMEM;
2098                 goto out;
2099         }
2100
2101         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2102         memset(__va(bad_page_address), 0, PAGE_SIZE);
2103
2104         return r;
2105
2106 out:
2107         kvm_exit_debug();
2108         return r;
2109 }
2110
2111 static __exit void kvm_exit(void)
2112 {
2113         kvm_exit_debug();
2114         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2115 }
2116
2117 module_init(kvm_init)
2118 module_exit(kvm_exit)
2119
2120 EXPORT_SYMBOL_GPL(kvm_init_arch);
2121 EXPORT_SYMBOL_GPL(kvm_exit_arch);