2 * BRIEF MODULE DESCRIPTION
3 * Au1000 interrupt routines.
5 * Copyright 2001 MontaVista Software Inc.
6 * Author: MontaVista Software, Inc.
7 * ppopov@mvista.com or source@mvista.com
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
29 #include <linux/config.h>
30 #include <linux/errno.h>
31 #include <linux/init.h>
32 #include <linux/irq.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/module.h>
35 #include <linux/signal.h>
36 #include <linux/sched.h>
37 #include <linux/types.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/timex.h>
41 #include <linux/slab.h>
42 #include <linux/random.h>
43 #include <linux/delay.h>
44 #include <linux/bitops.h>
46 #include <asm/bootinfo.h>
48 #include <asm/mipsregs.h>
49 #include <asm/system.h>
50 #include <asm/mach-au1x00/au1000.h>
51 #ifdef CONFIG_MIPS_PB1000
52 #include <asm/mach-pb1x00/pb1000.h>
57 /* note: prints function name for you */
58 #define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
60 #define DPRINTK(fmt, args...)
63 #define EXT_INTC0_REQ0 2 /* IP 2 */
64 #define EXT_INTC0_REQ1 3 /* IP 3 */
65 #define EXT_INTC1_REQ0 4 /* IP 4 */
66 #define EXT_INTC1_REQ1 5 /* IP 5 */
67 #define MIPS_TIMER_IP 7 /* IP 7 */
69 extern void set_debug_traps(void);
70 extern irq_cpustat_t irq_stat [NR_CPUS];
72 static void setup_local_irq(unsigned int irq, int type, int int_req);
73 static unsigned int startup_irq(unsigned int irq);
74 static void end_irq(unsigned int irq_nr);
75 static inline void mask_and_ack_level_irq(unsigned int irq_nr);
76 static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr);
77 static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr);
78 static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr);
79 inline void local_enable_irq(unsigned int irq_nr);
80 inline void local_disable_irq(unsigned int irq_nr);
82 void (*board_init_irq)(void);
85 extern irqreturn_t counter0_irq(int irq, void *dev_id, struct pt_regs *regs);
88 static DEFINE_SPINLOCK(irq_lock);
91 static unsigned int startup_irq(unsigned int irq_nr)
93 local_enable_irq(irq_nr);
98 static void shutdown_irq(unsigned int irq_nr)
100 local_disable_irq(irq_nr);
105 inline void local_enable_irq(unsigned int irq_nr)
107 if (irq_nr > AU1000_LAST_INTC0_INT) {
108 au_writel(1<<(irq_nr-32), IC1_MASKSET);
109 au_writel(1<<(irq_nr-32), IC1_WAKESET);
112 au_writel(1<<irq_nr, IC0_MASKSET);
113 au_writel(1<<irq_nr, IC0_WAKESET);
119 inline void local_disable_irq(unsigned int irq_nr)
121 if (irq_nr > AU1000_LAST_INTC0_INT) {
122 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
123 au_writel(1<<(irq_nr-32), IC1_WAKECLR);
126 au_writel(1<<irq_nr, IC0_MASKCLR);
127 au_writel(1<<irq_nr, IC0_WAKECLR);
133 static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr)
135 if (irq_nr > AU1000_LAST_INTC0_INT) {
136 au_writel(1<<(irq_nr-32), IC1_RISINGCLR);
137 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
140 au_writel(1<<irq_nr, IC0_RISINGCLR);
141 au_writel(1<<irq_nr, IC0_MASKCLR);
147 static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr)
149 if (irq_nr > AU1000_LAST_INTC0_INT) {
150 au_writel(1<<(irq_nr-32), IC1_FALLINGCLR);
151 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
154 au_writel(1<<irq_nr, IC0_FALLINGCLR);
155 au_writel(1<<irq_nr, IC0_MASKCLR);
161 static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr)
163 /* This may assume that we don't get interrupts from
164 * both edges at once, or if we do, that we don't care.
166 if (irq_nr > AU1000_LAST_INTC0_INT) {
167 au_writel(1<<(irq_nr-32), IC1_FALLINGCLR);
168 au_writel(1<<(irq_nr-32), IC1_RISINGCLR);
169 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
172 au_writel(1<<irq_nr, IC0_FALLINGCLR);
173 au_writel(1<<irq_nr, IC0_RISINGCLR);
174 au_writel(1<<irq_nr, IC0_MASKCLR);
180 static inline void mask_and_ack_level_irq(unsigned int irq_nr)
183 local_disable_irq(irq_nr);
185 #if defined(CONFIG_MIPS_PB1000)
186 if (irq_nr == AU1000_GPIO_15) {
187 au_writel(0x8000, PB1000_MDR); /* ack int */
195 static void end_irq(unsigned int irq_nr)
197 if (!(irq_desc[irq_nr].status & (IRQ_DISABLED|IRQ_INPROGRESS))) {
198 local_enable_irq(irq_nr);
200 #if defined(CONFIG_MIPS_PB1000)
201 if (irq_nr == AU1000_GPIO_15) {
202 au_writel(0x4000, PB1000_MDR); /* enable int */
208 unsigned long save_local_and_disable(int controller)
211 unsigned long flags, mask;
213 spin_lock_irqsave(&irq_lock, flags);
215 mask = au_readl(IC1_MASKSET);
216 for (i=32; i<64; i++) {
217 local_disable_irq(i);
221 mask = au_readl(IC0_MASKSET);
222 for (i=0; i<32; i++) {
223 local_disable_irq(i);
226 spin_unlock_irqrestore(&irq_lock, flags);
231 void restore_local_and_enable(int controller, unsigned long mask)
234 unsigned long flags, new_mask;
236 spin_lock_irqsave(&irq_lock, flags);
237 for (i=0; i<32; i++) {
240 local_enable_irq(i+32);
246 new_mask = au_readl(IC1_MASKSET);
248 new_mask = au_readl(IC0_MASKSET);
250 spin_unlock_irqrestore(&irq_lock, flags);
254 static struct hw_interrupt_type rise_edge_irq_type = {
255 .typename = "Au1000 Rise Edge",
256 .startup = startup_irq,
257 .shutdown = shutdown_irq,
258 .enable = local_enable_irq,
259 .disable = local_disable_irq,
260 .ack = mask_and_ack_rise_edge_irq,
264 static struct hw_interrupt_type fall_edge_irq_type = {
265 .typename = "Au1000 Fall Edge",
266 .startup = startup_irq,
267 .shutdown = shutdown_irq,
268 .enable = local_enable_irq,
269 .disable = local_disable_irq,
270 .ack = mask_and_ack_fall_edge_irq,
274 static struct hw_interrupt_type either_edge_irq_type = {
275 .typename = "Au1000 Rise or Fall Edge",
276 .startup = startup_irq,
277 .shutdown = shutdown_irq,
278 .enable = local_enable_irq,
279 .disable = local_disable_irq,
280 .ack = mask_and_ack_either_edge_irq,
284 static struct hw_interrupt_type level_irq_type = {
285 .typename = "Au1000 Level",
286 .startup = startup_irq,
287 .shutdown = shutdown_irq,
288 .enable = local_enable_irq,
289 .disable = local_disable_irq,
290 .ack = mask_and_ack_level_irq,
295 void startup_match20_interrupt(irqreturn_t (*handler)(int, void *, struct pt_regs *))
297 struct irq_desc *desc = &irq_desc[AU1000_TOY_MATCH2_INT];
299 static struct irqaction action;
300 memset(&action, 0, sizeof(struct irqaction));
302 /* This is a big problem.... since we didn't use request_irq
303 * when kernel/irq.c calls probe_irq_xxx this interrupt will
304 * be probed for usage. This will end up disabling the device :(
305 * Give it a bogus "action" pointer -- this will keep it from
306 * getting auto-probed!
308 * By setting the status to match that of request_irq() we
309 * can avoid it. --cgray
311 action.dev_id = handler;
312 action.flags = SA_INTERRUPT;
313 cpus_clear(action.mask);
314 action.name = "Au1xxx TOY";
315 action.handler = handler;
318 desc->action = &action;
319 desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS);
321 local_enable_irq(AU1000_TOY_MATCH2_INT);
325 static void setup_local_irq(unsigned int irq_nr, int type, int int_req)
327 if (irq_nr > AU1000_MAX_INTR) return;
328 /* Config2[n], Config1[n], Config0[n] */
329 if (irq_nr > AU1000_LAST_INTC0_INT) {
331 case INTC_INT_RISE_EDGE: /* 0:0:1 */
332 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
333 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
334 au_writel(1<<(irq_nr-32), IC1_CFG0SET);
335 irq_desc[irq_nr].handler = &rise_edge_irq_type;
337 case INTC_INT_FALL_EDGE: /* 0:1:0 */
338 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
339 au_writel(1<<(irq_nr-32), IC1_CFG1SET);
340 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
341 irq_desc[irq_nr].handler = &fall_edge_irq_type;
343 case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */
344 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
345 au_writel(1<<(irq_nr-32), IC1_CFG1SET);
346 au_writel(1<<(irq_nr-32), IC1_CFG0SET);
347 irq_desc[irq_nr].handler = &either_edge_irq_type;
349 case INTC_INT_HIGH_LEVEL: /* 1:0:1 */
350 au_writel(1<<(irq_nr-32), IC1_CFG2SET);
351 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
352 au_writel(1<<(irq_nr-32), IC1_CFG0SET);
353 irq_desc[irq_nr].handler = &level_irq_type;
355 case INTC_INT_LOW_LEVEL: /* 1:1:0 */
356 au_writel(1<<(irq_nr-32), IC1_CFG2SET);
357 au_writel(1<<(irq_nr-32), IC1_CFG1SET);
358 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
359 irq_desc[irq_nr].handler = &level_irq_type;
361 case INTC_INT_DISABLED: /* 0:0:0 */
362 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
363 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
364 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
366 default: /* disable the interrupt */
367 printk("unexpected int type %d (irq %d)\n", type, irq_nr);
368 au_writel(1<<(irq_nr-32), IC1_CFG0CLR);
369 au_writel(1<<(irq_nr-32), IC1_CFG1CLR);
370 au_writel(1<<(irq_nr-32), IC1_CFG2CLR);
373 if (int_req) /* assign to interrupt request 1 */
374 au_writel(1<<(irq_nr-32), IC1_ASSIGNCLR);
375 else /* assign to interrupt request 0 */
376 au_writel(1<<(irq_nr-32), IC1_ASSIGNSET);
377 au_writel(1<<(irq_nr-32), IC1_SRCSET);
378 au_writel(1<<(irq_nr-32), IC1_MASKCLR);
379 au_writel(1<<(irq_nr-32), IC1_WAKECLR);
383 case INTC_INT_RISE_EDGE: /* 0:0:1 */
384 au_writel(1<<irq_nr, IC0_CFG2CLR);
385 au_writel(1<<irq_nr, IC0_CFG1CLR);
386 au_writel(1<<irq_nr, IC0_CFG0SET);
387 irq_desc[irq_nr].handler = &rise_edge_irq_type;
389 case INTC_INT_FALL_EDGE: /* 0:1:0 */
390 au_writel(1<<irq_nr, IC0_CFG2CLR);
391 au_writel(1<<irq_nr, IC0_CFG1SET);
392 au_writel(1<<irq_nr, IC0_CFG0CLR);
393 irq_desc[irq_nr].handler = &fall_edge_irq_type;
395 case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */
396 au_writel(1<<irq_nr, IC0_CFG2CLR);
397 au_writel(1<<irq_nr, IC0_CFG1SET);
398 au_writel(1<<irq_nr, IC0_CFG0SET);
399 irq_desc[irq_nr].handler = &either_edge_irq_type;
401 case INTC_INT_HIGH_LEVEL: /* 1:0:1 */
402 au_writel(1<<irq_nr, IC0_CFG2SET);
403 au_writel(1<<irq_nr, IC0_CFG1CLR);
404 au_writel(1<<irq_nr, IC0_CFG0SET);
405 irq_desc[irq_nr].handler = &level_irq_type;
407 case INTC_INT_LOW_LEVEL: /* 1:1:0 */
408 au_writel(1<<irq_nr, IC0_CFG2SET);
409 au_writel(1<<irq_nr, IC0_CFG1SET);
410 au_writel(1<<irq_nr, IC0_CFG0CLR);
411 irq_desc[irq_nr].handler = &level_irq_type;
413 case INTC_INT_DISABLED: /* 0:0:0 */
414 au_writel(1<<irq_nr, IC0_CFG0CLR);
415 au_writel(1<<irq_nr, IC0_CFG1CLR);
416 au_writel(1<<irq_nr, IC0_CFG2CLR);
418 default: /* disable the interrupt */
419 printk("unexpected int type %d (irq %d)\n", type, irq_nr);
420 au_writel(1<<irq_nr, IC0_CFG0CLR);
421 au_writel(1<<irq_nr, IC0_CFG1CLR);
422 au_writel(1<<irq_nr, IC0_CFG2CLR);
425 if (int_req) /* assign to interrupt request 1 */
426 au_writel(1<<irq_nr, IC0_ASSIGNCLR);
427 else /* assign to interrupt request 0 */
428 au_writel(1<<irq_nr, IC0_ASSIGNSET);
429 au_writel(1<<irq_nr, IC0_SRCSET);
430 au_writel(1<<irq_nr, IC0_MASKCLR);
431 au_writel(1<<irq_nr, IC0_WAKECLR);
437 void __init arch_init_irq(void)
440 unsigned long cp0_status;
441 au1xxx_irq_map_t *imp;
442 extern au1xxx_irq_map_t au1xxx_irq_map[];
443 extern au1xxx_irq_map_t au1xxx_ic0_map[];
444 extern int au1xxx_nr_irqs;
445 extern int au1xxx_ic0_nr_irqs;
447 cp0_status = read_c0_status();
449 /* Initialize interrupt controllers to a safe state.
451 au_writel(0xffffffff, IC0_CFG0CLR);
452 au_writel(0xffffffff, IC0_CFG1CLR);
453 au_writel(0xffffffff, IC0_CFG2CLR);
454 au_writel(0xffffffff, IC0_MASKCLR);
455 au_writel(0xffffffff, IC0_ASSIGNSET);
456 au_writel(0xffffffff, IC0_WAKECLR);
457 au_writel(0xffffffff, IC0_SRCSET);
458 au_writel(0xffffffff, IC0_FALLINGCLR);
459 au_writel(0xffffffff, IC0_RISINGCLR);
460 au_writel(0x00000000, IC0_TESTBIT);
462 au_writel(0xffffffff, IC1_CFG0CLR);
463 au_writel(0xffffffff, IC1_CFG1CLR);
464 au_writel(0xffffffff, IC1_CFG2CLR);
465 au_writel(0xffffffff, IC1_MASKCLR);
466 au_writel(0xffffffff, IC1_ASSIGNSET);
467 au_writel(0xffffffff, IC1_WAKECLR);
468 au_writel(0xffffffff, IC1_SRCSET);
469 au_writel(0xffffffff, IC1_FALLINGCLR);
470 au_writel(0xffffffff, IC1_RISINGCLR);
471 au_writel(0x00000000, IC1_TESTBIT);
473 /* Initialize IC0, which is fixed per processor.
475 imp = au1xxx_ic0_map;
476 for (i=0; i<au1xxx_ic0_nr_irqs; i++) {
477 setup_local_irq(imp->im_irq, imp->im_type, imp->im_request);
481 /* Now set up the irq mapping for the board.
483 imp = au1xxx_irq_map;
484 for (i=0; i<au1xxx_nr_irqs; i++) {
485 setup_local_irq(imp->im_irq, imp->im_type, imp->im_request);
489 set_c0_status(ALLINTS);
491 /* Board specific IRQ initialization.
499 * Interrupts are nested. Even if an interrupt handler is registered
500 * as "fast", we might get another interrupt before we return from
501 * intcX_reqX_irqdispatch().
504 void intc0_req0_irqdispatch(struct pt_regs *regs)
507 static unsigned long intc0_req0 = 0;
509 intc0_req0 |= au_readl(IC0_REQ0INT);
511 if (!intc0_req0) return;
512 #ifdef AU1000_USB_DEV_REQ_INT
514 * Because of the tight timing of SETUP token to reply
515 * transactions, the USB devices-side packet complete
516 * interrupt needs the highest priority.
518 if ((intc0_req0 & (1<<AU1000_USB_DEV_REQ_INT))) {
519 intc0_req0 &= ~(1<<AU1000_USB_DEV_REQ_INT);
520 do_IRQ(AU1000_USB_DEV_REQ_INT, regs);
524 irq = au_ffs(intc0_req0) - 1;
525 intc0_req0 &= ~(1<<irq);
530 void intc0_req1_irqdispatch(struct pt_regs *regs)
533 static unsigned long intc0_req1 = 0;
535 intc0_req1 |= au_readl(IC0_REQ1INT);
537 if (!intc0_req1) return;
539 irq = au_ffs(intc0_req1) - 1;
540 intc0_req1 &= ~(1<<irq);
546 * Interrupt Controller 1:
549 void intc1_req0_irqdispatch(struct pt_regs *regs)
552 static unsigned long intc1_req0 = 0;
554 intc1_req0 |= au_readl(IC1_REQ0INT);
556 if (!intc1_req0) return;
558 irq = au_ffs(intc1_req0) - 1;
559 intc1_req0 &= ~(1<<irq);
565 void intc1_req1_irqdispatch(struct pt_regs *regs)
568 static unsigned long intc1_req1 = 0;
570 intc1_req1 |= au_readl(IC1_REQ1INT);
572 if (!intc1_req1) return;
574 irq = au_ffs(intc1_req1) - 1;
575 intc1_req1 &= ~(1<<irq);
582 /* Save/restore the interrupt controller state.
583 * Called from the save/restore core registers as part of the
584 * au_sleep function in power.c.....maybe I should just pm_register()
587 static uint sleep_intctl_config0[2];
588 static uint sleep_intctl_config1[2];
589 static uint sleep_intctl_config2[2];
590 static uint sleep_intctl_src[2];
591 static uint sleep_intctl_assign[2];
592 static uint sleep_intctl_wake[2];
593 static uint sleep_intctl_mask[2];
596 save_au1xxx_intctl(void)
598 sleep_intctl_config0[0] = au_readl(IC0_CFG0RD);
599 sleep_intctl_config1[0] = au_readl(IC0_CFG1RD);
600 sleep_intctl_config2[0] = au_readl(IC0_CFG2RD);
601 sleep_intctl_src[0] = au_readl(IC0_SRCRD);
602 sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD);
603 sleep_intctl_wake[0] = au_readl(IC0_WAKERD);
604 sleep_intctl_mask[0] = au_readl(IC0_MASKRD);
606 sleep_intctl_config0[1] = au_readl(IC1_CFG0RD);
607 sleep_intctl_config1[1] = au_readl(IC1_CFG1RD);
608 sleep_intctl_config2[1] = au_readl(IC1_CFG2RD);
609 sleep_intctl_src[1] = au_readl(IC1_SRCRD);
610 sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD);
611 sleep_intctl_wake[1] = au_readl(IC1_WAKERD);
612 sleep_intctl_mask[1] = au_readl(IC1_MASKRD);
615 /* For most restore operations, we clear the entire register and
616 * then set the bits we found during the save.
619 restore_au1xxx_intctl(void)
621 au_writel(0xffffffff, IC0_MASKCLR); au_sync();
623 au_writel(0xffffffff, IC0_CFG0CLR); au_sync();
624 au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync();
625 au_writel(0xffffffff, IC0_CFG1CLR); au_sync();
626 au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync();
627 au_writel(0xffffffff, IC0_CFG2CLR); au_sync();
628 au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync();
629 au_writel(0xffffffff, IC0_SRCCLR); au_sync();
630 au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync();
631 au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync();
632 au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync();
633 au_writel(0xffffffff, IC0_WAKECLR); au_sync();
634 au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync();
635 au_writel(0xffffffff, IC0_RISINGCLR); au_sync();
636 au_writel(0xffffffff, IC0_FALLINGCLR); au_sync();
637 au_writel(0x00000000, IC0_TESTBIT); au_sync();
639 au_writel(0xffffffff, IC1_MASKCLR); au_sync();
641 au_writel(0xffffffff, IC1_CFG0CLR); au_sync();
642 au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync();
643 au_writel(0xffffffff, IC1_CFG1CLR); au_sync();
644 au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync();
645 au_writel(0xffffffff, IC1_CFG2CLR); au_sync();
646 au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync();
647 au_writel(0xffffffff, IC1_SRCCLR); au_sync();
648 au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync();
649 au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync();
650 au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync();
651 au_writel(0xffffffff, IC1_WAKECLR); au_sync();
652 au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync();
653 au_writel(0xffffffff, IC1_RISINGCLR); au_sync();
654 au_writel(0xffffffff, IC1_FALLINGCLR); au_sync();
655 au_writel(0x00000000, IC1_TESTBIT); au_sync();
657 au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync();
659 au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync();
661 #endif /* CONFIG_PM */
663 asmlinkage void plat_irq_dispatch(struct pt_regs *regs)
665 unsigned int pending = read_c0_status() & read_c0_cause() & ST0_IM;
667 if (pending & CAUSEF_IP7)
668 mips_timer_interrupt(regs);
669 else if (pending & CAUSEF_IP2)
670 intc0_req0_irqdispatch(regs);
671 else if (pending & CAUSEF_IP3)
672 intc0_req1_irqdispatch(regs);
673 else if (pending & CAUSEF_IP4)
674 intc1_req0_irqdispatch(regs);
675 else if (pending & CAUSEF_IP5)
676 intc1_req1_irqdispatch(regs);
678 spurious_interrupt(regs);