Move code from ipw2100_wpa_enable to IPW2100_PARAM_DROP_UNENCRYPTED to
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.1"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW_DEBUG */
223
224 #ifdef CONFIG_IPW_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static inline void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static inline void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static inline void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static inline int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677         unsigned long flags;
1678         int rc = 0;
1679         u32 lock;
1680         u32 ord_len = sizeof(lock);
1681
1682         /* Quite if manually disabled. */
1683         if (priv->status & STATUS_RF_KILL_SW) {
1684                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685                                "switch\n", priv->net_dev->name);
1686                 return 0;
1687         }
1688
1689         /* If the interrupt is enabled, turn it off... */
1690         spin_lock_irqsave(&priv->low_lock, flags);
1691         ipw2100_disable_interrupts(priv);
1692
1693         /* Reset any fatal_error conditions */
1694         ipw2100_reset_fatalerror(priv);
1695         spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697         if (priv->status & STATUS_POWERED ||
1698             (priv->status & STATUS_RESET_PENDING)) {
1699                 /* Power cycle the card ... */
1700                 if (ipw2100_power_cycle_adapter(priv)) {
1701                         printk(KERN_WARNING DRV_NAME
1702                                ": %s: Could not cycle adapter.\n",
1703                                priv->net_dev->name);
1704                         rc = 1;
1705                         goto exit;
1706                 }
1707         } else
1708                 priv->status |= STATUS_POWERED;
1709
1710         /* Load the firmware, start the clocks, etc. */
1711         if (ipw2100_start_adapter(priv)) {
1712                 printk(KERN_ERR DRV_NAME
1713                        ": %s: Failed to start the firmware.\n",
1714                        priv->net_dev->name);
1715                 rc = 1;
1716                 goto exit;
1717         }
1718
1719         ipw2100_initialize_ordinals(priv);
1720
1721         /* Determine capabilities of this particular HW configuration */
1722         if (ipw2100_get_hw_features(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to determine HW features.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         lock = LOCK_NONE;
1731         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732                 printk(KERN_ERR DRV_NAME
1733                        ": %s: Failed to clear ordinal lock.\n",
1734                        priv->net_dev->name);
1735                 rc = 1;
1736                 goto exit;
1737         }
1738
1739         priv->status &= ~STATUS_SCANNING;
1740
1741         if (rf_kill_active(priv)) {
1742                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743                        priv->net_dev->name);
1744
1745                 if (priv->stop_rf_kill) {
1746                         priv->stop_rf_kill = 0;
1747                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748                 }
1749
1750                 deferred = 1;
1751         }
1752
1753         /* Turn on the interrupt so that commands can be processed */
1754         ipw2100_enable_interrupts(priv);
1755
1756         /* Send all of the commands that must be sent prior to
1757          * HOST_COMPLETE */
1758         if (ipw2100_adapter_setup(priv)) {
1759                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760                        priv->net_dev->name);
1761                 rc = 1;
1762                 goto exit;
1763         }
1764
1765         if (!deferred) {
1766                 /* Enable the adapter - sends HOST_COMPLETE */
1767                 if (ipw2100_enable_adapter(priv)) {
1768                         printk(KERN_ERR DRV_NAME ": "
1769                                "%s: failed in call to enable adapter.\n",
1770                                priv->net_dev->name);
1771                         ipw2100_hw_stop_adapter(priv);
1772                         rc = 1;
1773                         goto exit;
1774                 }
1775
1776                 /* Start a scan . . . */
1777                 ipw2100_set_scan_options(priv);
1778                 ipw2100_start_scan(priv);
1779         }
1780
1781       exit:
1782         return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788         struct ipw2100_priv *priv = ieee80211_priv(dev);
1789         return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794         unsigned long flags;
1795         union iwreq_data wrqu = {
1796                 .ap_addr = {
1797                             .sa_family = ARPHRD_ETHER}
1798         };
1799         int associated = priv->status & STATUS_ASSOCIATED;
1800
1801         /* Kill the RF switch timer */
1802         if (!priv->stop_rf_kill) {
1803                 priv->stop_rf_kill = 1;
1804                 cancel_delayed_work(&priv->rf_kill);
1805         }
1806
1807         /* Kill the firmare hang check timer */
1808         if (!priv->stop_hang_check) {
1809                 priv->stop_hang_check = 1;
1810                 cancel_delayed_work(&priv->hang_check);
1811         }
1812
1813         /* Kill any pending resets */
1814         if (priv->status & STATUS_RESET_PENDING)
1815                 cancel_delayed_work(&priv->reset_work);
1816
1817         /* Make sure the interrupt is on so that FW commands will be
1818          * processed correctly */
1819         spin_lock_irqsave(&priv->low_lock, flags);
1820         ipw2100_enable_interrupts(priv);
1821         spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823         if (ipw2100_hw_stop_adapter(priv))
1824                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825                        priv->net_dev->name);
1826
1827         /* Do not disable the interrupt until _after_ we disable
1828          * the adaptor.  Otherwise the CARD_DISABLE command will never
1829          * be ack'd by the firmware */
1830         spin_lock_irqsave(&priv->low_lock, flags);
1831         ipw2100_disable_interrupts(priv);
1832         spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835         if (priv->config & CFG_C3_DISABLED) {
1836                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837                 acpi_set_cstate_limit(priv->cstate_limit);
1838                 priv->config &= ~CFG_C3_DISABLED;
1839         }
1840 #endif
1841
1842         /* We have to signal any supplicant if we are disassociating */
1843         if (associated)
1844                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847         netif_carrier_off(priv->net_dev);
1848         netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853         unsigned long flags;
1854         union iwreq_data wrqu = {
1855                 .ap_addr = {
1856                             .sa_family = ARPHRD_ETHER}
1857         };
1858         int associated = priv->status & STATUS_ASSOCIATED;
1859
1860         spin_lock_irqsave(&priv->low_lock, flags);
1861         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862         priv->resets++;
1863         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864         priv->status |= STATUS_SECURITY_UPDATED;
1865
1866         /* Force a power cycle even if interface hasn't been opened
1867          * yet */
1868         cancel_delayed_work(&priv->reset_work);
1869         priv->status |= STATUS_RESET_PENDING;
1870         spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872         down(&priv->action_sem);
1873         /* stop timed checks so that they don't interfere with reset */
1874         priv->stop_hang_check = 1;
1875         cancel_delayed_work(&priv->hang_check);
1876
1877         /* We have to signal any supplicant if we are disassociating */
1878         if (associated)
1879                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881         ipw2100_up(priv, 0);
1882         up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890         int ret, len, essid_len;
1891         char essid[IW_ESSID_MAX_SIZE];
1892         u32 txrate;
1893         u32 chan;
1894         char *txratename;
1895         u8 bssid[ETH_ALEN];
1896
1897         /*
1898          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899          *      an actual MAC of the AP. Seems like FW sets this
1900          *      address too late. Read it later and expose through
1901          *      /proc or schedule a later task to query and update
1902          */
1903
1904         essid_len = IW_ESSID_MAX_SIZE;
1905         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906                                   essid, &essid_len);
1907         if (ret) {
1908                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909                                __LINE__);
1910                 return;
1911         }
1912
1913         len = sizeof(u32);
1914         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915         if (ret) {
1916                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917                                __LINE__);
1918                 return;
1919         }
1920
1921         len = sizeof(u32);
1922         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923         if (ret) {
1924                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925                                __LINE__);
1926                 return;
1927         }
1928         len = ETH_ALEN;
1929         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930         if (ret) {
1931                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932                                __LINE__);
1933                 return;
1934         }
1935         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937         switch (txrate) {
1938         case TX_RATE_1_MBIT:
1939                 txratename = "1Mbps";
1940                 break;
1941         case TX_RATE_2_MBIT:
1942                 txratename = "2Mbsp";
1943                 break;
1944         case TX_RATE_5_5_MBIT:
1945                 txratename = "5.5Mbps";
1946                 break;
1947         case TX_RATE_11_MBIT:
1948                 txratename = "11Mbps";
1949                 break;
1950         default:
1951                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952                 txratename = "unknown rate";
1953                 break;
1954         }
1955
1956         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957                        MAC_FMT ")\n",
1958                        priv->net_dev->name, escape_essid(essid, essid_len),
1959                        txratename, chan, MAC_ARG(bssid));
1960
1961         /* now we copy read ssid into dev */
1962         if (!(priv->config & CFG_STATIC_ESSID)) {
1963                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964                 memcpy(priv->essid, essid, priv->essid_len);
1965         }
1966         priv->channel = chan;
1967         memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969         priv->status |= STATUS_ASSOCIATING;
1970         priv->connect_start = get_seconds();
1971
1972         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976                              int length, int batch_mode)
1977 {
1978         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979         struct host_command cmd = {
1980                 .host_command = SSID,
1981                 .host_command_sequence = 0,
1982                 .host_command_length = ssid_len
1983         };
1984         int err;
1985
1986         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988         if (ssid_len)
1989                 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991         if (!batch_mode) {
1992                 err = ipw2100_disable_adapter(priv);
1993                 if (err)
1994                         return err;
1995         }
1996
1997         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998          * disable auto association -- so we cheat by setting a bogus SSID */
1999         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000                 int i;
2001                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003                         bogus[i] = 0x18 + i;
2004                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005         }
2006
2007         /* NOTE:  We always send the SSID command even if the provided ESSID is
2008          * the same as what we currently think is set. */
2009
2010         err = ipw2100_hw_send_command(priv, &cmd);
2011         if (!err) {
2012                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013                 memcpy(priv->essid, essid, ssid_len);
2014                 priv->essid_len = ssid_len;
2015         }
2016
2017         if (!batch_mode) {
2018                 if (ipw2100_enable_adapter(priv))
2019                         err = -EIO;
2020         }
2021
2022         return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028                   "disassociated: '%s' " MAC_FMT " \n",
2029                   escape_essid(priv->essid, priv->essid_len),
2030                   MAC_ARG(priv->bssid));
2031
2032         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034         if (priv->status & STATUS_STOPPING) {
2035                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036                 return;
2037         }
2038
2039         memset(priv->bssid, 0, ETH_ALEN);
2040         memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042         netif_carrier_off(priv->net_dev);
2043         netif_stop_queue(priv->net_dev);
2044
2045         if (!(priv->status & STATUS_RUNNING))
2046                 return;
2047
2048         if (priv->status & STATUS_SECURITY_UPDATED)
2049                 queue_work(priv->workqueue, &priv->security_work);
2050
2051         queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057                        priv->net_dev->name);
2058
2059         /* RF_KILL is now enabled (else we wouldn't be here) */
2060         priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063         if (priv->config & CFG_C3_DISABLED) {
2064                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065                 acpi_set_cstate_limit(priv->cstate_limit);
2066                 priv->config &= ~CFG_C3_DISABLED;
2067         }
2068 #endif
2069
2070         /* Make sure the RF Kill check timer is running */
2071         priv->stop_rf_kill = 0;
2072         cancel_delayed_work(&priv->rf_kill);
2073         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078         IPW_DEBUG_SCAN("scan complete\n");
2079         /* Age the scan results... */
2080         priv->ieee->scans++;
2081         priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087         int status;
2088         void (*cb) (struct ipw2100_priv * priv, u32 status);
2089         char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094         int status;
2095         void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif                          /* CONFIG_IPW_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101         IPW_DEBUG_SCAN("Scanning...\n");
2102         priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118         IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123         int i;
2124
2125         if (status == IPW_STATE_SCANNING &&
2126             priv->status & STATUS_ASSOCIATED &&
2127             !(priv->status & STATUS_SCANNING)) {
2128                 IPW_DEBUG_INFO("Scan detected while associated, with "
2129                                "no scan request.  Restarting firmware.\n");
2130
2131                 /* Wake up any sleeping jobs */
2132                 schedule_reset(priv);
2133         }
2134
2135         for (i = 0; status_handlers[i].status != -1; i++) {
2136                 if (status == status_handlers[i].status) {
2137                         IPW_DEBUG_NOTIF("Status change: %s\n",
2138                                         status_handlers[i].name);
2139                         if (status_handlers[i].cb)
2140                                 status_handlers[i].cb(priv, status);
2141                         priv->wstats.status = status;
2142                         return;
2143                 }
2144         }
2145
2146         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150                                     struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW_DEBUG
2153         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155                              command_types[cmd->host_command_reg],
2156                              cmd->host_command_reg);
2157         }
2158 #endif
2159         if (cmd->host_command_reg == HOST_COMPLETE)
2160                 priv->status |= STATUS_ENABLED;
2161
2162         if (cmd->host_command_reg == CARD_DISABLE)
2163                 priv->status &= ~STATUS_ENABLED;
2164
2165         priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167         wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW_DEBUG
2171 static const char *frame_types[] = {
2172         "COMMAND_STATUS_VAL",
2173         "STATUS_CHANGE_VAL",
2174         "P80211_DATA_VAL",
2175         "P8023_DATA_VAL",
2176         "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static inline int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181                                     struct ipw2100_rx_packet *packet)
2182 {
2183         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184         if (!packet->skb)
2185                 return -ENOMEM;
2186
2187         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189                                           sizeof(struct ipw2100_rx),
2190                                           PCI_DMA_FROMDEVICE);
2191         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192          *       dma_addr */
2193
2194         return 0;
2195 }
2196
2197 #define SEARCH_ERROR   0xffffffff
2198 #define SEARCH_FAIL    0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static inline int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2205 {
2206         int i;
2207         if (priv->snapshot[0])
2208                 return 1;
2209         for (i = 0; i < 0x30; i++) {
2210                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211                 if (!priv->snapshot[i]) {
2212                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213                                        "buffer %d\n", priv->net_dev->name, i);
2214                         while (i > 0)
2215                                 kfree(priv->snapshot[--i]);
2216                         priv->snapshot[0] = NULL;
2217                         return 0;
2218                 }
2219         }
2220
2221         return 1;
2222 }
2223
2224 static inline void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2225 {
2226         int i;
2227         if (!priv->snapshot[0])
2228                 return;
2229         for (i = 0; i < 0x30; i++)
2230                 kfree(priv->snapshot[i]);
2231         priv->snapshot[0] = NULL;
2232 }
2233
2234 static inline u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235                                     size_t len, int mode)
2236 {
2237         u32 i, j;
2238         u32 tmp;
2239         u8 *s, *d;
2240         u32 ret;
2241
2242         s = in_buf;
2243         if (mode == SEARCH_SNAPSHOT) {
2244                 if (!ipw2100_snapshot_alloc(priv))
2245                         mode = SEARCH_DISCARD;
2246         }
2247
2248         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249                 read_nic_dword(priv->net_dev, i, &tmp);
2250                 if (mode == SEARCH_SNAPSHOT)
2251                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252                 if (ret == SEARCH_FAIL) {
2253                         d = (u8 *) & tmp;
2254                         for (j = 0; j < 4; j++) {
2255                                 if (*s != *d) {
2256                                         s = in_buf;
2257                                         continue;
2258                                 }
2259
2260                                 s++;
2261                                 d++;
2262
2263                                 if ((s - in_buf) == len)
2264                                         ret = (i + j) - len + 1;
2265                         }
2266                 } else if (mode == SEARCH_DISCARD)
2267                         return ret;
2268         }
2269
2270         return ret;
2271 }
2272
2273 /*
2274  *
2275  * 0) Disconnect the SKB from the firmware (just unmap)
2276  * 1) Pack the ETH header into the SKB
2277  * 2) Pass the SKB to the network stack
2278  *
2279  * When packet is provided by the firmware, it contains the following:
2280  *
2281  * .  ieee80211_hdr
2282  * .  ieee80211_snap_hdr
2283  *
2284  * The size of the constructed ethernet
2285  *
2286  */
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2289 #endif
2290
2291 static inline void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2292 {
2293 #ifdef CONFIG_IPW_DEBUG_C3
2294         struct ipw2100_status *status = &priv->status_queue.drv[i];
2295         u32 match, reg;
2296         int j;
2297 #endif
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2299         int limit;
2300 #endif
2301
2302         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303                        i * sizeof(struct ipw2100_status));
2304
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307         limit = acpi_get_cstate_limit();
2308         if (limit > 2) {
2309                 priv->cstate_limit = limit;
2310                 acpi_set_cstate_limit(2);
2311                 priv->config |= CFG_C3_DISABLED;
2312         }
2313 #endif
2314
2315 #ifdef CONFIG_IPW_DEBUG_C3
2316         /* Halt the fimrware so we can get a good image */
2317         write_register(priv->net_dev, IPW_REG_RESET_REG,
2318                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2319         j = 5;
2320         do {
2321                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2323
2324                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2325                         break;
2326         } while (j--);
2327
2328         match = ipw2100_match_buf(priv, (u8 *) status,
2329                                   sizeof(struct ipw2100_status),
2330                                   SEARCH_SNAPSHOT);
2331         if (match < SEARCH_SUCCESS)
2332                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333                                "offset 0x%06X, length %d:\n",
2334                                priv->net_dev->name, match,
2335                                sizeof(struct ipw2100_status));
2336         else
2337                 IPW_DEBUG_INFO("%s: No DMA status match in "
2338                                "Firmware.\n", priv->net_dev->name);
2339
2340         printk_buf((u8 *) priv->status_queue.drv,
2341                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2342 #endif
2343
2344         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345         priv->ieee->stats.rx_errors++;
2346         schedule_reset(priv);
2347 }
2348
2349 static inline void isr_rx(struct ipw2100_priv *priv, int i,
2350                           struct ieee80211_rx_stats *stats)
2351 {
2352         struct ipw2100_status *status = &priv->status_queue.drv[i];
2353         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2354
2355         IPW_DEBUG_RX("Handler...\n");
2356
2357         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2359                                "  Dropping.\n",
2360                                priv->net_dev->name,
2361                                status->frame_size, skb_tailroom(packet->skb));
2362                 priv->ieee->stats.rx_errors++;
2363                 return;
2364         }
2365
2366         if (unlikely(!netif_running(priv->net_dev))) {
2367                 priv->ieee->stats.rx_errors++;
2368                 priv->wstats.discard.misc++;
2369                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2370                 return;
2371         }
2372 #ifdef CONFIG_IPW2100_MONITOR
2373         if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374                      priv->config & CFG_CRC_CHECK &&
2375                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2377                 priv->ieee->stats.rx_errors++;
2378                 return;
2379         }
2380 #endif
2381
2382         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383                      !(priv->status & STATUS_ASSOCIATED))) {
2384                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385                 priv->wstats.discard.misc++;
2386                 return;
2387         }
2388
2389         pci_unmap_single(priv->pci_dev,
2390                          packet->dma_addr,
2391                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2392
2393         skb_put(packet->skb, status->frame_size);
2394
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396         /* Make a copy of the frame so we can dump it to the logs if
2397          * ieee80211_rx fails */
2398         memcpy(packet_data, packet->skb->data,
2399                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2400 #endif
2401
2402         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405                                priv->net_dev->name);
2406                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2407 #endif
2408                 priv->ieee->stats.rx_errors++;
2409
2410                 /* ieee80211_rx failed, so it didn't free the SKB */
2411                 dev_kfree_skb_any(packet->skb);
2412                 packet->skb = NULL;
2413         }
2414
2415         /* We need to allocate a new SKB and attach it to the RDB. */
2416         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417                 printk(KERN_WARNING DRV_NAME ": "
2418                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2419                        "adapter.\n", priv->net_dev->name);
2420                 /* TODO: schedule adapter shutdown */
2421                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2422         }
2423
2424         /* Update the RDB entry */
2425         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2426 }
2427
2428 static inline int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2429 {
2430         struct ipw2100_status *status = &priv->status_queue.drv[i];
2431         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2433
2434         switch (frame_type) {
2435         case COMMAND_STATUS_VAL:
2436                 return (status->frame_size != sizeof(u->rx_data.command));
2437         case STATUS_CHANGE_VAL:
2438                 return (status->frame_size != sizeof(u->rx_data.status));
2439         case HOST_NOTIFICATION_VAL:
2440                 return (status->frame_size < sizeof(u->rx_data.notification));
2441         case P80211_DATA_VAL:
2442         case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2444                 return 0;
2445 #else
2446                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447                 case IEEE80211_FTYPE_MGMT:
2448                 case IEEE80211_FTYPE_CTL:
2449                         return 0;
2450                 case IEEE80211_FTYPE_DATA:
2451                         return (status->frame_size >
2452                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2453                 }
2454 #endif
2455         }
2456
2457         return 1;
2458 }
2459
2460 /*
2461  * ipw2100 interrupts are disabled at this point, and the ISR
2462  * is the only code that calls this method.  So, we do not need
2463  * to play with any locks.
2464  *
2465  * RX Queue works as follows:
2466  *
2467  * Read index - firmware places packet in entry identified by the
2468  *              Read index and advances Read index.  In this manner,
2469  *              Read index will always point to the next packet to
2470  *              be filled--but not yet valid.
2471  *
2472  * Write index - driver fills this entry with an unused RBD entry.
2473  *               This entry has not filled by the firmware yet.
2474  *
2475  * In between the W and R indexes are the RBDs that have been received
2476  * but not yet processed.
2477  *
2478  * The process of handling packets will start at WRITE + 1 and advance
2479  * until it reaches the READ index.
2480  *
2481  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2482  *
2483  */
2484 static inline void __ipw2100_rx_process(struct ipw2100_priv *priv)
2485 {
2486         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487         struct ipw2100_status_queue *sq = &priv->status_queue;
2488         struct ipw2100_rx_packet *packet;
2489         u16 frame_type;
2490         u32 r, w, i, s;
2491         struct ipw2100_rx *u;
2492         struct ieee80211_rx_stats stats = {
2493                 .mac_time = jiffies,
2494         };
2495
2496         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2498
2499         if (r >= rxq->entries) {
2500                 IPW_DEBUG_RX("exit - bad read index\n");
2501                 return;
2502         }
2503
2504         i = (rxq->next + 1) % rxq->entries;
2505         s = i;
2506         while (i != r) {
2507                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508                    r, rxq->next, i); */
2509
2510                 packet = &priv->rx_buffers[i];
2511
2512                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513                  * the correct values */
2514                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2515                                             sq->nic +
2516                                             sizeof(struct ipw2100_status) * i,
2517                                             sizeof(struct ipw2100_status),
2518                                             PCI_DMA_FROMDEVICE);
2519
2520                 /* Sync the DMA for the RX buffer so CPU is sure to get
2521                  * the correct values */
2522                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523                                             sizeof(struct ipw2100_rx),
2524                                             PCI_DMA_FROMDEVICE);
2525
2526                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527                         ipw2100_corruption_detected(priv, i);
2528                         goto increment;
2529                 }
2530
2531                 u = packet->rxp;
2532                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534                 stats.len = sq->drv[i].frame_size;
2535
2536                 stats.mask = 0;
2537                 if (stats.rssi != 0)
2538                         stats.mask |= IEEE80211_STATMASK_RSSI;
2539                 stats.freq = IEEE80211_24GHZ_BAND;
2540
2541                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542                              priv->net_dev->name, frame_types[frame_type],
2543                              stats.len);
2544
2545                 switch (frame_type) {
2546                 case COMMAND_STATUS_VAL:
2547                         /* Reset Rx watchdog */
2548                         isr_rx_complete_command(priv, &u->rx_data.command);
2549                         break;
2550
2551                 case STATUS_CHANGE_VAL:
2552                         isr_status_change(priv, u->rx_data.status);
2553                         break;
2554
2555                 case P80211_DATA_VAL:
2556                 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559                                 isr_rx(priv, i, &stats);
2560                                 break;
2561                         }
2562 #endif
2563                         if (stats.len < sizeof(u->rx_data.header))
2564                                 break;
2565                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566                         case IEEE80211_FTYPE_MGMT:
2567                                 ieee80211_rx_mgt(priv->ieee,
2568                                                  &u->rx_data.header, &stats);
2569                                 break;
2570
2571                         case IEEE80211_FTYPE_CTL:
2572                                 break;
2573
2574                         case IEEE80211_FTYPE_DATA:
2575                                 isr_rx(priv, i, &stats);
2576                                 break;
2577
2578                         }
2579                         break;
2580                 }
2581
2582               increment:
2583                 /* clear status field associated with this RBD */
2584                 rxq->drv[i].status.info.field = 0;
2585
2586                 i = (i + 1) % rxq->entries;
2587         }
2588
2589         if (i != s) {
2590                 /* backtrack one entry, wrapping to end if at 0 */
2591                 rxq->next = (i ? i : rxq->entries) - 1;
2592
2593                 write_register(priv->net_dev,
2594                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2595         }
2596 }
2597
2598 /*
2599  * __ipw2100_tx_process
2600  *
2601  * This routine will determine whether the next packet on
2602  * the fw_pend_list has been processed by the firmware yet.
2603  *
2604  * If not, then it does nothing and returns.
2605  *
2606  * If so, then it removes the item from the fw_pend_list, frees
2607  * any associated storage, and places the item back on the
2608  * free list of its source (either msg_free_list or tx_free_list)
2609  *
2610  * TX Queue works as follows:
2611  *
2612  * Read index - points to the next TBD that the firmware will
2613  *              process.  The firmware will read the data, and once
2614  *              done processing, it will advance the Read index.
2615  *
2616  * Write index - driver fills this entry with an constructed TBD
2617  *               entry.  The Write index is not advanced until the
2618  *               packet has been configured.
2619  *
2620  * In between the W and R indexes are the TBDs that have NOT been
2621  * processed.  Lagging behind the R index are packets that have
2622  * been processed but have not been freed by the driver.
2623  *
2624  * In order to free old storage, an internal index will be maintained
2625  * that points to the next packet to be freed.  When all used
2626  * packets have been freed, the oldest index will be the same as the
2627  * firmware's read index.
2628  *
2629  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2630  *
2631  * Because the TBD structure can not contain arbitrary data, the
2632  * driver must keep an internal queue of cached allocations such that
2633  * it can put that data back into the tx_free_list and msg_free_list
2634  * for use by future command and data packets.
2635  *
2636  */
2637 static inline int __ipw2100_tx_process(struct ipw2100_priv *priv)
2638 {
2639         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640         struct ipw2100_bd *tbd;
2641         struct list_head *element;
2642         struct ipw2100_tx_packet *packet;
2643         int descriptors_used;
2644         int e, i;
2645         u32 r, w, frag_num = 0;
2646
2647         if (list_empty(&priv->fw_pend_list))
2648                 return 0;
2649
2650         element = priv->fw_pend_list.next;
2651
2652         packet = list_entry(element, struct ipw2100_tx_packet, list);
2653         tbd = &txq->drv[packet->index];
2654
2655         /* Determine how many TBD entries must be finished... */
2656         switch (packet->type) {
2657         case COMMAND:
2658                 /* COMMAND uses only one slot; don't advance */
2659                 descriptors_used = 1;
2660                 e = txq->oldest;
2661                 break;
2662
2663         case DATA:
2664                 /* DATA uses two slots; advance and loop position. */
2665                 descriptors_used = tbd->num_fragments;
2666                 frag_num = tbd->num_fragments - 1;
2667                 e = txq->oldest + frag_num;
2668                 e %= txq->entries;
2669                 break;
2670
2671         default:
2672                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673                        priv->net_dev->name);
2674                 return 0;
2675         }
2676
2677         /* if the last TBD is not done by NIC yet, then packet is
2678          * not ready to be released.
2679          *
2680          */
2681         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2682                       &r);
2683         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2684                       &w);
2685         if (w != txq->next)
2686                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687                        priv->net_dev->name);
2688
2689         /*
2690          * txq->next is the index of the last packet written txq->oldest is
2691          * the index of the r is the index of the next packet to be read by
2692          * firmware
2693          */
2694
2695         /*
2696          * Quick graphic to help you visualize the following
2697          * if / else statement
2698          *
2699          * ===>|                     s---->|===============
2700          *                               e>|
2701          * | a | b | c | d | e | f | g | h | i | j | k | l
2702          *       r---->|
2703          *               w
2704          *
2705          * w - updated by driver
2706          * r - updated by firmware
2707          * s - start of oldest BD entry (txq->oldest)
2708          * e - end of oldest BD entry
2709          *
2710          */
2711         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2713                 return 0;
2714         }
2715
2716         list_del(element);
2717         DEC_STAT(&priv->fw_pend_stat);
2718
2719 #ifdef CONFIG_IPW_DEBUG
2720         {
2721                 int i = txq->oldest;
2722                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2723                              &txq->drv[i],
2724                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2726
2727                 if (packet->type == DATA) {
2728                         i = (i + 1) % txq->entries;
2729
2730                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2731                                      &txq->drv[i],
2732                                      (u32) (txq->nic + i *
2733                                             sizeof(struct ipw2100_bd)),
2734                                      (u32) txq->drv[i].host_addr,
2735                                      txq->drv[i].buf_length);
2736                 }
2737         }
2738 #endif
2739
2740         switch (packet->type) {
2741         case DATA:
2742                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2744                                "Expecting DATA TBD but pulled "
2745                                "something else: ids %d=%d.\n",
2746                                priv->net_dev->name, txq->oldest, packet->index);
2747
2748                 /* DATA packet; we have to unmap and free the SKB */
2749                 for (i = 0; i < frag_num; i++) {
2750                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2751
2752                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753                                      (packet->index + 1 + i) % txq->entries,
2754                                      tbd->host_addr, tbd->buf_length);
2755
2756                         pci_unmap_single(priv->pci_dev,
2757                                          tbd->host_addr,
2758                                          tbd->buf_length, PCI_DMA_TODEVICE);
2759                 }
2760
2761                 ieee80211_txb_free(packet->info.d_struct.txb);
2762                 packet->info.d_struct.txb = NULL;
2763
2764                 list_add_tail(element, &priv->tx_free_list);
2765                 INC_STAT(&priv->tx_free_stat);
2766
2767                 /* We have a free slot in the Tx queue, so wake up the
2768                  * transmit layer if it is stopped. */
2769                 if (priv->status & STATUS_ASSOCIATED)
2770                         netif_wake_queue(priv->net_dev);
2771
2772                 /* A packet was processed by the hardware, so update the
2773                  * watchdog */
2774                 priv->net_dev->trans_start = jiffies;
2775
2776                 break;
2777
2778         case COMMAND:
2779                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2781                                "Expecting COMMAND TBD but pulled "
2782                                "something else: ids %d=%d.\n",
2783                                priv->net_dev->name, txq->oldest, packet->index);
2784
2785 #ifdef CONFIG_IPW_DEBUG
2786                 if (packet->info.c_struct.cmd->host_command_reg <
2787                     sizeof(command_types) / sizeof(*command_types))
2788                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789                                      command_types[packet->info.c_struct.cmd->
2790                                                    host_command_reg],
2791                                      packet->info.c_struct.cmd->
2792                                      host_command_reg,
2793                                      packet->info.c_struct.cmd->cmd_status_reg);
2794 #endif
2795
2796                 list_add_tail(element, &priv->msg_free_list);
2797                 INC_STAT(&priv->msg_free_stat);
2798                 break;
2799         }
2800
2801         /* advance oldest used TBD pointer to start of next entry */
2802         txq->oldest = (e + 1) % txq->entries;
2803         /* increase available TBDs number */
2804         txq->available += descriptors_used;
2805         SET_STAT(&priv->txq_stat, txq->available);
2806
2807         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2808                      jiffies - packet->jiffy_start);
2809
2810         return (!list_empty(&priv->fw_pend_list));
2811 }
2812
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2814 {
2815         int i = 0;
2816
2817         while (__ipw2100_tx_process(priv) && i < 200)
2818                 i++;
2819
2820         if (i == 200) {
2821                 printk(KERN_WARNING DRV_NAME ": "
2822                        "%s: Driver is running slow (%d iters).\n",
2823                        priv->net_dev->name, i);
2824         }
2825 }
2826
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2828 {
2829         struct list_head *element;
2830         struct ipw2100_tx_packet *packet;
2831         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832         struct ipw2100_bd *tbd;
2833         int next = txq->next;
2834
2835         while (!list_empty(&priv->msg_pend_list)) {
2836                 /* if there isn't enough space in TBD queue, then
2837                  * don't stuff a new one in.
2838                  * NOTE: 3 are needed as a command will take one,
2839                  *       and there is a minimum of 2 that must be
2840                  *       maintained between the r and w indexes
2841                  */
2842                 if (txq->available <= 3) {
2843                         IPW_DEBUG_TX("no room in tx_queue\n");
2844                         break;
2845                 }
2846
2847                 element = priv->msg_pend_list.next;
2848                 list_del(element);
2849                 DEC_STAT(&priv->msg_pend_stat);
2850
2851                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2852
2853                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854                              &txq->drv[txq->next],
2855                              (void *)(txq->nic + txq->next *
2856                                       sizeof(struct ipw2100_bd)));
2857
2858                 packet->index = txq->next;
2859
2860                 tbd = &txq->drv[txq->next];
2861
2862                 /* initialize TBD */
2863                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865                 /* not marking number of fragments causes problems
2866                  * with f/w debug version */
2867                 tbd->num_fragments = 1;
2868                 tbd->status.info.field =
2869                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2870                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2871
2872                 /* update TBD queue counters */
2873                 txq->next++;
2874                 txq->next %= txq->entries;
2875                 txq->available--;
2876                 DEC_STAT(&priv->txq_stat);
2877
2878                 list_add_tail(element, &priv->fw_pend_list);
2879                 INC_STAT(&priv->fw_pend_stat);
2880         }
2881
2882         if (txq->next != next) {
2883                 /* kick off the DMA by notifying firmware the
2884                  * write index has moved; make sure TBD stores are sync'd */
2885                 wmb();
2886                 write_register(priv->net_dev,
2887                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2888                                txq->next);
2889         }
2890 }
2891
2892 /*
2893  * ipw2100_tx_send_data
2894  *
2895  */
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2897 {
2898         struct list_head *element;
2899         struct ipw2100_tx_packet *packet;
2900         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901         struct ipw2100_bd *tbd;
2902         int next = txq->next;
2903         int i = 0;
2904         struct ipw2100_data_header *ipw_hdr;
2905         struct ieee80211_hdr_3addr *hdr;
2906
2907         while (!list_empty(&priv->tx_pend_list)) {
2908                 /* if there isn't enough space in TBD queue, then
2909                  * don't stuff a new one in.
2910                  * NOTE: 4 are needed as a data will take two,
2911                  *       and there is a minimum of 2 that must be
2912                  *       maintained between the r and w indexes
2913                  */
2914                 element = priv->tx_pend_list.next;
2915                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2916
2917                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2918                              IPW_MAX_BDS)) {
2919                         /* TODO: Support merging buffers if more than
2920                          * IPW_MAX_BDS are used */
2921                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
2922                                        "Increase fragmentation level.\n",
2923                                        priv->net_dev->name);
2924                 }
2925
2926                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927                         IPW_DEBUG_TX("no room in tx_queue\n");
2928                         break;
2929                 }
2930
2931                 list_del(element);
2932                 DEC_STAT(&priv->tx_pend_stat);
2933
2934                 tbd = &txq->drv[txq->next];
2935
2936                 packet->index = txq->next;
2937
2938                 ipw_hdr = packet->info.d_struct.data;
2939                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2940                     fragments[0]->data;
2941
2942                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943                         /* To DS: Addr1 = BSSID, Addr2 = SA,
2944                            Addr3 = DA */
2945                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
2949                            Addr3 = BSSID */
2950                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2952                 }
2953
2954                 ipw_hdr->host_command_reg = SEND;
2955                 ipw_hdr->host_command_reg1 = 0;
2956
2957                 /* For now we only support host based encryption */
2958                 ipw_hdr->needs_encryption = 0;
2959                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960                 if (packet->info.d_struct.txb->nr_frags > 1)
2961                         ipw_hdr->fragment_size =
2962                             packet->info.d_struct.txb->frag_size -
2963                             IEEE80211_3ADDR_LEN;
2964                 else
2965                         ipw_hdr->fragment_size = 0;
2966
2967                 tbd->host_addr = packet->info.d_struct.data_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970                 tbd->status.info.field =
2971                     IPW_BD_STATUS_TX_FRAME_802_3 |
2972                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2973                 txq->next++;
2974                 txq->next %= txq->entries;
2975
2976                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977                              packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW_DEBUG
2979                 if (packet->info.d_struct.txb->nr_frags > 1)
2980                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981                                        packet->info.d_struct.txb->nr_frags);
2982 #endif
2983
2984                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985                         tbd = &txq->drv[txq->next];
2986                         if (i == packet->info.d_struct.txb->nr_frags - 1)
2987                                 tbd->status.info.field =
2988                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2989                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2990                         else
2991                                 tbd->status.info.field =
2992                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2993                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994
2995                         tbd->buf_length = packet->info.d_struct.txb->
2996                             fragments[i]->len - IEEE80211_3ADDR_LEN;
2997
2998                         tbd->host_addr = pci_map_single(priv->pci_dev,
2999                                                         packet->info.d_struct.
3000                                                         txb->fragments[i]->
3001                                                         data +
3002                                                         IEEE80211_3ADDR_LEN,
3003                                                         tbd->buf_length,
3004                                                         PCI_DMA_TODEVICE);
3005
3006                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007                                      txq->next, tbd->host_addr,
3008                                      tbd->buf_length);
3009
3010                         pci_dma_sync_single_for_device(priv->pci_dev,
3011                                                        tbd->host_addr,
3012                                                        tbd->buf_length,
3013                                                        PCI_DMA_TODEVICE);
3014
3015                         txq->next++;
3016                         txq->next %= txq->entries;
3017                 }
3018
3019                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020                 SET_STAT(&priv->txq_stat, txq->available);
3021
3022                 list_add_tail(element, &priv->fw_pend_list);
3023                 INC_STAT(&priv->fw_pend_stat);
3024         }
3025
3026         if (txq->next != next) {
3027                 /* kick off the DMA by notifying firmware the
3028                  * write index has moved; make sure TBD stores are sync'd */
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033         return;
3034 }
3035
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3037 {
3038         struct net_device *dev = priv->net_dev;
3039         unsigned long flags;
3040         u32 inta, tmp;
3041
3042         spin_lock_irqsave(&priv->low_lock, flags);
3043         ipw2100_disable_interrupts(priv);
3044
3045         read_register(dev, IPW_REG_INTA, &inta);
3046
3047         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3049
3050         priv->in_isr++;
3051         priv->interrupts++;
3052
3053         /* We do not loop and keep polling for more interrupts as this
3054          * is frowned upon and doesn't play nicely with other potentially
3055          * chained IRQs */
3056         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3058
3059         if (inta & IPW2100_INTA_FATAL_ERROR) {
3060                 printk(KERN_WARNING DRV_NAME
3061                        ": Fatal interrupt. Scheduling firmware restart.\n");
3062                 priv->inta_other++;
3063                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3064
3065                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067                                priv->net_dev->name, priv->fatal_error);
3068
3069                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071                                priv->net_dev->name, tmp);
3072
3073                 /* Wake up any sleeping jobs */
3074                 schedule_reset(priv);
3075         }
3076
3077         if (inta & IPW2100_INTA_PARITY_ERROR) {
3078                 printk(KERN_ERR DRV_NAME
3079                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3080                 priv->inta_other++;
3081                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3082         }
3083
3084         if (inta & IPW2100_INTA_RX_TRANSFER) {
3085                 IPW_DEBUG_ISR("RX interrupt\n");
3086
3087                 priv->rx_interrupts++;
3088
3089                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3090
3091                 __ipw2100_rx_process(priv);
3092                 __ipw2100_tx_complete(priv);
3093         }
3094
3095         if (inta & IPW2100_INTA_TX_TRANSFER) {
3096                 IPW_DEBUG_ISR("TX interrupt\n");
3097
3098                 priv->tx_interrupts++;
3099
3100                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3101
3102                 __ipw2100_tx_complete(priv);
3103                 ipw2100_tx_send_commands(priv);
3104                 ipw2100_tx_send_data(priv);
3105         }
3106
3107         if (inta & IPW2100_INTA_TX_COMPLETE) {
3108                 IPW_DEBUG_ISR("TX complete\n");
3109                 priv->inta_other++;
3110                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3111
3112                 __ipw2100_tx_complete(priv);
3113         }
3114
3115         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116                 /* ipw2100_handle_event(dev); */
3117                 priv->inta_other++;
3118                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3119         }
3120
3121         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122                 IPW_DEBUG_ISR("FW init done interrupt\n");
3123                 priv->inta_other++;
3124
3125                 read_register(dev, IPW_REG_INTA, &tmp);
3126                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127                            IPW2100_INTA_PARITY_ERROR)) {
3128                         write_register(dev, IPW_REG_INTA,
3129                                        IPW2100_INTA_FATAL_ERROR |
3130                                        IPW2100_INTA_PARITY_ERROR);
3131                 }
3132
3133                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3134         }
3135
3136         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137                 IPW_DEBUG_ISR("Status change interrupt\n");
3138                 priv->inta_other++;
3139                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3140         }
3141
3142         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3144                 priv->inta_other++;
3145                 write_register(dev, IPW_REG_INTA,
3146                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3147         }
3148
3149         priv->in_isr--;
3150         ipw2100_enable_interrupts(priv);
3151
3152         spin_unlock_irqrestore(&priv->low_lock, flags);
3153
3154         IPW_DEBUG_ISR("exit\n");
3155 }
3156
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3158 {
3159         struct ipw2100_priv *priv = data;
3160         u32 inta, inta_mask;
3161
3162         if (!data)
3163                 return IRQ_NONE;
3164
3165         spin_lock(&priv->low_lock);
3166
3167         /* We check to see if we should be ignoring interrupts before
3168          * we touch the hardware.  During ucode load if we try and handle
3169          * an interrupt we can cause keyboard problems as well as cause
3170          * the ucode to fail to initialize */
3171         if (!(priv->status & STATUS_INT_ENABLED)) {
3172                 /* Shared IRQ */
3173                 goto none;
3174         }
3175
3176         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3178
3179         if (inta == 0xFFFFFFFF) {
3180                 /* Hardware disappeared */
3181                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3182                 goto none;
3183         }
3184
3185         inta &= IPW_INTERRUPT_MASK;
3186
3187         if (!(inta & inta_mask)) {
3188                 /* Shared interrupt */
3189                 goto none;
3190         }
3191
3192         /* We disable the hardware interrupt here just to prevent unneeded
3193          * calls to be made.  We disable this again within the actual
3194          * work tasklet, so if another part of the code re-enables the
3195          * interrupt, that is fine */
3196         ipw2100_disable_interrupts(priv);
3197
3198         tasklet_schedule(&priv->irq_tasklet);
3199         spin_unlock(&priv->low_lock);
3200
3201         return IRQ_HANDLED;
3202       none:
3203         spin_unlock(&priv->low_lock);
3204         return IRQ_NONE;
3205 }
3206
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3208                       int pri)
3209 {
3210         struct ipw2100_priv *priv = ieee80211_priv(dev);
3211         struct list_head *element;
3212         struct ipw2100_tx_packet *packet;
3213         unsigned long flags;
3214
3215         spin_lock_irqsave(&priv->low_lock, flags);
3216
3217         if (!(priv->status & STATUS_ASSOCIATED)) {
3218                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219                 priv->ieee->stats.tx_carrier_errors++;
3220                 netif_stop_queue(dev);
3221                 goto fail_unlock;
3222         }
3223
3224         if (list_empty(&priv->tx_free_list))
3225                 goto fail_unlock;
3226
3227         element = priv->tx_free_list.next;
3228         packet = list_entry(element, struct ipw2100_tx_packet, list);
3229
3230         packet->info.d_struct.txb = txb;
3231
3232         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3233         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3234
3235         packet->jiffy_start = jiffies;
3236
3237         list_del(element);
3238         DEC_STAT(&priv->tx_free_stat);
3239
3240         list_add_tail(element, &priv->tx_pend_list);
3241         INC_STAT(&priv->tx_pend_stat);
3242
3243         ipw2100_tx_send_data(priv);
3244
3245         spin_unlock_irqrestore(&priv->low_lock, flags);
3246         return 0;
3247
3248       fail_unlock:
3249         netif_stop_queue(dev);
3250         spin_unlock_irqrestore(&priv->low_lock, flags);
3251         return 1;
3252 }
3253
3254 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3255 {
3256         int i, j, err = -EINVAL;
3257         void *v;
3258         dma_addr_t p;
3259
3260         priv->msg_buffers =
3261             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3262                                                 sizeof(struct
3263                                                        ipw2100_tx_packet),
3264                                                 GFP_KERNEL);
3265         if (!priv->msg_buffers) {
3266                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3267                        "buffers.\n", priv->net_dev->name);
3268                 return -ENOMEM;
3269         }
3270
3271         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3272                 v = pci_alloc_consistent(priv->pci_dev,
3273                                          sizeof(struct ipw2100_cmd_header), &p);
3274                 if (!v) {
3275                         printk(KERN_ERR DRV_NAME ": "
3276                                "%s: PCI alloc failed for msg "
3277                                "buffers.\n", priv->net_dev->name);
3278                         err = -ENOMEM;
3279                         break;
3280                 }
3281
3282                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3283
3284                 priv->msg_buffers[i].type = COMMAND;
3285                 priv->msg_buffers[i].info.c_struct.cmd =
3286                     (struct ipw2100_cmd_header *)v;
3287                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3288         }
3289
3290         if (i == IPW_COMMAND_POOL_SIZE)
3291                 return 0;
3292
3293         for (j = 0; j < i; j++) {
3294                 pci_free_consistent(priv->pci_dev,
3295                                     sizeof(struct ipw2100_cmd_header),
3296                                     priv->msg_buffers[j].info.c_struct.cmd,
3297                                     priv->msg_buffers[j].info.c_struct.
3298                                     cmd_phys);
3299         }
3300
3301         kfree(priv->msg_buffers);
3302         priv->msg_buffers = NULL;
3303
3304         return err;
3305 }
3306
3307 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3308 {
3309         int i;
3310
3311         INIT_LIST_HEAD(&priv->msg_free_list);
3312         INIT_LIST_HEAD(&priv->msg_pend_list);
3313
3314         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3315                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3316         SET_STAT(&priv->msg_free_stat, i);
3317
3318         return 0;
3319 }
3320
3321 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3322 {
3323         int i;
3324
3325         if (!priv->msg_buffers)
3326                 return;
3327
3328         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3329                 pci_free_consistent(priv->pci_dev,
3330                                     sizeof(struct ipw2100_cmd_header),
3331                                     priv->msg_buffers[i].info.c_struct.cmd,
3332                                     priv->msg_buffers[i].info.c_struct.
3333                                     cmd_phys);
3334         }
3335
3336         kfree(priv->msg_buffers);
3337         priv->msg_buffers = NULL;
3338 }
3339
3340 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3341                         char *buf)
3342 {
3343         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3344         char *out = buf;
3345         int i, j;
3346         u32 val;
3347
3348         for (i = 0; i < 16; i++) {
3349                 out += sprintf(out, "[%08X] ", i * 16);
3350                 for (j = 0; j < 16; j += 4) {
3351                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3352                         out += sprintf(out, "%08X ", val);
3353                 }
3354                 out += sprintf(out, "\n");
3355         }
3356
3357         return out - buf;
3358 }
3359
3360 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3361
3362 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3363                         char *buf)
3364 {
3365         struct ipw2100_priv *p = d->driver_data;
3366         return sprintf(buf, "0x%08x\n", (int)p->config);
3367 }
3368
3369 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3370
3371 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3372                            char *buf)
3373 {
3374         struct ipw2100_priv *p = d->driver_data;
3375         return sprintf(buf, "0x%08x\n", (int)p->status);
3376 }
3377
3378 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3379
3380 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3381                                char *buf)
3382 {
3383         struct ipw2100_priv *p = d->driver_data;
3384         return sprintf(buf, "0x%08x\n", (int)p->capability);
3385 }
3386
3387 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3388
3389 #define IPW2100_REG(x) { IPW_ ##x, #x }
3390 static const struct {
3391         u32 addr;
3392         const char *name;
3393 } hw_data[] = {
3394 IPW2100_REG(REG_GP_CNTRL),
3395             IPW2100_REG(REG_GPIO),
3396             IPW2100_REG(REG_INTA),
3397             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3398 #define IPW2100_NIC(x, s) { x, #x, s }
3399 static const struct {
3400         u32 addr;
3401         const char *name;
3402         size_t size;
3403 } nic_data[] = {
3404 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3405             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3406 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3407 static const struct {
3408         u8 index;
3409         const char *name;
3410         const char *desc;
3411 } ord_data[] = {
3412 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3413             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3414                                 "successful Host Tx's (MSDU)"),
3415             IPW2100_ORD(STAT_TX_DIR_DATA,
3416                                 "successful Directed Tx's (MSDU)"),
3417             IPW2100_ORD(STAT_TX_DIR_DATA1,
3418                                 "successful Directed Tx's (MSDU) @ 1MB"),
3419             IPW2100_ORD(STAT_TX_DIR_DATA2,
3420                                 "successful Directed Tx's (MSDU) @ 2MB"),
3421             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3422                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3423             IPW2100_ORD(STAT_TX_DIR_DATA11,
3424                                 "successful Directed Tx's (MSDU) @ 11MB"),
3425             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3426                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3427             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3428                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3429             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3430                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3431             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3432                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3433             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3434             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3435             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3436             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3437             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3438             IPW2100_ORD(STAT_TX_ASSN_RESP,
3439                                 "successful Association response Tx's"),
3440             IPW2100_ORD(STAT_TX_REASSN,
3441                                 "successful Reassociation Tx's"),
3442             IPW2100_ORD(STAT_TX_REASSN_RESP,
3443                                 "successful Reassociation response Tx's"),
3444             IPW2100_ORD(STAT_TX_PROBE,
3445                                 "probes successfully transmitted"),
3446             IPW2100_ORD(STAT_TX_PROBE_RESP,
3447                                 "probe responses successfully transmitted"),
3448             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3449             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3450             IPW2100_ORD(STAT_TX_DISASSN,
3451                                 "successful Disassociation TX"),
3452             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3453             IPW2100_ORD(STAT_TX_DEAUTH,
3454                                 "successful Deauthentication TX"),
3455             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3456                                 "Total successful Tx data bytes"),
3457             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3458             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3459             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3460             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3461             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3462             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3463             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3464                                 "times max tries in a hop failed"),
3465             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3466                                 "times disassociation failed"),
3467             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3468             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3469             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3470             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3471             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3472             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3473             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3474                                 "directed packets at 5.5MB"),
3475             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3476             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3477             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3478                                 "nondirected packets at 1MB"),
3479             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3480                                 "nondirected packets at 2MB"),
3481             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3482                                 "nondirected packets at 5.5MB"),
3483             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3484                                 "nondirected packets at 11MB"),
3485             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3486             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3487                                                                     "Rx CTS"),
3488             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3489             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3490             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3491             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3492             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3493             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3494             IPW2100_ORD(STAT_RX_REASSN_RESP,
3495                                 "Reassociation response Rx's"),
3496             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3497             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3498             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3499             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3500             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3501             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3502             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3503             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3504                                 "Total rx data bytes received"),
3505             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3506             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3507             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3508             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3509             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3510             IPW2100_ORD(STAT_RX_DUPLICATE1,
3511                                 "duplicate rx packets at 1MB"),
3512             IPW2100_ORD(STAT_RX_DUPLICATE2,
3513                                 "duplicate rx packets at 2MB"),
3514             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3515                                 "duplicate rx packets at 5.5MB"),
3516             IPW2100_ORD(STAT_RX_DUPLICATE11,
3517                                 "duplicate rx packets at 11MB"),
3518             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3519             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3520             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3521             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3522             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3523                                 "rx frames with invalid protocol"),
3524             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3525             IPW2100_ORD(STAT_RX_NO_BUFFER,
3526                                 "rx frames rejected due to no buffer"),
3527             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3528                                 "rx frames dropped due to missing fragment"),
3529             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3530                                 "rx frames dropped due to non-sequential fragment"),
3531             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3532                                 "rx frames dropped due to unmatched 1st frame"),
3533             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3534                                 "rx frames dropped due to uncompleted frame"),
3535             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3536                                 "ICV errors during decryption"),
3537             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3538             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3539             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3540                                 "poll response timeouts"),
3541             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3542                                 "timeouts waiting for last {broad,multi}cast pkt"),
3543             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3544             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3545             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3546             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3547             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3548                                 "current calculation of % missed beacons"),
3549             IPW2100_ORD(STAT_PERCENT_RETRIES,
3550                                 "current calculation of % missed tx retries"),
3551             IPW2100_ORD(ASSOCIATED_AP_PTR,
3552                                 "0 if not associated, else pointer to AP table entry"),
3553             IPW2100_ORD(AVAILABLE_AP_CNT,
3554                                 "AP's decsribed in the AP table"),
3555             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3556             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3557             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3558             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3559                                 "failures due to response fail"),
3560             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3561             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3562             IPW2100_ORD(STAT_ROAM_INHIBIT,
3563                                 "times roaming was inhibited due to activity"),
3564             IPW2100_ORD(RSSI_AT_ASSN,
3565                                 "RSSI of associated AP at time of association"),
3566             IPW2100_ORD(STAT_ASSN_CAUSE1,
3567                                 "reassociation: no probe response or TX on hop"),
3568             IPW2100_ORD(STAT_ASSN_CAUSE2,
3569                                 "reassociation: poor tx/rx quality"),
3570             IPW2100_ORD(STAT_ASSN_CAUSE3,
3571                                 "reassociation: tx/rx quality (excessive AP load"),
3572             IPW2100_ORD(STAT_ASSN_CAUSE4,
3573                                 "reassociation: AP RSSI level"),
3574             IPW2100_ORD(STAT_ASSN_CAUSE5,
3575                                 "reassociations due to load leveling"),
3576             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3577             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3578                                 "times authentication response failed"),
3579             IPW2100_ORD(STATION_TABLE_CNT,
3580                                 "entries in association table"),
3581             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3582             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3583             IPW2100_ORD(COUNTRY_CODE,
3584                                 "IEEE country code as recv'd from beacon"),
3585             IPW2100_ORD(COUNTRY_CHANNELS,
3586                                 "channels suported by country"),
3587             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3588             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3589             IPW2100_ORD(ANTENNA_DIVERSITY,
3590                                 "TRUE if antenna diversity is disabled"),
3591             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3592             IPW2100_ORD(OUR_FREQ,
3593                                 "current radio freq lower digits - channel ID"),
3594             IPW2100_ORD(RTC_TIME, "current RTC time"),
3595             IPW2100_ORD(PORT_TYPE, "operating mode"),
3596             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3597             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3598             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3599             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3600             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3601             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3602             IPW2100_ORD(CAPABILITIES,
3603                                 "Management frame capability field"),
3604             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3605             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3606             IPW2100_ORD(RTS_THRESHOLD,
3607                                 "Min packet length for RTS handshaking"),
3608             IPW2100_ORD(INT_MODE, "International mode"),
3609             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3610                                 "protocol frag threshold"),
3611             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3612                                 "EEPROM offset in SRAM"),
3613             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3614                                 "EEPROM size in SRAM"),
3615             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3616             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3617                                 "EEPROM IBSS 11b channel set"),
3618             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3619             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3620             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3621             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3622             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3623
3624 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3625                               char *buf)
3626 {
3627         int i;
3628         struct ipw2100_priv *priv = dev_get_drvdata(d);
3629         struct net_device *dev = priv->net_dev;
3630         char *out = buf;
3631         u32 val = 0;
3632
3633         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3634
3635         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3636                 read_register(dev, hw_data[i].addr, &val);
3637                 out += sprintf(out, "%30s [%08X] : %08X\n",
3638                                hw_data[i].name, hw_data[i].addr, val);
3639         }
3640
3641         return out - buf;
3642 }
3643
3644 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3645
3646 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3647                              char *buf)
3648 {
3649         struct ipw2100_priv *priv = dev_get_drvdata(d);
3650         struct net_device *dev = priv->net_dev;
3651         char *out = buf;
3652         int i;
3653
3654         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3655
3656         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3657                 u8 tmp8;
3658                 u16 tmp16;
3659                 u32 tmp32;
3660
3661                 switch (nic_data[i].size) {
3662                 case 1:
3663                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3664                         out += sprintf(out, "%30s [%08X] : %02X\n",
3665                                        nic_data[i].name, nic_data[i].addr,
3666                                        tmp8);
3667                         break;
3668                 case 2:
3669                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3670                         out += sprintf(out, "%30s [%08X] : %04X\n",
3671                                        nic_data[i].name, nic_data[i].addr,
3672                                        tmp16);
3673                         break;
3674                 case 4:
3675                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3676                         out += sprintf(out, "%30s [%08X] : %08X\n",
3677                                        nic_data[i].name, nic_data[i].addr,
3678                                        tmp32);
3679                         break;
3680                 }
3681         }
3682         return out - buf;
3683 }
3684
3685 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3686
3687 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3688                            char *buf)
3689 {
3690         struct ipw2100_priv *priv = dev_get_drvdata(d);
3691         struct net_device *dev = priv->net_dev;
3692         static unsigned long loop = 0;
3693         int len = 0;
3694         u32 buffer[4];
3695         int i;
3696         char line[81];
3697
3698         if (loop >= 0x30000)
3699                 loop = 0;
3700
3701         /* sysfs provides us PAGE_SIZE buffer */
3702         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3703
3704                 if (priv->snapshot[0])
3705                         for (i = 0; i < 4; i++)
3706                                 buffer[i] =
3707                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3708                 else
3709                         for (i = 0; i < 4; i++)
3710                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3711
3712                 if (priv->dump_raw)
3713                         len += sprintf(buf + len,
3714                                        "%c%c%c%c"
3715                                        "%c%c%c%c"
3716                                        "%c%c%c%c"
3717                                        "%c%c%c%c",
3718                                        ((u8 *) buffer)[0x0],
3719                                        ((u8 *) buffer)[0x1],
3720                                        ((u8 *) buffer)[0x2],
3721                                        ((u8 *) buffer)[0x3],
3722                                        ((u8 *) buffer)[0x4],
3723                                        ((u8 *) buffer)[0x5],
3724                                        ((u8 *) buffer)[0x6],
3725                                        ((u8 *) buffer)[0x7],
3726                                        ((u8 *) buffer)[0x8],
3727                                        ((u8 *) buffer)[0x9],
3728                                        ((u8 *) buffer)[0xa],
3729                                        ((u8 *) buffer)[0xb],
3730                                        ((u8 *) buffer)[0xc],
3731                                        ((u8 *) buffer)[0xd],
3732                                        ((u8 *) buffer)[0xe],
3733                                        ((u8 *) buffer)[0xf]);
3734                 else
3735                         len += sprintf(buf + len, "%s\n",
3736                                        snprint_line(line, sizeof(line),
3737                                                     (u8 *) buffer, 16, loop));
3738                 loop += 16;
3739         }
3740
3741         return len;
3742 }
3743
3744 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3745                             const char *buf, size_t count)
3746 {
3747         struct ipw2100_priv *priv = dev_get_drvdata(d);
3748         struct net_device *dev = priv->net_dev;
3749         const char *p = buf;
3750
3751         if (count < 1)
3752                 return count;
3753
3754         if (p[0] == '1' ||
3755             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3756                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3757                                dev->name);
3758                 priv->dump_raw = 1;
3759
3760         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3761                                    tolower(p[1]) == 'f')) {
3762                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3763                                dev->name);
3764                 priv->dump_raw = 0;
3765
3766         } else if (tolower(p[0]) == 'r') {
3767                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3768                 ipw2100_snapshot_free(priv);
3769
3770         } else
3771                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3772                                "reset = clear memory snapshot\n", dev->name);
3773
3774         return count;
3775 }
3776
3777 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3778
3779 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3780                              char *buf)
3781 {
3782         struct ipw2100_priv *priv = dev_get_drvdata(d);
3783         u32 val = 0;
3784         int len = 0;
3785         u32 val_len;
3786         static int loop = 0;
3787
3788         if (priv->status & STATUS_RF_KILL_MASK)
3789                 return 0;
3790
3791         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3792                 loop = 0;
3793
3794         /* sysfs provides us PAGE_SIZE buffer */
3795         while (len < PAGE_SIZE - 128 &&
3796                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3797
3798                 val_len = sizeof(u32);
3799
3800                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3801                                         &val_len))
3802                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3803                                        ord_data[loop].index,
3804                                        ord_data[loop].desc);
3805                 else
3806                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3807                                        ord_data[loop].index, val,
3808                                        ord_data[loop].desc);
3809                 loop++;
3810         }
3811
3812         return len;
3813 }
3814
3815 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3816
3817 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3818                           char *buf)
3819 {
3820         struct ipw2100_priv *priv = dev_get_drvdata(d);
3821         char *out = buf;
3822
3823         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3824                        priv->interrupts, priv->tx_interrupts,
3825                        priv->rx_interrupts, priv->inta_other);
3826         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3827         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3828 #ifdef CONFIG_IPW_DEBUG
3829         out += sprintf(out, "packet mismatch image: %s\n",
3830                        priv->snapshot[0] ? "YES" : "NO");
3831 #endif
3832
3833         return out - buf;
3834 }
3835
3836 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3837
3838 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3839 {
3840         int err;
3841
3842         if (mode == priv->ieee->iw_mode)
3843                 return 0;
3844
3845         err = ipw2100_disable_adapter(priv);
3846         if (err) {
3847                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3848                        priv->net_dev->name, err);
3849                 return err;
3850         }
3851
3852         switch (mode) {
3853         case IW_MODE_INFRA:
3854                 priv->net_dev->type = ARPHRD_ETHER;
3855                 break;
3856         case IW_MODE_ADHOC:
3857                 priv->net_dev->type = ARPHRD_ETHER;
3858                 break;
3859 #ifdef CONFIG_IPW2100_MONITOR
3860         case IW_MODE_MONITOR:
3861                 priv->last_mode = priv->ieee->iw_mode;
3862                 priv->net_dev->type = ARPHRD_IEEE80211;
3863                 break;
3864 #endif                          /* CONFIG_IPW2100_MONITOR */
3865         }
3866
3867         priv->ieee->iw_mode = mode;
3868
3869 #ifdef CONFIG_PM
3870         /* Indicate ipw2100_download_firmware download firmware
3871          * from disk instead of memory. */
3872         ipw2100_firmware.version = 0;
3873 #endif
3874
3875         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3876         priv->reset_backoff = 0;
3877         schedule_reset(priv);
3878
3879         return 0;
3880 }
3881
3882 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3883                               char *buf)
3884 {
3885         struct ipw2100_priv *priv = dev_get_drvdata(d);
3886         int len = 0;
3887
3888 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3889
3890         if (priv->status & STATUS_ASSOCIATED)
3891                 len += sprintf(buf + len, "connected: %lu\n",
3892                                get_seconds() - priv->connect_start);
3893         else
3894                 len += sprintf(buf + len, "not connected\n");
3895
3896         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3897         DUMP_VAR(status, "08lx");
3898         DUMP_VAR(config, "08lx");
3899         DUMP_VAR(capability, "08lx");
3900
3901         len +=
3902             sprintf(buf + len, "last_rtc: %lu\n",
3903                     (unsigned long)priv->last_rtc);
3904
3905         DUMP_VAR(fatal_error, "d");
3906         DUMP_VAR(stop_hang_check, "d");
3907         DUMP_VAR(stop_rf_kill, "d");
3908         DUMP_VAR(messages_sent, "d");
3909
3910         DUMP_VAR(tx_pend_stat.value, "d");
3911         DUMP_VAR(tx_pend_stat.hi, "d");
3912
3913         DUMP_VAR(tx_free_stat.value, "d");
3914         DUMP_VAR(tx_free_stat.lo, "d");
3915
3916         DUMP_VAR(msg_free_stat.value, "d");
3917         DUMP_VAR(msg_free_stat.lo, "d");
3918
3919         DUMP_VAR(msg_pend_stat.value, "d");
3920         DUMP_VAR(msg_pend_stat.hi, "d");
3921
3922         DUMP_VAR(fw_pend_stat.value, "d");
3923         DUMP_VAR(fw_pend_stat.hi, "d");
3924
3925         DUMP_VAR(txq_stat.value, "d");
3926         DUMP_VAR(txq_stat.lo, "d");
3927
3928         DUMP_VAR(ieee->scans, "d");
3929         DUMP_VAR(reset_backoff, "d");
3930
3931         return len;
3932 }
3933
3934 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3935
3936 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3937                             char *buf)
3938 {
3939         struct ipw2100_priv *priv = dev_get_drvdata(d);
3940         char essid[IW_ESSID_MAX_SIZE + 1];
3941         u8 bssid[ETH_ALEN];
3942         u32 chan = 0;
3943         char *out = buf;
3944         int length;
3945         int ret;
3946
3947         if (priv->status & STATUS_RF_KILL_MASK)
3948                 return 0;
3949
3950         memset(essid, 0, sizeof(essid));
3951         memset(bssid, 0, sizeof(bssid));
3952
3953         length = IW_ESSID_MAX_SIZE;
3954         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3955         if (ret)
3956                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3957                                __LINE__);
3958
3959         length = sizeof(bssid);
3960         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3961                                   bssid, &length);
3962         if (ret)
3963                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3964                                __LINE__);
3965
3966         length = sizeof(u32);
3967         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3968         if (ret)
3969                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3970                                __LINE__);
3971
3972         out += sprintf(out, "ESSID: %s\n", essid);
3973         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
3974                        bssid[0], bssid[1], bssid[2],
3975                        bssid[3], bssid[4], bssid[5]);
3976         out += sprintf(out, "Channel: %d\n", chan);
3977
3978         return out - buf;
3979 }
3980
3981 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
3982
3983 #ifdef CONFIG_IPW_DEBUG
3984 static ssize_t show_debug_level(struct device_driver *d, char *buf)
3985 {
3986         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
3987 }
3988
3989 static ssize_t store_debug_level(struct device_driver *d,
3990                                  const char *buf, size_t count)
3991 {
3992         char *p = (char *)buf;
3993         u32 val;
3994
3995         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
3996                 p++;
3997                 if (p[0] == 'x' || p[0] == 'X')
3998                         p++;
3999                 val = simple_strtoul(p, &p, 16);
4000         } else
4001                 val = simple_strtoul(p, &p, 10);
4002         if (p == buf)
4003                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4004         else
4005                 ipw2100_debug_level = val;
4006
4007         return strnlen(buf, count);
4008 }
4009
4010 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4011                    store_debug_level);
4012 #endif                          /* CONFIG_IPW_DEBUG */
4013
4014 static ssize_t show_fatal_error(struct device *d,
4015                                 struct device_attribute *attr, char *buf)
4016 {
4017         struct ipw2100_priv *priv = dev_get_drvdata(d);
4018         char *out = buf;
4019         int i;
4020
4021         if (priv->fatal_error)
4022                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4023         else
4024                 out += sprintf(out, "0\n");
4025
4026         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4027                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4028                                         IPW2100_ERROR_QUEUE])
4029                         continue;
4030
4031                 out += sprintf(out, "%d. 0x%08X\n", i,
4032                                priv->fatal_errors[(priv->fatal_index - i) %
4033                                                   IPW2100_ERROR_QUEUE]);
4034         }
4035
4036         return out - buf;
4037 }
4038
4039 static ssize_t store_fatal_error(struct device *d,
4040                                  struct device_attribute *attr, const char *buf,
4041                                  size_t count)
4042 {
4043         struct ipw2100_priv *priv = dev_get_drvdata(d);
4044         schedule_reset(priv);
4045         return count;
4046 }
4047
4048 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4049                    store_fatal_error);
4050
4051 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4052                              char *buf)
4053 {
4054         struct ipw2100_priv *priv = dev_get_drvdata(d);
4055         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4056 }
4057
4058 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4059                               const char *buf, size_t count)
4060 {
4061         struct ipw2100_priv *priv = dev_get_drvdata(d);
4062         struct net_device *dev = priv->net_dev;
4063         char buffer[] = "00000000";
4064         unsigned long len =
4065             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4066         unsigned long val;
4067         char *p = buffer;
4068
4069         IPW_DEBUG_INFO("enter\n");
4070
4071         strncpy(buffer, buf, len);
4072         buffer[len] = 0;
4073
4074         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4075                 p++;
4076                 if (p[0] == 'x' || p[0] == 'X')
4077                         p++;
4078                 val = simple_strtoul(p, &p, 16);
4079         } else
4080                 val = simple_strtoul(p, &p, 10);
4081         if (p == buffer) {
4082                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4083         } else {
4084                 priv->ieee->scan_age = val;
4085                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4086         }
4087
4088         IPW_DEBUG_INFO("exit\n");
4089         return len;
4090 }
4091
4092 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4093
4094 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4095                             char *buf)
4096 {
4097         /* 0 - RF kill not enabled
4098            1 - SW based RF kill active (sysfs)
4099            2 - HW based RF kill active
4100            3 - Both HW and SW baed RF kill active */
4101         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4102         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4103             (rf_kill_active(priv) ? 0x2 : 0x0);
4104         return sprintf(buf, "%i\n", val);
4105 }
4106
4107 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4108 {
4109         if ((disable_radio ? 1 : 0) ==
4110             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4111                 return 0;
4112
4113         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4114                           disable_radio ? "OFF" : "ON");
4115
4116         down(&priv->action_sem);
4117
4118         if (disable_radio) {
4119                 priv->status |= STATUS_RF_KILL_SW;
4120                 ipw2100_down(priv);
4121         } else {
4122                 priv->status &= ~STATUS_RF_KILL_SW;
4123                 if (rf_kill_active(priv)) {
4124                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4125                                           "disabled by HW switch\n");
4126                         /* Make sure the RF_KILL check timer is running */
4127                         priv->stop_rf_kill = 0;
4128                         cancel_delayed_work(&priv->rf_kill);
4129                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4130                 } else
4131                         schedule_reset(priv);
4132         }
4133
4134         up(&priv->action_sem);
4135         return 1;
4136 }
4137
4138 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4139                              const char *buf, size_t count)
4140 {
4141         struct ipw2100_priv *priv = dev_get_drvdata(d);
4142         ipw_radio_kill_sw(priv, buf[0] == '1');
4143         return count;
4144 }
4145
4146 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4147
4148 static struct attribute *ipw2100_sysfs_entries[] = {
4149         &dev_attr_hardware.attr,
4150         &dev_attr_registers.attr,
4151         &dev_attr_ordinals.attr,
4152         &dev_attr_pci.attr,
4153         &dev_attr_stats.attr,
4154         &dev_attr_internals.attr,
4155         &dev_attr_bssinfo.attr,
4156         &dev_attr_memory.attr,
4157         &dev_attr_scan_age.attr,
4158         &dev_attr_fatal_error.attr,
4159         &dev_attr_rf_kill.attr,
4160         &dev_attr_cfg.attr,
4161         &dev_attr_status.attr,
4162         &dev_attr_capability.attr,
4163         NULL,
4164 };
4165
4166 static struct attribute_group ipw2100_attribute_group = {
4167         .attrs = ipw2100_sysfs_entries,
4168 };
4169
4170 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4171 {
4172         struct ipw2100_status_queue *q = &priv->status_queue;
4173
4174         IPW_DEBUG_INFO("enter\n");
4175
4176         q->size = entries * sizeof(struct ipw2100_status);
4177         q->drv =
4178             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4179                                                           q->size, &q->nic);
4180         if (!q->drv) {
4181                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4182                 return -ENOMEM;
4183         }
4184
4185         memset(q->drv, 0, q->size);
4186
4187         IPW_DEBUG_INFO("exit\n");
4188
4189         return 0;
4190 }
4191
4192 static void status_queue_free(struct ipw2100_priv *priv)
4193 {
4194         IPW_DEBUG_INFO("enter\n");
4195
4196         if (priv->status_queue.drv) {
4197                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4198                                     priv->status_queue.drv,
4199                                     priv->status_queue.nic);
4200                 priv->status_queue.drv = NULL;
4201         }
4202
4203         IPW_DEBUG_INFO("exit\n");
4204 }
4205
4206 static int bd_queue_allocate(struct ipw2100_priv *priv,
4207                              struct ipw2100_bd_queue *q, int entries)
4208 {
4209         IPW_DEBUG_INFO("enter\n");
4210
4211         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4212
4213         q->entries = entries;
4214         q->size = entries * sizeof(struct ipw2100_bd);
4215         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4216         if (!q->drv) {
4217                 IPW_DEBUG_INFO
4218                     ("can't allocate shared memory for buffer descriptors\n");
4219                 return -ENOMEM;
4220         }
4221         memset(q->drv, 0, q->size);
4222
4223         IPW_DEBUG_INFO("exit\n");
4224
4225         return 0;
4226 }
4227
4228 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4229 {
4230         IPW_DEBUG_INFO("enter\n");
4231
4232         if (!q)
4233                 return;
4234
4235         if (q->drv) {
4236                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4237                 q->drv = NULL;
4238         }
4239
4240         IPW_DEBUG_INFO("exit\n");
4241 }
4242
4243 static void bd_queue_initialize(struct ipw2100_priv *priv,
4244                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4245                                 u32 r, u32 w)
4246 {
4247         IPW_DEBUG_INFO("enter\n");
4248
4249         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4250                        (u32) q->nic);
4251
4252         write_register(priv->net_dev, base, q->nic);
4253         write_register(priv->net_dev, size, q->entries);
4254         write_register(priv->net_dev, r, q->oldest);
4255         write_register(priv->net_dev, w, q->next);
4256
4257         IPW_DEBUG_INFO("exit\n");
4258 }
4259
4260 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4261 {
4262         if (priv->workqueue) {
4263                 priv->stop_rf_kill = 1;
4264                 priv->stop_hang_check = 1;
4265                 cancel_delayed_work(&priv->reset_work);
4266                 cancel_delayed_work(&priv->security_work);
4267                 cancel_delayed_work(&priv->wx_event_work);
4268                 cancel_delayed_work(&priv->hang_check);
4269                 cancel_delayed_work(&priv->rf_kill);
4270                 destroy_workqueue(priv->workqueue);
4271                 priv->workqueue = NULL;
4272         }
4273 }
4274
4275 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4276 {
4277         int i, j, err = -EINVAL;
4278         void *v;
4279         dma_addr_t p;
4280
4281         IPW_DEBUG_INFO("enter\n");
4282
4283         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4284         if (err) {
4285                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4286                                 priv->net_dev->name);
4287                 return err;
4288         }
4289
4290         priv->tx_buffers =
4291             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4292                                                 sizeof(struct
4293                                                        ipw2100_tx_packet),
4294                                                 GFP_ATOMIC);
4295         if (!priv->tx_buffers) {
4296                 printk(KERN_ERR DRV_NAME
4297                        ": %s: alloc failed form tx buffers.\n",
4298                        priv->net_dev->name);
4299                 bd_queue_free(priv, &priv->tx_queue);
4300                 return -ENOMEM;
4301         }
4302
4303         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4304                 v = pci_alloc_consistent(priv->pci_dev,
4305                                          sizeof(struct ipw2100_data_header),
4306                                          &p);
4307                 if (!v) {
4308                         printk(KERN_ERR DRV_NAME
4309                                ": %s: PCI alloc failed for tx " "buffers.\n",
4310                                priv->net_dev->name);
4311                         err = -ENOMEM;
4312                         break;
4313                 }
4314
4315                 priv->tx_buffers[i].type = DATA;
4316                 priv->tx_buffers[i].info.d_struct.data =
4317                     (struct ipw2100_data_header *)v;
4318                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4319                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4320         }
4321
4322         if (i == TX_PENDED_QUEUE_LENGTH)
4323                 return 0;
4324
4325         for (j = 0; j < i; j++) {
4326                 pci_free_consistent(priv->pci_dev,
4327                                     sizeof(struct ipw2100_data_header),
4328                                     priv->tx_buffers[j].info.d_struct.data,
4329                                     priv->tx_buffers[j].info.d_struct.
4330                                     data_phys);
4331         }
4332
4333         kfree(priv->tx_buffers);
4334         priv->tx_buffers = NULL;
4335
4336         return err;
4337 }
4338
4339 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4340 {
4341         int i;
4342
4343         IPW_DEBUG_INFO("enter\n");
4344
4345         /*
4346          * reinitialize packet info lists
4347          */
4348         INIT_LIST_HEAD(&priv->fw_pend_list);
4349         INIT_STAT(&priv->fw_pend_stat);
4350
4351         /*
4352          * reinitialize lists
4353          */
4354         INIT_LIST_HEAD(&priv->tx_pend_list);
4355         INIT_LIST_HEAD(&priv->tx_free_list);
4356         INIT_STAT(&priv->tx_pend_stat);
4357         INIT_STAT(&priv->tx_free_stat);
4358
4359         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4360                 /* We simply drop any SKBs that have been queued for
4361                  * transmit */
4362                 if (priv->tx_buffers[i].info.d_struct.txb) {
4363                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4364                                            txb);
4365                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4366                 }
4367
4368                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4369         }
4370
4371         SET_STAT(&priv->tx_free_stat, i);
4372
4373         priv->tx_queue.oldest = 0;
4374         priv->tx_queue.available = priv->tx_queue.entries;
4375         priv->tx_queue.next = 0;
4376         INIT_STAT(&priv->txq_stat);
4377         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4378
4379         bd_queue_initialize(priv, &priv->tx_queue,
4380                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4381                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4382                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4383                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4384
4385         IPW_DEBUG_INFO("exit\n");
4386
4387 }
4388
4389 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4390 {
4391         int i;
4392
4393         IPW_DEBUG_INFO("enter\n");
4394
4395         bd_queue_free(priv, &priv->tx_queue);
4396
4397         if (!priv->tx_buffers)
4398                 return;
4399
4400         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4401                 if (priv->tx_buffers[i].info.d_struct.txb) {
4402                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4403                                            txb);
4404                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4405                 }
4406                 if (priv->tx_buffers[i].info.d_struct.data)
4407                         pci_free_consistent(priv->pci_dev,
4408                                             sizeof(struct ipw2100_data_header),
4409                                             priv->tx_buffers[i].info.d_struct.
4410                                             data,
4411                                             priv->tx_buffers[i].info.d_struct.
4412                                             data_phys);
4413         }
4414
4415         kfree(priv->tx_buffers);
4416         priv->tx_buffers = NULL;
4417
4418         IPW_DEBUG_INFO("exit\n");
4419 }
4420
4421 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4422 {
4423         int i, j, err = -EINVAL;
4424
4425         IPW_DEBUG_INFO("enter\n");
4426
4427         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4428         if (err) {
4429                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4430                 return err;
4431         }
4432
4433         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4434         if (err) {
4435                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4436                 bd_queue_free(priv, &priv->rx_queue);
4437                 return err;
4438         }
4439
4440         /*
4441          * allocate packets
4442          */
4443         priv->rx_buffers = (struct ipw2100_rx_packet *)
4444             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4445                     GFP_KERNEL);
4446         if (!priv->rx_buffers) {
4447                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4448
4449                 bd_queue_free(priv, &priv->rx_queue);
4450
4451                 status_queue_free(priv);
4452
4453                 return -ENOMEM;
4454         }
4455
4456         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4457                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4458
4459                 err = ipw2100_alloc_skb(priv, packet);
4460                 if (unlikely(err)) {
4461                         err = -ENOMEM;
4462                         break;
4463                 }
4464
4465                 /* The BD holds the cache aligned address */
4466                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4467                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4468                 priv->status_queue.drv[i].status_fields = 0;
4469         }
4470
4471         if (i == RX_QUEUE_LENGTH)
4472                 return 0;
4473
4474         for (j = 0; j < i; j++) {
4475                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4476                                  sizeof(struct ipw2100_rx_packet),
4477                                  PCI_DMA_FROMDEVICE);
4478                 dev_kfree_skb(priv->rx_buffers[j].skb);
4479         }
4480
4481         kfree(priv->rx_buffers);
4482         priv->rx_buffers = NULL;
4483
4484         bd_queue_free(priv, &priv->rx_queue);
4485
4486         status_queue_free(priv);
4487
4488         return err;
4489 }
4490
4491 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4492 {
4493         IPW_DEBUG_INFO("enter\n");
4494
4495         priv->rx_queue.oldest = 0;
4496         priv->rx_queue.available = priv->rx_queue.entries - 1;
4497         priv->rx_queue.next = priv->rx_queue.entries - 1;
4498
4499         INIT_STAT(&priv->rxq_stat);
4500         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4501
4502         bd_queue_initialize(priv, &priv->rx_queue,
4503                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4504                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4505                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4506                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4507
4508         /* set up the status queue */
4509         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4510                        priv->status_queue.nic);
4511
4512         IPW_DEBUG_INFO("exit\n");
4513 }
4514
4515 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4516 {
4517         int i;
4518
4519         IPW_DEBUG_INFO("enter\n");
4520
4521         bd_queue_free(priv, &priv->rx_queue);
4522         status_queue_free(priv);
4523
4524         if (!priv->rx_buffers)
4525                 return;
4526
4527         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4528                 if (priv->rx_buffers[i].rxp) {
4529                         pci_unmap_single(priv->pci_dev,
4530                                          priv->rx_buffers[i].dma_addr,
4531                                          sizeof(struct ipw2100_rx),
4532                                          PCI_DMA_FROMDEVICE);
4533                         dev_kfree_skb(priv->rx_buffers[i].skb);
4534                 }
4535         }
4536
4537         kfree(priv->rx_buffers);
4538         priv->rx_buffers = NULL;
4539
4540         IPW_DEBUG_INFO("exit\n");
4541 }
4542
4543 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4544 {
4545         u32 length = ETH_ALEN;
4546         u8 mac[ETH_ALEN];
4547
4548         int err;
4549
4550         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4551         if (err) {
4552                 IPW_DEBUG_INFO("MAC address read failed\n");
4553                 return -EIO;
4554         }
4555         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4556                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4557
4558         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4559
4560         return 0;
4561 }
4562
4563 /********************************************************************
4564  *
4565  * Firmware Commands
4566  *
4567  ********************************************************************/
4568
4569 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4570 {
4571         struct host_command cmd = {
4572                 .host_command = ADAPTER_ADDRESS,
4573                 .host_command_sequence = 0,
4574                 .host_command_length = ETH_ALEN
4575         };
4576         int err;
4577
4578         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4579
4580         IPW_DEBUG_INFO("enter\n");
4581
4582         if (priv->config & CFG_CUSTOM_MAC) {
4583                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4584                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4585         } else
4586                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4587                        ETH_ALEN);
4588
4589         err = ipw2100_hw_send_command(priv, &cmd);
4590
4591         IPW_DEBUG_INFO("exit\n");
4592         return err;
4593 }
4594
4595 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4596                                  int batch_mode)
4597 {
4598         struct host_command cmd = {
4599                 .host_command = PORT_TYPE,
4600                 .host_command_sequence = 0,
4601                 .host_command_length = sizeof(u32)
4602         };
4603         int err;
4604
4605         switch (port_type) {
4606         case IW_MODE_INFRA:
4607                 cmd.host_command_parameters[0] = IPW_BSS;
4608                 break;
4609         case IW_MODE_ADHOC:
4610                 cmd.host_command_parameters[0] = IPW_IBSS;
4611                 break;
4612         }
4613
4614         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4615                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4616
4617         if (!batch_mode) {
4618                 err = ipw2100_disable_adapter(priv);
4619                 if (err) {
4620                         printk(KERN_ERR DRV_NAME
4621                                ": %s: Could not disable adapter %d\n",
4622                                priv->net_dev->name, err);
4623                         return err;
4624                 }
4625         }
4626
4627         /* send cmd to firmware */
4628         err = ipw2100_hw_send_command(priv, &cmd);
4629
4630         if (!batch_mode)
4631                 ipw2100_enable_adapter(priv);
4632
4633         return err;
4634 }
4635
4636 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4637                                int batch_mode)
4638 {
4639         struct host_command cmd = {
4640                 .host_command = CHANNEL,
4641                 .host_command_sequence = 0,
4642                 .host_command_length = sizeof(u32)
4643         };
4644         int err;
4645
4646         cmd.host_command_parameters[0] = channel;
4647
4648         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4649
4650         /* If BSS then we don't support channel selection */
4651         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4652                 return 0;
4653
4654         if ((channel != 0) &&
4655             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4656                 return -EINVAL;
4657
4658         if (!batch_mode) {
4659                 err = ipw2100_disable_adapter(priv);
4660                 if (err)
4661                         return err;
4662         }
4663
4664         err = ipw2100_hw_send_command(priv, &cmd);
4665         if (err) {
4666                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4667                 return err;
4668         }
4669
4670         if (channel)
4671                 priv->config |= CFG_STATIC_CHANNEL;
4672         else
4673                 priv->config &= ~CFG_STATIC_CHANNEL;
4674
4675         priv->channel = channel;
4676
4677         if (!batch_mode) {
4678                 err = ipw2100_enable_adapter(priv);
4679                 if (err)
4680                         return err;
4681         }
4682
4683         return 0;
4684 }
4685
4686 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4687 {
4688         struct host_command cmd = {
4689                 .host_command = SYSTEM_CONFIG,
4690                 .host_command_sequence = 0,
4691                 .host_command_length = 12,
4692         };
4693         u32 ibss_mask, len = sizeof(u32);
4694         int err;
4695
4696         /* Set system configuration */
4697
4698         if (!batch_mode) {
4699                 err = ipw2100_disable_adapter(priv);
4700                 if (err)
4701                         return err;
4702         }
4703
4704         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4705                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4706
4707         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4708             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4709
4710         if (!(priv->config & CFG_LONG_PREAMBLE))
4711                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4712
4713         err = ipw2100_get_ordinal(priv,
4714                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4715                                   &ibss_mask, &len);
4716         if (err)
4717                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4718
4719         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4720         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4721
4722         /* 11b only */
4723         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4724
4725         err = ipw2100_hw_send_command(priv, &cmd);
4726         if (err)
4727                 return err;
4728
4729 /* If IPv6 is configured in the kernel then we don't want to filter out all
4730  * of the multicast packets as IPv6 needs some. */
4731 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4732         cmd.host_command = ADD_MULTICAST;
4733         cmd.host_command_sequence = 0;
4734         cmd.host_command_length = 0;
4735
4736         ipw2100_hw_send_command(priv, &cmd);
4737 #endif
4738         if (!batch_mode) {
4739                 err = ipw2100_enable_adapter(priv);
4740                 if (err)
4741                         return err;
4742         }
4743
4744         return 0;
4745 }
4746
4747 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4748                                 int batch_mode)
4749 {
4750         struct host_command cmd = {
4751                 .host_command = BASIC_TX_RATES,
4752                 .host_command_sequence = 0,
4753                 .host_command_length = 4
4754         };
4755         int err;
4756
4757         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4758
4759         if (!batch_mode) {
4760                 err = ipw2100_disable_adapter(priv);
4761                 if (err)
4762                         return err;
4763         }
4764
4765         /* Set BASIC TX Rate first */
4766         ipw2100_hw_send_command(priv, &cmd);
4767
4768         /* Set TX Rate */
4769         cmd.host_command = TX_RATES;
4770         ipw2100_hw_send_command(priv, &cmd);
4771
4772         /* Set MSDU TX Rate */
4773         cmd.host_command = MSDU_TX_RATES;
4774         ipw2100_hw_send_command(priv, &cmd);
4775
4776         if (!batch_mode) {
4777                 err = ipw2100_enable_adapter(priv);
4778                 if (err)
4779                         return err;
4780         }
4781
4782         priv->tx_rates = rate;
4783
4784         return 0;
4785 }
4786
4787 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4788 {
4789         struct host_command cmd = {
4790                 .host_command = POWER_MODE,
4791                 .host_command_sequence = 0,
4792                 .host_command_length = 4
4793         };
4794         int err;
4795
4796         cmd.host_command_parameters[0] = power_level;
4797
4798         err = ipw2100_hw_send_command(priv, &cmd);
4799         if (err)
4800                 return err;
4801
4802         if (power_level == IPW_POWER_MODE_CAM)
4803                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4804         else
4805                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4806
4807 #ifdef CONFIG_IPW2100_TX_POWER
4808         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4809                 /* Set beacon interval */
4810                 cmd.host_command = TX_POWER_INDEX;
4811                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4812
4813                 err = ipw2100_hw_send_command(priv, &cmd);
4814                 if (err)
4815                         return err;
4816         }
4817 #endif
4818
4819         return 0;
4820 }
4821
4822 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4823 {
4824         struct host_command cmd = {
4825                 .host_command = RTS_THRESHOLD,
4826                 .host_command_sequence = 0,
4827                 .host_command_length = 4
4828         };
4829         int err;
4830
4831         if (threshold & RTS_DISABLED)
4832                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4833         else
4834                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4835
4836         err = ipw2100_hw_send_command(priv, &cmd);
4837         if (err)
4838                 return err;
4839
4840         priv->rts_threshold = threshold;
4841
4842         return 0;
4843 }
4844
4845 #if 0
4846 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4847                                         u32 threshold, int batch_mode)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = FRAG_THRESHOLD,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = 4,
4853                 .host_command_parameters[0] = 0,
4854         };
4855         int err;
4856
4857         if (!batch_mode) {
4858                 err = ipw2100_disable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         if (threshold == 0)
4864                 threshold = DEFAULT_FRAG_THRESHOLD;
4865         else {
4866                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4867                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4868         }
4869
4870         cmd.host_command_parameters[0] = threshold;
4871
4872         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4873
4874         err = ipw2100_hw_send_command(priv, &cmd);
4875
4876         if (!batch_mode)
4877                 ipw2100_enable_adapter(priv);
4878
4879         if (!err)
4880                 priv->frag_threshold = threshold;
4881
4882         return err;
4883 }
4884 #endif
4885
4886 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4887 {
4888         struct host_command cmd = {
4889                 .host_command = SHORT_RETRY_LIMIT,
4890                 .host_command_sequence = 0,
4891                 .host_command_length = 4
4892         };
4893         int err;
4894
4895         cmd.host_command_parameters[0] = retry;
4896
4897         err = ipw2100_hw_send_command(priv, &cmd);
4898         if (err)
4899                 return err;
4900
4901         priv->short_retry_limit = retry;
4902
4903         return 0;
4904 }
4905
4906 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4907 {
4908         struct host_command cmd = {
4909                 .host_command = LONG_RETRY_LIMIT,
4910                 .host_command_sequence = 0,
4911                 .host_command_length = 4
4912         };
4913         int err;
4914
4915         cmd.host_command_parameters[0] = retry;
4916
4917         err = ipw2100_hw_send_command(priv, &cmd);
4918         if (err)
4919                 return err;
4920
4921         priv->long_retry_limit = retry;
4922
4923         return 0;
4924 }
4925
4926 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4927                                        int batch_mode)
4928 {
4929         struct host_command cmd = {
4930                 .host_command = MANDATORY_BSSID,
4931                 .host_command_sequence = 0,
4932                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4933         };
4934         int err;
4935
4936 #ifdef CONFIG_IPW_DEBUG
4937         if (bssid != NULL)
4938                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4939                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4940                              bssid[5]);
4941         else
4942                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4943 #endif
4944         /* if BSSID is empty then we disable mandatory bssid mode */
4945         if (bssid != NULL)
4946                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4947
4948         if (!batch_mode) {
4949                 err = ipw2100_disable_adapter(priv);
4950                 if (err)
4951                         return err;
4952         }
4953
4954         err = ipw2100_hw_send_command(priv, &cmd);
4955
4956         if (!batch_mode)
4957                 ipw2100_enable_adapter(priv);
4958
4959         return err;
4960 }
4961
4962 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4963 {
4964         struct host_command cmd = {
4965                 .host_command = DISASSOCIATION_BSSID,
4966                 .host_command_sequence = 0,
4967                 .host_command_length = ETH_ALEN
4968         };
4969         int err;
4970         int len;
4971
4972         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4973
4974         len = ETH_ALEN;
4975         /* The Firmware currently ignores the BSSID and just disassociates from
4976          * the currently associated AP -- but in the off chance that a future
4977          * firmware does use the BSSID provided here, we go ahead and try and
4978          * set it to the currently associated AP's BSSID */
4979         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
4980
4981         err = ipw2100_hw_send_command(priv, &cmd);
4982
4983         return err;
4984 }
4985
4986 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
4987                               struct ipw2100_wpa_assoc_frame *, int)
4988     __attribute__ ((unused));
4989
4990 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
4991                               struct ipw2100_wpa_assoc_frame *wpa_frame,
4992                               int batch_mode)
4993 {
4994         struct host_command cmd = {
4995                 .host_command = SET_WPA_IE,
4996                 .host_command_sequence = 0,
4997                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
4998         };
4999         int err;
5000
5001         IPW_DEBUG_HC("SET_WPA_IE\n");
5002
5003         if (!batch_mode) {
5004                 err = ipw2100_disable_adapter(priv);
5005                 if (err)
5006                         return err;
5007         }
5008
5009         memcpy(cmd.host_command_parameters, wpa_frame,
5010                sizeof(struct ipw2100_wpa_assoc_frame));
5011
5012         err = ipw2100_hw_send_command(priv, &cmd);
5013
5014         if (!batch_mode) {
5015                 if (ipw2100_enable_adapter(priv))
5016                         err = -EIO;
5017         }
5018
5019         return err;
5020 }
5021
5022 struct security_info_params {
5023         u32 allowed_ciphers;
5024         u16 version;
5025         u8 auth_mode;
5026         u8 replay_counters_number;
5027         u8 unicast_using_group;
5028 } __attribute__ ((packed));
5029
5030 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5031                                             int auth_mode,
5032                                             int security_level,
5033                                             int unicast_using_group,
5034                                             int batch_mode)
5035 {
5036         struct host_command cmd = {
5037                 .host_command = SET_SECURITY_INFORMATION,
5038                 .host_command_sequence = 0,
5039                 .host_command_length = sizeof(struct security_info_params)
5040         };
5041         struct security_info_params *security =
5042             (struct security_info_params *)&cmd.host_command_parameters;
5043         int err;
5044         memset(security, 0, sizeof(*security));
5045
5046         /* If shared key AP authentication is turned on, then we need to
5047          * configure the firmware to try and use it.
5048          *
5049          * Actual data encryption/decryption is handled by the host. */
5050         security->auth_mode = auth_mode;
5051         security->unicast_using_group = unicast_using_group;
5052
5053         switch (security_level) {
5054         default:
5055         case SEC_LEVEL_0:
5056                 security->allowed_ciphers = IPW_NONE_CIPHER;
5057                 break;
5058         case SEC_LEVEL_1:
5059                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5060                     IPW_WEP104_CIPHER;
5061                 break;
5062         case SEC_LEVEL_2:
5063                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5064                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5065                 break;
5066         case SEC_LEVEL_2_CKIP:
5067                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5068                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5069                 break;
5070         case SEC_LEVEL_3:
5071                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5072                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5073                 break;
5074         }
5075
5076         IPW_DEBUG_HC
5077             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5078              security->auth_mode, security->allowed_ciphers, security_level);
5079
5080         security->replay_counters_number = 0;
5081
5082         if (!batch_mode) {
5083                 err = ipw2100_disable_adapter(priv);
5084                 if (err)
5085                         return err;
5086         }
5087
5088         err = ipw2100_hw_send_command(priv, &cmd);
5089
5090         if (!batch_mode)
5091                 ipw2100_enable_adapter(priv);
5092
5093         return err;
5094 }
5095
5096 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5097 {
5098         struct host_command cmd = {
5099                 .host_command = TX_POWER_INDEX,
5100                 .host_command_sequence = 0,
5101                 .host_command_length = 4
5102         };
5103         int err = 0;
5104
5105         if (tx_power != IPW_TX_POWER_DEFAULT)
5106                 tx_power = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5107                     (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5108
5109         cmd.host_command_parameters[0] = tx_power;
5110
5111         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5112                 err = ipw2100_hw_send_command(priv, &cmd);
5113         if (!err)
5114                 priv->tx_power = tx_power;
5115
5116         return 0;
5117 }
5118
5119 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5120                                             u32 interval, int batch_mode)
5121 {
5122         struct host_command cmd = {
5123                 .host_command = BEACON_INTERVAL,
5124                 .host_command_sequence = 0,
5125                 .host_command_length = 4
5126         };
5127         int err;
5128
5129         cmd.host_command_parameters[0] = interval;
5130
5131         IPW_DEBUG_INFO("enter\n");
5132
5133         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5134                 if (!batch_mode) {
5135                         err = ipw2100_disable_adapter(priv);
5136                         if (err)
5137                                 return err;
5138                 }
5139
5140                 ipw2100_hw_send_command(priv, &cmd);
5141
5142                 if (!batch_mode) {
5143                         err = ipw2100_enable_adapter(priv);
5144                         if (err)
5145                                 return err;
5146                 }
5147         }
5148
5149         IPW_DEBUG_INFO("exit\n");
5150
5151         return 0;
5152 }
5153
5154 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5155 {
5156         ipw2100_tx_initialize(priv);
5157         ipw2100_rx_initialize(priv);
5158         ipw2100_msg_initialize(priv);
5159 }
5160
5161 void ipw2100_queues_free(struct ipw2100_priv *priv)
5162 {
5163         ipw2100_tx_free(priv);
5164         ipw2100_rx_free(priv);
5165         ipw2100_msg_free(priv);
5166 }
5167
5168 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5169 {
5170         if (ipw2100_tx_allocate(priv) ||
5171             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5172                 goto fail;
5173
5174         return 0;
5175
5176       fail:
5177         ipw2100_tx_free(priv);
5178         ipw2100_rx_free(priv);
5179         ipw2100_msg_free(priv);
5180         return -ENOMEM;
5181 }
5182
5183 #define IPW_PRIVACY_CAPABLE 0x0008
5184
5185 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5186                                  int batch_mode)
5187 {
5188         struct host_command cmd = {
5189                 .host_command = WEP_FLAGS,
5190                 .host_command_sequence = 0,
5191                 .host_command_length = 4
5192         };
5193         int err;
5194
5195         cmd.host_command_parameters[0] = flags;
5196
5197         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5198
5199         if (!batch_mode) {
5200                 err = ipw2100_disable_adapter(priv);
5201                 if (err) {
5202                         printk(KERN_ERR DRV_NAME
5203                                ": %s: Could not disable adapter %d\n",
5204                                priv->net_dev->name, err);
5205                         return err;
5206                 }
5207         }
5208
5209         /* send cmd to firmware */
5210         err = ipw2100_hw_send_command(priv, &cmd);
5211
5212         if (!batch_mode)
5213                 ipw2100_enable_adapter(priv);
5214
5215         return err;
5216 }
5217
5218 struct ipw2100_wep_key {
5219         u8 idx;
5220         u8 len;
5221         u8 key[13];
5222 };
5223
5224 /* Macros to ease up priting WEP keys */
5225 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5226 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5227 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5228 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5229
5230 /**
5231  * Set a the wep key
5232  *
5233  * @priv: struct to work on
5234  * @idx: index of the key we want to set
5235  * @key: ptr to the key data to set
5236  * @len: length of the buffer at @key
5237  * @batch_mode: FIXME perform the operation in batch mode, not
5238  *              disabling the device.
5239  *
5240  * @returns 0 if OK, < 0 errno code on error.
5241  *
5242  * Fill out a command structure with the new wep key, length an
5243  * index and send it down the wire.
5244  */
5245 static int ipw2100_set_key(struct ipw2100_priv *priv,
5246                            int idx, char *key, int len, int batch_mode)
5247 {
5248         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5249         struct host_command cmd = {
5250                 .host_command = WEP_KEY_INFO,
5251                 .host_command_sequence = 0,
5252                 .host_command_length = sizeof(struct ipw2100_wep_key),
5253         };
5254         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5255         int err;
5256
5257         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5258                      idx, keylen, len);
5259
5260         /* NOTE: We don't check cached values in case the firmware was reset
5261          * or some other problem is occuring.  If the user is setting the key,
5262          * then we push the change */
5263
5264         wep_key->idx = idx;
5265         wep_key->len = keylen;
5266
5267         if (keylen) {
5268                 memcpy(wep_key->key, key, len);
5269                 memset(wep_key->key + len, 0, keylen - len);
5270         }
5271
5272         /* Will be optimized out on debug not being configured in */
5273         if (keylen == 0)
5274                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5275                               priv->net_dev->name, wep_key->idx);
5276         else if (keylen == 5)
5277                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5278                               priv->net_dev->name, wep_key->idx, wep_key->len,
5279                               WEP_STR_64(wep_key->key));
5280         else
5281                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5282                               "\n",
5283                               priv->net_dev->name, wep_key->idx, wep_key->len,
5284                               WEP_STR_128(wep_key->key));
5285
5286         if (!batch_mode) {
5287                 err = ipw2100_disable_adapter(priv);
5288                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5289                 if (err) {
5290                         printk(KERN_ERR DRV_NAME
5291                                ": %s: Could not disable adapter %d\n",
5292                                priv->net_dev->name, err);
5293                         return err;
5294                 }
5295         }
5296
5297         /* send cmd to firmware */
5298         err = ipw2100_hw_send_command(priv, &cmd);
5299
5300         if (!batch_mode) {
5301                 int err2 = ipw2100_enable_adapter(priv);
5302                 if (err == 0)
5303                         err = err2;
5304         }
5305         return err;
5306 }
5307
5308 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5309                                  int idx, int batch_mode)
5310 {
5311         struct host_command cmd = {
5312                 .host_command = WEP_KEY_INDEX,
5313                 .host_command_sequence = 0,
5314                 .host_command_length = 4,
5315                 .host_command_parameters = {idx},
5316         };
5317         int err;
5318
5319         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5320
5321         if (idx < 0 || idx > 3)
5322                 return -EINVAL;
5323
5324         if (!batch_mode) {
5325                 err = ipw2100_disable_adapter(priv);
5326                 if (err) {
5327                         printk(KERN_ERR DRV_NAME
5328                                ": %s: Could not disable adapter %d\n",
5329                                priv->net_dev->name, err);
5330                         return err;
5331                 }
5332         }
5333
5334         /* send cmd to firmware */
5335         err = ipw2100_hw_send_command(priv, &cmd);
5336
5337         if (!batch_mode)
5338                 ipw2100_enable_adapter(priv);
5339
5340         return err;
5341 }
5342
5343 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5344 {
5345         int i, err, auth_mode, sec_level, use_group;
5346
5347         if (!(priv->status & STATUS_RUNNING))
5348                 return 0;
5349
5350         if (!batch_mode) {
5351                 err = ipw2100_disable_adapter(priv);
5352                 if (err)
5353                         return err;
5354         }
5355
5356         if (!priv->ieee->sec.enabled) {
5357                 err =
5358                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5359                                                      SEC_LEVEL_0, 0, 1);
5360         } else {
5361                 auth_mode = IPW_AUTH_OPEN;
5362                 if ((priv->ieee->sec.flags & SEC_AUTH_MODE) &&
5363                     (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY))
5364                         auth_mode = IPW_AUTH_SHARED;
5365
5366                 sec_level = SEC_LEVEL_0;
5367                 if (priv->ieee->sec.flags & SEC_LEVEL)
5368                         sec_level = priv->ieee->sec.level;
5369
5370                 use_group = 0;
5371                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5372                         use_group = priv->ieee->sec.unicast_uses_group;
5373
5374                 err =
5375                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5376                                                      use_group, 1);
5377         }
5378
5379         if (err)
5380                 goto exit;
5381
5382         if (priv->ieee->sec.enabled) {
5383                 for (i = 0; i < 4; i++) {
5384                         if (!(priv->ieee->sec.flags & (1 << i))) {
5385                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5386                                 priv->ieee->sec.key_sizes[i] = 0;
5387                         } else {
5388                                 err = ipw2100_set_key(priv, i,
5389                                                       priv->ieee->sec.keys[i],
5390                                                       priv->ieee->sec.
5391                                                       key_sizes[i], 1);
5392                                 if (err)
5393                                         goto exit;
5394                         }
5395                 }
5396
5397                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5398         }
5399
5400         /* Always enable privacy so the Host can filter WEP packets if
5401          * encrypted data is sent up */
5402         err =
5403             ipw2100_set_wep_flags(priv,
5404                                   priv->ieee->sec.
5405                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5406         if (err)
5407                 goto exit;
5408
5409         priv->status &= ~STATUS_SECURITY_UPDATED;
5410
5411       exit:
5412         if (!batch_mode)
5413                 ipw2100_enable_adapter(priv);
5414
5415         return err;
5416 }
5417
5418 static void ipw2100_security_work(struct ipw2100_priv *priv)
5419 {
5420         /* If we happen to have reconnected before we get a chance to
5421          * process this, then update the security settings--which causes
5422          * a disassociation to occur */
5423         if (!(priv->status & STATUS_ASSOCIATED) &&
5424             priv->status & STATUS_SECURITY_UPDATED)
5425                 ipw2100_configure_security(priv, 0);
5426 }
5427
5428 static void shim__set_security(struct net_device *dev,
5429                                struct ieee80211_security *sec)
5430 {
5431         struct ipw2100_priv *priv = ieee80211_priv(dev);
5432         int i, force_update = 0;
5433
5434         down(&priv->action_sem);
5435         if (!(priv->status & STATUS_INITIALIZED))
5436                 goto done;
5437
5438         for (i = 0; i < 4; i++) {
5439                 if (sec->flags & (1 << i)) {
5440                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5441                         if (sec->key_sizes[i] == 0)
5442                                 priv->ieee->sec.flags &= ~(1 << i);
5443                         else
5444                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5445                                        sec->key_sizes[i]);
5446                         priv->ieee->sec.flags |= (1 << i);
5447                         priv->status |= STATUS_SECURITY_UPDATED;
5448                 }
5449         }
5450
5451         if ((sec->flags & SEC_ACTIVE_KEY) &&
5452             priv->ieee->sec.active_key != sec->active_key) {
5453                 if (sec->active_key <= 3) {
5454                         priv->ieee->sec.active_key = sec->active_key;
5455                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5456                 } else
5457                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5458
5459                 priv->status |= STATUS_SECURITY_UPDATED;
5460         }
5461
5462         if ((sec->flags & SEC_AUTH_MODE) &&
5463             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5464                 priv->ieee->sec.auth_mode = sec->auth_mode;
5465                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5466                 priv->status |= STATUS_SECURITY_UPDATED;
5467         }
5468
5469         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5470                 priv->ieee->sec.flags |= SEC_ENABLED;
5471                 priv->ieee->sec.enabled = sec->enabled;
5472                 priv->status |= STATUS_SECURITY_UPDATED;
5473                 force_update = 1;
5474         }
5475
5476         if (sec->flags & SEC_ENCRYPT)
5477                 priv->ieee->sec.encrypt = sec->encrypt;
5478
5479         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5480                 priv->ieee->sec.level = sec->level;
5481                 priv->ieee->sec.flags |= SEC_LEVEL;
5482                 priv->status |= STATUS_SECURITY_UPDATED;
5483         }
5484
5485         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5486                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5487                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5488                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5489                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5490                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5491                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5492                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5493                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5494                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5495
5496 /* As a temporary work around to enable WPA until we figure out why
5497  * wpa_supplicant toggles the security capability of the driver, which
5498  * forces a disassocation with force_update...
5499  *
5500  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5501         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5502                 ipw2100_configure_security(priv, 0);
5503       done:
5504         up(&priv->action_sem);
5505 }
5506
5507 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5508 {
5509         int err;
5510         int batch_mode = 1;
5511         u8 *bssid;
5512
5513         IPW_DEBUG_INFO("enter\n");
5514
5515         err = ipw2100_disable_adapter(priv);
5516         if (err)
5517                 return err;
5518 #ifdef CONFIG_IPW2100_MONITOR
5519         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5520                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5521                 if (err)
5522                         return err;
5523
5524                 IPW_DEBUG_INFO("exit\n");
5525
5526                 return 0;
5527         }
5528 #endif                          /* CONFIG_IPW2100_MONITOR */
5529
5530         err = ipw2100_read_mac_address(priv);
5531         if (err)
5532                 return -EIO;
5533
5534         err = ipw2100_set_mac_address(priv, batch_mode);
5535         if (err)
5536                 return err;
5537
5538         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5539         if (err)
5540                 return err;
5541
5542         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5543                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5544                 if (err)
5545                         return err;
5546         }
5547
5548         err = ipw2100_system_config(priv, batch_mode);
5549         if (err)
5550                 return err;
5551
5552         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5553         if (err)
5554                 return err;
5555
5556         /* Default to power mode OFF */
5557         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5558         if (err)
5559                 return err;
5560
5561         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5562         if (err)
5563                 return err;
5564
5565         if (priv->config & CFG_STATIC_BSSID)
5566                 bssid = priv->bssid;
5567         else
5568                 bssid = NULL;
5569         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5570         if (err)
5571                 return err;
5572
5573         if (priv->config & CFG_STATIC_ESSID)
5574                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5575                                         batch_mode);
5576         else
5577                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5578         if (err)
5579                 return err;
5580
5581         err = ipw2100_configure_security(priv, batch_mode);
5582         if (err)
5583                 return err;
5584
5585         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5586                 err =
5587                     ipw2100_set_ibss_beacon_interval(priv,
5588                                                      priv->beacon_interval,
5589                                                      batch_mode);
5590                 if (err)
5591                         return err;
5592
5593                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5594                 if (err)
5595                         return err;
5596         }
5597
5598         /*
5599            err = ipw2100_set_fragmentation_threshold(
5600            priv, priv->frag_threshold, batch_mode);
5601            if (err)
5602            return err;
5603          */
5604
5605         IPW_DEBUG_INFO("exit\n");
5606
5607         return 0;
5608 }
5609
5610 /*************************************************************************
5611  *
5612  * EXTERNALLY CALLED METHODS
5613  *
5614  *************************************************************************/
5615
5616 /* This method is called by the network layer -- not to be confused with
5617  * ipw2100_set_mac_address() declared above called by this driver (and this
5618  * method as well) to talk to the firmware */
5619 static int ipw2100_set_address(struct net_device *dev, void *p)
5620 {
5621         struct ipw2100_priv *priv = ieee80211_priv(dev);
5622         struct sockaddr *addr = p;
5623         int err = 0;
5624
5625         if (!is_valid_ether_addr(addr->sa_data))
5626                 return -EADDRNOTAVAIL;
5627
5628         down(&priv->action_sem);
5629
5630         priv->config |= CFG_CUSTOM_MAC;
5631         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5632
5633         err = ipw2100_set_mac_address(priv, 0);
5634         if (err)
5635                 goto done;
5636
5637         priv->reset_backoff = 0;
5638         up(&priv->action_sem);
5639         ipw2100_reset_adapter(priv);
5640         return 0;
5641
5642       done:
5643         up(&priv->action_sem);
5644         return err;
5645 }
5646
5647 static int ipw2100_open(struct net_device *dev)
5648 {
5649         struct ipw2100_priv *priv = ieee80211_priv(dev);
5650         unsigned long flags;
5651         IPW_DEBUG_INFO("dev->open\n");
5652
5653         spin_lock_irqsave(&priv->low_lock, flags);
5654         if (priv->status & STATUS_ASSOCIATED) {
5655                 netif_carrier_on(dev);
5656                 netif_start_queue(dev);
5657         }
5658         spin_unlock_irqrestore(&priv->low_lock, flags);
5659
5660         return 0;
5661 }
5662
5663 static int ipw2100_close(struct net_device *dev)
5664 {
5665         struct ipw2100_priv *priv = ieee80211_priv(dev);
5666         unsigned long flags;
5667         struct list_head *element;
5668         struct ipw2100_tx_packet *packet;
5669
5670         IPW_DEBUG_INFO("enter\n");
5671
5672         spin_lock_irqsave(&priv->low_lock, flags);
5673
5674         if (priv->status & STATUS_ASSOCIATED)
5675                 netif_carrier_off(dev);
5676         netif_stop_queue(dev);
5677
5678         /* Flush the TX queue ... */
5679         while (!list_empty(&priv->tx_pend_list)) {
5680                 element = priv->tx_pend_list.next;
5681                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5682
5683                 list_del(element);
5684                 DEC_STAT(&priv->tx_pend_stat);
5685
5686                 ieee80211_txb_free(packet->info.d_struct.txb);
5687                 packet->info.d_struct.txb = NULL;
5688
5689                 list_add_tail(element, &priv->tx_free_list);
5690                 INC_STAT(&priv->tx_free_stat);
5691         }
5692         spin_unlock_irqrestore(&priv->low_lock, flags);
5693
5694         IPW_DEBUG_INFO("exit\n");
5695
5696         return 0;
5697 }
5698
5699 /*
5700  * TODO:  Fix this function... its just wrong
5701  */
5702 static void ipw2100_tx_timeout(struct net_device *dev)
5703 {
5704         struct ipw2100_priv *priv = ieee80211_priv(dev);
5705
5706         priv->ieee->stats.tx_errors++;
5707
5708 #ifdef CONFIG_IPW2100_MONITOR
5709         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5710                 return;
5711 #endif
5712
5713         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5714                        dev->name);
5715         schedule_reset(priv);
5716 }
5717
5718 /*
5719  * TODO: reimplement it so that it reads statistics
5720  *       from the adapter using ordinal tables
5721  *       instead of/in addition to collecting them
5722  *       in the driver
5723  */
5724 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5725 {
5726         struct ipw2100_priv *priv = ieee80211_priv(dev);
5727
5728         return &priv->ieee->stats;
5729 }
5730
5731 #if WIRELESS_EXT < 18
5732 /* Support for wpa_supplicant before WE-18, deprecated. */
5733
5734 /* following definitions must match definitions in driver_ipw.c */
5735
5736 #define IPW2100_IOCTL_WPA_SUPPLICANT            SIOCIWFIRSTPRIV+30
5737
5738 #define IPW2100_CMD_SET_WPA_PARAM               1
5739 #define IPW2100_CMD_SET_WPA_IE                  2
5740 #define IPW2100_CMD_SET_ENCRYPTION              3
5741 #define IPW2100_CMD_MLME                        4
5742
5743 #define IPW2100_PARAM_WPA_ENABLED               1
5744 #define IPW2100_PARAM_TKIP_COUNTERMEASURES      2
5745 #define IPW2100_PARAM_DROP_UNENCRYPTED          3
5746 #define IPW2100_PARAM_PRIVACY_INVOKED           4
5747 #define IPW2100_PARAM_AUTH_ALGS                 5
5748 #define IPW2100_PARAM_IEEE_802_1X               6
5749
5750 #define IPW2100_MLME_STA_DEAUTH                 1
5751 #define IPW2100_MLME_STA_DISASSOC               2
5752
5753 #define IPW2100_CRYPT_ERR_UNKNOWN_ALG           2
5754 #define IPW2100_CRYPT_ERR_UNKNOWN_ADDR          3
5755 #define IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED     4
5756 #define IPW2100_CRYPT_ERR_KEY_SET_FAILED        5
5757 #define IPW2100_CRYPT_ERR_TX_KEY_SET_FAILED     6
5758 #define IPW2100_CRYPT_ERR_CARD_CONF_FAILED      7
5759
5760 #define IPW2100_CRYPT_ALG_NAME_LEN              16
5761
5762 struct ipw2100_param {
5763         u32 cmd;
5764         u8 sta_addr[ETH_ALEN];
5765         union {
5766                 struct {
5767                         u8 name;
5768                         u32 value;
5769                 } wpa_param;
5770                 struct {
5771                         u32 len;
5772                         u8 reserved[32];
5773                         u8 data[0];
5774                 } wpa_ie;
5775                 struct {
5776                         u32 command;
5777                         u32 reason_code;
5778                 } mlme;
5779                 struct {
5780                         u8 alg[IPW2100_CRYPT_ALG_NAME_LEN];
5781                         u8 set_tx;
5782                         u32 err;
5783                         u8 idx;
5784                         u8 seq[8];      /* sequence counter (set: RX, get: TX) */
5785                         u16 key_len;
5786                         u8 key[0];
5787                 } crypt;
5788
5789         } u;
5790 };
5791
5792 /* end of driver_ipw.c code */
5793 #endif                          /* WIRELESS_EXT < 18 */
5794
5795 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5796 {
5797         /* This is called when wpa_supplicant loads and closes the driver
5798          * interface. */
5799         priv->ieee->wpa_enabled = value;
5800         return 0;
5801 }
5802
5803 #if WIRELESS_EXT < 18
5804 #define IW_AUTH_ALG_OPEN_SYSTEM                 0x1
5805 #define IW_AUTH_ALG_SHARED_KEY                  0x2
5806 #endif
5807
5808 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5809 {
5810
5811         struct ieee80211_device *ieee = priv->ieee;
5812         struct ieee80211_security sec = {
5813                 .flags = SEC_AUTH_MODE,
5814         };
5815         int ret = 0;
5816
5817         if (value & IW_AUTH_ALG_SHARED_KEY) {
5818                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5819                 ieee->open_wep = 0;
5820         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5821                 sec.auth_mode = WLAN_AUTH_OPEN;
5822                 ieee->open_wep = 1;
5823         } else
5824                 return -EINVAL;
5825
5826         if (ieee->set_security)
5827                 ieee->set_security(ieee->dev, &sec);
5828         else
5829                 ret = -EOPNOTSUPP;
5830
5831         return ret;
5832 }
5833
5834 void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5835                              char *wpa_ie, int wpa_ie_len)
5836 {
5837
5838         struct ipw2100_wpa_assoc_frame frame;
5839
5840         frame.fixed_ie_mask = 0;
5841
5842         /* copy WPA IE */
5843         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5844         frame.var_ie_len = wpa_ie_len;
5845
5846         /* make sure WPA is enabled */
5847         ipw2100_wpa_enable(priv, 1);
5848         ipw2100_set_wpa_ie(priv, &frame, 0);
5849 }
5850
5851 #if WIRELESS_EXT < 18
5852 static int ipw2100_wpa_set_param(struct net_device *dev, u8 name, u32 value)
5853 {
5854         struct ipw2100_priv *priv = ieee80211_priv(dev);
5855         struct ieee80211_crypt_data *crypt;
5856         unsigned long flags;
5857         int ret = 0;
5858
5859         switch (name) {
5860         case IPW2100_PARAM_WPA_ENABLED:
5861                 ret = ipw2100_wpa_enable(priv, value);
5862                 break;
5863
5864         case IPW2100_PARAM_TKIP_COUNTERMEASURES:
5865                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
5866                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
5867                         IPW_DEBUG_WARNING("Can't set TKIP countermeasures: "
5868                                           "crypt not set!\n");
5869                         break;
5870                 }
5871
5872                 flags = crypt->ops->get_flags(crypt->priv);
5873
5874                 if (value)
5875                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5876                 else
5877                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5878
5879                 crypt->ops->set_flags(flags, crypt->priv);
5880
5881                 break;
5882
5883         case IPW2100_PARAM_DROP_UNENCRYPTED:{
5884                         /* See IW_AUTH_DROP_UNENCRYPTED handling for details */
5885                         struct ieee80211_security sec = {
5886                                 .flags = SEC_ENABLED,
5887                                 .enabled = value,
5888                         };
5889                         priv->ieee->drop_unencrypted = value;
5890                         /* We only change SEC_LEVEL for open mode. Others
5891                          * are set by ipw_wpa_set_encryption.
5892                          */
5893                         if (!value) {
5894                                 sec.flags |= SEC_LEVEL;
5895                                 sec.level = SEC_LEVEL_0;
5896                         } else {
5897                                 sec.flags |= SEC_LEVEL;
5898                                 sec.level = SEC_LEVEL_1;
5899                         }
5900                         if (priv->ieee->set_security)
5901                                 priv->ieee->set_security(priv->ieee->dev, &sec);
5902                         break;
5903                 }
5904
5905         case IPW2100_PARAM_PRIVACY_INVOKED:
5906                 priv->ieee->privacy_invoked = value;
5907                 break;
5908
5909         case IPW2100_PARAM_AUTH_ALGS:
5910                 ret = ipw2100_wpa_set_auth_algs(priv, value);
5911                 break;
5912
5913         case IPW2100_PARAM_IEEE_802_1X:
5914                 priv->ieee->ieee802_1x = value;
5915                 break;
5916
5917         default:
5918                 printk(KERN_ERR DRV_NAME ": %s: Unknown WPA param: %d\n",
5919                        dev->name, name);
5920                 ret = -EOPNOTSUPP;
5921         }
5922
5923         return ret;
5924 }
5925
5926 static int ipw2100_wpa_mlme(struct net_device *dev, int command, int reason)
5927 {
5928
5929         struct ipw2100_priv *priv = ieee80211_priv(dev);
5930         int ret = 0;
5931
5932         switch (command) {
5933         case IPW2100_MLME_STA_DEAUTH:
5934                 // silently ignore
5935                 break;
5936
5937         case IPW2100_MLME_STA_DISASSOC:
5938                 ipw2100_disassociate_bssid(priv);
5939                 break;
5940
5941         default:
5942                 printk(KERN_ERR DRV_NAME ": %s: Unknown MLME request: %d\n",
5943                        dev->name, command);
5944                 ret = -EOPNOTSUPP;
5945         }
5946
5947         return ret;
5948 }
5949
5950 static int ipw2100_wpa_set_wpa_ie(struct net_device *dev,
5951                                   struct ipw2100_param *param, int plen)
5952 {
5953
5954         struct ipw2100_priv *priv = ieee80211_priv(dev);
5955         struct ieee80211_device *ieee = priv->ieee;
5956         u8 *buf;
5957
5958         if (!ieee->wpa_enabled)
5959                 return -EOPNOTSUPP;
5960
5961         if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
5962             (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
5963                 return -EINVAL;
5964
5965         if (param->u.wpa_ie.len) {
5966                 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
5967                 if (buf == NULL)
5968                         return -ENOMEM;
5969
5970                 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
5971
5972                 kfree(ieee->wpa_ie);
5973                 ieee->wpa_ie = buf;
5974                 ieee->wpa_ie_len = param->u.wpa_ie.len;
5975
5976         } else {
5977                 kfree(ieee->wpa_ie);
5978                 ieee->wpa_ie = NULL;
5979                 ieee->wpa_ie_len = 0;
5980         }
5981
5982         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
5983
5984         return 0;
5985 }
5986
5987 /* implementation borrowed from hostap driver */
5988
5989 static int ipw2100_wpa_set_encryption(struct net_device *dev,
5990                                       struct ipw2100_param *param,
5991                                       int param_len)
5992 {
5993         int ret = 0;
5994         struct ipw2100_priv *priv = ieee80211_priv(dev);
5995         struct ieee80211_device *ieee = priv->ieee;
5996         struct ieee80211_crypto_ops *ops;
5997         struct ieee80211_crypt_data **crypt;
5998
5999         struct ieee80211_security sec = {
6000                 .flags = 0,
6001         };
6002
6003         param->u.crypt.err = 0;
6004         param->u.crypt.alg[IPW2100_CRYPT_ALG_NAME_LEN - 1] = '\0';
6005
6006         if (param_len !=
6007             (int)((char *)param->u.crypt.key - (char *)param) +
6008             param->u.crypt.key_len) {
6009                 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
6010                                param->u.crypt.key_len);
6011                 return -EINVAL;
6012         }
6013         if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
6014             param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
6015             param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
6016                 if (param->u.crypt.idx >= WEP_KEYS)
6017                         return -EINVAL;
6018                 crypt = &ieee->crypt[param->u.crypt.idx];
6019         } else {
6020                 return -EINVAL;
6021         }
6022
6023         sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6024         if (strcmp(param->u.crypt.alg, "none") == 0) {
6025                 if (crypt) {
6026                         sec.enabled = 0;
6027                         sec.encrypt = 0;
6028                         sec.level = SEC_LEVEL_0;
6029                         sec.flags |= SEC_LEVEL;
6030                         ieee80211_crypt_delayed_deinit(ieee, crypt);
6031                 }
6032                 goto done;
6033         }
6034         sec.enabled = 1;
6035         sec.encrypt = 1;
6036
6037         ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6038         if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6039                 request_module("ieee80211_crypt_wep");
6040                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6041         } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6042                 request_module("ieee80211_crypt_tkip");
6043                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6044         } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6045                 request_module("ieee80211_crypt_ccmp");
6046                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6047         }
6048         if (ops == NULL) {
6049                 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6050                                dev->name, param->u.crypt.alg);
6051                 param->u.crypt.err = IPW2100_CRYPT_ERR_UNKNOWN_ALG;
6052                 ret = -EINVAL;
6053                 goto done;
6054         }
6055
6056         if (*crypt == NULL || (*crypt)->ops != ops) {
6057                 struct ieee80211_crypt_data *new_crypt;
6058
6059                 ieee80211_crypt_delayed_deinit(ieee, crypt);
6060
6061                 new_crypt = (struct ieee80211_crypt_data *)
6062                     kmalloc(sizeof(struct ieee80211_crypt_data), GFP_KERNEL);
6063                 if (new_crypt == NULL) {
6064                         ret = -ENOMEM;
6065                         goto done;
6066                 }
6067                 memset(new_crypt, 0, sizeof(struct ieee80211_crypt_data));
6068                 new_crypt->ops = ops;
6069                 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6070                         new_crypt->priv =
6071                             new_crypt->ops->init(param->u.crypt.idx);
6072
6073                 if (new_crypt->priv == NULL) {
6074                         kfree(new_crypt);
6075                         param->u.crypt.err =
6076                             IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED;
6077                         ret = -EINVAL;
6078                         goto done;
6079                 }
6080
6081                 *crypt = new_crypt;
6082         }
6083
6084         if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6085             (*crypt)->ops->set_key(param->u.crypt.key,
6086                                    param->u.crypt.key_len, param->u.crypt.seq,
6087                                    (*crypt)->priv) < 0) {
6088                 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6089                 param->u.crypt.err = IPW2100_CRYPT_ERR_KEY_SET_FAILED;
6090                 ret = -EINVAL;
6091                 goto done;
6092         }
6093
6094         if (param->u.crypt.set_tx) {
6095                 ieee->tx_keyidx = param->u.crypt.idx;
6096                 sec.active_key = param->u.crypt.idx;
6097                 sec.flags |= SEC_ACTIVE_KEY;
6098         }
6099
6100         if (ops->name != NULL) {
6101
6102                 if (strcmp(ops->name, "WEP") == 0) {
6103                         memcpy(sec.keys[param->u.crypt.idx],
6104                                param->u.crypt.key, param->u.crypt.key_len);
6105                         sec.key_sizes[param->u.crypt.idx] =
6106                             param->u.crypt.key_len;
6107                         sec.flags |= (1 << param->u.crypt.idx);
6108                         sec.flags |= SEC_LEVEL;
6109                         sec.level = SEC_LEVEL_1;
6110                 } else if (strcmp(ops->name, "TKIP") == 0) {
6111                         sec.flags |= SEC_LEVEL;
6112                         sec.level = SEC_LEVEL_2;
6113                 } else if (strcmp(ops->name, "CCMP") == 0) {
6114                         sec.flags |= SEC_LEVEL;
6115                         sec.level = SEC_LEVEL_3;
6116                 }
6117         }
6118       done:
6119         if (ieee->set_security)
6120                 ieee->set_security(ieee->dev, &sec);
6121
6122         /* Do not reset port if card is in Managed mode since resetting will
6123          * generate new IEEE 802.11 authentication which may end up in looping
6124          * with IEEE 802.1X.  If your hardware requires a reset after WEP
6125          * configuration (for example... Prism2), implement the reset_port in
6126          * the callbacks structures used to initialize the 802.11 stack. */
6127         if (ieee->reset_on_keychange &&
6128             ieee->iw_mode != IW_MODE_INFRA &&
6129             ieee->reset_port && ieee->reset_port(dev)) {
6130                 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6131                 param->u.crypt.err = IPW2100_CRYPT_ERR_CARD_CONF_FAILED;
6132                 return -EINVAL;
6133         }
6134
6135         return ret;
6136 }
6137
6138 static int ipw2100_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6139 {
6140
6141         struct ipw2100_param *param;
6142         int ret = 0;
6143
6144         IPW_DEBUG_IOCTL("wpa_supplicant: len=%d\n", p->length);
6145
6146         if (p->length < sizeof(struct ipw2100_param) || !p->pointer)
6147                 return -EINVAL;
6148
6149         param = (struct ipw2100_param *)kmalloc(p->length, GFP_KERNEL);
6150         if (param == NULL)
6151                 return -ENOMEM;
6152
6153         if (copy_from_user(param, p->pointer, p->length)) {
6154                 kfree(param);
6155                 return -EFAULT;
6156         }
6157
6158         switch (param->cmd) {
6159
6160         case IPW2100_CMD_SET_WPA_PARAM:
6161                 ret = ipw2100_wpa_set_param(dev, param->u.wpa_param.name,
6162                                             param->u.wpa_param.value);
6163                 break;
6164
6165         case IPW2100_CMD_SET_WPA_IE:
6166                 ret = ipw2100_wpa_set_wpa_ie(dev, param, p->length);
6167                 break;
6168
6169         case IPW2100_CMD_SET_ENCRYPTION:
6170                 ret = ipw2100_wpa_set_encryption(dev, param, p->length);
6171                 break;
6172
6173         case IPW2100_CMD_MLME:
6174                 ret = ipw2100_wpa_mlme(dev, param->u.mlme.command,
6175                                        param->u.mlme.reason_code);
6176                 break;
6177
6178         default:
6179                 printk(KERN_ERR DRV_NAME
6180                        ": %s: Unknown WPA supplicant request: %d\n", dev->name,
6181                        param->cmd);
6182                 ret = -EOPNOTSUPP;
6183
6184         }
6185
6186         if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6187                 ret = -EFAULT;
6188
6189         kfree(param);
6190         return ret;
6191 }
6192
6193 static int ipw2100_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6194 {
6195         struct iwreq *wrq = (struct iwreq *)rq;
6196         int ret = -1;
6197         switch (cmd) {
6198         case IPW2100_IOCTL_WPA_SUPPLICANT:
6199                 ret = ipw2100_wpa_supplicant(dev, &wrq->u.data);
6200                 return ret;
6201
6202         default:
6203                 return -EOPNOTSUPP;
6204         }
6205
6206         return -EOPNOTSUPP;
6207 }
6208 #endif                          /* WIRELESS_EXT < 18 */
6209
6210 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6211                                     struct ethtool_drvinfo *info)
6212 {
6213         struct ipw2100_priv *priv = ieee80211_priv(dev);
6214         char fw_ver[64], ucode_ver[64];
6215
6216         strcpy(info->driver, DRV_NAME);
6217         strcpy(info->version, DRV_VERSION);
6218
6219         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6220         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6221
6222         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6223                  fw_ver, priv->eeprom_version, ucode_ver);
6224
6225         strcpy(info->bus_info, pci_name(priv->pci_dev));
6226 }
6227
6228 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6229 {
6230         struct ipw2100_priv *priv = ieee80211_priv(dev);
6231         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6232 }
6233
6234 static struct ethtool_ops ipw2100_ethtool_ops = {
6235         .get_link = ipw2100_ethtool_get_link,
6236         .get_drvinfo = ipw_ethtool_get_drvinfo,
6237 };
6238
6239 static void ipw2100_hang_check(void *adapter)
6240 {
6241         struct ipw2100_priv *priv = adapter;
6242         unsigned long flags;
6243         u32 rtc = 0xa5a5a5a5;
6244         u32 len = sizeof(rtc);
6245         int restart = 0;
6246
6247         spin_lock_irqsave(&priv->low_lock, flags);
6248
6249         if (priv->fatal_error != 0) {
6250                 /* If fatal_error is set then we need to restart */
6251                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6252                                priv->net_dev->name);
6253
6254                 restart = 1;
6255         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6256                    (rtc == priv->last_rtc)) {
6257                 /* Check if firmware is hung */
6258                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6259                                priv->net_dev->name);
6260
6261                 restart = 1;
6262         }
6263
6264         if (restart) {
6265                 /* Kill timer */
6266                 priv->stop_hang_check = 1;
6267                 priv->hangs++;
6268
6269                 /* Restart the NIC */
6270                 schedule_reset(priv);
6271         }
6272
6273         priv->last_rtc = rtc;
6274
6275         if (!priv->stop_hang_check)
6276                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6277
6278         spin_unlock_irqrestore(&priv->low_lock, flags);
6279 }
6280
6281 static void ipw2100_rf_kill(void *adapter)
6282 {
6283         struct ipw2100_priv *priv = adapter;
6284         unsigned long flags;
6285
6286         spin_lock_irqsave(&priv->low_lock, flags);
6287
6288         if (rf_kill_active(priv)) {
6289                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6290                 if (!priv->stop_rf_kill)
6291                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
6292                 goto exit_unlock;
6293         }
6294
6295         /* RF Kill is now disabled, so bring the device back up */
6296
6297         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6298                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6299                                   "device\n");
6300                 schedule_reset(priv);
6301         } else
6302                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6303                                   "enabled\n");
6304
6305       exit_unlock:
6306         spin_unlock_irqrestore(&priv->low_lock, flags);
6307 }
6308
6309 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6310
6311 /* Look into using netdev destructor to shutdown ieee80211? */
6312
6313 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6314                                                void __iomem * base_addr,
6315                                                unsigned long mem_start,
6316                                                unsigned long mem_len)
6317 {
6318         struct ipw2100_priv *priv;
6319         struct net_device *dev;
6320
6321         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6322         if (!dev)
6323                 return NULL;
6324         priv = ieee80211_priv(dev);
6325         priv->ieee = netdev_priv(dev);
6326         priv->pci_dev = pci_dev;
6327         priv->net_dev = dev;
6328
6329         priv->ieee->hard_start_xmit = ipw2100_tx;
6330         priv->ieee->set_security = shim__set_security;
6331
6332         priv->ieee->perfect_rssi = -20;
6333         priv->ieee->worst_rssi = -85;
6334
6335         dev->open = ipw2100_open;
6336         dev->stop = ipw2100_close;
6337         dev->init = ipw2100_net_init;
6338 #if WIRELESS_EXT < 18
6339         dev->do_ioctl = ipw2100_ioctl;
6340 #endif
6341         dev->get_stats = ipw2100_stats;
6342         dev->ethtool_ops = &ipw2100_ethtool_ops;
6343         dev->tx_timeout = ipw2100_tx_timeout;
6344         dev->wireless_handlers = &ipw2100_wx_handler_def;
6345         dev->get_wireless_stats = ipw2100_wx_wireless_stats;
6346         dev->set_mac_address = ipw2100_set_address;
6347         dev->watchdog_timeo = 3 * HZ;
6348         dev->irq = 0;
6349
6350         dev->base_addr = (unsigned long)base_addr;
6351         dev->mem_start = mem_start;
6352         dev->mem_end = dev->mem_start + mem_len - 1;
6353
6354         /* NOTE: We don't use the wireless_handlers hook
6355          * in dev as the system will start throwing WX requests
6356          * to us before we're actually initialized and it just
6357          * ends up causing problems.  So, we just handle
6358          * the WX extensions through the ipw2100_ioctl interface */
6359
6360         /* memset() puts everything to 0, so we only have explicitely set
6361          * those values that need to be something else */
6362
6363         /* If power management is turned on, default to AUTO mode */
6364         priv->power_mode = IPW_POWER_AUTO;
6365
6366 #ifdef CONFIG_IPW2100_MONITOR
6367         priv->config |= CFG_CRC_CHECK;
6368 #endif
6369         priv->ieee->wpa_enabled = 0;
6370         priv->ieee->drop_unencrypted = 0;
6371         priv->ieee->privacy_invoked = 0;
6372         priv->ieee->ieee802_1x = 1;
6373
6374         /* Set module parameters */
6375         switch (mode) {
6376         case 1:
6377                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6378                 break;
6379 #ifdef CONFIG_IPW2100_MONITOR
6380         case 2:
6381                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6382                 break;
6383 #endif
6384         default:
6385         case 0:
6386                 priv->ieee->iw_mode = IW_MODE_INFRA;
6387                 break;
6388         }
6389
6390         if (disable == 1)
6391                 priv->status |= STATUS_RF_KILL_SW;
6392
6393         if (channel != 0 &&
6394             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6395                 priv->config |= CFG_STATIC_CHANNEL;
6396                 priv->channel = channel;
6397         }
6398
6399         if (associate)
6400                 priv->config |= CFG_ASSOCIATE;
6401
6402         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6403         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6404         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6405         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6406         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6407         priv->tx_power = IPW_TX_POWER_DEFAULT;
6408         priv->tx_rates = DEFAULT_TX_RATES;
6409
6410         strcpy(priv->nick, "ipw2100");
6411
6412         spin_lock_init(&priv->low_lock);
6413         sema_init(&priv->action_sem, 1);
6414         sema_init(&priv->adapter_sem, 1);
6415
6416         init_waitqueue_head(&priv->wait_command_queue);
6417
6418         netif_carrier_off(dev);
6419
6420         INIT_LIST_HEAD(&priv->msg_free_list);
6421         INIT_LIST_HEAD(&priv->msg_pend_list);
6422         INIT_STAT(&priv->msg_free_stat);
6423         INIT_STAT(&priv->msg_pend_stat);
6424
6425         INIT_LIST_HEAD(&priv->tx_free_list);
6426         INIT_LIST_HEAD(&priv->tx_pend_list);
6427         INIT_STAT(&priv->tx_free_stat);
6428         INIT_STAT(&priv->tx_pend_stat);
6429
6430         INIT_LIST_HEAD(&priv->fw_pend_list);
6431         INIT_STAT(&priv->fw_pend_stat);
6432
6433 #ifdef PF_SYNCTHREAD
6434         priv->workqueue = create_workqueue(DRV_NAME, 0);
6435 #else
6436         priv->workqueue = create_workqueue(DRV_NAME);
6437 #endif
6438         INIT_WORK(&priv->reset_work,
6439                   (void (*)(void *))ipw2100_reset_adapter, priv);
6440         INIT_WORK(&priv->security_work,
6441                   (void (*)(void *))ipw2100_security_work, priv);
6442         INIT_WORK(&priv->wx_event_work,
6443                   (void (*)(void *))ipw2100_wx_event_work, priv);
6444         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6445         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6446
6447         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6448                      ipw2100_irq_tasklet, (unsigned long)priv);
6449
6450         /* NOTE:  We do not start the deferred work for status checks yet */
6451         priv->stop_rf_kill = 1;
6452         priv->stop_hang_check = 1;
6453
6454         return dev;
6455 }
6456
6457 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6458                                 const struct pci_device_id *ent)
6459 {
6460         unsigned long mem_start, mem_len, mem_flags;
6461         void __iomem *base_addr = NULL;
6462         struct net_device *dev = NULL;
6463         struct ipw2100_priv *priv = NULL;
6464         int err = 0;
6465         int registered = 0;
6466         u32 val;
6467
6468         IPW_DEBUG_INFO("enter\n");
6469
6470         mem_start = pci_resource_start(pci_dev, 0);
6471         mem_len = pci_resource_len(pci_dev, 0);
6472         mem_flags = pci_resource_flags(pci_dev, 0);
6473
6474         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6475                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6476                 err = -ENODEV;
6477                 goto fail;
6478         }
6479
6480         base_addr = ioremap_nocache(mem_start, mem_len);
6481         if (!base_addr) {
6482                 printk(KERN_WARNING DRV_NAME
6483                        "Error calling ioremap_nocache.\n");
6484                 err = -EIO;
6485                 goto fail;
6486         }
6487
6488         /* allocate and initialize our net_device */
6489         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6490         if (!dev) {
6491                 printk(KERN_WARNING DRV_NAME
6492                        "Error calling ipw2100_alloc_device.\n");
6493                 err = -ENOMEM;
6494                 goto fail;
6495         }
6496
6497         /* set up PCI mappings for device */
6498         err = pci_enable_device(pci_dev);
6499         if (err) {
6500                 printk(KERN_WARNING DRV_NAME
6501                        "Error calling pci_enable_device.\n");
6502                 return err;
6503         }
6504
6505         priv = ieee80211_priv(dev);
6506
6507         pci_set_master(pci_dev);
6508         pci_set_drvdata(pci_dev, priv);
6509
6510         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6511         if (err) {
6512                 printk(KERN_WARNING DRV_NAME
6513                        "Error calling pci_set_dma_mask.\n");
6514                 pci_disable_device(pci_dev);
6515                 return err;
6516         }
6517
6518         err = pci_request_regions(pci_dev, DRV_NAME);
6519         if (err) {
6520                 printk(KERN_WARNING DRV_NAME
6521                        "Error calling pci_request_regions.\n");
6522                 pci_disable_device(pci_dev);
6523                 return err;
6524         }
6525
6526         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6527          * PCI Tx retries from interfering with C3 CPU state */
6528         pci_read_config_dword(pci_dev, 0x40, &val);
6529         if ((val & 0x0000ff00) != 0)
6530                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6531
6532         pci_set_power_state(pci_dev, PCI_D0);
6533
6534         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6535                 printk(KERN_WARNING DRV_NAME
6536                        "Device not found via register read.\n");
6537                 err = -ENODEV;
6538                 goto fail;
6539         }
6540
6541         SET_NETDEV_DEV(dev, &pci_dev->dev);
6542
6543         /* Force interrupts to be shut off on the device */
6544         priv->status |= STATUS_INT_ENABLED;
6545         ipw2100_disable_interrupts(priv);
6546
6547         /* Allocate and initialize the Tx/Rx queues and lists */
6548         if (ipw2100_queues_allocate(priv)) {
6549                 printk(KERN_WARNING DRV_NAME
6550                        "Error calilng ipw2100_queues_allocate.\n");
6551                 err = -ENOMEM;
6552                 goto fail;
6553         }
6554         ipw2100_queues_initialize(priv);
6555
6556         err = request_irq(pci_dev->irq,
6557                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6558         if (err) {
6559                 printk(KERN_WARNING DRV_NAME
6560                        "Error calling request_irq: %d.\n", pci_dev->irq);
6561                 goto fail;
6562         }
6563         dev->irq = pci_dev->irq;
6564
6565         IPW_DEBUG_INFO("Attempting to register device...\n");
6566
6567         SET_MODULE_OWNER(dev);
6568
6569         printk(KERN_INFO DRV_NAME
6570                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6571
6572         /* Bring up the interface.  Pre 0.46, after we registered the
6573          * network device we would call ipw2100_up.  This introduced a race
6574          * condition with newer hotplug configurations (network was coming
6575          * up and making calls before the device was initialized).
6576          *
6577          * If we called ipw2100_up before we registered the device, then the
6578          * device name wasn't registered.  So, we instead use the net_dev->init
6579          * member to call a function that then just turns and calls ipw2100_up.
6580          * net_dev->init is called after name allocation but before the
6581          * notifier chain is called */
6582         down(&priv->action_sem);
6583         err = register_netdev(dev);
6584         if (err) {
6585                 printk(KERN_WARNING DRV_NAME
6586                        "Error calling register_netdev.\n");
6587                 goto fail_unlock;
6588         }
6589         registered = 1;
6590
6591         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6592
6593         /* perform this after register_netdev so that dev->name is set */
6594         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6595
6596         /* If the RF Kill switch is disabled, go ahead and complete the
6597          * startup sequence */
6598         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6599                 /* Enable the adapter - sends HOST_COMPLETE */
6600                 if (ipw2100_enable_adapter(priv)) {
6601                         printk(KERN_WARNING DRV_NAME
6602                                ": %s: failed in call to enable adapter.\n",
6603                                priv->net_dev->name);
6604                         ipw2100_hw_stop_adapter(priv);
6605                         err = -EIO;
6606                         goto fail_unlock;
6607                 }
6608
6609                 /* Start a scan . . . */
6610                 ipw2100_set_scan_options(priv);
6611                 ipw2100_start_scan(priv);
6612         }
6613
6614         IPW_DEBUG_INFO("exit\n");
6615
6616         priv->status |= STATUS_INITIALIZED;
6617
6618         up(&priv->action_sem);
6619
6620         return 0;
6621
6622       fail_unlock:
6623         up(&priv->action_sem);
6624
6625       fail:
6626         if (dev) {
6627                 if (registered)
6628                         unregister_netdev(dev);
6629
6630                 ipw2100_hw_stop_adapter(priv);
6631
6632                 ipw2100_disable_interrupts(priv);
6633
6634                 if (dev->irq)
6635                         free_irq(dev->irq, priv);
6636
6637                 ipw2100_kill_workqueue(priv);
6638
6639                 /* These are safe to call even if they weren't allocated */
6640                 ipw2100_queues_free(priv);
6641                 sysfs_remove_group(&pci_dev->dev.kobj,
6642                                    &ipw2100_attribute_group);
6643
6644                 free_ieee80211(dev);
6645                 pci_set_drvdata(pci_dev, NULL);
6646         }
6647
6648         if (base_addr)
6649                 iounmap(base_addr);
6650
6651         pci_release_regions(pci_dev);
6652         pci_disable_device(pci_dev);
6653
6654         return err;
6655 }
6656
6657 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6658 {
6659         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6660         struct net_device *dev;
6661
6662         if (priv) {
6663                 down(&priv->action_sem);
6664
6665                 priv->status &= ~STATUS_INITIALIZED;
6666
6667                 dev = priv->net_dev;
6668                 sysfs_remove_group(&pci_dev->dev.kobj,
6669                                    &ipw2100_attribute_group);
6670
6671 #ifdef CONFIG_PM
6672                 if (ipw2100_firmware.version)
6673                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6674 #endif
6675                 /* Take down the hardware */
6676                 ipw2100_down(priv);
6677
6678                 /* Release the semaphore so that the network subsystem can
6679                  * complete any needed calls into the driver... */
6680                 up(&priv->action_sem);
6681
6682                 /* Unregister the device first - this results in close()
6683                  * being called if the device is open.  If we free storage
6684                  * first, then close() will crash. */
6685                 unregister_netdev(dev);
6686
6687                 /* ipw2100_down will ensure that there is no more pending work
6688                  * in the workqueue's, so we can safely remove them now. */
6689                 ipw2100_kill_workqueue(priv);
6690
6691                 ipw2100_queues_free(priv);
6692
6693                 /* Free potential debugging firmware snapshot */
6694                 ipw2100_snapshot_free(priv);
6695
6696                 if (dev->irq)
6697                         free_irq(dev->irq, priv);
6698
6699                 if (dev->base_addr)
6700                         iounmap((void __iomem *)dev->base_addr);
6701
6702                 free_ieee80211(dev);
6703         }
6704
6705         pci_release_regions(pci_dev);
6706         pci_disable_device(pci_dev);
6707
6708         IPW_DEBUG_INFO("exit\n");
6709 }
6710
6711 #ifdef CONFIG_PM
6712 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11)
6713 static int ipw2100_suspend(struct pci_dev *pci_dev, u32 state)
6714 #else
6715 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6716 #endif
6717 {
6718         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6719         struct net_device *dev = priv->net_dev;
6720
6721         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6722
6723         down(&priv->action_sem);
6724         if (priv->status & STATUS_INITIALIZED) {
6725                 /* Take down the device; powers it off, etc. */
6726                 ipw2100_down(priv);
6727         }
6728
6729         /* Remove the PRESENT state of the device */
6730         netif_device_detach(dev);
6731
6732         pci_save_state(pci_dev);
6733         pci_disable_device(pci_dev);
6734         pci_set_power_state(pci_dev, PCI_D3hot);
6735
6736         up(&priv->action_sem);
6737
6738         return 0;
6739 }
6740
6741 static int ipw2100_resume(struct pci_dev *pci_dev)
6742 {
6743         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6744         struct net_device *dev = priv->net_dev;
6745         u32 val;
6746
6747         if (IPW2100_PM_DISABLED)
6748                 return 0;
6749
6750         down(&priv->action_sem);
6751
6752         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6753
6754         pci_set_power_state(pci_dev, PCI_D0);
6755         pci_enable_device(pci_dev);
6756         pci_restore_state(pci_dev);
6757
6758         /*
6759          * Suspend/Resume resets the PCI configuration space, so we have to
6760          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6761          * from interfering with C3 CPU state. pci_restore_state won't help
6762          * here since it only restores the first 64 bytes pci config header.
6763          */
6764         pci_read_config_dword(pci_dev, 0x40, &val);
6765         if ((val & 0x0000ff00) != 0)
6766                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6767
6768         /* Set the device back into the PRESENT state; this will also wake
6769          * the queue of needed */
6770         netif_device_attach(dev);
6771
6772         /* Bring the device back up */
6773         if (!(priv->status & STATUS_RF_KILL_SW))
6774                 ipw2100_up(priv, 0);
6775
6776         up(&priv->action_sem);
6777
6778         return 0;
6779 }
6780 #endif
6781
6782 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6783
6784 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6785         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6786         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6787         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6788         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6789         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6790         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6791         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6792         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6793         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6794         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6795         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6796         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6797         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6798
6799         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6800         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6801         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6802         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6803         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6804
6805         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6806         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6807         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6808         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6809         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6810         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6811         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6812
6813         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6814
6815         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6816         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6817         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6818         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6819         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6820         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6821         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6822
6823         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6824         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6825         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6826         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6827         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6828         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6829
6830         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6831         {0,},
6832 };
6833
6834 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6835
6836 static struct pci_driver ipw2100_pci_driver = {
6837         .name = DRV_NAME,
6838         .id_table = ipw2100_pci_id_table,
6839         .probe = ipw2100_pci_init_one,
6840         .remove = __devexit_p(ipw2100_pci_remove_one),
6841 #ifdef CONFIG_PM
6842         .suspend = ipw2100_suspend,
6843         .resume = ipw2100_resume,
6844 #endif
6845 };
6846
6847 /**
6848  * Initialize the ipw2100 driver/module
6849  *
6850  * @returns 0 if ok, < 0 errno node con error.
6851  *
6852  * Note: we cannot init the /proc stuff until the PCI driver is there,
6853  * or we risk an unlikely race condition on someone accessing
6854  * uninitialized data in the PCI dev struct through /proc.
6855  */
6856 static int __init ipw2100_init(void)
6857 {
6858         int ret;
6859
6860         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6861         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6862
6863         ret = pci_module_init(&ipw2100_pci_driver);
6864
6865 #ifdef CONFIG_IPW_DEBUG
6866         ipw2100_debug_level = debug;
6867         driver_create_file(&ipw2100_pci_driver.driver,
6868                            &driver_attr_debug_level);
6869 #endif
6870
6871         return ret;
6872 }
6873
6874 /**
6875  * Cleanup ipw2100 driver registration
6876  */
6877 static void __exit ipw2100_exit(void)
6878 {
6879         /* FIXME: IPG: check that we have no instances of the devices open */
6880 #ifdef CONFIG_IPW_DEBUG
6881         driver_remove_file(&ipw2100_pci_driver.driver,
6882                            &driver_attr_debug_level);
6883 #endif
6884         pci_unregister_driver(&ipw2100_pci_driver);
6885 }
6886
6887 module_init(ipw2100_init);
6888 module_exit(ipw2100_exit);
6889
6890 #define WEXT_USECHANNELS 1
6891
6892 static const long ipw2100_frequencies[] = {
6893         2412, 2417, 2422, 2427,
6894         2432, 2437, 2442, 2447,
6895         2452, 2457, 2462, 2467,
6896         2472, 2484
6897 };
6898
6899 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6900                     sizeof(ipw2100_frequencies[0]))
6901
6902 static const long ipw2100_rates_11b[] = {
6903         1000000,
6904         2000000,
6905         5500000,
6906         11000000
6907 };
6908
6909 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6910
6911 static int ipw2100_wx_get_name(struct net_device *dev,
6912                                struct iw_request_info *info,
6913                                union iwreq_data *wrqu, char *extra)
6914 {
6915         /*
6916          * This can be called at any time.  No action lock required
6917          */
6918
6919         struct ipw2100_priv *priv = ieee80211_priv(dev);
6920         if (!(priv->status & STATUS_ASSOCIATED))
6921                 strcpy(wrqu->name, "unassociated");
6922         else
6923                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6924
6925         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6926         return 0;
6927 }
6928
6929 static int ipw2100_wx_set_freq(struct net_device *dev,
6930                                struct iw_request_info *info,
6931                                union iwreq_data *wrqu, char *extra)
6932 {
6933         struct ipw2100_priv *priv = ieee80211_priv(dev);
6934         struct iw_freq *fwrq = &wrqu->freq;
6935         int err = 0;
6936
6937         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6938                 return -EOPNOTSUPP;
6939
6940         down(&priv->action_sem);
6941         if (!(priv->status & STATUS_INITIALIZED)) {
6942                 err = -EIO;
6943                 goto done;
6944         }
6945
6946         /* if setting by freq convert to channel */
6947         if (fwrq->e == 1) {
6948                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6949                         int f = fwrq->m / 100000;
6950                         int c = 0;
6951
6952                         while ((c < REG_MAX_CHANNEL) &&
6953                                (f != ipw2100_frequencies[c]))
6954                                 c++;
6955
6956                         /* hack to fall through */
6957                         fwrq->e = 0;
6958                         fwrq->m = c + 1;
6959                 }
6960         }
6961
6962         if (fwrq->e > 0 || fwrq->m > 1000) {
6963                 err = -EOPNOTSUPP;
6964                 goto done;
6965         } else {                /* Set the channel */
6966                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6967                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6968         }
6969
6970       done:
6971         up(&priv->action_sem);
6972         return err;
6973 }
6974
6975 static int ipw2100_wx_get_freq(struct net_device *dev,
6976                                struct iw_request_info *info,
6977                                union iwreq_data *wrqu, char *extra)
6978 {
6979         /*
6980          * This can be called at any time.  No action lock required
6981          */
6982
6983         struct ipw2100_priv *priv = ieee80211_priv(dev);
6984
6985         wrqu->freq.e = 0;
6986
6987         /* If we are associated, trying to associate, or have a statically
6988          * configured CHANNEL then return that; otherwise return ANY */
6989         if (priv->config & CFG_STATIC_CHANNEL ||
6990             priv->status & STATUS_ASSOCIATED)
6991                 wrqu->freq.m = priv->channel;
6992         else
6993                 wrqu->freq.m = 0;
6994
6995         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6996         return 0;
6997
6998 }
6999
7000 static int ipw2100_wx_set_mode(struct net_device *dev,
7001                                struct iw_request_info *info,
7002                                union iwreq_data *wrqu, char *extra)
7003 {
7004         struct ipw2100_priv *priv = ieee80211_priv(dev);
7005         int err = 0;
7006
7007         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
7008
7009         if (wrqu->mode == priv->ieee->iw_mode)
7010                 return 0;
7011
7012         down(&priv->action_sem);
7013         if (!(priv->status & STATUS_INITIALIZED)) {
7014                 err = -EIO;
7015                 goto done;
7016         }
7017
7018         switch (wrqu->mode) {
7019 #ifdef CONFIG_IPW2100_MONITOR
7020         case IW_MODE_MONITOR:
7021                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7022                 break;
7023 #endif                          /* CONFIG_IPW2100_MONITOR */
7024         case IW_MODE_ADHOC:
7025                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
7026                 break;
7027         case IW_MODE_INFRA:
7028         case IW_MODE_AUTO:
7029         default:
7030                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
7031                 break;
7032         }
7033
7034       done:
7035         up(&priv->action_sem);
7036         return err;
7037 }
7038
7039 static int ipw2100_wx_get_mode(struct net_device *dev,
7040                                struct iw_request_info *info,
7041                                union iwreq_data *wrqu, char *extra)
7042 {
7043         /*
7044          * This can be called at any time.  No action lock required
7045          */
7046
7047         struct ipw2100_priv *priv = ieee80211_priv(dev);
7048
7049         wrqu->mode = priv->ieee->iw_mode;
7050         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
7051
7052         return 0;
7053 }
7054
7055 #define POWER_MODES 5
7056
7057 /* Values are in microsecond */
7058 static const s32 timeout_duration[POWER_MODES] = {
7059         350000,
7060         250000,
7061         75000,
7062         37000,
7063         25000,
7064 };
7065
7066 static const s32 period_duration[POWER_MODES] = {
7067         400000,
7068         700000,
7069         1000000,
7070         1000000,
7071         1000000
7072 };
7073
7074 static int ipw2100_wx_get_range(struct net_device *dev,
7075                                 struct iw_request_info *info,
7076                                 union iwreq_data *wrqu, char *extra)
7077 {
7078         /*
7079          * This can be called at any time.  No action lock required
7080          */
7081
7082         struct ipw2100_priv *priv = ieee80211_priv(dev);
7083         struct iw_range *range = (struct iw_range *)extra;
7084         u16 val;
7085         int i, level;
7086
7087         wrqu->data.length = sizeof(*range);
7088         memset(range, 0, sizeof(*range));
7089
7090         /* Let's try to keep this struct in the same order as in
7091          * linux/include/wireless.h
7092          */
7093
7094         /* TODO: See what values we can set, and remove the ones we can't
7095          * set, or fill them with some default data.
7096          */
7097
7098         /* ~5 Mb/s real (802.11b) */
7099         range->throughput = 5 * 1000 * 1000;
7100
7101 //      range->sensitivity;     /* signal level threshold range */
7102
7103         range->max_qual.qual = 100;
7104         /* TODO: Find real max RSSI and stick here */
7105         range->max_qual.level = 0;
7106         range->max_qual.noise = 0;
7107         range->max_qual.updated = 7;    /* Updated all three */
7108
7109         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
7110         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
7111         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
7112         range->avg_qual.noise = 0;
7113         range->avg_qual.updated = 7;    /* Updated all three */
7114
7115         range->num_bitrates = RATE_COUNT;
7116
7117         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
7118                 range->bitrate[i] = ipw2100_rates_11b[i];
7119         }
7120
7121         range->min_rts = MIN_RTS_THRESHOLD;
7122         range->max_rts = MAX_RTS_THRESHOLD;
7123         range->min_frag = MIN_FRAG_THRESHOLD;
7124         range->max_frag = MAX_FRAG_THRESHOLD;
7125
7126         range->min_pmp = period_duration[0];    /* Minimal PM period */
7127         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
7128         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
7129         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
7130
7131         /* How to decode max/min PM period */
7132         range->pmp_flags = IW_POWER_PERIOD;
7133         /* How to decode max/min PM period */
7134         range->pmt_flags = IW_POWER_TIMEOUT;
7135         /* What PM options are supported */
7136         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
7137
7138         range->encoding_size[0] = 5;
7139         range->encoding_size[1] = 13;   /* Different token sizes */
7140         range->num_encoding_sizes = 2;  /* Number of entry in the list */
7141         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
7142 //      range->encoding_login_index;            /* token index for login token */
7143
7144         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7145                 range->txpower_capa = IW_TXPOW_DBM;
7146                 range->num_txpower = IW_MAX_TXPOWER;
7147                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
7148                      i < IW_MAX_TXPOWER;
7149                      i++, level -=
7150                      ((IPW_TX_POWER_MAX_DBM -
7151                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
7152                         range->txpower[i] = level / 16;
7153         } else {
7154                 range->txpower_capa = 0;
7155                 range->num_txpower = 0;
7156         }
7157
7158         /* Set the Wireless Extension versions */
7159         range->we_version_compiled = WIRELESS_EXT;
7160         range->we_version_source = 16;
7161
7162 //      range->retry_capa;      /* What retry options are supported */
7163 //      range->retry_flags;     /* How to decode max/min retry limit */
7164 //      range->r_time_flags;    /* How to decode max/min retry life */
7165 //      range->min_retry;       /* Minimal number of retries */
7166 //      range->max_retry;       /* Maximal number of retries */
7167 //      range->min_r_time;      /* Minimal retry lifetime */
7168 //      range->max_r_time;      /* Maximal retry lifetime */
7169
7170         range->num_channels = FREQ_COUNT;
7171
7172         val = 0;
7173         for (i = 0; i < FREQ_COUNT; i++) {
7174                 // TODO: Include only legal frequencies for some countries
7175 //              if (local->channel_mask & (1 << i)) {
7176                 range->freq[val].i = i + 1;
7177                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
7178                 range->freq[val].e = 1;
7179                 val++;
7180 //              }
7181                 if (val == IW_MAX_FREQUENCIES)
7182                         break;
7183         }
7184         range->num_frequency = val;
7185
7186         IPW_DEBUG_WX("GET Range\n");
7187
7188         return 0;
7189 }
7190
7191 static int ipw2100_wx_set_wap(struct net_device *dev,
7192                               struct iw_request_info *info,
7193                               union iwreq_data *wrqu, char *extra)
7194 {
7195         struct ipw2100_priv *priv = ieee80211_priv(dev);
7196         int err = 0;
7197
7198         static const unsigned char any[] = {
7199                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
7200         };
7201         static const unsigned char off[] = {
7202                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7203         };
7204
7205         // sanity checks
7206         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7207                 return -EINVAL;
7208
7209         down(&priv->action_sem);
7210         if (!(priv->status & STATUS_INITIALIZED)) {
7211                 err = -EIO;
7212                 goto done;
7213         }
7214
7215         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7216             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7217                 /* we disable mandatory BSSID association */
7218                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7219                 priv->config &= ~CFG_STATIC_BSSID;
7220                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7221                 goto done;
7222         }
7223
7224         priv->config |= CFG_STATIC_BSSID;
7225         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7226
7227         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7228
7229         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
7230                      wrqu->ap_addr.sa_data[0] & 0xff,
7231                      wrqu->ap_addr.sa_data[1] & 0xff,
7232                      wrqu->ap_addr.sa_data[2] & 0xff,
7233                      wrqu->ap_addr.sa_data[3] & 0xff,
7234                      wrqu->ap_addr.sa_data[4] & 0xff,
7235                      wrqu->ap_addr.sa_data[5] & 0xff);
7236
7237       done:
7238         up(&priv->action_sem);
7239         return err;
7240 }
7241
7242 static int ipw2100_wx_get_wap(struct net_device *dev,
7243                               struct iw_request_info *info,
7244                               union iwreq_data *wrqu, char *extra)
7245 {
7246         /*
7247          * This can be called at any time.  No action lock required
7248          */
7249
7250         struct ipw2100_priv *priv = ieee80211_priv(dev);
7251
7252         /* If we are associated, trying to associate, or have a statically
7253          * configured BSSID then return that; otherwise return ANY */
7254         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7255                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7256                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7257         } else
7258                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7259
7260         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
7261                      MAC_ARG(wrqu->ap_addr.sa_data));
7262         return 0;
7263 }
7264
7265 static int ipw2100_wx_set_essid(struct net_device *dev,
7266                                 struct iw_request_info *info,
7267                                 union iwreq_data *wrqu, char *extra)
7268 {
7269         struct ipw2100_priv *priv = ieee80211_priv(dev);
7270         char *essid = "";       /* ANY */
7271         int length = 0;
7272         int err = 0;
7273
7274         down(&priv->action_sem);
7275         if (!(priv->status & STATUS_INITIALIZED)) {
7276                 err = -EIO;
7277                 goto done;
7278         }
7279
7280         if (wrqu->essid.flags && wrqu->essid.length) {
7281                 length = wrqu->essid.length - 1;
7282                 essid = extra;
7283         }
7284
7285         if (length == 0) {
7286                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7287                 priv->config &= ~CFG_STATIC_ESSID;
7288                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7289                 goto done;
7290         }
7291
7292         length = min(length, IW_ESSID_MAX_SIZE);
7293
7294         priv->config |= CFG_STATIC_ESSID;
7295
7296         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7297                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7298                 err = 0;
7299                 goto done;
7300         }
7301
7302         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7303                      length);
7304
7305         priv->essid_len = length;
7306         memcpy(priv->essid, essid, priv->essid_len);
7307
7308         err = ipw2100_set_essid(priv, essid, length, 0);
7309
7310       done:
7311         up(&priv->action_sem);
7312         return err;
7313 }
7314
7315 static int ipw2100_wx_get_essid(struct net_device *dev,
7316                                 struct iw_request_info *info,
7317                                 union iwreq_data *wrqu, char *extra)
7318 {
7319         /*
7320          * This can be called at any time.  No action lock required
7321          */
7322
7323         struct ipw2100_priv *priv = ieee80211_priv(dev);
7324
7325         /* If we are associated, trying to associate, or have a statically
7326          * configured ESSID then return that; otherwise return ANY */
7327         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7328                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7329                              escape_essid(priv->essid, priv->essid_len));
7330                 memcpy(extra, priv->essid, priv->essid_len);
7331                 wrqu->essid.length = priv->essid_len;
7332                 wrqu->essid.flags = 1;  /* active */
7333         } else {
7334                 IPW_DEBUG_WX("Getting essid: ANY\n");
7335                 wrqu->essid.length = 0;
7336                 wrqu->essid.flags = 0;  /* active */
7337         }
7338
7339         return 0;
7340 }
7341
7342 static int ipw2100_wx_set_nick(struct net_device *dev,
7343                                struct iw_request_info *info,
7344                                union iwreq_data *wrqu, char *extra)
7345 {
7346         /*
7347          * This can be called at any time.  No action lock required
7348          */
7349
7350         struct ipw2100_priv *priv = ieee80211_priv(dev);
7351
7352         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7353                 return -E2BIG;
7354
7355         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7356         memset(priv->nick, 0, sizeof(priv->nick));
7357         memcpy(priv->nick, extra, wrqu->data.length);
7358
7359         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7360
7361         return 0;
7362 }
7363
7364 static int ipw2100_wx_get_nick(struct net_device *dev,
7365                                struct iw_request_info *info,
7366                                union iwreq_data *wrqu, char *extra)
7367 {
7368         /*
7369          * This can be called at any time.  No action lock required
7370          */
7371
7372         struct ipw2100_priv *priv = ieee80211_priv(dev);
7373
7374         wrqu->data.length = strlen(priv->nick) + 1;
7375         memcpy(extra, priv->nick, wrqu->data.length);
7376         wrqu->data.flags = 1;   /* active */
7377
7378         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7379
7380         return 0;
7381 }
7382
7383 static int ipw2100_wx_set_rate(struct net_device *dev,
7384                                struct iw_request_info *info,
7385                                union iwreq_data *wrqu, char *extra)
7386 {
7387         struct ipw2100_priv *priv = ieee80211_priv(dev);
7388         u32 target_rate = wrqu->bitrate.value;
7389         u32 rate;
7390         int err = 0;
7391
7392         down(&priv->action_sem);
7393         if (!(priv->status & STATUS_INITIALIZED)) {
7394                 err = -EIO;
7395                 goto done;
7396         }
7397
7398         rate = 0;
7399
7400         if (target_rate == 1000000 ||
7401             (!wrqu->bitrate.fixed && target_rate > 1000000))
7402                 rate |= TX_RATE_1_MBIT;
7403         if (target_rate == 2000000 ||
7404             (!wrqu->bitrate.fixed && target_rate > 2000000))
7405                 rate |= TX_RATE_2_MBIT;
7406         if (target_rate == 5500000 ||
7407             (!wrqu->bitrate.fixed && target_rate > 5500000))
7408                 rate |= TX_RATE_5_5_MBIT;
7409         if (target_rate == 11000000 ||
7410             (!wrqu->bitrate.fixed && target_rate > 11000000))
7411                 rate |= TX_RATE_11_MBIT;
7412         if (rate == 0)
7413                 rate = DEFAULT_TX_RATES;
7414
7415         err = ipw2100_set_tx_rates(priv, rate, 0);
7416
7417         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7418       done:
7419         up(&priv->action_sem);
7420         return err;
7421 }
7422
7423 static int ipw2100_wx_get_rate(struct net_device *dev,
7424                                struct iw_request_info *info,
7425                                union iwreq_data *wrqu, char *extra)
7426 {
7427         struct ipw2100_priv *priv = ieee80211_priv(dev);
7428         int val;
7429         int len = sizeof(val);
7430         int err = 0;
7431
7432         if (!(priv->status & STATUS_ENABLED) ||
7433             priv->status & STATUS_RF_KILL_MASK ||
7434             !(priv->status & STATUS_ASSOCIATED)) {
7435                 wrqu->bitrate.value = 0;
7436                 return 0;
7437         }
7438
7439         down(&priv->action_sem);
7440         if (!(priv->status & STATUS_INITIALIZED)) {
7441                 err = -EIO;
7442                 goto done;
7443         }
7444
7445         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7446         if (err) {
7447                 IPW_DEBUG_WX("failed querying ordinals.\n");
7448                 return err;
7449         }
7450
7451         switch (val & TX_RATE_MASK) {
7452         case TX_RATE_1_MBIT:
7453                 wrqu->bitrate.value = 1000000;
7454                 break;
7455         case TX_RATE_2_MBIT:
7456                 wrqu->bitrate.value = 2000000;
7457                 break;
7458         case TX_RATE_5_5_MBIT:
7459                 wrqu->bitrate.value = 5500000;
7460                 break;
7461         case TX_RATE_11_MBIT:
7462                 wrqu->bitrate.value = 11000000;
7463                 break;
7464         default:
7465                 wrqu->bitrate.value = 0;
7466         }
7467
7468         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7469
7470       done:
7471         up(&priv->action_sem);
7472         return err;
7473 }
7474
7475 static int ipw2100_wx_set_rts(struct net_device *dev,
7476                               struct iw_request_info *info,
7477                               union iwreq_data *wrqu, char *extra)
7478 {
7479         struct ipw2100_priv *priv = ieee80211_priv(dev);
7480         int value, err;
7481
7482         /* Auto RTS not yet supported */
7483         if (wrqu->rts.fixed == 0)
7484                 return -EINVAL;
7485
7486         down(&priv->action_sem);
7487         if (!(priv->status & STATUS_INITIALIZED)) {
7488                 err = -EIO;
7489                 goto done;
7490         }
7491
7492         if (wrqu->rts.disabled)
7493                 value = priv->rts_threshold | RTS_DISABLED;
7494         else {
7495                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7496                         err = -EINVAL;
7497                         goto done;
7498                 }
7499                 value = wrqu->rts.value;
7500         }
7501
7502         err = ipw2100_set_rts_threshold(priv, value);
7503
7504         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7505       done:
7506         up(&priv->action_sem);
7507         return err;
7508 }
7509
7510 static int ipw2100_wx_get_rts(struct net_device *dev,
7511                               struct iw_request_info *info,
7512                               union iwreq_data *wrqu, char *extra)
7513 {
7514         /*
7515          * This can be called at any time.  No action lock required
7516          */
7517
7518         struct ipw2100_priv *priv = ieee80211_priv(dev);
7519
7520         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7521         wrqu->rts.fixed = 1;    /* no auto select */
7522
7523         /* If RTS is set to the default value, then it is disabled */
7524         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7525
7526         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7527
7528         return 0;
7529 }
7530
7531 static int ipw2100_wx_set_txpow(struct net_device *dev,
7532                                 struct iw_request_info *info,
7533                                 union iwreq_data *wrqu, char *extra)
7534 {
7535         struct ipw2100_priv *priv = ieee80211_priv(dev);
7536         int err = 0, value;
7537
7538         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7539                 return -EINVAL;
7540
7541         if (wrqu->txpower.disabled == 1 || wrqu->txpower.fixed == 0)
7542                 value = IPW_TX_POWER_DEFAULT;
7543         else {
7544                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7545                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7546                         return -EINVAL;
7547
7548                 value = wrqu->txpower.value;
7549         }
7550
7551         down(&priv->action_sem);
7552         if (!(priv->status & STATUS_INITIALIZED)) {
7553                 err = -EIO;
7554                 goto done;
7555         }
7556
7557         err = ipw2100_set_tx_power(priv, value);
7558
7559         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7560
7561       done:
7562         up(&priv->action_sem);
7563         return err;
7564 }
7565
7566 static int ipw2100_wx_get_txpow(struct net_device *dev,
7567                                 struct iw_request_info *info,
7568                                 union iwreq_data *wrqu, char *extra)
7569 {
7570         /*
7571          * This can be called at any time.  No action lock required
7572          */
7573
7574         struct ipw2100_priv *priv = ieee80211_priv(dev);
7575
7576         if (priv->ieee->iw_mode != IW_MODE_ADHOC) {
7577                 wrqu->power.disabled = 1;
7578                 return 0;
7579         }
7580
7581         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7582                 wrqu->power.fixed = 0;
7583                 wrqu->power.value = IPW_TX_POWER_MAX_DBM;
7584                 wrqu->power.disabled = 1;
7585         } else {
7586                 wrqu->power.disabled = 0;
7587                 wrqu->power.fixed = 1;
7588                 wrqu->power.value = priv->tx_power;
7589         }
7590
7591         wrqu->power.flags = IW_TXPOW_DBM;
7592
7593         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->power.value);
7594
7595         return 0;
7596 }
7597
7598 static int ipw2100_wx_set_frag(struct net_device *dev,
7599                                struct iw_request_info *info,
7600                                union iwreq_data *wrqu, char *extra)
7601 {
7602         /*
7603          * This can be called at any time.  No action lock required
7604          */
7605
7606         struct ipw2100_priv *priv = ieee80211_priv(dev);
7607
7608         if (!wrqu->frag.fixed)
7609                 return -EINVAL;
7610
7611         if (wrqu->frag.disabled) {
7612                 priv->frag_threshold |= FRAG_DISABLED;
7613                 priv->ieee->fts = DEFAULT_FTS;
7614         } else {
7615                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7616                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7617                         return -EINVAL;
7618
7619                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7620                 priv->frag_threshold = priv->ieee->fts;
7621         }
7622
7623         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7624
7625         return 0;
7626 }
7627
7628 static int ipw2100_wx_get_frag(struct net_device *dev,
7629                                struct iw_request_info *info,
7630                                union iwreq_data *wrqu, char *extra)
7631 {
7632         /*
7633          * This can be called at any time.  No action lock required
7634          */
7635
7636         struct ipw2100_priv *priv = ieee80211_priv(dev);
7637         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7638         wrqu->frag.fixed = 0;   /* no auto select */
7639         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7640
7641         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7642
7643         return 0;
7644 }
7645
7646 static int ipw2100_wx_set_retry(struct net_device *dev,
7647                                 struct iw_request_info *info,
7648                                 union iwreq_data *wrqu, char *extra)
7649 {
7650         struct ipw2100_priv *priv = ieee80211_priv(dev);
7651         int err = 0;
7652
7653         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7654                 return -EINVAL;
7655
7656         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7657                 return 0;
7658
7659         down(&priv->action_sem);
7660         if (!(priv->status & STATUS_INITIALIZED)) {
7661                 err = -EIO;
7662                 goto done;
7663         }
7664
7665         if (wrqu->retry.flags & IW_RETRY_MIN) {
7666                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7667                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7668                              wrqu->retry.value);
7669                 goto done;
7670         }
7671
7672         if (wrqu->retry.flags & IW_RETRY_MAX) {
7673                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7674                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7675                              wrqu->retry.value);
7676                 goto done;
7677         }
7678
7679         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7680         if (!err)
7681                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7682
7683         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7684
7685       done:
7686         up(&priv->action_sem);
7687         return err;
7688 }
7689
7690 static int ipw2100_wx_get_retry(struct net_device *dev,
7691                                 struct iw_request_info *info,
7692                                 union iwreq_data *wrqu, char *extra)
7693 {
7694         /*
7695          * This can be called at any time.  No action lock required
7696          */
7697
7698         struct ipw2100_priv *priv = ieee80211_priv(dev);
7699
7700         wrqu->retry.disabled = 0;       /* can't be disabled */
7701
7702         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7703                 return -EINVAL;
7704
7705         if (wrqu->retry.flags & IW_RETRY_MAX) {
7706                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7707                 wrqu->retry.value = priv->long_retry_limit;
7708         } else {
7709                 wrqu->retry.flags =
7710                     (priv->short_retry_limit !=
7711                      priv->long_retry_limit) ?
7712                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7713
7714                 wrqu->retry.value = priv->short_retry_limit;
7715         }
7716
7717         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7718
7719         return 0;
7720 }
7721
7722 static int ipw2100_wx_set_scan(struct net_device *dev,
7723                                struct iw_request_info *info,
7724                                union iwreq_data *wrqu, char *extra)
7725 {
7726         struct ipw2100_priv *priv = ieee80211_priv(dev);
7727         int err = 0;
7728
7729         down(&priv->action_sem);
7730         if (!(priv->status & STATUS_INITIALIZED)) {
7731                 err = -EIO;
7732                 goto done;
7733         }
7734
7735         IPW_DEBUG_WX("Initiating scan...\n");
7736         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7737                 IPW_DEBUG_WX("Start scan failed.\n");
7738
7739                 /* TODO: Mark a scan as pending so when hardware initialized
7740                  *       a scan starts */
7741         }
7742
7743       done:
7744         up(&priv->action_sem);
7745         return err;
7746 }
7747
7748 static int ipw2100_wx_get_scan(struct net_device *dev,
7749                                struct iw_request_info *info,
7750                                union iwreq_data *wrqu, char *extra)
7751 {
7752         /*
7753          * This can be called at any time.  No action lock required
7754          */
7755
7756         struct ipw2100_priv *priv = ieee80211_priv(dev);
7757         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7758 }
7759
7760 /*
7761  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7762  */
7763 static int ipw2100_wx_set_encode(struct net_device *dev,
7764                                  struct iw_request_info *info,
7765                                  union iwreq_data *wrqu, char *key)
7766 {
7767         /*
7768          * No check of STATUS_INITIALIZED required
7769          */
7770
7771         struct ipw2100_priv *priv = ieee80211_priv(dev);
7772         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7773 }
7774
7775 static int ipw2100_wx_get_encode(struct net_device *dev,
7776                                  struct iw_request_info *info,
7777                                  union iwreq_data *wrqu, char *key)
7778 {
7779         /*
7780          * This can be called at any time.  No action lock required
7781          */
7782
7783         struct ipw2100_priv *priv = ieee80211_priv(dev);
7784         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7785 }
7786
7787 static int ipw2100_wx_set_power(struct net_device *dev,
7788                                 struct iw_request_info *info,
7789                                 union iwreq_data *wrqu, char *extra)
7790 {
7791         struct ipw2100_priv *priv = ieee80211_priv(dev);
7792         int err = 0;
7793
7794         down(&priv->action_sem);
7795         if (!(priv->status & STATUS_INITIALIZED)) {
7796                 err = -EIO;
7797                 goto done;
7798         }
7799
7800         if (wrqu->power.disabled) {
7801                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7802                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7803                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7804                 goto done;
7805         }
7806
7807         switch (wrqu->power.flags & IW_POWER_MODE) {
7808         case IW_POWER_ON:       /* If not specified */
7809         case IW_POWER_MODE:     /* If set all mask */
7810         case IW_POWER_ALL_R:    /* If explicitely state all */
7811                 break;
7812         default:                /* Otherwise we don't support it */
7813                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7814                              wrqu->power.flags);
7815                 err = -EOPNOTSUPP;
7816                 goto done;
7817         }
7818
7819         /* If the user hasn't specified a power management mode yet, default
7820          * to BATTERY */
7821         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7822         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7823
7824         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7825
7826       done:
7827         up(&priv->action_sem);
7828         return err;
7829
7830 }
7831
7832 static int ipw2100_wx_get_power(struct net_device *dev,
7833                                 struct iw_request_info *info,
7834                                 union iwreq_data *wrqu, char *extra)
7835 {
7836         /*
7837          * This can be called at any time.  No action lock required
7838          */
7839
7840         struct ipw2100_priv *priv = ieee80211_priv(dev);
7841
7842         if (!(priv->power_mode & IPW_POWER_ENABLED))
7843                 wrqu->power.disabled = 1;
7844         else {
7845                 wrqu->power.disabled = 0;
7846                 wrqu->power.flags = 0;
7847         }
7848
7849         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7850
7851         return 0;
7852 }
7853
7854 #if WIRELESS_EXT > 17
7855 /*
7856  * WE-18 WPA support
7857  */
7858
7859 /* SIOCSIWGENIE */
7860 static int ipw2100_wx_set_genie(struct net_device *dev,
7861                                 struct iw_request_info *info,
7862                                 union iwreq_data *wrqu, char *extra)
7863 {
7864
7865         struct ipw2100_priv *priv = ieee80211_priv(dev);
7866         struct ieee80211_device *ieee = priv->ieee;
7867         u8 *buf;
7868
7869         if (!ieee->wpa_enabled)
7870                 return -EOPNOTSUPP;
7871
7872         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7873             (wrqu->data.length && extra == NULL))
7874                 return -EINVAL;
7875
7876         if (wrqu->data.length) {
7877                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7878                 if (buf == NULL)
7879                         return -ENOMEM;
7880
7881                 memcpy(buf, extra, wrqu->data.length);
7882                 kfree(ieee->wpa_ie);
7883                 ieee->wpa_ie = buf;
7884                 ieee->wpa_ie_len = wrqu->data.length;
7885         } else {
7886                 kfree(ieee->wpa_ie);
7887                 ieee->wpa_ie = NULL;
7888                 ieee->wpa_ie_len = 0;
7889         }
7890
7891         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7892
7893         return 0;
7894 }
7895
7896 /* SIOCGIWGENIE */
7897 static int ipw2100_wx_get_genie(struct net_device *dev,
7898                                 struct iw_request_info *info,
7899                                 union iwreq_data *wrqu, char *extra)
7900 {
7901         struct ipw2100_priv *priv = ieee80211_priv(dev);
7902         struct ieee80211_device *ieee = priv->ieee;
7903
7904         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7905                 wrqu->data.length = 0;
7906                 return 0;
7907         }
7908
7909         if (wrqu->data.length < ieee->wpa_ie_len)
7910                 return -E2BIG;
7911
7912         wrqu->data.length = ieee->wpa_ie_len;
7913         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7914
7915         return 0;
7916 }
7917
7918 /* SIOCSIWAUTH */
7919 static int ipw2100_wx_set_auth(struct net_device *dev,
7920                                struct iw_request_info *info,
7921                                union iwreq_data *wrqu, char *extra)
7922 {
7923         struct ipw2100_priv *priv = ieee80211_priv(dev);
7924         struct ieee80211_device *ieee = priv->ieee;
7925         struct iw_param *param = &wrqu->param;
7926         struct ieee80211_crypt_data *crypt;
7927         unsigned long flags;
7928         int ret = 0;
7929
7930         switch (param->flags & IW_AUTH_INDEX) {
7931         case IW_AUTH_WPA_VERSION:
7932         case IW_AUTH_CIPHER_PAIRWISE:
7933         case IW_AUTH_CIPHER_GROUP:
7934         case IW_AUTH_KEY_MGMT:
7935                 /*
7936                  * ipw2200 does not use these parameters
7937                  */
7938                 break;
7939
7940         case IW_AUTH_TKIP_COUNTERMEASURES:
7941                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7942                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
7943                         IPW_DEBUG_WARNING("Can't set TKIP countermeasures: "
7944                                           "crypt not set!\n");
7945                         break;
7946                 }
7947
7948                 flags = crypt->ops->get_flags(crypt->priv);
7949
7950                 if (param->value)
7951                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7952                 else
7953                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7954
7955                 crypt->ops->set_flags(flags, crypt->priv);
7956
7957                 break;
7958
7959         case IW_AUTH_DROP_UNENCRYPTED:{
7960                         /* HACK:
7961                          *
7962                          * wpa_supplicant calls set_wpa_enabled when the driver
7963                          * is loaded and unloaded, regardless of if WPA is being
7964                          * used.  No other calls are made which can be used to
7965                          * determine if encryption will be used or not prior to
7966                          * association being expected.  If encryption is not being
7967                          * used, drop_unencrypted is set to false, else true -- we
7968                          * can use this to determine if the CAP_PRIVACY_ON bit should
7969                          * be set.
7970                          */
7971                         struct ieee80211_security sec = {
7972                                 .flags = SEC_ENABLED,
7973                                 .enabled = param->value,
7974                         };
7975                         priv->ieee->drop_unencrypted = param->value;
7976                         /* We only change SEC_LEVEL for open mode. Others
7977                          * are set by ipw_wpa_set_encryption.
7978                          */
7979                         if (!param->value) {
7980                                 sec.flags |= SEC_LEVEL;
7981                                 sec.level = SEC_LEVEL_0;
7982                         } else {
7983                                 sec.flags |= SEC_LEVEL;
7984                                 sec.level = SEC_LEVEL_1;
7985                         }
7986                         if (priv->ieee->set_security)
7987                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7988                         break;
7989                 }
7990
7991         case IW_AUTH_80211_AUTH_ALG:
7992                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7993                 break;
7994
7995         case IW_AUTH_WPA_ENABLED:
7996                 ret = ipw2100_wpa_enable(priv, param->value);
7997                 break;
7998
7999         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
8000                 ieee->ieee802_1x = param->value;
8001                 break;
8002
8003                 //case IW_AUTH_ROAMING_CONTROL:
8004         case IW_AUTH_PRIVACY_INVOKED:
8005                 ieee->privacy_invoked = param->value;
8006                 break;
8007
8008         default:
8009                 return -EOPNOTSUPP;
8010         }
8011         return ret;
8012 }
8013
8014 /* SIOCGIWAUTH */
8015 static int ipw2100_wx_get_auth(struct net_device *dev,
8016                                struct iw_request_info *info,
8017                                union iwreq_data *wrqu, char *extra)
8018 {
8019         struct ipw2100_priv *priv = ieee80211_priv(dev);
8020         struct ieee80211_device *ieee = priv->ieee;
8021         struct ieee80211_crypt_data *crypt;
8022         struct iw_param *param = &wrqu->param;
8023         int ret = 0;
8024
8025         switch (param->flags & IW_AUTH_INDEX) {
8026         case IW_AUTH_WPA_VERSION:
8027         case IW_AUTH_CIPHER_PAIRWISE:
8028         case IW_AUTH_CIPHER_GROUP:
8029         case IW_AUTH_KEY_MGMT:
8030                 /*
8031                  * wpa_supplicant will control these internally
8032                  */
8033                 ret = -EOPNOTSUPP;
8034                 break;
8035
8036         case IW_AUTH_TKIP_COUNTERMEASURES:
8037                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
8038                 if (!crypt || !crypt->ops->get_flags) {
8039                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
8040                                           "crypt not set!\n");
8041                         break;
8042                 }
8043
8044                 param->value = (crypt->ops->get_flags(crypt->priv) &
8045                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
8046
8047                 break;
8048
8049         case IW_AUTH_DROP_UNENCRYPTED:
8050                 param->value = ieee->drop_unencrypted;
8051                 break;
8052
8053         case IW_AUTH_80211_AUTH_ALG:
8054                 param->value = priv->ieee->sec.auth_mode;
8055                 break;
8056
8057         case IW_AUTH_WPA_ENABLED:
8058                 param->value = ieee->wpa_enabled;
8059                 break;
8060
8061         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
8062                 param->value = ieee->ieee802_1x;
8063                 break;
8064
8065         case IW_AUTH_ROAMING_CONTROL:
8066         case IW_AUTH_PRIVACY_INVOKED:
8067                 param->value = ieee->privacy_invoked;
8068                 break;
8069
8070         default:
8071                 return -EOPNOTSUPP;
8072         }
8073         return 0;
8074 }
8075
8076 /* SIOCSIWENCODEEXT */
8077 static int ipw2100_wx_set_encodeext(struct net_device *dev,
8078                                     struct iw_request_info *info,
8079                                     union iwreq_data *wrqu, char *extra)
8080 {
8081         struct ipw2100_priv *priv = ieee80211_priv(dev);
8082         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
8083 }
8084
8085 /* SIOCGIWENCODEEXT */
8086 static int ipw2100_wx_get_encodeext(struct net_device *dev,
8087                                     struct iw_request_info *info,
8088                                     union iwreq_data *wrqu, char *extra)
8089 {
8090         struct ipw2100_priv *priv = ieee80211_priv(dev);
8091         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
8092 }
8093
8094 /* SIOCSIWMLME */
8095 static int ipw2100_wx_set_mlme(struct net_device *dev,
8096                                struct iw_request_info *info,
8097                                union iwreq_data *wrqu, char *extra)
8098 {
8099         struct ipw2100_priv *priv = ieee80211_priv(dev);
8100         struct iw_mlme *mlme = (struct iw_mlme *)extra;
8101         u16 reason;
8102
8103         reason = cpu_to_le16(mlme->reason_code);
8104
8105         switch (mlme->cmd) {
8106         case IW_MLME_DEAUTH:
8107                 // silently ignore
8108                 break;
8109
8110         case IW_MLME_DISASSOC:
8111                 ipw2100_disassociate_bssid(priv);
8112                 break;
8113
8114         default:
8115                 return -EOPNOTSUPP;
8116         }
8117         return 0;
8118 }
8119 #endif                          /* WIRELESS_EXT > 17 */
8120
8121 /*
8122  *
8123  * IWPRIV handlers
8124  *
8125  */
8126 #ifdef CONFIG_IPW2100_MONITOR
8127 static int ipw2100_wx_set_promisc(struct net_device *dev,
8128                                   struct iw_request_info *info,
8129                                   union iwreq_data *wrqu, char *extra)
8130 {
8131         struct ipw2100_priv *priv = ieee80211_priv(dev);
8132         int *parms = (int *)extra;
8133         int enable = (parms[0] > 0);
8134         int err = 0;
8135
8136         down(&priv->action_sem);
8137         if (!(priv->status & STATUS_INITIALIZED)) {
8138                 err = -EIO;
8139                 goto done;
8140         }
8141
8142         if (enable) {
8143                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8144                         err = ipw2100_set_channel(priv, parms[1], 0);
8145                         goto done;
8146                 }
8147                 priv->channel = parms[1];
8148                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
8149         } else {
8150                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8151                         err = ipw2100_switch_mode(priv, priv->last_mode);
8152         }
8153       done:
8154         up(&priv->action_sem);
8155         return err;
8156 }
8157
8158 static int ipw2100_wx_reset(struct net_device *dev,
8159                             struct iw_request_info *info,
8160                             union iwreq_data *wrqu, char *extra)
8161 {
8162         struct ipw2100_priv *priv = ieee80211_priv(dev);
8163         if (priv->status & STATUS_INITIALIZED)
8164                 schedule_reset(priv);
8165         return 0;
8166 }
8167
8168 #endif
8169
8170 static int ipw2100_wx_set_powermode(struct net_device *dev,
8171                                     struct iw_request_info *info,
8172                                     union iwreq_data *wrqu, char *extra)
8173 {
8174         struct ipw2100_priv *priv = ieee80211_priv(dev);
8175         int err = 0, mode = *(int *)extra;
8176
8177         down(&priv->action_sem);
8178         if (!(priv->status & STATUS_INITIALIZED)) {
8179                 err = -EIO;
8180                 goto done;
8181         }
8182
8183         if ((mode < 1) || (mode > POWER_MODES))
8184                 mode = IPW_POWER_AUTO;
8185
8186         if (priv->power_mode != mode)
8187                 err = ipw2100_set_power_mode(priv, mode);
8188       done:
8189         up(&priv->action_sem);
8190         return err;
8191 }
8192
8193 #define MAX_POWER_STRING 80
8194 static int ipw2100_wx_get_powermode(struct net_device *dev,
8195                                     struct iw_request_info *info,
8196                                     union iwreq_data *wrqu, char *extra)
8197 {
8198         /*
8199          * This can be called at any time.  No action lock required
8200          */
8201
8202         struct ipw2100_priv *priv = ieee80211_priv(dev);
8203         int level = IPW_POWER_LEVEL(priv->power_mode);
8204         s32 timeout, period;
8205
8206         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
8207                 snprintf(extra, MAX_POWER_STRING,
8208                          "Power save level: %d (Off)", level);
8209         } else {
8210                 switch (level) {
8211                 case IPW_POWER_MODE_CAM:
8212                         snprintf(extra, MAX_POWER_STRING,
8213                                  "Power save level: %d (None)", level);
8214                         break;
8215                 case IPW_POWER_AUTO:
8216                         snprintf(extra, MAX_POWER_STRING,
8217                                  "Power save level: %d (Auto)", 0);
8218                         break;
8219                 default:
8220                         timeout = timeout_duration[level - 1] / 1000;
8221                         period = period_duration[level - 1] / 1000;
8222                         snprintf(extra, MAX_POWER_STRING,
8223                                  "Power save level: %d "
8224                                  "(Timeout %dms, Period %dms)",
8225                                  level, timeout, period);
8226                 }
8227         }
8228
8229         wrqu->data.length = strlen(extra) + 1;
8230
8231         return 0;
8232 }
8233
8234 static int ipw2100_wx_set_preamble(struct net_device *dev,
8235                                    struct iw_request_info *info,
8236                                    union iwreq_data *wrqu, char *extra)
8237 {
8238         struct ipw2100_priv *priv = ieee80211_priv(dev);
8239         int err, mode = *(int *)extra;
8240
8241         down(&priv->action_sem);
8242         if (!(priv->status & STATUS_INITIALIZED)) {
8243                 err = -EIO;
8244                 goto done;
8245         }
8246
8247         if (mode == 1)
8248                 priv->config |= CFG_LONG_PREAMBLE;
8249         else if (mode == 0)
8250                 priv->config &= ~CFG_LONG_PREAMBLE;
8251         else {
8252                 err = -EINVAL;
8253                 goto done;
8254         }
8255
8256         err = ipw2100_system_config(priv, 0);
8257
8258       done:
8259         up(&priv->action_sem);
8260         return err;
8261 }
8262
8263 static int ipw2100_wx_get_preamble(struct net_device *dev,
8264                                    struct iw_request_info *info,
8265                                    union iwreq_data *wrqu, char *extra)
8266 {
8267         /*
8268          * This can be called at any time.  No action lock required
8269          */
8270
8271         struct ipw2100_priv *priv = ieee80211_priv(dev);
8272
8273         if (priv->config & CFG_LONG_PREAMBLE)
8274                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8275         else
8276                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8277
8278         return 0;
8279 }
8280
8281 #ifdef CONFIG_IPW2100_MONITOR
8282 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8283                                     struct iw_request_info *info,
8284                                     union iwreq_data *wrqu, char *extra)
8285 {
8286         struct ipw2100_priv *priv = ieee80211_priv(dev);
8287         int err, mode = *(int *)extra;
8288
8289         down(&priv->action_sem);
8290         if (!(priv->status & STATUS_INITIALIZED)) {
8291                 err = -EIO;
8292                 goto done;
8293         }
8294
8295         if (mode == 1)
8296                 priv->config |= CFG_CRC_CHECK;
8297         else if (mode == 0)
8298                 priv->config &= ~CFG_CRC_CHECK;
8299         else {
8300                 err = -EINVAL;
8301                 goto done;
8302         }
8303         err = 0;
8304
8305       done:
8306         up(&priv->action_sem);
8307         return err;
8308 }
8309
8310 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8311                                     struct iw_request_info *info,
8312                                     union iwreq_data *wrqu, char *extra)
8313 {
8314         /*
8315          * This can be called at any time.  No action lock required
8316          */
8317
8318         struct ipw2100_priv *priv = ieee80211_priv(dev);
8319
8320         if (priv->config & CFG_CRC_CHECK)
8321                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8322         else
8323                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8324
8325         return 0;
8326 }
8327 #endif                          /* CONFIG_IPW2100_MONITOR */
8328
8329 static iw_handler ipw2100_wx_handlers[] = {
8330         NULL,                   /* SIOCSIWCOMMIT */
8331         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8332         NULL,                   /* SIOCSIWNWID */
8333         NULL,                   /* SIOCGIWNWID */
8334         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8335         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8336         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8337         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8338         NULL,                   /* SIOCSIWSENS */
8339         NULL,                   /* SIOCGIWSENS */
8340         NULL,                   /* SIOCSIWRANGE */
8341         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8342         NULL,                   /* SIOCSIWPRIV */
8343         NULL,                   /* SIOCGIWPRIV */
8344         NULL,                   /* SIOCSIWSTATS */
8345         NULL,                   /* SIOCGIWSTATS */
8346         NULL,                   /* SIOCSIWSPY */
8347         NULL,                   /* SIOCGIWSPY */
8348         NULL,                   /* SIOCGIWTHRSPY */
8349         NULL,                   /* SIOCWIWTHRSPY */
8350         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8351         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8352 #if WIRELESS_EXT > 17
8353         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8354 #else
8355         NULL,                   /* -- hole -- */
8356 #endif
8357         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8358         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8359         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8360         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8361         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8362         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8363         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8364         NULL,                   /* -- hole -- */
8365         NULL,                   /* -- hole -- */
8366         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8367         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8368         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8369         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8370         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8371         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8372         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8373         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8374         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8375         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8376         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8377         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8378         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8379         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8380 #if WIRELESS_EXT > 17
8381         NULL,                   /* -- hole -- */
8382         NULL,                   /* -- hole -- */
8383         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8384         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8385         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8386         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8387         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8388         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8389         NULL,                   /* SIOCSIWPMKSA */
8390 #endif
8391 };
8392
8393 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8394 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8395 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8396 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8397 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8398 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8399 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8400 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8401
8402 static const struct iw_priv_args ipw2100_private_args[] = {
8403
8404 #ifdef CONFIG_IPW2100_MONITOR
8405         {
8406          IPW2100_PRIV_SET_MONITOR,
8407          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8408         {
8409          IPW2100_PRIV_RESET,
8410          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8411 #endif                          /* CONFIG_IPW2100_MONITOR */
8412
8413         {
8414          IPW2100_PRIV_SET_POWER,
8415          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8416         {
8417          IPW2100_PRIV_GET_POWER,
8418          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8419          "get_power"},
8420         {
8421          IPW2100_PRIV_SET_LONGPREAMBLE,
8422          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8423         {
8424          IPW2100_PRIV_GET_LONGPREAMBLE,
8425          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8426 #ifdef CONFIG_IPW2100_MONITOR
8427         {
8428          IPW2100_PRIV_SET_CRC_CHECK,
8429          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8430         {
8431          IPW2100_PRIV_GET_CRC_CHECK,
8432          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8433 #endif                          /* CONFIG_IPW2100_MONITOR */
8434 };
8435
8436 static iw_handler ipw2100_private_handler[] = {
8437 #ifdef CONFIG_IPW2100_MONITOR
8438         ipw2100_wx_set_promisc,
8439         ipw2100_wx_reset,
8440 #else                           /* CONFIG_IPW2100_MONITOR */
8441         NULL,
8442         NULL,
8443 #endif                          /* CONFIG_IPW2100_MONITOR */
8444         ipw2100_wx_set_powermode,
8445         ipw2100_wx_get_powermode,
8446         ipw2100_wx_set_preamble,
8447         ipw2100_wx_get_preamble,
8448 #ifdef CONFIG_IPW2100_MONITOR
8449         ipw2100_wx_set_crc_check,
8450         ipw2100_wx_get_crc_check,
8451 #else                           /* CONFIG_IPW2100_MONITOR */
8452         NULL,
8453         NULL,
8454 #endif                          /* CONFIG_IPW2100_MONITOR */
8455 };
8456
8457 static struct iw_handler_def ipw2100_wx_handler_def = {
8458         .standard = ipw2100_wx_handlers,
8459         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8460         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8461         .num_private_args = sizeof(ipw2100_private_args) /
8462             sizeof(struct iw_priv_args),
8463         .private = (iw_handler *) ipw2100_private_handler,
8464         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8465 };
8466
8467 /*
8468  * Get wireless statistics.
8469  * Called by /proc/net/wireless
8470  * Also called by SIOCGIWSTATS
8471  */
8472 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8473 {
8474         enum {
8475                 POOR = 30,
8476                 FAIR = 60,
8477                 GOOD = 80,
8478                 VERY_GOOD = 90,
8479                 EXCELLENT = 95,
8480                 PERFECT = 100
8481         };
8482         int rssi_qual;
8483         int tx_qual;
8484         int beacon_qual;
8485
8486         struct ipw2100_priv *priv = ieee80211_priv(dev);
8487         struct iw_statistics *wstats;
8488         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8489         u32 ord_len = sizeof(u32);
8490
8491         if (!priv)
8492                 return (struct iw_statistics *)NULL;
8493
8494         wstats = &priv->wstats;
8495
8496         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8497          * ipw2100_wx_wireless_stats seems to be called before fw is
8498          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8499          * and associated; if not associcated, the values are all meaningless
8500          * anyway, so set them all to NULL and INVALID */
8501         if (!(priv->status & STATUS_ASSOCIATED)) {
8502                 wstats->miss.beacon = 0;
8503                 wstats->discard.retries = 0;
8504                 wstats->qual.qual = 0;
8505                 wstats->qual.level = 0;
8506                 wstats->qual.noise = 0;
8507                 wstats->qual.updated = 7;
8508                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8509                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8510                 return wstats;
8511         }
8512
8513         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8514                                 &missed_beacons, &ord_len))
8515                 goto fail_get_ordinal;
8516
8517         /* If we don't have a connection the quality and level is 0 */
8518         if (!(priv->status & STATUS_ASSOCIATED)) {
8519                 wstats->qual.qual = 0;
8520                 wstats->qual.level = 0;
8521         } else {
8522                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8523                                         &rssi, &ord_len))
8524                         goto fail_get_ordinal;
8525                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8526                 if (rssi < 10)
8527                         rssi_qual = rssi * POOR / 10;
8528                 else if (rssi < 15)
8529                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8530                 else if (rssi < 20)
8531                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8532                 else if (rssi < 30)
8533                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8534                             10 + GOOD;
8535                 else
8536                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8537                             10 + VERY_GOOD;
8538
8539                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8540                                         &tx_retries, &ord_len))
8541                         goto fail_get_ordinal;
8542
8543                 if (tx_retries > 75)
8544                         tx_qual = (90 - tx_retries) * POOR / 15;
8545                 else if (tx_retries > 70)
8546                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8547                 else if (tx_retries > 65)
8548                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8549                 else if (tx_retries > 50)
8550                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8551                             15 + GOOD;
8552                 else
8553                         tx_qual = (50 - tx_retries) *
8554                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8555
8556                 if (missed_beacons > 50)
8557                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8558                 else if (missed_beacons > 40)
8559                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8560                             10 + POOR;
8561                 else if (missed_beacons > 32)
8562                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8563                             18 + FAIR;
8564                 else if (missed_beacons > 20)
8565                         beacon_qual = (32 - missed_beacons) *
8566                             (VERY_GOOD - GOOD) / 20 + GOOD;
8567                 else
8568                         beacon_qual = (20 - missed_beacons) *
8569                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8570
8571                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8572
8573 #ifdef CONFIG_IPW_DEBUG
8574                 if (beacon_qual == quality)
8575                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8576                 else if (tx_qual == quality)
8577                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8578                 else if (quality != 100)
8579                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8580                 else
8581                         IPW_DEBUG_WX("Quality not clamped.\n");
8582 #endif
8583
8584                 wstats->qual.qual = quality;
8585                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8586         }
8587
8588         wstats->qual.noise = 0;
8589         wstats->qual.updated = 7;
8590         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8591
8592         /* FIXME: this is percent and not a # */
8593         wstats->miss.beacon = missed_beacons;
8594
8595         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8596                                 &tx_failures, &ord_len))
8597                 goto fail_get_ordinal;
8598         wstats->discard.retries = tx_failures;
8599
8600         return wstats;
8601
8602       fail_get_ordinal:
8603         IPW_DEBUG_WX("failed querying ordinals.\n");
8604
8605         return (struct iw_statistics *)NULL;
8606 }
8607
8608 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8609 {
8610         union iwreq_data wrqu;
8611         int len = ETH_ALEN;
8612
8613         if (priv->status & STATUS_STOPPING)
8614                 return;
8615
8616         down(&priv->action_sem);
8617
8618         IPW_DEBUG_WX("enter\n");
8619
8620         up(&priv->action_sem);
8621
8622         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8623
8624         /* Fetch BSSID from the hardware */
8625         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8626             priv->status & STATUS_RF_KILL_MASK ||
8627             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8628                                 &priv->bssid, &len)) {
8629                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8630         } else {
8631                 /* We now have the BSSID, so can finish setting to the full
8632                  * associated state */
8633                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8634                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8635                 priv->status &= ~STATUS_ASSOCIATING;
8636                 priv->status |= STATUS_ASSOCIATED;
8637                 netif_carrier_on(priv->net_dev);
8638                 netif_wake_queue(priv->net_dev);
8639         }
8640
8641         if (!(priv->status & STATUS_ASSOCIATED)) {
8642                 IPW_DEBUG_WX("Configuring ESSID\n");
8643                 down(&priv->action_sem);
8644                 /* This is a disassociation event, so kick the firmware to
8645                  * look for another AP */
8646                 if (priv->config & CFG_STATIC_ESSID)
8647                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8648                                           0);
8649                 else
8650                         ipw2100_set_essid(priv, NULL, 0, 0);
8651                 up(&priv->action_sem);
8652         }
8653
8654         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8655 }
8656
8657 #define IPW2100_FW_MAJOR_VERSION 1
8658 #define IPW2100_FW_MINOR_VERSION 3
8659
8660 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8661 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8662
8663 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8664                              IPW2100_FW_MAJOR_VERSION)
8665
8666 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8667 "." __stringify(IPW2100_FW_MINOR_VERSION)
8668
8669 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8670
8671 /*
8672
8673 BINARY FIRMWARE HEADER FORMAT
8674
8675 offset      length   desc
8676 0           2        version
8677 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8678 4           4        fw_len
8679 8           4        uc_len
8680 C           fw_len   firmware data
8681 12 + fw_len uc_len   microcode data
8682
8683 */
8684
8685 struct ipw2100_fw_header {
8686         short version;
8687         short mode;
8688         unsigned int fw_size;
8689         unsigned int uc_size;
8690 } __attribute__ ((packed));
8691
8692 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8693 {
8694         struct ipw2100_fw_header *h =
8695             (struct ipw2100_fw_header *)fw->fw_entry->data;
8696
8697         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8698                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8699                        "(detected version id of %u). "
8700                        "See Documentation/networking/README.ipw2100\n",
8701                        h->version);
8702                 return 1;
8703         }
8704
8705         fw->version = h->version;
8706         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8707         fw->fw.size = h->fw_size;
8708         fw->uc.data = fw->fw.data + h->fw_size;
8709         fw->uc.size = h->uc_size;
8710
8711         return 0;
8712 }
8713
8714 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8715                                 struct ipw2100_fw *fw)
8716 {
8717         char *fw_name;
8718         int rc;
8719
8720         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8721                        priv->net_dev->name);
8722
8723         switch (priv->ieee->iw_mode) {
8724         case IW_MODE_ADHOC:
8725                 fw_name = IPW2100_FW_NAME("-i");
8726                 break;
8727 #ifdef CONFIG_IPW2100_MONITOR
8728         case IW_MODE_MONITOR:
8729                 fw_name = IPW2100_FW_NAME("-p");
8730                 break;
8731 #endif
8732         case IW_MODE_INFRA:
8733         default:
8734                 fw_name = IPW2100_FW_NAME("");
8735                 break;
8736         }
8737
8738         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8739
8740         if (rc < 0) {
8741                 printk(KERN_ERR DRV_NAME ": "
8742                        "%s: Firmware '%s' not available or load failed.\n",
8743                        priv->net_dev->name, fw_name);
8744                 return rc;
8745         }
8746         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8747                        fw->fw_entry->size);
8748
8749         ipw2100_mod_firmware_load(fw);
8750
8751         return 0;
8752 }
8753
8754 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8755                                      struct ipw2100_fw *fw)
8756 {
8757         fw->version = 0;
8758         if (fw->fw_entry)
8759                 release_firmware(fw->fw_entry);
8760         fw->fw_entry = NULL;
8761 }
8762
8763 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8764                                  size_t max)
8765 {
8766         char ver[MAX_FW_VERSION_LEN];
8767         u32 len = MAX_FW_VERSION_LEN;
8768         u32 tmp;
8769         int i;
8770         /* firmware version is an ascii string (max len of 14) */
8771         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8772                 return -EIO;
8773         tmp = max;
8774         if (len >= max)
8775                 len = max - 1;
8776         for (i = 0; i < len; i++)
8777                 buf[i] = ver[i];
8778         buf[i] = '\0';
8779         return tmp;
8780 }
8781
8782 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8783                                     size_t max)
8784 {
8785         u32 ver;
8786         u32 len = sizeof(ver);
8787         /* microcode version is a 32 bit integer */
8788         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8789                 return -EIO;
8790         return snprintf(buf, max, "%08X", ver);
8791 }
8792
8793 /*
8794  * On exit, the firmware will have been freed from the fw list
8795  */
8796 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8797 {
8798         /* firmware is constructed of N contiguous entries, each entry is
8799          * structured as:
8800          *
8801          * offset    sie         desc
8802          * 0         4           address to write to
8803          * 4         2           length of data run
8804          * 6         length      data
8805          */
8806         unsigned int addr;
8807         unsigned short len;
8808
8809         const unsigned char *firmware_data = fw->fw.data;
8810         unsigned int firmware_data_left = fw->fw.size;
8811
8812         while (firmware_data_left > 0) {
8813                 addr = *(u32 *) (firmware_data);
8814                 firmware_data += 4;
8815                 firmware_data_left -= 4;
8816
8817                 len = *(u16 *) (firmware_data);
8818                 firmware_data += 2;
8819                 firmware_data_left -= 2;
8820
8821                 if (len > 32) {
8822                         printk(KERN_ERR DRV_NAME ": "
8823                                "Invalid firmware run-length of %d bytes\n",
8824                                len);
8825                         return -EINVAL;
8826                 }
8827
8828                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8829                 firmware_data += len;
8830                 firmware_data_left -= len;
8831         }
8832
8833         return 0;
8834 }
8835
8836 struct symbol_alive_response {
8837         u8 cmd_id;
8838         u8 seq_num;
8839         u8 ucode_rev;
8840         u8 eeprom_valid;
8841         u16 valid_flags;
8842         u8 IEEE_addr[6];
8843         u16 flags;
8844         u16 pcb_rev;
8845         u16 clock_settle_time;  // 1us LSB
8846         u16 powerup_settle_time;        // 1us LSB
8847         u16 hop_settle_time;    // 1us LSB
8848         u8 date[3];             // month, day, year
8849         u8 time[2];             // hours, minutes
8850         u8 ucode_valid;
8851 };
8852
8853 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8854                                   struct ipw2100_fw *fw)
8855 {
8856         struct net_device *dev = priv->net_dev;
8857         const unsigned char *microcode_data = fw->uc.data;
8858         unsigned int microcode_data_left = fw->uc.size;
8859         void __iomem *reg = (void __iomem *)dev->base_addr;
8860
8861         struct symbol_alive_response response;
8862         int i, j;
8863         u8 data;
8864
8865         /* Symbol control */
8866         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8867         readl(reg);
8868         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8869         readl(reg);
8870
8871         /* HW config */
8872         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8873         readl(reg);
8874         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8875         readl(reg);
8876
8877         /* EN_CS_ACCESS bit to reset control store pointer */
8878         write_nic_byte(dev, 0x210000, 0x40);
8879         readl(reg);
8880         write_nic_byte(dev, 0x210000, 0x0);
8881         readl(reg);
8882         write_nic_byte(dev, 0x210000, 0x40);
8883         readl(reg);
8884
8885         /* copy microcode from buffer into Symbol */
8886
8887         while (microcode_data_left > 0) {
8888                 write_nic_byte(dev, 0x210010, *microcode_data++);
8889                 write_nic_byte(dev, 0x210010, *microcode_data++);
8890                 microcode_data_left -= 2;
8891         }
8892
8893         /* EN_CS_ACCESS bit to reset the control store pointer */
8894         write_nic_byte(dev, 0x210000, 0x0);
8895         readl(reg);
8896
8897         /* Enable System (Reg 0)
8898          * first enable causes garbage in RX FIFO */
8899         write_nic_byte(dev, 0x210000, 0x0);
8900         readl(reg);
8901         write_nic_byte(dev, 0x210000, 0x80);
8902         readl(reg);
8903
8904         /* Reset External Baseband Reg */
8905         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8906         readl(reg);
8907         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8908         readl(reg);
8909
8910         /* HW Config (Reg 5) */
8911         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8912         readl(reg);
8913         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8914         readl(reg);
8915
8916         /* Enable System (Reg 0)
8917          * second enable should be OK */
8918         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8919         readl(reg);
8920         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8921
8922         /* check Symbol is enabled - upped this from 5 as it wasn't always
8923          * catching the update */
8924         for (i = 0; i < 10; i++) {
8925                 udelay(10);
8926
8927                 /* check Dino is enabled bit */
8928                 read_nic_byte(dev, 0x210000, &data);
8929                 if (data & 0x1)
8930                         break;
8931         }
8932
8933         if (i == 10) {
8934                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8935                        dev->name);
8936                 return -EIO;
8937         }
8938
8939         /* Get Symbol alive response */
8940         for (i = 0; i < 30; i++) {
8941                 /* Read alive response structure */
8942                 for (j = 0;
8943                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8944                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8945
8946                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8947                         break;
8948                 udelay(10);
8949         }
8950
8951         if (i == 30) {
8952                 printk(KERN_ERR DRV_NAME
8953                        ": %s: No response from Symbol - hw not alive\n",
8954                        dev->name);
8955                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8956                 return -EIO;
8957         }
8958
8959         return 0;
8960 }