1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_82574] = &e1000_82574_info,
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
62 [board_ich10lan] = &e1000_ich10_info,
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
70 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
72 return hw->adapter->netdev->name;
77 * e1000_desc_unused - calculate if we have unused descriptors
79 static int e1000_desc_unused(struct e1000_ring *ring)
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
88 * e1000_receive_skb - helper function to handle Rx indications
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
94 static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
97 u8 status, __le16 vlan)
99 skb->protocol = eth_type_trans(skb, netdev);
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
105 netif_receive_skb(skb);
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208 if (i == rx_ring->count)
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
264 ps_page->dma = pci_map_page(pdev,
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288 adapter->alloc_rx_buff_failed++;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315 if (i == rx_ring->count)
317 buffer_info = &rx_ring->buffer_info[i];
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb, NET_IP_ALIGN);
387 buffer_info->skb = skb;
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407 if (unlikely(++i == rx_ring->count))
409 buffer_info = &rx_ring->buffer_info[i];
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
443 int cleaned_count = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
455 if (*work_done >= work_to_do)
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
463 prefetch(skb->data - NET_IP_ALIGN);
466 if (i == rx_ring->count)
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
471 next_buffer = &rx_ring->buffer_info[i];
475 pci_unmap_single(pdev,
477 adapter->rx_buffer_len,
479 buffer_info->dma = 0;
481 length = le16_to_cpu(rx_desc->length);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 buffer_info->skb = skb;
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 buffer_info->skb = skb;
500 total_rx_bytes += length;
504 * code added for copybreak, this should improve
505 * performance for small packets with large amounts
506 * of reassembly being done in the stack
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 skb_copy_to_linear_data_offset(new_skb,
519 /* save the skb in buffer_info as good */
520 buffer_info->skb = skb;
523 /* else just continue with the old one */
525 /* end copybreak code */
526 skb_put(skb, length);
528 /* Receive Checksum Offload */
529 e1000_rx_checksum(adapter,
531 ((u32)(rx_desc->errors) << 24),
532 le16_to_cpu(rx_desc->csum), skb);
534 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
539 /* return some buffers to hardware, one at a time is too slow */
540 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
541 adapter->alloc_rx_buf(adapter, cleaned_count);
545 /* use prefetched values */
547 buffer_info = next_buffer;
549 rx_ring->next_to_clean = i;
551 cleaned_count = e1000_desc_unused(rx_ring);
553 adapter->alloc_rx_buf(adapter, cleaned_count);
555 adapter->total_rx_bytes += total_rx_bytes;
556 adapter->total_rx_packets += total_rx_packets;
557 adapter->net_stats.rx_bytes += total_rx_bytes;
558 adapter->net_stats.rx_packets += total_rx_packets;
562 static void e1000_put_txbuf(struct e1000_adapter *adapter,
563 struct e1000_buffer *buffer_info)
565 if (buffer_info->dma) {
566 pci_unmap_page(adapter->pdev, buffer_info->dma,
567 buffer_info->length, PCI_DMA_TODEVICE);
568 buffer_info->dma = 0;
570 if (buffer_info->skb) {
571 dev_kfree_skb_any(buffer_info->skb);
572 buffer_info->skb = NULL;
576 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
578 struct e1000_ring *tx_ring = adapter->tx_ring;
579 unsigned int i = tx_ring->next_to_clean;
580 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
581 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
583 /* detected Tx unit hang */
584 e_err("Detected Tx Unit Hang:\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter->hw.hw_addr + tx_ring->head),
595 readl(adapter->hw.hw_addr + tx_ring->tail),
596 tx_ring->next_to_use,
597 tx_ring->next_to_clean,
598 tx_ring->buffer_info[eop].time_stamp,
601 eop_desc->upper.fields.status);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
613 struct net_device *netdev = adapter->netdev;
614 struct e1000_hw *hw = &adapter->hw;
615 struct e1000_ring *tx_ring = adapter->tx_ring;
616 struct e1000_tx_desc *tx_desc, *eop_desc;
617 struct e1000_buffer *buffer_info;
619 unsigned int count = 0;
621 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
623 i = tx_ring->next_to_clean;
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
628 for (cleaned = 0; !cleaned; ) {
629 tx_desc = E1000_TX_DESC(*tx_ring, i);
630 buffer_info = &tx_ring->buffer_info[i];
631 cleaned = (i == eop);
634 struct sk_buff *skb = buffer_info->skb;
635 unsigned int segs, bytecount;
636 segs = skb_shinfo(skb)->gso_segs ?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount = ((segs - 1) * skb_headlen(skb)) +
640 total_tx_packets += segs;
641 total_tx_bytes += bytecount;
644 e1000_put_txbuf(adapter, buffer_info);
645 tx_desc->upper.data = 0;
648 if (i == tx_ring->count)
652 eop = tx_ring->buffer_info[i].next_to_watch;
653 eop_desc = E1000_TX_DESC(*tx_ring, eop);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count++ == E1000_TX_WEIGHT)
660 tx_ring->next_to_clean = i;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned && netif_carrier_ok(netdev) &&
664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
670 if (netif_queue_stopped(netdev) &&
671 !(test_bit(__E1000_DOWN, &adapter->state))) {
672 netif_wake_queue(netdev);
673 ++adapter->restart_queue;
677 if (adapter->detect_tx_hung) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter->detect_tx_hung = 0;
683 if (tx_ring->buffer_info[eop].dma &&
684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
685 + (adapter->tx_timeout_factor * HZ))
686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
687 e1000_print_tx_hang(adapter);
688 netif_stop_queue(netdev);
691 adapter->total_tx_bytes += total_tx_bytes;
692 adapter->total_tx_packets += total_tx_packets;
693 adapter->net_stats.tx_bytes += total_tx_bytes;
694 adapter->net_stats.tx_packets += total_tx_packets;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
706 int *work_done, int work_to_do)
708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 struct e1000_ring *rx_ring = adapter->rx_ring;
712 struct e1000_buffer *buffer_info, *next_buffer;
713 struct e1000_ps_page *ps_page;
717 int cleaned_count = 0;
719 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721 i = rx_ring->next_to_clean;
722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
724 buffer_info = &rx_ring->buffer_info[i];
726 while (staterr & E1000_RXD_STAT_DD) {
727 if (*work_done >= work_to_do)
730 skb = buffer_info->skb;
732 /* in the packet split case this is header only */
733 prefetch(skb->data - NET_IP_ALIGN);
736 if (i == rx_ring->count)
738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
741 next_buffer = &rx_ring->buffer_info[i];
745 pci_unmap_single(pdev, buffer_info->dma,
746 adapter->rx_ps_bsize0,
748 buffer_info->dma = 0;
750 if (!(staterr & E1000_RXD_STAT_EOP)) {
751 e_dbg("%s: Packet Split buffers didn't pick up the "
752 "full packet\n", netdev->name);
753 dev_kfree_skb_irq(skb);
757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
758 dev_kfree_skb_irq(skb);
762 length = le16_to_cpu(rx_desc->wb.middle.length0);
765 e_dbg("%s: Last part of the packet spanning multiple "
766 "descriptors\n", netdev->name);
767 dev_kfree_skb_irq(skb);
772 skb_put(skb, length);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1 && (l1 <= copybreak) &&
787 ((length + l1) <= adapter->rx_ps_bsize0)) {
790 ps_page = &buffer_info->ps_pages[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
798 PAGE_SIZE, PCI_DMA_FROMDEVICE);
799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
800 memcpy(skb_tail_pointer(skb), vaddr, l1);
801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
802 pci_dma_sync_single_for_device(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
810 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
811 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
815 ps_page = &buffer_info->ps_pages[j];
816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
819 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
820 ps_page->page = NULL;
822 skb->data_len += length;
823 skb->truesize += length;
827 total_rx_bytes += skb->len;
830 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833 if (rx_desc->wb.upper.header_status &
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
835 adapter->rx_hdr_split++;
837 e1000_receive_skb(adapter, netdev, skb,
838 staterr, rx_desc->wb.middle.vlan);
841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
842 buffer_info->skb = NULL;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
846 adapter->alloc_rx_buf(adapter, cleaned_count);
850 /* use prefetched values */
852 buffer_info = next_buffer;
854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856 rx_ring->next_to_clean = i;
858 cleaned_count = e1000_desc_unused(rx_ring);
860 adapter->alloc_rx_buf(adapter, cleaned_count);
862 adapter->total_rx_bytes += total_rx_bytes;
863 adapter->total_rx_packets += total_rx_packets;
864 adapter->net_stats.rx_bytes += total_rx_bytes;
865 adapter->net_stats.rx_packets += total_rx_packets;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
877 skb->data_len += length;
878 skb->truesize += length;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
911 if (*work_done >= work_to_do)
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
920 if (i == rx_ring->count)
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
925 next_buffer = &rx_ring->buffer_info[i];
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
931 buffer_info->dma = 0;
933 length = le16_to_cpu(rx_desc->length);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
952 /* this is the beginning of a chain */
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
964 e1000_consume_page(buffer_info, rxtop, length);
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
974 buffer_info->skb = skb;
977 e1000_consume_page(buffer_info, skb, length);
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
997 e1000_consume_page(buffer_info, skb,
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 e_err("pskb_may_pull failed.\n");
1020 e1000_receive_skb(adapter, netdev, skb, status,
1024 rx_desc->status = 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1032 /* use prefetched values */
1034 buffer_info = next_buffer;
1036 rx_ring->next_to_clean = i;
1038 cleaned_count = e1000_desc_unused(rx_ring);
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 struct e1000_ring *rx_ring = adapter->rx_ring;
1056 struct e1000_buffer *buffer_info;
1057 struct e1000_ps_page *ps_page;
1058 struct pci_dev *pdev = adapter->pdev;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i = 0; i < rx_ring->count; i++) {
1063 buffer_info = &rx_ring->buffer_info[i];
1064 if (buffer_info->dma) {
1065 if (adapter->clean_rx == e1000_clean_rx_irq)
1066 pci_unmap_single(pdev, buffer_info->dma,
1067 adapter->rx_buffer_len,
1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1072 PCI_DMA_FROMDEVICE);
1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1074 pci_unmap_single(pdev, buffer_info->dma,
1075 adapter->rx_ps_bsize0,
1076 PCI_DMA_FROMDEVICE);
1077 buffer_info->dma = 0;
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1085 if (buffer_info->skb) {
1086 dev_kfree_skb(buffer_info->skb);
1087 buffer_info->skb = NULL;
1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1091 ps_page = &buffer_info->ps_pages[j];
1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1097 put_page(ps_page->page);
1098 ps_page->page = NULL;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring->rx_skb_top) {
1104 dev_kfree_skb(rx_ring->rx_skb_top);
1105 rx_ring->rx_skb_top = NULL;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring->desc, 0, rx_ring->size);
1111 rx_ring->next_to_clean = 0;
1112 rx_ring->next_to_use = 0;
1114 writel(0, adapter->hw.hw_addr + rx_ring->head);
1115 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1118 static void e1000e_downshift_workaround(struct work_struct *work)
1120 struct e1000_adapter *adapter = container_of(work,
1121 struct e1000_adapter, downshift_task);
1123 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1127 * e1000_intr_msi - Interrupt Handler
1128 * @irq: interrupt number
1129 * @data: pointer to a network interface device structure
1131 static irqreturn_t e1000_intr_msi(int irq, void *data)
1133 struct net_device *netdev = data;
1134 struct e1000_adapter *adapter = netdev_priv(netdev);
1135 struct e1000_hw *hw = &adapter->hw;
1136 u32 icr = er32(ICR);
1139 * read ICR disables interrupts using IAM
1142 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1143 hw->mac.get_link_status = 1;
1145 * ICH8 workaround-- Call gig speed drop workaround on cable
1146 * disconnect (LSC) before accessing any PHY registers
1148 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1149 (!(er32(STATUS) & E1000_STATUS_LU)))
1150 schedule_work(&adapter->downshift_task);
1153 * 80003ES2LAN workaround-- For packet buffer work-around on
1154 * link down event; disable receives here in the ISR and reset
1155 * adapter in watchdog
1157 if (netif_carrier_ok(netdev) &&
1158 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1159 /* disable receives */
1160 u32 rctl = er32(RCTL);
1161 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1162 adapter->flags |= FLAG_RX_RESTART_NOW;
1164 /* guard against interrupt when we're going down */
1165 if (!test_bit(__E1000_DOWN, &adapter->state))
1166 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1169 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1170 adapter->total_tx_bytes = 0;
1171 adapter->total_tx_packets = 0;
1172 adapter->total_rx_bytes = 0;
1173 adapter->total_rx_packets = 0;
1174 __netif_rx_schedule(netdev, &adapter->napi);
1181 * e1000_intr - Interrupt Handler
1182 * @irq: interrupt number
1183 * @data: pointer to a network interface device structure
1185 static irqreturn_t e1000_intr(int irq, void *data)
1187 struct net_device *netdev = data;
1188 struct e1000_adapter *adapter = netdev_priv(netdev);
1189 struct e1000_hw *hw = &adapter->hw;
1190 u32 rctl, icr = er32(ICR);
1193 return IRQ_NONE; /* Not our interrupt */
1196 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1197 * not set, then the adapter didn't send an interrupt
1199 if (!(icr & E1000_ICR_INT_ASSERTED))
1203 * Interrupt Auto-Mask...upon reading ICR,
1204 * interrupts are masked. No need for the
1208 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1209 hw->mac.get_link_status = 1;
1211 * ICH8 workaround-- Call gig speed drop workaround on cable
1212 * disconnect (LSC) before accessing any PHY registers
1214 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1215 (!(er32(STATUS) & E1000_STATUS_LU)))
1216 schedule_work(&adapter->downshift_task);
1219 * 80003ES2LAN workaround--
1220 * For packet buffer work-around on link down event;
1221 * disable receives here in the ISR and
1222 * reset adapter in watchdog
1224 if (netif_carrier_ok(netdev) &&
1225 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1226 /* disable receives */
1228 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1229 adapter->flags |= FLAG_RX_RESTART_NOW;
1231 /* guard against interrupt when we're going down */
1232 if (!test_bit(__E1000_DOWN, &adapter->state))
1233 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1236 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1237 adapter->total_tx_bytes = 0;
1238 adapter->total_tx_packets = 0;
1239 adapter->total_rx_bytes = 0;
1240 adapter->total_rx_packets = 0;
1241 __netif_rx_schedule(netdev, &adapter->napi);
1247 static irqreturn_t e1000_msix_other(int irq, void *data)
1249 struct net_device *netdev = data;
1250 struct e1000_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252 u32 icr = er32(ICR);
1254 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1255 ew32(IMS, E1000_IMS_OTHER);
1259 if (icr & adapter->eiac_mask)
1260 ew32(ICS, (icr & adapter->eiac_mask));
1262 if (icr & E1000_ICR_OTHER) {
1263 if (!(icr & E1000_ICR_LSC))
1264 goto no_link_interrupt;
1265 hw->mac.get_link_status = 1;
1266 /* guard against interrupt when we're going down */
1267 if (!test_bit(__E1000_DOWN, &adapter->state))
1268 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1272 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1278 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1280 struct net_device *netdev = data;
1281 struct e1000_adapter *adapter = netdev_priv(netdev);
1282 struct e1000_hw *hw = &adapter->hw;
1283 struct e1000_ring *tx_ring = adapter->tx_ring;
1286 adapter->total_tx_bytes = 0;
1287 adapter->total_tx_packets = 0;
1289 if (!e1000_clean_tx_irq(adapter))
1290 /* Ring was not completely cleaned, so fire another interrupt */
1291 ew32(ICS, tx_ring->ims_val);
1296 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1298 struct net_device *netdev = data;
1299 struct e1000_adapter *adapter = netdev_priv(netdev);
1301 /* Write the ITR value calculated at the end of the
1302 * previous interrupt.
1304 if (adapter->rx_ring->set_itr) {
1305 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1306 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1307 adapter->rx_ring->set_itr = 0;
1310 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1311 adapter->total_rx_bytes = 0;
1312 adapter->total_rx_packets = 0;
1313 __netif_rx_schedule(netdev, &adapter->napi);
1319 * e1000_configure_msix - Configure MSI-X hardware
1321 * e1000_configure_msix sets up the hardware to properly
1322 * generate MSI-X interrupts.
1324 static void e1000_configure_msix(struct e1000_adapter *adapter)
1326 struct e1000_hw *hw = &adapter->hw;
1327 struct e1000_ring *rx_ring = adapter->rx_ring;
1328 struct e1000_ring *tx_ring = adapter->tx_ring;
1330 u32 ctrl_ext, ivar = 0;
1332 adapter->eiac_mask = 0;
1334 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1335 if (hw->mac.type == e1000_82574) {
1336 u32 rfctl = er32(RFCTL);
1337 rfctl |= E1000_RFCTL_ACK_DIS;
1341 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1342 /* Configure Rx vector */
1343 rx_ring->ims_val = E1000_IMS_RXQ0;
1344 adapter->eiac_mask |= rx_ring->ims_val;
1345 if (rx_ring->itr_val)
1346 writel(1000000000 / (rx_ring->itr_val * 256),
1347 hw->hw_addr + rx_ring->itr_register);
1349 writel(1, hw->hw_addr + rx_ring->itr_register);
1350 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1352 /* Configure Tx vector */
1353 tx_ring->ims_val = E1000_IMS_TXQ0;
1355 if (tx_ring->itr_val)
1356 writel(1000000000 / (tx_ring->itr_val * 256),
1357 hw->hw_addr + tx_ring->itr_register);
1359 writel(1, hw->hw_addr + tx_ring->itr_register);
1360 adapter->eiac_mask |= tx_ring->ims_val;
1361 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1363 /* set vector for Other Causes, e.g. link changes */
1365 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1366 if (rx_ring->itr_val)
1367 writel(1000000000 / (rx_ring->itr_val * 256),
1368 hw->hw_addr + E1000_EITR_82574(vector));
1370 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1372 /* Cause Tx interrupts on every write back */
1377 /* enable MSI-X PBA support */
1378 ctrl_ext = er32(CTRL_EXT);
1379 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1381 /* Auto-Mask Other interrupts upon ICR read */
1382 #define E1000_EIAC_MASK_82574 0x01F00000
1383 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1384 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1385 ew32(CTRL_EXT, ctrl_ext);
1389 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1391 if (adapter->msix_entries) {
1392 pci_disable_msix(adapter->pdev);
1393 kfree(adapter->msix_entries);
1394 adapter->msix_entries = NULL;
1395 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1396 pci_disable_msi(adapter->pdev);
1397 adapter->flags &= ~FLAG_MSI_ENABLED;
1404 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1406 * Attempt to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1409 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1415 switch (adapter->int_mode) {
1416 case E1000E_INT_MODE_MSIX:
1417 if (adapter->flags & FLAG_HAS_MSIX) {
1418 numvecs = 3; /* RxQ0, TxQ0 and other */
1419 adapter->msix_entries = kcalloc(numvecs,
1420 sizeof(struct msix_entry),
1422 if (adapter->msix_entries) {
1423 for (i = 0; i < numvecs; i++)
1424 adapter->msix_entries[i].entry = i;
1426 err = pci_enable_msix(adapter->pdev,
1427 adapter->msix_entries,
1432 /* MSI-X failed, so fall through and try MSI */
1433 e_err("Failed to initialize MSI-X interrupts. "
1434 "Falling back to MSI interrupts.\n");
1435 e1000e_reset_interrupt_capability(adapter);
1437 adapter->int_mode = E1000E_INT_MODE_MSI;
1439 case E1000E_INT_MODE_MSI:
1440 if (!pci_enable_msi(adapter->pdev)) {
1441 adapter->flags |= FLAG_MSI_ENABLED;
1443 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1444 e_err("Failed to initialize MSI interrupts. Falling "
1445 "back to legacy interrupts.\n");
1448 case E1000E_INT_MODE_LEGACY:
1449 /* Don't do anything; this is the system default */
1457 * e1000_request_msix - Initialize MSI-X interrupts
1459 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1462 static int e1000_request_msix(struct e1000_adapter *adapter)
1464 struct net_device *netdev = adapter->netdev;
1465 int err = 0, vector = 0;
1467 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1468 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1470 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1471 err = request_irq(adapter->msix_entries[vector].vector,
1472 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1476 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1477 adapter->rx_ring->itr_val = adapter->itr;
1480 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1481 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1483 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1484 err = request_irq(adapter->msix_entries[vector].vector,
1485 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1489 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1490 adapter->tx_ring->itr_val = adapter->itr;
1493 err = request_irq(adapter->msix_entries[vector].vector,
1494 &e1000_msix_other, 0, netdev->name, netdev);
1498 e1000_configure_msix(adapter);
1505 * e1000_request_irq - initialize interrupts
1507 * Attempts to configure interrupts using the best available
1508 * capabilities of the hardware and kernel.
1510 static int e1000_request_irq(struct e1000_adapter *adapter)
1512 struct net_device *netdev = adapter->netdev;
1515 if (adapter->msix_entries) {
1516 err = e1000_request_msix(adapter);
1519 /* fall back to MSI */
1520 e1000e_reset_interrupt_capability(adapter);
1521 adapter->int_mode = E1000E_INT_MODE_MSI;
1522 e1000e_set_interrupt_capability(adapter);
1524 if (adapter->flags & FLAG_MSI_ENABLED) {
1525 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1526 netdev->name, netdev);
1530 /* fall back to legacy interrupt */
1531 e1000e_reset_interrupt_capability(adapter);
1532 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1535 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1536 netdev->name, netdev);
1538 e_err("Unable to allocate interrupt, Error: %d\n", err);
1543 static void e1000_free_irq(struct e1000_adapter *adapter)
1545 struct net_device *netdev = adapter->netdev;
1547 if (adapter->msix_entries) {
1550 free_irq(adapter->msix_entries[vector].vector, netdev);
1553 free_irq(adapter->msix_entries[vector].vector, netdev);
1556 /* Other Causes interrupt vector */
1557 free_irq(adapter->msix_entries[vector].vector, netdev);
1561 free_irq(adapter->pdev->irq, netdev);
1565 * e1000_irq_disable - Mask off interrupt generation on the NIC
1567 static void e1000_irq_disable(struct e1000_adapter *adapter)
1569 struct e1000_hw *hw = &adapter->hw;
1572 if (adapter->msix_entries)
1573 ew32(EIAC_82574, 0);
1575 synchronize_irq(adapter->pdev->irq);
1579 * e1000_irq_enable - Enable default interrupt generation settings
1581 static void e1000_irq_enable(struct e1000_adapter *adapter)
1583 struct e1000_hw *hw = &adapter->hw;
1585 if (adapter->msix_entries) {
1586 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1587 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1589 ew32(IMS, IMS_ENABLE_MASK);
1595 * e1000_get_hw_control - get control of the h/w from f/w
1596 * @adapter: address of board private structure
1598 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1599 * For ASF and Pass Through versions of f/w this means that
1600 * the driver is loaded. For AMT version (only with 82573)
1601 * of the f/w this means that the network i/f is open.
1603 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1605 struct e1000_hw *hw = &adapter->hw;
1609 /* Let firmware know the driver has taken over */
1610 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1612 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1613 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1614 ctrl_ext = er32(CTRL_EXT);
1615 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1620 * e1000_release_hw_control - release control of the h/w to f/w
1621 * @adapter: address of board private structure
1623 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1624 * For ASF and Pass Through versions of f/w this means that the
1625 * driver is no longer loaded. For AMT version (only with 82573) i
1626 * of the f/w this means that the network i/f is closed.
1629 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1631 struct e1000_hw *hw = &adapter->hw;
1635 /* Let firmware taken over control of h/w */
1636 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1638 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1639 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1640 ctrl_ext = er32(CTRL_EXT);
1641 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1646 * @e1000_alloc_ring - allocate memory for a ring structure
1648 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1649 struct e1000_ring *ring)
1651 struct pci_dev *pdev = adapter->pdev;
1653 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1662 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1663 * @adapter: board private structure
1665 * Return 0 on success, negative on failure
1667 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1669 struct e1000_ring *tx_ring = adapter->tx_ring;
1670 int err = -ENOMEM, size;
1672 size = sizeof(struct e1000_buffer) * tx_ring->count;
1673 tx_ring->buffer_info = vmalloc(size);
1674 if (!tx_ring->buffer_info)
1676 memset(tx_ring->buffer_info, 0, size);
1678 /* round up to nearest 4K */
1679 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1680 tx_ring->size = ALIGN(tx_ring->size, 4096);
1682 err = e1000_alloc_ring_dma(adapter, tx_ring);
1686 tx_ring->next_to_use = 0;
1687 tx_ring->next_to_clean = 0;
1688 spin_lock_init(&adapter->tx_queue_lock);
1692 vfree(tx_ring->buffer_info);
1693 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1698 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1699 * @adapter: board private structure
1701 * Returns 0 on success, negative on failure
1703 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1705 struct e1000_ring *rx_ring = adapter->rx_ring;
1706 struct e1000_buffer *buffer_info;
1707 int i, size, desc_len, err = -ENOMEM;
1709 size = sizeof(struct e1000_buffer) * rx_ring->count;
1710 rx_ring->buffer_info = vmalloc(size);
1711 if (!rx_ring->buffer_info)
1713 memset(rx_ring->buffer_info, 0, size);
1715 for (i = 0; i < rx_ring->count; i++) {
1716 buffer_info = &rx_ring->buffer_info[i];
1717 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1718 sizeof(struct e1000_ps_page),
1720 if (!buffer_info->ps_pages)
1724 desc_len = sizeof(union e1000_rx_desc_packet_split);
1726 /* Round up to nearest 4K */
1727 rx_ring->size = rx_ring->count * desc_len;
1728 rx_ring->size = ALIGN(rx_ring->size, 4096);
1730 err = e1000_alloc_ring_dma(adapter, rx_ring);
1734 rx_ring->next_to_clean = 0;
1735 rx_ring->next_to_use = 0;
1736 rx_ring->rx_skb_top = NULL;
1741 for (i = 0; i < rx_ring->count; i++) {
1742 buffer_info = &rx_ring->buffer_info[i];
1743 kfree(buffer_info->ps_pages);
1746 vfree(rx_ring->buffer_info);
1747 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1752 * e1000_clean_tx_ring - Free Tx Buffers
1753 * @adapter: board private structure
1755 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1757 struct e1000_ring *tx_ring = adapter->tx_ring;
1758 struct e1000_buffer *buffer_info;
1762 for (i = 0; i < tx_ring->count; i++) {
1763 buffer_info = &tx_ring->buffer_info[i];
1764 e1000_put_txbuf(adapter, buffer_info);
1767 size = sizeof(struct e1000_buffer) * tx_ring->count;
1768 memset(tx_ring->buffer_info, 0, size);
1770 memset(tx_ring->desc, 0, tx_ring->size);
1772 tx_ring->next_to_use = 0;
1773 tx_ring->next_to_clean = 0;
1775 writel(0, adapter->hw.hw_addr + tx_ring->head);
1776 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1780 * e1000e_free_tx_resources - Free Tx Resources per Queue
1781 * @adapter: board private structure
1783 * Free all transmit software resources
1785 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1787 struct pci_dev *pdev = adapter->pdev;
1788 struct e1000_ring *tx_ring = adapter->tx_ring;
1790 e1000_clean_tx_ring(adapter);
1792 vfree(tx_ring->buffer_info);
1793 tx_ring->buffer_info = NULL;
1795 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1797 tx_ring->desc = NULL;
1801 * e1000e_free_rx_resources - Free Rx Resources
1802 * @adapter: board private structure
1804 * Free all receive software resources
1807 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1809 struct pci_dev *pdev = adapter->pdev;
1810 struct e1000_ring *rx_ring = adapter->rx_ring;
1813 e1000_clean_rx_ring(adapter);
1815 for (i = 0; i < rx_ring->count; i++) {
1816 kfree(rx_ring->buffer_info[i].ps_pages);
1819 vfree(rx_ring->buffer_info);
1820 rx_ring->buffer_info = NULL;
1822 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1824 rx_ring->desc = NULL;
1828 * e1000_update_itr - update the dynamic ITR value based on statistics
1829 * @adapter: pointer to adapter
1830 * @itr_setting: current adapter->itr
1831 * @packets: the number of packets during this measurement interval
1832 * @bytes: the number of bytes during this measurement interval
1834 * Stores a new ITR value based on packets and byte
1835 * counts during the last interrupt. The advantage of per interrupt
1836 * computation is faster updates and more accurate ITR for the current
1837 * traffic pattern. Constants in this function were computed
1838 * based on theoretical maximum wire speed and thresholds were set based
1839 * on testing data as well as attempting to minimize response time
1840 * while increasing bulk throughput. This functionality is controlled
1841 * by the InterruptThrottleRate module parameter.
1843 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1844 u16 itr_setting, int packets,
1847 unsigned int retval = itr_setting;
1850 goto update_itr_done;
1852 switch (itr_setting) {
1853 case lowest_latency:
1854 /* handle TSO and jumbo frames */
1855 if (bytes/packets > 8000)
1856 retval = bulk_latency;
1857 else if ((packets < 5) && (bytes > 512)) {
1858 retval = low_latency;
1861 case low_latency: /* 50 usec aka 20000 ints/s */
1862 if (bytes > 10000) {
1863 /* this if handles the TSO accounting */
1864 if (bytes/packets > 8000) {
1865 retval = bulk_latency;
1866 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1867 retval = bulk_latency;
1868 } else if ((packets > 35)) {
1869 retval = lowest_latency;
1871 } else if (bytes/packets > 2000) {
1872 retval = bulk_latency;
1873 } else if (packets <= 2 && bytes < 512) {
1874 retval = lowest_latency;
1877 case bulk_latency: /* 250 usec aka 4000 ints/s */
1878 if (bytes > 25000) {
1880 retval = low_latency;
1882 } else if (bytes < 6000) {
1883 retval = low_latency;
1892 static void e1000_set_itr(struct e1000_adapter *adapter)
1894 struct e1000_hw *hw = &adapter->hw;
1896 u32 new_itr = adapter->itr;
1898 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1899 if (adapter->link_speed != SPEED_1000) {
1905 adapter->tx_itr = e1000_update_itr(adapter,
1907 adapter->total_tx_packets,
1908 adapter->total_tx_bytes);
1909 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1910 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1911 adapter->tx_itr = low_latency;
1913 adapter->rx_itr = e1000_update_itr(adapter,
1915 adapter->total_rx_packets,
1916 adapter->total_rx_bytes);
1917 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1918 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1919 adapter->rx_itr = low_latency;
1921 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1923 switch (current_itr) {
1924 /* counts and packets in update_itr are dependent on these numbers */
1925 case lowest_latency:
1929 new_itr = 20000; /* aka hwitr = ~200 */
1939 if (new_itr != adapter->itr) {
1941 * this attempts to bias the interrupt rate towards Bulk
1942 * by adding intermediate steps when interrupt rate is
1945 new_itr = new_itr > adapter->itr ?
1946 min(adapter->itr + (new_itr >> 2), new_itr) :
1948 adapter->itr = new_itr;
1949 adapter->rx_ring->itr_val = new_itr;
1950 if (adapter->msix_entries)
1951 adapter->rx_ring->set_itr = 1;
1953 ew32(ITR, 1000000000 / (new_itr * 256));
1958 * e1000_alloc_queues - Allocate memory for all rings
1959 * @adapter: board private structure to initialize
1961 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1963 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1964 if (!adapter->tx_ring)
1967 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1968 if (!adapter->rx_ring)
1973 e_err("Unable to allocate memory for queues\n");
1974 kfree(adapter->rx_ring);
1975 kfree(adapter->tx_ring);
1980 * e1000_clean - NAPI Rx polling callback
1981 * @napi: struct associated with this polling callback
1982 * @budget: amount of packets driver is allowed to process this poll
1984 static int e1000_clean(struct napi_struct *napi, int budget)
1986 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct net_device *poll_dev = adapter->netdev;
1989 int tx_cleaned = 0, work_done = 0;
1991 /* Must NOT use netdev_priv macro here. */
1992 adapter = poll_dev->priv;
1994 if (adapter->msix_entries &&
1995 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1999 * e1000_clean is called per-cpu. This lock protects
2000 * tx_ring from being cleaned by multiple cpus
2001 * simultaneously. A failure obtaining the lock means
2002 * tx_ring is currently being cleaned anyway.
2004 if (spin_trylock(&adapter->tx_queue_lock)) {
2005 tx_cleaned = e1000_clean_tx_irq(adapter);
2006 spin_unlock(&adapter->tx_queue_lock);
2010 adapter->clean_rx(adapter, &work_done, budget);
2015 /* If budget not fully consumed, exit the polling mode */
2016 if (work_done < budget) {
2017 if (adapter->itr_setting & 3)
2018 e1000_set_itr(adapter);
2019 netif_rx_complete(poll_dev, napi);
2020 if (adapter->msix_entries)
2021 ew32(IMS, adapter->rx_ring->ims_val);
2023 e1000_irq_enable(adapter);
2029 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2031 struct e1000_adapter *adapter = netdev_priv(netdev);
2032 struct e1000_hw *hw = &adapter->hw;
2035 /* don't update vlan cookie if already programmed */
2036 if ((adapter->hw.mng_cookie.status &
2037 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2038 (vid == adapter->mng_vlan_id))
2040 /* add VID to filter table */
2041 index = (vid >> 5) & 0x7F;
2042 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2043 vfta |= (1 << (vid & 0x1F));
2044 e1000e_write_vfta(hw, index, vfta);
2047 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2049 struct e1000_adapter *adapter = netdev_priv(netdev);
2050 struct e1000_hw *hw = &adapter->hw;
2053 if (!test_bit(__E1000_DOWN, &adapter->state))
2054 e1000_irq_disable(adapter);
2055 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2057 if (!test_bit(__E1000_DOWN, &adapter->state))
2058 e1000_irq_enable(adapter);
2060 if ((adapter->hw.mng_cookie.status &
2061 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2062 (vid == adapter->mng_vlan_id)) {
2063 /* release control to f/w */
2064 e1000_release_hw_control(adapter);
2068 /* remove VID from filter table */
2069 index = (vid >> 5) & 0x7F;
2070 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2071 vfta &= ~(1 << (vid & 0x1F));
2072 e1000e_write_vfta(hw, index, vfta);
2075 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2077 struct net_device *netdev = adapter->netdev;
2078 u16 vid = adapter->hw.mng_cookie.vlan_id;
2079 u16 old_vid = adapter->mng_vlan_id;
2081 if (!adapter->vlgrp)
2084 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2085 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2086 if (adapter->hw.mng_cookie.status &
2087 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2088 e1000_vlan_rx_add_vid(netdev, vid);
2089 adapter->mng_vlan_id = vid;
2092 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2094 !vlan_group_get_device(adapter->vlgrp, old_vid))
2095 e1000_vlan_rx_kill_vid(netdev, old_vid);
2097 adapter->mng_vlan_id = vid;
2102 static void e1000_vlan_rx_register(struct net_device *netdev,
2103 struct vlan_group *grp)
2105 struct e1000_adapter *adapter = netdev_priv(netdev);
2106 struct e1000_hw *hw = &adapter->hw;
2109 if (!test_bit(__E1000_DOWN, &adapter->state))
2110 e1000_irq_disable(adapter);
2111 adapter->vlgrp = grp;
2114 /* enable VLAN tag insert/strip */
2116 ctrl |= E1000_CTRL_VME;
2119 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2120 /* enable VLAN receive filtering */
2122 rctl &= ~E1000_RCTL_CFIEN;
2124 e1000_update_mng_vlan(adapter);
2127 /* disable VLAN tag insert/strip */
2129 ctrl &= ~E1000_CTRL_VME;
2132 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2133 if (adapter->mng_vlan_id !=
2134 (u16)E1000_MNG_VLAN_NONE) {
2135 e1000_vlan_rx_kill_vid(netdev,
2136 adapter->mng_vlan_id);
2137 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2142 if (!test_bit(__E1000_DOWN, &adapter->state))
2143 e1000_irq_enable(adapter);
2146 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2150 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2152 if (!adapter->vlgrp)
2155 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2156 if (!vlan_group_get_device(adapter->vlgrp, vid))
2158 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2162 static void e1000_init_manageability(struct e1000_adapter *adapter)
2164 struct e1000_hw *hw = &adapter->hw;
2167 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2173 * enable receiving management packets to the host. this will probably
2174 * generate destination unreachable messages from the host OS, but
2175 * the packets will be handled on SMBUS
2177 manc |= E1000_MANC_EN_MNG2HOST;
2178 manc2h = er32(MANC2H);
2179 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2180 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2181 manc2h |= E1000_MNG2HOST_PORT_623;
2182 manc2h |= E1000_MNG2HOST_PORT_664;
2183 ew32(MANC2H, manc2h);
2188 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2189 * @adapter: board private structure
2191 * Configure the Tx unit of the MAC after a reset.
2193 static void e1000_configure_tx(struct e1000_adapter *adapter)
2195 struct e1000_hw *hw = &adapter->hw;
2196 struct e1000_ring *tx_ring = adapter->tx_ring;
2198 u32 tdlen, tctl, tipg, tarc;
2201 /* Setup the HW Tx Head and Tail descriptor pointers */
2202 tdba = tx_ring->dma;
2203 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2204 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2205 ew32(TDBAH, (tdba >> 32));
2209 tx_ring->head = E1000_TDH;
2210 tx_ring->tail = E1000_TDT;
2212 /* Set the default values for the Tx Inter Packet Gap timer */
2213 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2214 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2215 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2217 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2218 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2220 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2221 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2224 /* Set the Tx Interrupt Delay register */
2225 ew32(TIDV, adapter->tx_int_delay);
2226 /* Tx irq moderation */
2227 ew32(TADV, adapter->tx_abs_int_delay);
2229 /* Program the Transmit Control Register */
2231 tctl &= ~E1000_TCTL_CT;
2232 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2233 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2235 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2236 tarc = er32(TARC(0));
2238 * set the speed mode bit, we'll clear it if we're not at
2239 * gigabit link later
2241 #define SPEED_MODE_BIT (1 << 21)
2242 tarc |= SPEED_MODE_BIT;
2243 ew32(TARC(0), tarc);
2246 /* errata: program both queues to unweighted RR */
2247 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2248 tarc = er32(TARC(0));
2250 ew32(TARC(0), tarc);
2251 tarc = er32(TARC(1));
2253 ew32(TARC(1), tarc);
2256 e1000e_config_collision_dist(hw);
2258 /* Setup Transmit Descriptor Settings for eop descriptor */
2259 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2261 /* only set IDE if we are delaying interrupts using the timers */
2262 if (adapter->tx_int_delay)
2263 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2265 /* enable Report Status bit */
2266 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2270 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2274 * e1000_setup_rctl - configure the receive control registers
2275 * @adapter: Board private structure
2277 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2278 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2279 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2281 struct e1000_hw *hw = &adapter->hw;
2286 /* Program MC offset vector base */
2288 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2289 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2290 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2291 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2293 /* Do not Store bad packets */
2294 rctl &= ~E1000_RCTL_SBP;
2296 /* Enable Long Packet receive */
2297 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2298 rctl &= ~E1000_RCTL_LPE;
2300 rctl |= E1000_RCTL_LPE;
2302 /* Enable hardware CRC frame stripping */
2303 rctl |= E1000_RCTL_SECRC;
2305 /* Setup buffer sizes */
2306 rctl &= ~E1000_RCTL_SZ_4096;
2307 rctl |= E1000_RCTL_BSEX;
2308 switch (adapter->rx_buffer_len) {
2310 rctl |= E1000_RCTL_SZ_256;
2311 rctl &= ~E1000_RCTL_BSEX;
2314 rctl |= E1000_RCTL_SZ_512;
2315 rctl &= ~E1000_RCTL_BSEX;
2318 rctl |= E1000_RCTL_SZ_1024;
2319 rctl &= ~E1000_RCTL_BSEX;
2323 rctl |= E1000_RCTL_SZ_2048;
2324 rctl &= ~E1000_RCTL_BSEX;
2327 rctl |= E1000_RCTL_SZ_4096;
2330 rctl |= E1000_RCTL_SZ_8192;
2333 rctl |= E1000_RCTL_SZ_16384;
2338 * 82571 and greater support packet-split where the protocol
2339 * header is placed in skb->data and the packet data is
2340 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2341 * In the case of a non-split, skb->data is linearly filled,
2342 * followed by the page buffers. Therefore, skb->data is
2343 * sized to hold the largest protocol header.
2345 * allocations using alloc_page take too long for regular MTU
2346 * so only enable packet split for jumbo frames
2348 * Using pages when the page size is greater than 16k wastes
2349 * a lot of memory, since we allocate 3 pages at all times
2352 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2353 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2354 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2355 adapter->rx_ps_pages = pages;
2357 adapter->rx_ps_pages = 0;
2359 if (adapter->rx_ps_pages) {
2360 /* Configure extra packet-split registers */
2361 rfctl = er32(RFCTL);
2362 rfctl |= E1000_RFCTL_EXTEN;
2364 * disable packet split support for IPv6 extension headers,
2365 * because some malformed IPv6 headers can hang the Rx
2367 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2368 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2372 /* Enable Packet split descriptors */
2373 rctl |= E1000_RCTL_DTYP_PS;
2375 psrctl |= adapter->rx_ps_bsize0 >>
2376 E1000_PSRCTL_BSIZE0_SHIFT;
2378 switch (adapter->rx_ps_pages) {
2380 psrctl |= PAGE_SIZE <<
2381 E1000_PSRCTL_BSIZE3_SHIFT;
2383 psrctl |= PAGE_SIZE <<
2384 E1000_PSRCTL_BSIZE2_SHIFT;
2386 psrctl |= PAGE_SIZE >>
2387 E1000_PSRCTL_BSIZE1_SHIFT;
2391 ew32(PSRCTL, psrctl);
2395 /* just started the receive unit, no need to restart */
2396 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2400 * e1000_configure_rx - Configure Receive Unit after Reset
2401 * @adapter: board private structure
2403 * Configure the Rx unit of the MAC after a reset.
2405 static void e1000_configure_rx(struct e1000_adapter *adapter)
2407 struct e1000_hw *hw = &adapter->hw;
2408 struct e1000_ring *rx_ring = adapter->rx_ring;
2410 u32 rdlen, rctl, rxcsum, ctrl_ext;
2412 if (adapter->rx_ps_pages) {
2413 /* this is a 32 byte descriptor */
2414 rdlen = rx_ring->count *
2415 sizeof(union e1000_rx_desc_packet_split);
2416 adapter->clean_rx = e1000_clean_rx_irq_ps;
2417 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2418 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2419 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2420 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2421 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2423 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2424 adapter->clean_rx = e1000_clean_rx_irq;
2425 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2428 /* disable receives while setting up the descriptors */
2430 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2434 /* set the Receive Delay Timer Register */
2435 ew32(RDTR, adapter->rx_int_delay);
2437 /* irq moderation */
2438 ew32(RADV, adapter->rx_abs_int_delay);
2439 if (adapter->itr_setting != 0)
2440 ew32(ITR, 1000000000 / (adapter->itr * 256));
2442 ctrl_ext = er32(CTRL_EXT);
2443 /* Reset delay timers after every interrupt */
2444 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2445 /* Auto-Mask interrupts upon ICR access */
2446 ctrl_ext |= E1000_CTRL_EXT_IAME;
2447 ew32(IAM, 0xffffffff);
2448 ew32(CTRL_EXT, ctrl_ext);
2452 * Setup the HW Rx Head and Tail Descriptor Pointers and
2453 * the Base and Length of the Rx Descriptor Ring
2455 rdba = rx_ring->dma;
2456 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2457 ew32(RDBAH, (rdba >> 32));
2461 rx_ring->head = E1000_RDH;
2462 rx_ring->tail = E1000_RDT;
2464 /* Enable Receive Checksum Offload for TCP and UDP */
2465 rxcsum = er32(RXCSUM);
2466 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2467 rxcsum |= E1000_RXCSUM_TUOFL;
2470 * IPv4 payload checksum for UDP fragments must be
2471 * used in conjunction with packet-split.
2473 if (adapter->rx_ps_pages)
2474 rxcsum |= E1000_RXCSUM_IPPCSE;
2476 rxcsum &= ~E1000_RXCSUM_TUOFL;
2477 /* no need to clear IPPCSE as it defaults to 0 */
2479 ew32(RXCSUM, rxcsum);
2482 * Enable early receives on supported devices, only takes effect when
2483 * packet size is equal or larger than the specified value (in 8 byte
2484 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2486 if ((adapter->flags & FLAG_HAS_ERT) &&
2487 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2488 u32 rxdctl = er32(RXDCTL(0));
2489 ew32(RXDCTL(0), rxdctl | 0x3);
2490 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2492 * With jumbo frames and early-receive enabled, excessive
2493 * C4->C2 latencies result in dropped transactions.
2495 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2496 e1000e_driver_name, 55);
2498 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2500 PM_QOS_DEFAULT_VALUE);
2503 /* Enable Receives */
2508 * e1000_update_mc_addr_list - Update Multicast addresses
2509 * @hw: pointer to the HW structure
2510 * @mc_addr_list: array of multicast addresses to program
2511 * @mc_addr_count: number of multicast addresses to program
2512 * @rar_used_count: the first RAR register free to program
2513 * @rar_count: total number of supported Receive Address Registers
2515 * Updates the Receive Address Registers and Multicast Table Array.
2516 * The caller must have a packed mc_addr_list of multicast addresses.
2517 * The parameter rar_count will usually be hw->mac.rar_entry_count
2518 * unless there are workarounds that change this. Currently no func pointer
2519 * exists and all implementations are handled in the generic version of this
2522 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2523 u32 mc_addr_count, u32 rar_used_count,
2526 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2527 rar_used_count, rar_count);
2531 * e1000_set_multi - Multicast and Promiscuous mode set
2532 * @netdev: network interface device structure
2534 * The set_multi entry point is called whenever the multicast address
2535 * list or the network interface flags are updated. This routine is
2536 * responsible for configuring the hardware for proper multicast,
2537 * promiscuous mode, and all-multi behavior.
2539 static void e1000_set_multi(struct net_device *netdev)
2541 struct e1000_adapter *adapter = netdev_priv(netdev);
2542 struct e1000_hw *hw = &adapter->hw;
2543 struct e1000_mac_info *mac = &hw->mac;
2544 struct dev_mc_list *mc_ptr;
2549 /* Check for Promiscuous and All Multicast modes */
2553 if (netdev->flags & IFF_PROMISC) {
2554 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2555 rctl &= ~E1000_RCTL_VFE;
2557 if (netdev->flags & IFF_ALLMULTI) {
2558 rctl |= E1000_RCTL_MPE;
2559 rctl &= ~E1000_RCTL_UPE;
2561 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2563 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2564 rctl |= E1000_RCTL_VFE;
2569 if (netdev->mc_count) {
2570 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2574 /* prepare a packed array of only addresses. */
2575 mc_ptr = netdev->mc_list;
2577 for (i = 0; i < netdev->mc_count; i++) {
2580 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2582 mc_ptr = mc_ptr->next;
2585 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2586 mac->rar_entry_count);
2590 * if we're called from probe, we might not have
2591 * anything to do here, so clear out the list
2593 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2598 * e1000_configure - configure the hardware for Rx and Tx
2599 * @adapter: private board structure
2601 static void e1000_configure(struct e1000_adapter *adapter)
2603 e1000_set_multi(adapter->netdev);
2605 e1000_restore_vlan(adapter);
2606 e1000_init_manageability(adapter);
2608 e1000_configure_tx(adapter);
2609 e1000_setup_rctl(adapter);
2610 e1000_configure_rx(adapter);
2611 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2615 * e1000e_power_up_phy - restore link in case the phy was powered down
2616 * @adapter: address of board private structure
2618 * The phy may be powered down to save power and turn off link when the
2619 * driver is unloaded and wake on lan is not enabled (among others)
2620 * *** this routine MUST be followed by a call to e1000e_reset ***
2622 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2626 /* Just clear the power down bit to wake the phy back up */
2627 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2629 * According to the manual, the phy will retain its
2630 * settings across a power-down/up cycle
2632 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2633 mii_reg &= ~MII_CR_POWER_DOWN;
2634 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2637 adapter->hw.mac.ops.setup_link(&adapter->hw);
2641 * e1000_power_down_phy - Power down the PHY
2643 * Power down the PHY so no link is implied when interface is down
2644 * The PHY cannot be powered down is management or WoL is active
2646 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2648 struct e1000_hw *hw = &adapter->hw;
2651 /* WoL is enabled */
2655 /* non-copper PHY? */
2656 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2659 /* reset is blocked because of a SoL/IDER session */
2660 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2663 /* manageability (AMT) is enabled */
2664 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2667 /* power down the PHY */
2668 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2669 mii_reg |= MII_CR_POWER_DOWN;
2670 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2675 * e1000e_reset - bring the hardware into a known good state
2677 * This function boots the hardware and enables some settings that
2678 * require a configuration cycle of the hardware - those cannot be
2679 * set/changed during runtime. After reset the device needs to be
2680 * properly configured for Rx, Tx etc.
2682 void e1000e_reset(struct e1000_adapter *adapter)
2684 struct e1000_mac_info *mac = &adapter->hw.mac;
2685 struct e1000_fc_info *fc = &adapter->hw.fc;
2686 struct e1000_hw *hw = &adapter->hw;
2687 u32 tx_space, min_tx_space, min_rx_space;
2688 u32 pba = adapter->pba;
2691 /* reset Packet Buffer Allocation to default */
2694 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2696 * To maintain wire speed transmits, the Tx FIFO should be
2697 * large enough to accommodate two full transmit packets,
2698 * rounded up to the next 1KB and expressed in KB. Likewise,
2699 * the Rx FIFO should be large enough to accommodate at least
2700 * one full receive packet and is similarly rounded up and
2704 /* upper 16 bits has Tx packet buffer allocation size in KB */
2705 tx_space = pba >> 16;
2706 /* lower 16 bits has Rx packet buffer allocation size in KB */
2709 * the Tx fifo also stores 16 bytes of information about the tx
2710 * but don't include ethernet FCS because hardware appends it
2712 min_tx_space = (adapter->max_frame_size +
2713 sizeof(struct e1000_tx_desc) -
2715 min_tx_space = ALIGN(min_tx_space, 1024);
2716 min_tx_space >>= 10;
2717 /* software strips receive CRC, so leave room for it */
2718 min_rx_space = adapter->max_frame_size;
2719 min_rx_space = ALIGN(min_rx_space, 1024);
2720 min_rx_space >>= 10;
2723 * If current Tx allocation is less than the min Tx FIFO size,
2724 * and the min Tx FIFO size is less than the current Rx FIFO
2725 * allocation, take space away from current Rx allocation
2727 if ((tx_space < min_tx_space) &&
2728 ((min_tx_space - tx_space) < pba)) {
2729 pba -= min_tx_space - tx_space;
2732 * if short on Rx space, Rx wins and must trump tx
2733 * adjustment or use Early Receive if available
2735 if ((pba < min_rx_space) &&
2736 (!(adapter->flags & FLAG_HAS_ERT)))
2737 /* ERT enabled in e1000_configure_rx */
2746 * flow control settings
2748 * The high water mark must be low enough to fit one full frame
2749 * (or the size used for early receive) above it in the Rx FIFO.
2750 * Set it to the lower of:
2751 * - 90% of the Rx FIFO size, and
2752 * - the full Rx FIFO size minus the early receive size (for parts
2753 * with ERT support assuming ERT set to E1000_ERT_2048), or
2754 * - the full Rx FIFO size minus one full frame
2756 if (adapter->flags & FLAG_HAS_ERT)
2757 hwm = min(((pba << 10) * 9 / 10),
2758 ((pba << 10) - (E1000_ERT_2048 << 3)));
2760 hwm = min(((pba << 10) * 9 / 10),
2761 ((pba << 10) - adapter->max_frame_size));
2763 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2764 fc->low_water = fc->high_water - 8;
2766 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2767 fc->pause_time = 0xFFFF;
2769 fc->pause_time = E1000_FC_PAUSE_TIME;
2771 fc->type = fc->original_type;
2773 /* Allow time for pending master requests to run */
2774 mac->ops.reset_hw(hw);
2777 * For parts with AMT enabled, let the firmware know
2778 * that the network interface is in control
2780 if (adapter->flags & FLAG_HAS_AMT)
2781 e1000_get_hw_control(adapter);
2785 if (mac->ops.init_hw(hw))
2786 e_err("Hardware Error\n");
2788 e1000_update_mng_vlan(adapter);
2790 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2791 ew32(VET, ETH_P_8021Q);
2793 e1000e_reset_adaptive(hw);
2794 e1000_get_phy_info(hw);
2796 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2799 * speed up time to link by disabling smart power down, ignore
2800 * the return value of this function because there is nothing
2801 * different we would do if it failed
2803 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2804 phy_data &= ~IGP02E1000_PM_SPD;
2805 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2809 int e1000e_up(struct e1000_adapter *adapter)
2811 struct e1000_hw *hw = &adapter->hw;
2813 /* hardware has been reset, we need to reload some things */
2814 e1000_configure(adapter);
2816 clear_bit(__E1000_DOWN, &adapter->state);
2818 napi_enable(&adapter->napi);
2819 if (adapter->msix_entries)
2820 e1000_configure_msix(adapter);
2821 e1000_irq_enable(adapter);
2823 /* fire a link change interrupt to start the watchdog */
2824 ew32(ICS, E1000_ICS_LSC);
2828 void e1000e_down(struct e1000_adapter *adapter)
2830 struct net_device *netdev = adapter->netdev;
2831 struct e1000_hw *hw = &adapter->hw;
2835 * signal that we're down so the interrupt handler does not
2836 * reschedule our watchdog timer
2838 set_bit(__E1000_DOWN, &adapter->state);
2840 /* disable receives in the hardware */
2842 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2843 /* flush and sleep below */
2845 netif_tx_stop_all_queues(netdev);
2847 /* disable transmits in the hardware */
2849 tctl &= ~E1000_TCTL_EN;
2851 /* flush both disables and wait for them to finish */
2855 napi_disable(&adapter->napi);
2856 e1000_irq_disable(adapter);
2858 del_timer_sync(&adapter->watchdog_timer);
2859 del_timer_sync(&adapter->phy_info_timer);
2861 netdev->tx_queue_len = adapter->tx_queue_len;
2862 netif_carrier_off(netdev);
2863 adapter->link_speed = 0;
2864 adapter->link_duplex = 0;
2866 if (!pci_channel_offline(adapter->pdev))
2867 e1000e_reset(adapter);
2868 e1000_clean_tx_ring(adapter);
2869 e1000_clean_rx_ring(adapter);
2872 * TODO: for power management, we could drop the link and
2873 * pci_disable_device here.
2877 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2880 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2882 e1000e_down(adapter);
2884 clear_bit(__E1000_RESETTING, &adapter->state);
2888 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2889 * @adapter: board private structure to initialize
2891 * e1000_sw_init initializes the Adapter private data structure.
2892 * Fields are initialized based on PCI device information and
2893 * OS network device settings (MTU size).
2895 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2897 struct net_device *netdev = adapter->netdev;
2899 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2900 adapter->rx_ps_bsize0 = 128;
2901 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2902 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2904 e1000e_set_interrupt_capability(adapter);
2906 if (e1000_alloc_queues(adapter))
2909 spin_lock_init(&adapter->tx_queue_lock);
2911 /* Explicitly disable IRQ since the NIC can be in any state. */
2912 e1000_irq_disable(adapter);
2914 set_bit(__E1000_DOWN, &adapter->state);
2919 * e1000_intr_msi_test - Interrupt Handler
2920 * @irq: interrupt number
2921 * @data: pointer to a network interface device structure
2923 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2925 struct net_device *netdev = data;
2926 struct e1000_adapter *adapter = netdev_priv(netdev);
2927 struct e1000_hw *hw = &adapter->hw;
2928 u32 icr = er32(ICR);
2930 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2931 if (icr & E1000_ICR_RXSEQ) {
2932 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2940 * e1000_test_msi_interrupt - Returns 0 for successful test
2941 * @adapter: board private struct
2943 * code flow taken from tg3.c
2945 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2947 struct net_device *netdev = adapter->netdev;
2948 struct e1000_hw *hw = &adapter->hw;
2951 /* poll_enable hasn't been called yet, so don't need disable */
2952 /* clear any pending events */
2955 /* free the real vector and request a test handler */
2956 e1000_free_irq(adapter);
2957 e1000e_reset_interrupt_capability(adapter);
2959 /* Assume that the test fails, if it succeeds then the test
2960 * MSI irq handler will unset this flag */
2961 adapter->flags |= FLAG_MSI_TEST_FAILED;
2963 err = pci_enable_msi(adapter->pdev);
2965 goto msi_test_failed;
2967 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2968 netdev->name, netdev);
2970 pci_disable_msi(adapter->pdev);
2971 goto msi_test_failed;
2976 e1000_irq_enable(adapter);
2978 /* fire an unusual interrupt on the test handler */
2979 ew32(ICS, E1000_ICS_RXSEQ);
2983 e1000_irq_disable(adapter);
2987 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2988 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2990 e_info("MSI interrupt test failed!\n");
2993 free_irq(adapter->pdev->irq, netdev);
2994 pci_disable_msi(adapter->pdev);
2997 goto msi_test_failed;
2999 /* okay so the test worked, restore settings */
3000 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3002 e1000e_set_interrupt_capability(adapter);
3003 e1000_request_irq(adapter);
3008 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3009 * @adapter: board private struct
3011 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3013 static int e1000_test_msi(struct e1000_adapter *adapter)
3018 if (!(adapter->flags & FLAG_MSI_ENABLED))
3021 /* disable SERR in case the MSI write causes a master abort */
3022 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3023 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3024 pci_cmd & ~PCI_COMMAND_SERR);
3026 err = e1000_test_msi_interrupt(adapter);
3028 /* restore previous setting of command word */
3029 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3035 /* EIO means MSI test failed */
3039 /* back to INTx mode */
3040 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3042 e1000_free_irq(adapter);
3044 err = e1000_request_irq(adapter);
3050 * e1000_open - Called when a network interface is made active
3051 * @netdev: network interface device structure
3053 * Returns 0 on success, negative value on failure
3055 * The open entry point is called when a network interface is made
3056 * active by the system (IFF_UP). At this point all resources needed
3057 * for transmit and receive operations are allocated, the interrupt
3058 * handler is registered with the OS, the watchdog timer is started,
3059 * and the stack is notified that the interface is ready.
3061 static int e1000_open(struct net_device *netdev)
3063 struct e1000_adapter *adapter = netdev_priv(netdev);
3064 struct e1000_hw *hw = &adapter->hw;
3067 /* disallow open during test */
3068 if (test_bit(__E1000_TESTING, &adapter->state))
3071 /* allocate transmit descriptors */
3072 err = e1000e_setup_tx_resources(adapter);
3076 /* allocate receive descriptors */
3077 err = e1000e_setup_rx_resources(adapter);
3081 e1000e_power_up_phy(adapter);
3083 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3084 if ((adapter->hw.mng_cookie.status &
3085 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3086 e1000_update_mng_vlan(adapter);
3089 * If AMT is enabled, let the firmware know that the network
3090 * interface is now open
3092 if (adapter->flags & FLAG_HAS_AMT)
3093 e1000_get_hw_control(adapter);
3096 * before we allocate an interrupt, we must be ready to handle it.
3097 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3098 * as soon as we call pci_request_irq, so we have to setup our
3099 * clean_rx handler before we do so.
3101 e1000_configure(adapter);
3103 err = e1000_request_irq(adapter);
3108 * Work around PCIe errata with MSI interrupts causing some chipsets to
3109 * ignore e1000e MSI messages, which means we need to test our MSI
3112 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3113 err = e1000_test_msi(adapter);
3115 e_err("Interrupt allocation failed\n");
3120 /* From here on the code is the same as e1000e_up() */
3121 clear_bit(__E1000_DOWN, &adapter->state);
3123 napi_enable(&adapter->napi);
3125 e1000_irq_enable(adapter);
3127 netif_tx_start_all_queues(netdev);
3129 /* fire a link status change interrupt to start the watchdog */
3130 ew32(ICS, E1000_ICS_LSC);
3135 e1000_release_hw_control(adapter);
3136 e1000_power_down_phy(adapter);
3137 e1000e_free_rx_resources(adapter);
3139 e1000e_free_tx_resources(adapter);
3141 e1000e_reset(adapter);
3147 * e1000_close - Disables a network interface
3148 * @netdev: network interface device structure
3150 * Returns 0, this is not allowed to fail
3152 * The close entry point is called when an interface is de-activated
3153 * by the OS. The hardware is still under the drivers control, but
3154 * needs to be disabled. A global MAC reset is issued to stop the
3155 * hardware, and all transmit and receive resources are freed.
3157 static int e1000_close(struct net_device *netdev)
3159 struct e1000_adapter *adapter = netdev_priv(netdev);
3161 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3162 e1000e_down(adapter);
3163 e1000_power_down_phy(adapter);
3164 e1000_free_irq(adapter);
3166 e1000e_free_tx_resources(adapter);
3167 e1000e_free_rx_resources(adapter);
3170 * kill manageability vlan ID if supported, but not if a vlan with
3171 * the same ID is registered on the host OS (let 8021q kill it)
3173 if ((adapter->hw.mng_cookie.status &
3174 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3176 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3177 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3180 * If AMT is enabled, let the firmware know that the network
3181 * interface is now closed
3183 if (adapter->flags & FLAG_HAS_AMT)
3184 e1000_release_hw_control(adapter);
3189 * e1000_set_mac - Change the Ethernet Address of the NIC
3190 * @netdev: network interface device structure
3191 * @p: pointer to an address structure
3193 * Returns 0 on success, negative on failure
3195 static int e1000_set_mac(struct net_device *netdev, void *p)
3197 struct e1000_adapter *adapter = netdev_priv(netdev);
3198 struct sockaddr *addr = p;
3200 if (!is_valid_ether_addr(addr->sa_data))
3201 return -EADDRNOTAVAIL;
3203 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3204 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3206 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3208 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3209 /* activate the work around */
3210 e1000e_set_laa_state_82571(&adapter->hw, 1);
3213 * Hold a copy of the LAA in RAR[14] This is done so that
3214 * between the time RAR[0] gets clobbered and the time it
3215 * gets fixed (in e1000_watchdog), the actual LAA is in one
3216 * of the RARs and no incoming packets directed to this port
3217 * are dropped. Eventually the LAA will be in RAR[0] and
3220 e1000e_rar_set(&adapter->hw,
3221 adapter->hw.mac.addr,
3222 adapter->hw.mac.rar_entry_count - 1);
3229 * e1000e_update_phy_task - work thread to update phy
3230 * @work: pointer to our work struct
3232 * this worker thread exists because we must acquire a
3233 * semaphore to read the phy, which we could msleep while
3234 * waiting for it, and we can't msleep in a timer.
3236 static void e1000e_update_phy_task(struct work_struct *work)
3238 struct e1000_adapter *adapter = container_of(work,
3239 struct e1000_adapter, update_phy_task);
3240 e1000_get_phy_info(&adapter->hw);
3244 * Need to wait a few seconds after link up to get diagnostic information from
3247 static void e1000_update_phy_info(unsigned long data)
3249 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3250 schedule_work(&adapter->update_phy_task);
3254 * e1000e_update_stats - Update the board statistics counters
3255 * @adapter: board private structure
3257 void e1000e_update_stats(struct e1000_adapter *adapter)
3259 struct e1000_hw *hw = &adapter->hw;
3260 struct pci_dev *pdev = adapter->pdev;
3263 * Prevent stats update while adapter is being reset, or if the pci
3264 * connection is down.
3266 if (adapter->link_speed == 0)
3268 if (pci_channel_offline(pdev))
3271 adapter->stats.crcerrs += er32(CRCERRS);
3272 adapter->stats.gprc += er32(GPRC);
3273 adapter->stats.gorc += er32(GORCL);
3274 er32(GORCH); /* Clear gorc */
3275 adapter->stats.bprc += er32(BPRC);
3276 adapter->stats.mprc += er32(MPRC);
3277 adapter->stats.roc += er32(ROC);
3279 adapter->stats.mpc += er32(MPC);
3280 adapter->stats.scc += er32(SCC);
3281 adapter->stats.ecol += er32(ECOL);
3282 adapter->stats.mcc += er32(MCC);
3283 adapter->stats.latecol += er32(LATECOL);
3284 adapter->stats.dc += er32(DC);
3285 adapter->stats.xonrxc += er32(XONRXC);
3286 adapter->stats.xontxc += er32(XONTXC);
3287 adapter->stats.xoffrxc += er32(XOFFRXC);
3288 adapter->stats.xofftxc += er32(XOFFTXC);
3289 adapter->stats.gptc += er32(GPTC);
3290 adapter->stats.gotc += er32(GOTCL);
3291 er32(GOTCH); /* Clear gotc */
3292 adapter->stats.rnbc += er32(RNBC);
3293 adapter->stats.ruc += er32(RUC);
3295 adapter->stats.mptc += er32(MPTC);
3296 adapter->stats.bptc += er32(BPTC);
3298 /* used for adaptive IFS */
3300 hw->mac.tx_packet_delta = er32(TPT);
3301 adapter->stats.tpt += hw->mac.tx_packet_delta;
3302 hw->mac.collision_delta = er32(COLC);
3303 adapter->stats.colc += hw->mac.collision_delta;
3305 adapter->stats.algnerrc += er32(ALGNERRC);
3306 adapter->stats.rxerrc += er32(RXERRC);
3307 if (hw->mac.type != e1000_82574)
3308 adapter->stats.tncrs += er32(TNCRS);
3309 adapter->stats.cexterr += er32(CEXTERR);
3310 adapter->stats.tsctc += er32(TSCTC);
3311 adapter->stats.tsctfc += er32(TSCTFC);
3313 /* Fill out the OS statistics structure */
3314 adapter->net_stats.multicast = adapter->stats.mprc;
3315 adapter->net_stats.collisions = adapter->stats.colc;
3320 * RLEC on some newer hardware can be incorrect so build
3321 * our own version based on RUC and ROC
3323 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3324 adapter->stats.crcerrs + adapter->stats.algnerrc +
3325 adapter->stats.ruc + adapter->stats.roc +
3326 adapter->stats.cexterr;
3327 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3329 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3330 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3331 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3334 adapter->net_stats.tx_errors = adapter->stats.ecol +
3335 adapter->stats.latecol;
3336 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3337 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3338 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3340 /* Tx Dropped needs to be maintained elsewhere */
3342 /* Management Stats */
3343 adapter->stats.mgptc += er32(MGTPTC);
3344 adapter->stats.mgprc += er32(MGTPRC);
3345 adapter->stats.mgpdc += er32(MGTPDC);
3349 * e1000_phy_read_status - Update the PHY register status snapshot
3350 * @adapter: board private structure
3352 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3354 struct e1000_hw *hw = &adapter->hw;
3355 struct e1000_phy_regs *phy = &adapter->phy_regs;
3358 if ((er32(STATUS) & E1000_STATUS_LU) &&
3359 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3360 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3361 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3362 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3363 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3364 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3365 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3366 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3367 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3369 e_warn("Error reading PHY register\n");
3372 * Do not read PHY registers if link is not up
3373 * Set values to typical power-on defaults
3375 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3376 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3377 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3379 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3380 ADVERTISE_ALL | ADVERTISE_CSMA);
3382 phy->expansion = EXPANSION_ENABLENPAGE;
3383 phy->ctrl1000 = ADVERTISE_1000FULL;
3385 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3389 static void e1000_print_link_info(struct e1000_adapter *adapter)
3391 struct e1000_hw *hw = &adapter->hw;
3392 u32 ctrl = er32(CTRL);
3394 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3395 adapter->link_speed,
3396 (adapter->link_duplex == FULL_DUPLEX) ?
3397 "Full Duplex" : "Half Duplex",
3398 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3400 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3401 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3404 static bool e1000_has_link(struct e1000_adapter *adapter)
3406 struct e1000_hw *hw = &adapter->hw;
3407 bool link_active = 0;
3411 * get_link_status is set on LSC (link status) interrupt or
3412 * Rx sequence error interrupt. get_link_status will stay
3413 * false until the check_for_link establishes link
3414 * for copper adapters ONLY
3416 switch (hw->phy.media_type) {
3417 case e1000_media_type_copper:
3418 if (hw->mac.get_link_status) {
3419 ret_val = hw->mac.ops.check_for_link(hw);
3420 link_active = !hw->mac.get_link_status;
3425 case e1000_media_type_fiber:
3426 ret_val = hw->mac.ops.check_for_link(hw);
3427 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3429 case e1000_media_type_internal_serdes:
3430 ret_val = hw->mac.ops.check_for_link(hw);
3431 link_active = adapter->hw.mac.serdes_has_link;
3434 case e1000_media_type_unknown:
3438 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3439 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3440 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3441 e_info("Gigabit has been disabled, downgrading speed\n");
3447 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3449 /* make sure the receive unit is started */
3450 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3451 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3452 struct e1000_hw *hw = &adapter->hw;
3453 u32 rctl = er32(RCTL);
3454 ew32(RCTL, rctl | E1000_RCTL_EN);
3455 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3460 * e1000_watchdog - Timer Call-back
3461 * @data: pointer to adapter cast into an unsigned long
3463 static void e1000_watchdog(unsigned long data)
3465 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3467 /* Do the rest outside of interrupt context */
3468 schedule_work(&adapter->watchdog_task);
3470 /* TODO: make this use queue_delayed_work() */
3473 static void e1000_watchdog_task(struct work_struct *work)
3475 struct e1000_adapter *adapter = container_of(work,
3476 struct e1000_adapter, watchdog_task);
3477 struct net_device *netdev = adapter->netdev;
3478 struct e1000_mac_info *mac = &adapter->hw.mac;
3479 struct e1000_ring *tx_ring = adapter->tx_ring;
3480 struct e1000_hw *hw = &adapter->hw;
3484 link = e1000_has_link(adapter);
3485 if ((netif_carrier_ok(netdev)) && link) {
3486 e1000e_enable_receives(adapter);
3490 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3491 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3492 e1000_update_mng_vlan(adapter);
3495 if (!netif_carrier_ok(netdev)) {
3497 /* update snapshot of PHY registers on LSC */
3498 e1000_phy_read_status(adapter);
3499 mac->ops.get_link_up_info(&adapter->hw,
3500 &adapter->link_speed,
3501 &adapter->link_duplex);
3502 e1000_print_link_info(adapter);
3504 * On supported PHYs, check for duplex mismatch only
3505 * if link has autonegotiated at 10/100 half
3507 if ((hw->phy.type == e1000_phy_igp_3 ||
3508 hw->phy.type == e1000_phy_bm) &&
3509 (hw->mac.autoneg == true) &&
3510 (adapter->link_speed == SPEED_10 ||
3511 adapter->link_speed == SPEED_100) &&
3512 (adapter->link_duplex == HALF_DUPLEX)) {
3515 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3517 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3518 e_info("Autonegotiated half duplex but"
3519 " link partner cannot autoneg. "
3520 " Try forcing full duplex if "
3521 "link gets many collisions.\n");
3525 * tweak tx_queue_len according to speed/duplex
3526 * and adjust the timeout factor
3528 netdev->tx_queue_len = adapter->tx_queue_len;
3529 adapter->tx_timeout_factor = 1;
3530 switch (adapter->link_speed) {
3533 netdev->tx_queue_len = 10;
3534 adapter->tx_timeout_factor = 16;
3538 netdev->tx_queue_len = 100;
3539 /* maybe add some timeout factor ? */
3544 * workaround: re-program speed mode bit after
3547 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3550 tarc0 = er32(TARC(0));
3551 tarc0 &= ~SPEED_MODE_BIT;
3552 ew32(TARC(0), tarc0);
3556 * disable TSO for pcie and 10/100 speeds, to avoid
3557 * some hardware issues
3559 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3560 switch (adapter->link_speed) {
3563 e_info("10/100 speed: disabling TSO\n");
3564 netdev->features &= ~NETIF_F_TSO;
3565 netdev->features &= ~NETIF_F_TSO6;
3568 netdev->features |= NETIF_F_TSO;
3569 netdev->features |= NETIF_F_TSO6;
3578 * enable transmits in the hardware, need to do this
3579 * after setting TARC(0)
3582 tctl |= E1000_TCTL_EN;
3585 netif_carrier_on(netdev);
3586 netif_tx_wake_all_queues(netdev);
3588 if (!test_bit(__E1000_DOWN, &adapter->state))
3589 mod_timer(&adapter->phy_info_timer,
3590 round_jiffies(jiffies + 2 * HZ));
3593 if (netif_carrier_ok(netdev)) {
3594 adapter->link_speed = 0;
3595 adapter->link_duplex = 0;
3596 e_info("Link is Down\n");
3597 netif_carrier_off(netdev);
3598 netif_tx_stop_all_queues(netdev);
3599 if (!test_bit(__E1000_DOWN, &adapter->state))
3600 mod_timer(&adapter->phy_info_timer,
3601 round_jiffies(jiffies + 2 * HZ));
3603 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3604 schedule_work(&adapter->reset_task);
3609 e1000e_update_stats(adapter);
3611 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3612 adapter->tpt_old = adapter->stats.tpt;
3613 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3614 adapter->colc_old = adapter->stats.colc;
3616 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3617 adapter->gorc_old = adapter->stats.gorc;
3618 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3619 adapter->gotc_old = adapter->stats.gotc;
3621 e1000e_update_adaptive(&adapter->hw);
3623 if (!netif_carrier_ok(netdev)) {
3624 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3628 * We've lost link, so the controller stops DMA,
3629 * but we've got queued Tx work that's never going
3630 * to get done, so reset controller to flush Tx.
3631 * (Do the reset outside of interrupt context).
3633 adapter->tx_timeout_count++;
3634 schedule_work(&adapter->reset_task);
3638 /* Cause software interrupt to ensure Rx ring is cleaned */
3639 if (adapter->msix_entries)
3640 ew32(ICS, adapter->rx_ring->ims_val);
3642 ew32(ICS, E1000_ICS_RXDMT0);
3644 /* Force detection of hung controller every watchdog period */
3645 adapter->detect_tx_hung = 1;
3648 * With 82571 controllers, LAA may be overwritten due to controller
3649 * reset from the other port. Set the appropriate LAA in RAR[0]
3651 if (e1000e_get_laa_state_82571(hw))
3652 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3654 /* Reset the timer */
3655 if (!test_bit(__E1000_DOWN, &adapter->state))
3656 mod_timer(&adapter->watchdog_timer,
3657 round_jiffies(jiffies + 2 * HZ));
3660 #define E1000_TX_FLAGS_CSUM 0x00000001
3661 #define E1000_TX_FLAGS_VLAN 0x00000002
3662 #define E1000_TX_FLAGS_TSO 0x00000004
3663 #define E1000_TX_FLAGS_IPV4 0x00000008
3664 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3665 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3667 static int e1000_tso(struct e1000_adapter *adapter,
3668 struct sk_buff *skb)
3670 struct e1000_ring *tx_ring = adapter->tx_ring;
3671 struct e1000_context_desc *context_desc;
3672 struct e1000_buffer *buffer_info;
3675 u16 ipcse = 0, tucse, mss;
3676 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3679 if (skb_is_gso(skb)) {
3680 if (skb_header_cloned(skb)) {
3681 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3686 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3687 mss = skb_shinfo(skb)->gso_size;
3688 if (skb->protocol == htons(ETH_P_IP)) {
3689 struct iphdr *iph = ip_hdr(skb);
3692 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3696 cmd_length = E1000_TXD_CMD_IP;
3697 ipcse = skb_transport_offset(skb) - 1;
3698 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3699 ipv6_hdr(skb)->payload_len = 0;
3700 tcp_hdr(skb)->check =
3701 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3702 &ipv6_hdr(skb)->daddr,
3706 ipcss = skb_network_offset(skb);
3707 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3708 tucss = skb_transport_offset(skb);
3709 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3712 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3713 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3715 i = tx_ring->next_to_use;
3716 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3717 buffer_info = &tx_ring->buffer_info[i];
3719 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3720 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3721 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3722 context_desc->upper_setup.tcp_fields.tucss = tucss;
3723 context_desc->upper_setup.tcp_fields.tucso = tucso;
3724 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3725 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3726 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3727 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3729 buffer_info->time_stamp = jiffies;
3730 buffer_info->next_to_watch = i;
3733 if (i == tx_ring->count)
3735 tx_ring->next_to_use = i;
3743 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3745 struct e1000_ring *tx_ring = adapter->tx_ring;
3746 struct e1000_context_desc *context_desc;
3747 struct e1000_buffer *buffer_info;
3750 u32 cmd_len = E1000_TXD_CMD_DEXT;
3752 if (skb->ip_summed != CHECKSUM_PARTIAL)
3755 switch (skb->protocol) {
3756 case __constant_htons(ETH_P_IP):
3757 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3758 cmd_len |= E1000_TXD_CMD_TCP;
3760 case __constant_htons(ETH_P_IPV6):
3761 /* XXX not handling all IPV6 headers */
3762 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3763 cmd_len |= E1000_TXD_CMD_TCP;
3766 if (unlikely(net_ratelimit()))
3767 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3771 css = skb_transport_offset(skb);
3773 i = tx_ring->next_to_use;
3774 buffer_info = &tx_ring->buffer_info[i];
3775 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3777 context_desc->lower_setup.ip_config = 0;
3778 context_desc->upper_setup.tcp_fields.tucss = css;
3779 context_desc->upper_setup.tcp_fields.tucso =
3780 css + skb->csum_offset;
3781 context_desc->upper_setup.tcp_fields.tucse = 0;
3782 context_desc->tcp_seg_setup.data = 0;
3783 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3785 buffer_info->time_stamp = jiffies;
3786 buffer_info->next_to_watch = i;
3789 if (i == tx_ring->count)
3791 tx_ring->next_to_use = i;
3796 #define E1000_MAX_PER_TXD 8192
3797 #define E1000_MAX_TXD_PWR 12
3799 static int e1000_tx_map(struct e1000_adapter *adapter,
3800 struct sk_buff *skb, unsigned int first,
3801 unsigned int max_per_txd, unsigned int nr_frags,
3804 struct e1000_ring *tx_ring = adapter->tx_ring;
3805 struct e1000_buffer *buffer_info;
3806 unsigned int len = skb->len - skb->data_len;
3807 unsigned int offset = 0, size, count = 0, i;
3810 i = tx_ring->next_to_use;
3813 buffer_info = &tx_ring->buffer_info[i];
3814 size = min(len, max_per_txd);
3816 /* Workaround for premature desc write-backs
3817 * in TSO mode. Append 4-byte sentinel desc */
3818 if (mss && !nr_frags && size == len && size > 8)
3821 buffer_info->length = size;
3822 /* set time_stamp *before* dma to help avoid a possible race */
3823 buffer_info->time_stamp = jiffies;
3825 pci_map_single(adapter->pdev,
3829 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3830 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3831 adapter->tx_dma_failed++;
3834 buffer_info->next_to_watch = i;
3840 if (i == tx_ring->count)
3844 for (f = 0; f < nr_frags; f++) {
3845 struct skb_frag_struct *frag;
3847 frag = &skb_shinfo(skb)->frags[f];
3849 offset = frag->page_offset;
3852 buffer_info = &tx_ring->buffer_info[i];
3853 size = min(len, max_per_txd);
3854 /* Workaround for premature desc write-backs
3855 * in TSO mode. Append 4-byte sentinel desc */
3856 if (mss && f == (nr_frags-1) && size == len && size > 8)
3859 buffer_info->length = size;
3860 buffer_info->time_stamp = jiffies;
3862 pci_map_page(adapter->pdev,
3867 if (pci_dma_mapping_error(adapter->pdev,
3868 buffer_info->dma)) {
3869 dev_err(&adapter->pdev->dev,
3870 "TX DMA page map failed\n");
3871 adapter->tx_dma_failed++;
3875 buffer_info->next_to_watch = i;
3882 if (i == tx_ring->count)
3888 i = tx_ring->count - 1;
3892 tx_ring->buffer_info[i].skb = skb;
3893 tx_ring->buffer_info[first].next_to_watch = i;
3898 static void e1000_tx_queue(struct e1000_adapter *adapter,
3899 int tx_flags, int count)
3901 struct e1000_ring *tx_ring = adapter->tx_ring;
3902 struct e1000_tx_desc *tx_desc = NULL;
3903 struct e1000_buffer *buffer_info;
3904 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3907 if (tx_flags & E1000_TX_FLAGS_TSO) {
3908 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3910 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3912 if (tx_flags & E1000_TX_FLAGS_IPV4)
3913 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3916 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3917 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3918 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3921 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3922 txd_lower |= E1000_TXD_CMD_VLE;
3923 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3926 i = tx_ring->next_to_use;
3929 buffer_info = &tx_ring->buffer_info[i];
3930 tx_desc = E1000_TX_DESC(*tx_ring, i);
3931 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3932 tx_desc->lower.data =
3933 cpu_to_le32(txd_lower | buffer_info->length);
3934 tx_desc->upper.data = cpu_to_le32(txd_upper);
3937 if (i == tx_ring->count)
3941 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3944 * Force memory writes to complete before letting h/w
3945 * know there are new descriptors to fetch. (Only
3946 * applicable for weak-ordered memory model archs,
3951 tx_ring->next_to_use = i;
3952 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3954 * we need this if more than one processor can write to our tail
3955 * at a time, it synchronizes IO on IA64/Altix systems
3960 #define MINIMUM_DHCP_PACKET_SIZE 282
3961 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3962 struct sk_buff *skb)
3964 struct e1000_hw *hw = &adapter->hw;
3967 if (vlan_tx_tag_present(skb)) {
3968 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3969 && (adapter->hw.mng_cookie.status &
3970 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3974 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3977 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3981 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3984 if (ip->protocol != IPPROTO_UDP)
3987 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3988 if (ntohs(udp->dest) != 67)
3991 offset = (u8 *)udp + 8 - skb->data;
3992 length = skb->len - offset;
3993 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3999 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4001 struct e1000_adapter *adapter = netdev_priv(netdev);
4003 netif_stop_queue(netdev);
4005 * Herbert's original patch had:
4006 * smp_mb__after_netif_stop_queue();
4007 * but since that doesn't exist yet, just open code it.
4012 * We need to check again in a case another CPU has just
4013 * made room available.
4015 if (e1000_desc_unused(adapter->tx_ring) < size)
4019 netif_start_queue(netdev);
4020 ++adapter->restart_queue;
4024 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4026 struct e1000_adapter *adapter = netdev_priv(netdev);
4028 if (e1000_desc_unused(adapter->tx_ring) >= size)
4030 return __e1000_maybe_stop_tx(netdev, size);
4033 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4034 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4036 struct e1000_adapter *adapter = netdev_priv(netdev);
4037 struct e1000_ring *tx_ring = adapter->tx_ring;
4039 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4040 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4041 unsigned int tx_flags = 0;
4042 unsigned int len = skb->len - skb->data_len;
4043 unsigned long irq_flags;
4044 unsigned int nr_frags;
4050 if (test_bit(__E1000_DOWN, &adapter->state)) {
4051 dev_kfree_skb_any(skb);
4052 return NETDEV_TX_OK;
4055 if (skb->len <= 0) {
4056 dev_kfree_skb_any(skb);
4057 return NETDEV_TX_OK;
4060 mss = skb_shinfo(skb)->gso_size;
4062 * The controller does a simple calculation to
4063 * make sure there is enough room in the FIFO before
4064 * initiating the DMA for each buffer. The calc is:
4065 * 4 = ceil(buffer len/mss). To make sure we don't
4066 * overrun the FIFO, adjust the max buffer len if mss
4071 max_per_txd = min(mss << 2, max_per_txd);
4072 max_txd_pwr = fls(max_per_txd) - 1;
4075 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4076 * points to just header, pull a few bytes of payload from
4077 * frags into skb->data
4079 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4081 * we do this workaround for ES2LAN, but it is un-necessary,
4082 * avoiding it could save a lot of cycles
4084 if (skb->data_len && (hdr_len == len)) {
4085 unsigned int pull_size;
4087 pull_size = min((unsigned int)4, skb->data_len);
4088 if (!__pskb_pull_tail(skb, pull_size)) {
4089 e_err("__pskb_pull_tail failed.\n");
4090 dev_kfree_skb_any(skb);
4091 return NETDEV_TX_OK;
4093 len = skb->len - skb->data_len;
4097 /* reserve a descriptor for the offload context */
4098 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4102 count += TXD_USE_COUNT(len, max_txd_pwr);
4104 nr_frags = skb_shinfo(skb)->nr_frags;
4105 for (f = 0; f < nr_frags; f++)
4106 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4109 if (adapter->hw.mac.tx_pkt_filtering)
4110 e1000_transfer_dhcp_info(adapter, skb);
4112 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4113 /* Collision - tell upper layer to requeue */
4114 return NETDEV_TX_LOCKED;
4117 * need: count + 2 desc gap to keep tail from touching
4118 * head, otherwise try next time
4120 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4121 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4122 return NETDEV_TX_BUSY;
4125 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4126 tx_flags |= E1000_TX_FLAGS_VLAN;
4127 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4130 first = tx_ring->next_to_use;
4132 tso = e1000_tso(adapter, skb);
4134 dev_kfree_skb_any(skb);
4135 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4136 return NETDEV_TX_OK;
4140 tx_flags |= E1000_TX_FLAGS_TSO;
4141 else if (e1000_tx_csum(adapter, skb))
4142 tx_flags |= E1000_TX_FLAGS_CSUM;
4145 * Old method was to assume IPv4 packet by default if TSO was enabled.
4146 * 82571 hardware supports TSO capabilities for IPv6 as well...
4147 * no longer assume, we must.
4149 if (skb->protocol == htons(ETH_P_IP))
4150 tx_flags |= E1000_TX_FLAGS_IPV4;
4152 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4154 /* handle pci_map_single() error in e1000_tx_map */
4155 dev_kfree_skb_any(skb);
4156 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4157 return NETDEV_TX_OK;
4160 e1000_tx_queue(adapter, tx_flags, count);
4162 netdev->trans_start = jiffies;
4164 /* Make sure there is space in the ring for the next send. */
4165 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4167 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4168 return NETDEV_TX_OK;
4172 * e1000_tx_timeout - Respond to a Tx Hang
4173 * @netdev: network interface device structure
4175 static void e1000_tx_timeout(struct net_device *netdev)
4177 struct e1000_adapter *adapter = netdev_priv(netdev);
4179 /* Do the reset outside of interrupt context */
4180 adapter->tx_timeout_count++;
4181 schedule_work(&adapter->reset_task);
4184 static void e1000_reset_task(struct work_struct *work)
4186 struct e1000_adapter *adapter;
4187 adapter = container_of(work, struct e1000_adapter, reset_task);
4189 e1000e_reinit_locked(adapter);
4193 * e1000_get_stats - Get System Network Statistics
4194 * @netdev: network interface device structure
4196 * Returns the address of the device statistics structure.
4197 * The statistics are actually updated from the timer callback.
4199 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4201 struct e1000_adapter *adapter = netdev_priv(netdev);
4203 /* only return the current stats */
4204 return &adapter->net_stats;
4208 * e1000_change_mtu - Change the Maximum Transfer Unit
4209 * @netdev: network interface device structure
4210 * @new_mtu: new value for maximum frame size
4212 * Returns 0 on success, negative on failure
4214 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4216 struct e1000_adapter *adapter = netdev_priv(netdev);
4217 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4219 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4220 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4221 e_err("Invalid MTU setting\n");
4225 /* Jumbo frame size limits */
4226 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4227 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4228 e_err("Jumbo Frames not supported.\n");
4231 if (adapter->hw.phy.type == e1000_phy_ife) {
4232 e_err("Jumbo Frames not supported.\n");
4237 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4238 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4239 e_err("MTU > 9216 not supported.\n");
4243 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4245 /* e1000e_down has a dependency on max_frame_size */
4246 adapter->max_frame_size = max_frame;
4247 if (netif_running(netdev))
4248 e1000e_down(adapter);
4251 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4252 * means we reserve 2 more, this pushes us to allocate from the next
4254 * i.e. RXBUFFER_2048 --> size-4096 slab
4255 * However with the new *_jumbo_rx* routines, jumbo receives will use
4259 if (max_frame <= 256)
4260 adapter->rx_buffer_len = 256;
4261 else if (max_frame <= 512)
4262 adapter->rx_buffer_len = 512;
4263 else if (max_frame <= 1024)
4264 adapter->rx_buffer_len = 1024;
4265 else if (max_frame <= 2048)
4266 adapter->rx_buffer_len = 2048;
4268 adapter->rx_buffer_len = 4096;
4270 /* adjust allocation if LPE protects us, and we aren't using SBP */
4271 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4272 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4273 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4276 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4277 netdev->mtu = new_mtu;
4279 if (netif_running(netdev))
4282 e1000e_reset(adapter);
4284 clear_bit(__E1000_RESETTING, &adapter->state);
4289 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4292 struct e1000_adapter *adapter = netdev_priv(netdev);
4293 struct mii_ioctl_data *data = if_mii(ifr);
4295 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4300 data->phy_id = adapter->hw.phy.addr;
4303 if (!capable(CAP_NET_ADMIN))
4305 switch (data->reg_num & 0x1F) {
4307 data->val_out = adapter->phy_regs.bmcr;
4310 data->val_out = adapter->phy_regs.bmsr;
4313 data->val_out = (adapter->hw.phy.id >> 16);
4316 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4319 data->val_out = adapter->phy_regs.advertise;
4322 data->val_out = adapter->phy_regs.lpa;
4325 data->val_out = adapter->phy_regs.expansion;
4328 data->val_out = adapter->phy_regs.ctrl1000;
4331 data->val_out = adapter->phy_regs.stat1000;
4334 data->val_out = adapter->phy_regs.estatus;
4347 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4353 return e1000_mii_ioctl(netdev, ifr, cmd);
4359 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4361 struct net_device *netdev = pci_get_drvdata(pdev);
4362 struct e1000_adapter *adapter = netdev_priv(netdev);
4363 struct e1000_hw *hw = &adapter->hw;
4364 u32 ctrl, ctrl_ext, rctl, status;
4365 u32 wufc = adapter->wol;
4368 netif_device_detach(netdev);
4370 if (netif_running(netdev)) {
4371 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4372 e1000e_down(adapter);
4373 e1000_free_irq(adapter);
4375 e1000e_reset_interrupt_capability(adapter);
4377 retval = pci_save_state(pdev);
4381 status = er32(STATUS);
4382 if (status & E1000_STATUS_LU)
4383 wufc &= ~E1000_WUFC_LNKC;
4386 e1000_setup_rctl(adapter);
4387 e1000_set_multi(netdev);
4389 /* turn on all-multi mode if wake on multicast is enabled */
4390 if (wufc & E1000_WUFC_MC) {
4392 rctl |= E1000_RCTL_MPE;
4397 /* advertise wake from D3Cold */
4398 #define E1000_CTRL_ADVD3WUC 0x00100000
4399 /* phy power management enable */
4400 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4401 ctrl |= E1000_CTRL_ADVD3WUC |
4402 E1000_CTRL_EN_PHY_PWR_MGMT;
4405 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4406 adapter->hw.phy.media_type ==
4407 e1000_media_type_internal_serdes) {
4408 /* keep the laser running in D3 */
4409 ctrl_ext = er32(CTRL_EXT);
4410 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4411 ew32(CTRL_EXT, ctrl_ext);
4414 if (adapter->flags & FLAG_IS_ICH)
4415 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4417 /* Allow time for pending master requests to run */
4418 e1000e_disable_pcie_master(&adapter->hw);
4420 ew32(WUC, E1000_WUC_PME_EN);
4422 pci_enable_wake(pdev, PCI_D3hot, 1);
4423 pci_enable_wake(pdev, PCI_D3cold, 1);
4427 pci_enable_wake(pdev, PCI_D3hot, 0);
4428 pci_enable_wake(pdev, PCI_D3cold, 0);
4431 /* make sure adapter isn't asleep if manageability is enabled */
4432 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4433 pci_enable_wake(pdev, PCI_D3hot, 1);
4434 pci_enable_wake(pdev, PCI_D3cold, 1);
4437 if (adapter->hw.phy.type == e1000_phy_igp_3)
4438 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4441 * Release control of h/w to f/w. If f/w is AMT enabled, this
4442 * would have already happened in close and is redundant.
4444 e1000_release_hw_control(adapter);
4446 pci_disable_device(pdev);
4448 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4453 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4459 * 82573 workaround - disable L1 ASPM on mobile chipsets
4461 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4462 * resulting in lost data or garbage information on the pci-e link
4463 * level. This could result in (false) bad EEPROM checksum errors,
4464 * long ping times (up to 2s) or even a system freeze/hang.
4466 * Unfortunately this feature saves about 1W power consumption when
4469 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4470 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4472 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4474 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4479 static int e1000_resume(struct pci_dev *pdev)
4481 struct net_device *netdev = pci_get_drvdata(pdev);
4482 struct e1000_adapter *adapter = netdev_priv(netdev);
4483 struct e1000_hw *hw = &adapter->hw;
4486 pci_set_power_state(pdev, PCI_D0);
4487 pci_restore_state(pdev);
4488 e1000e_disable_l1aspm(pdev);
4490 err = pci_enable_device_mem(pdev);
4493 "Cannot enable PCI device from suspend\n");
4497 pci_set_master(pdev);
4499 pci_enable_wake(pdev, PCI_D3hot, 0);
4500 pci_enable_wake(pdev, PCI_D3cold, 0);
4502 e1000e_set_interrupt_capability(adapter);
4503 if (netif_running(netdev)) {
4504 err = e1000_request_irq(adapter);
4509 e1000e_power_up_phy(adapter);
4510 e1000e_reset(adapter);
4513 e1000_init_manageability(adapter);
4515 if (netif_running(netdev))
4518 netif_device_attach(netdev);
4521 * If the controller has AMT, do not set DRV_LOAD until the interface
4522 * is up. For all other cases, let the f/w know that the h/w is now
4523 * under the control of the driver.
4525 if (!(adapter->flags & FLAG_HAS_AMT))
4526 e1000_get_hw_control(adapter);
4532 static void e1000_shutdown(struct pci_dev *pdev)
4534 e1000_suspend(pdev, PMSG_SUSPEND);
4537 #ifdef CONFIG_NET_POLL_CONTROLLER
4539 * Polling 'interrupt' - used by things like netconsole to send skbs
4540 * without having to re-enable interrupts. It's not called while
4541 * the interrupt routine is executing.
4543 static void e1000_netpoll(struct net_device *netdev)
4545 struct e1000_adapter *adapter = netdev_priv(netdev);
4547 disable_irq(adapter->pdev->irq);
4548 e1000_intr(adapter->pdev->irq, netdev);
4550 enable_irq(adapter->pdev->irq);
4555 * e1000_io_error_detected - called when PCI error is detected
4556 * @pdev: Pointer to PCI device
4557 * @state: The current pci connection state
4559 * This function is called after a PCI bus error affecting
4560 * this device has been detected.
4562 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4563 pci_channel_state_t state)
4565 struct net_device *netdev = pci_get_drvdata(pdev);
4566 struct e1000_adapter *adapter = netdev_priv(netdev);
4568 netif_device_detach(netdev);
4570 if (netif_running(netdev))
4571 e1000e_down(adapter);
4572 pci_disable_device(pdev);
4574 /* Request a slot slot reset. */
4575 return PCI_ERS_RESULT_NEED_RESET;
4579 * e1000_io_slot_reset - called after the pci bus has been reset.
4580 * @pdev: Pointer to PCI device
4582 * Restart the card from scratch, as if from a cold-boot. Implementation
4583 * resembles the first-half of the e1000_resume routine.
4585 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4587 struct net_device *netdev = pci_get_drvdata(pdev);
4588 struct e1000_adapter *adapter = netdev_priv(netdev);
4589 struct e1000_hw *hw = &adapter->hw;
4592 e1000e_disable_l1aspm(pdev);
4593 err = pci_enable_device_mem(pdev);
4596 "Cannot re-enable PCI device after reset.\n");
4597 return PCI_ERS_RESULT_DISCONNECT;
4599 pci_set_master(pdev);
4600 pci_restore_state(pdev);
4602 pci_enable_wake(pdev, PCI_D3hot, 0);
4603 pci_enable_wake(pdev, PCI_D3cold, 0);
4605 e1000e_reset(adapter);
4608 return PCI_ERS_RESULT_RECOVERED;
4612 * e1000_io_resume - called when traffic can start flowing again.
4613 * @pdev: Pointer to PCI device
4615 * This callback is called when the error recovery driver tells us that
4616 * its OK to resume normal operation. Implementation resembles the
4617 * second-half of the e1000_resume routine.
4619 static void e1000_io_resume(struct pci_dev *pdev)
4621 struct net_device *netdev = pci_get_drvdata(pdev);
4622 struct e1000_adapter *adapter = netdev_priv(netdev);
4624 e1000_init_manageability(adapter);
4626 if (netif_running(netdev)) {
4627 if (e1000e_up(adapter)) {
4629 "can't bring device back up after reset\n");
4634 netif_device_attach(netdev);
4637 * If the controller has AMT, do not set DRV_LOAD until the interface
4638 * is up. For all other cases, let the f/w know that the h/w is now
4639 * under the control of the driver.
4641 if (!(adapter->flags & FLAG_HAS_AMT))
4642 e1000_get_hw_control(adapter);
4646 static void e1000_print_device_info(struct e1000_adapter *adapter)
4648 struct e1000_hw *hw = &adapter->hw;
4649 struct net_device *netdev = adapter->netdev;
4652 /* print bus type/speed/width info */
4653 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4655 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4659 e_info("Intel(R) PRO/%s Network Connection\n",
4660 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4661 e1000e_read_pba_num(hw, &pba_num);
4662 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4663 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4666 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4668 struct e1000_hw *hw = &adapter->hw;
4672 if (hw->mac.type != e1000_82573)
4675 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4676 if (!(le16_to_cpu(buf) & (1 << 0))) {
4677 /* Deep Smart Power Down (DSPD) */
4678 dev_warn(&adapter->pdev->dev,
4679 "Warning: detected DSPD enabled in EEPROM\n");
4682 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4683 if (le16_to_cpu(buf) & (3 << 2)) {
4685 dev_warn(&adapter->pdev->dev,
4686 "Warning: detected ASPM enabled in EEPROM\n");
4691 * e1000_probe - Device Initialization Routine
4692 * @pdev: PCI device information struct
4693 * @ent: entry in e1000_pci_tbl
4695 * Returns 0 on success, negative on failure
4697 * e1000_probe initializes an adapter identified by a pci_dev structure.
4698 * The OS initialization, configuring of the adapter private structure,
4699 * and a hardware reset occur.
4701 static int __devinit e1000_probe(struct pci_dev *pdev,
4702 const struct pci_device_id *ent)
4704 struct net_device *netdev;
4705 struct e1000_adapter *adapter;
4706 struct e1000_hw *hw;
4707 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4708 resource_size_t mmio_start, mmio_len;
4709 resource_size_t flash_start, flash_len;
4711 static int cards_found;
4712 int i, err, pci_using_dac;
4713 u16 eeprom_data = 0;
4714 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4716 e1000e_disable_l1aspm(pdev);
4718 err = pci_enable_device_mem(pdev);
4723 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4725 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4729 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4731 err = pci_set_consistent_dma_mask(pdev,
4734 dev_err(&pdev->dev, "No usable DMA "
4735 "configuration, aborting\n");
4741 err = pci_request_selected_regions(pdev,
4742 pci_select_bars(pdev, IORESOURCE_MEM),
4743 e1000e_driver_name);
4747 pci_set_master(pdev);
4748 pci_save_state(pdev);
4751 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4753 goto err_alloc_etherdev;
4755 SET_NETDEV_DEV(netdev, &pdev->dev);
4757 pci_set_drvdata(pdev, netdev);
4758 adapter = netdev_priv(netdev);
4760 adapter->netdev = netdev;
4761 adapter->pdev = pdev;
4763 adapter->pba = ei->pba;
4764 adapter->flags = ei->flags;
4765 adapter->hw.adapter = adapter;
4766 adapter->hw.mac.type = ei->mac;
4767 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4769 mmio_start = pci_resource_start(pdev, 0);
4770 mmio_len = pci_resource_len(pdev, 0);
4773 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4774 if (!adapter->hw.hw_addr)
4777 if ((adapter->flags & FLAG_HAS_FLASH) &&
4778 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4779 flash_start = pci_resource_start(pdev, 1);
4780 flash_len = pci_resource_len(pdev, 1);
4781 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4782 if (!adapter->hw.flash_address)
4786 /* construct the net_device struct */
4787 netdev->open = &e1000_open;
4788 netdev->stop = &e1000_close;
4789 netdev->hard_start_xmit = &e1000_xmit_frame;
4790 netdev->get_stats = &e1000_get_stats;
4791 netdev->set_multicast_list = &e1000_set_multi;
4792 netdev->set_mac_address = &e1000_set_mac;
4793 netdev->change_mtu = &e1000_change_mtu;
4794 netdev->do_ioctl = &e1000_ioctl;
4795 e1000e_set_ethtool_ops(netdev);
4796 netdev->tx_timeout = &e1000_tx_timeout;
4797 netdev->watchdog_timeo = 5 * HZ;
4798 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4799 netdev->vlan_rx_register = e1000_vlan_rx_register;
4800 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4801 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4802 #ifdef CONFIG_NET_POLL_CONTROLLER
4803 netdev->poll_controller = e1000_netpoll;
4805 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4807 netdev->mem_start = mmio_start;
4808 netdev->mem_end = mmio_start + mmio_len;
4810 adapter->bd_number = cards_found++;
4812 e1000e_check_options(adapter);
4814 /* setup adapter struct */
4815 err = e1000_sw_init(adapter);
4821 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4822 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4823 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4825 err = ei->get_variants(adapter);
4829 if ((adapter->flags & FLAG_IS_ICH) &&
4830 (adapter->flags & FLAG_READ_ONLY_NVM))
4831 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4833 hw->mac.ops.get_bus_info(&adapter->hw);
4835 adapter->hw.phy.autoneg_wait_to_complete = 0;
4837 /* Copper options */
4838 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4839 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4840 adapter->hw.phy.disable_polarity_correction = 0;
4841 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4844 if (e1000_check_reset_block(&adapter->hw))
4845 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4847 netdev->features = NETIF_F_SG |
4849 NETIF_F_HW_VLAN_TX |
4852 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4853 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4855 netdev->features |= NETIF_F_TSO;
4856 netdev->features |= NETIF_F_TSO6;
4858 netdev->vlan_features |= NETIF_F_TSO;
4859 netdev->vlan_features |= NETIF_F_TSO6;
4860 netdev->vlan_features |= NETIF_F_HW_CSUM;
4861 netdev->vlan_features |= NETIF_F_SG;
4864 netdev->features |= NETIF_F_HIGHDMA;
4867 * We should not be using LLTX anymore, but we are still Tx faster with
4870 netdev->features |= NETIF_F_LLTX;
4872 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4873 adapter->flags |= FLAG_MNG_PT_ENABLED;
4876 * before reading the NVM, reset the controller to
4877 * put the device in a known good starting state
4879 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4882 * systems with ASPM and others may see the checksum fail on the first
4883 * attempt. Let's give it a few tries
4886 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4889 e_err("The NVM Checksum Is Not Valid\n");
4895 e1000_eeprom_checks(adapter);
4897 /* copy the MAC address out of the NVM */
4898 if (e1000e_read_mac_addr(&adapter->hw))
4899 e_err("NVM Read Error while reading MAC address\n");
4901 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4902 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4904 if (!is_valid_ether_addr(netdev->perm_addr)) {
4905 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
4910 init_timer(&adapter->watchdog_timer);
4911 adapter->watchdog_timer.function = &e1000_watchdog;
4912 adapter->watchdog_timer.data = (unsigned long) adapter;
4914 init_timer(&adapter->phy_info_timer);
4915 adapter->phy_info_timer.function = &e1000_update_phy_info;
4916 adapter->phy_info_timer.data = (unsigned long) adapter;
4918 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4919 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4920 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4921 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4923 /* Initialize link parameters. User can change them with ethtool */
4924 adapter->hw.mac.autoneg = 1;
4925 adapter->fc_autoneg = 1;
4926 adapter->hw.fc.original_type = e1000_fc_default;
4927 adapter->hw.fc.type = e1000_fc_default;
4928 adapter->hw.phy.autoneg_advertised = 0x2f;
4930 /* ring size defaults */
4931 adapter->rx_ring->count = 256;
4932 adapter->tx_ring->count = 256;
4935 * Initial Wake on LAN setting - If APM wake is enabled in
4936 * the EEPROM, enable the ACPI Magic Packet filter
4938 if (adapter->flags & FLAG_APME_IN_WUC) {
4939 /* APME bit in EEPROM is mapped to WUC.APME */
4940 eeprom_data = er32(WUC);
4941 eeprom_apme_mask = E1000_WUC_APME;
4942 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4943 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4944 (adapter->hw.bus.func == 1))
4945 e1000_read_nvm(&adapter->hw,
4946 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4948 e1000_read_nvm(&adapter->hw,
4949 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4952 /* fetch WoL from EEPROM */
4953 if (eeprom_data & eeprom_apme_mask)
4954 adapter->eeprom_wol |= E1000_WUFC_MAG;
4957 * now that we have the eeprom settings, apply the special cases
4958 * where the eeprom may be wrong or the board simply won't support
4959 * wake on lan on a particular port
4961 if (!(adapter->flags & FLAG_HAS_WOL))
4962 adapter->eeprom_wol = 0;
4964 /* initialize the wol settings based on the eeprom settings */
4965 adapter->wol = adapter->eeprom_wol;
4967 /* reset the hardware with the new settings */
4968 e1000e_reset(adapter);
4971 * If the controller has AMT, do not set DRV_LOAD until the interface
4972 * is up. For all other cases, let the f/w know that the h/w is now
4973 * under the control of the driver.
4975 if (!(adapter->flags & FLAG_HAS_AMT))
4976 e1000_get_hw_control(adapter);
4978 /* tell the stack to leave us alone until e1000_open() is called */
4979 netif_carrier_off(netdev);
4980 netif_tx_stop_all_queues(netdev);
4982 strcpy(netdev->name, "eth%d");
4983 err = register_netdev(netdev);
4987 e1000_print_device_info(adapter);
4992 if (!(adapter->flags & FLAG_HAS_AMT))
4993 e1000_release_hw_control(adapter);
4995 if (!e1000_check_reset_block(&adapter->hw))
4996 e1000_phy_hw_reset(&adapter->hw);
4999 kfree(adapter->tx_ring);
5000 kfree(adapter->rx_ring);
5002 if (adapter->hw.flash_address)
5003 iounmap(adapter->hw.flash_address);
5005 iounmap(adapter->hw.hw_addr);
5007 free_netdev(netdev);
5009 pci_release_selected_regions(pdev,
5010 pci_select_bars(pdev, IORESOURCE_MEM));
5013 pci_disable_device(pdev);
5018 * e1000_remove - Device Removal Routine
5019 * @pdev: PCI device information struct
5021 * e1000_remove is called by the PCI subsystem to alert the driver
5022 * that it should release a PCI device. The could be caused by a
5023 * Hot-Plug event, or because the driver is going to be removed from
5026 static void __devexit e1000_remove(struct pci_dev *pdev)
5028 struct net_device *netdev = pci_get_drvdata(pdev);
5029 struct e1000_adapter *adapter = netdev_priv(netdev);
5032 * flush_scheduled work may reschedule our watchdog task, so
5033 * explicitly disable watchdog tasks from being rescheduled
5035 set_bit(__E1000_DOWN, &adapter->state);
5036 del_timer_sync(&adapter->watchdog_timer);
5037 del_timer_sync(&adapter->phy_info_timer);
5039 flush_scheduled_work();
5042 * Release control of h/w to f/w. If f/w is AMT enabled, this
5043 * would have already happened in close and is redundant.
5045 e1000_release_hw_control(adapter);
5047 unregister_netdev(netdev);
5049 if (!e1000_check_reset_block(&adapter->hw))
5050 e1000_phy_hw_reset(&adapter->hw);
5052 e1000e_reset_interrupt_capability(adapter);
5053 kfree(adapter->tx_ring);
5054 kfree(adapter->rx_ring);
5056 iounmap(adapter->hw.hw_addr);
5057 if (adapter->hw.flash_address)
5058 iounmap(adapter->hw.flash_address);
5059 pci_release_selected_regions(pdev,
5060 pci_select_bars(pdev, IORESOURCE_MEM));
5062 free_netdev(netdev);
5064 pci_disable_device(pdev);
5067 /* PCI Error Recovery (ERS) */
5068 static struct pci_error_handlers e1000_err_handler = {
5069 .error_detected = e1000_io_error_detected,
5070 .slot_reset = e1000_io_slot_reset,
5071 .resume = e1000_io_resume,
5074 static struct pci_device_id e1000_pci_tbl[] = {
5075 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5077 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5079 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5080 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5081 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5088 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5090 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5092 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5094 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5097 board_80003es2lan },
5098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5099 board_80003es2lan },
5100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5101 board_80003es2lan },
5102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5103 board_80003es2lan },
5105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5127 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5130 { } /* terminate list */
5132 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5134 /* PCI Device API Driver */
5135 static struct pci_driver e1000_driver = {
5136 .name = e1000e_driver_name,
5137 .id_table = e1000_pci_tbl,
5138 .probe = e1000_probe,
5139 .remove = __devexit_p(e1000_remove),
5141 /* Power Management Hooks */
5142 .suspend = e1000_suspend,
5143 .resume = e1000_resume,
5145 .shutdown = e1000_shutdown,
5146 .err_handler = &e1000_err_handler
5150 * e1000_init_module - Driver Registration Routine
5152 * e1000_init_module is the first routine called when the driver is
5153 * loaded. All it does is register with the PCI subsystem.
5155 static int __init e1000_init_module(void)
5158 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5159 e1000e_driver_name, e1000e_driver_version);
5160 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5161 e1000e_driver_name);
5162 ret = pci_register_driver(&e1000_driver);
5163 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5164 PM_QOS_DEFAULT_VALUE);
5168 module_init(e1000_init_module);
5171 * e1000_exit_module - Driver Exit Cleanup Routine
5173 * e1000_exit_module is called just before the driver is removed
5176 static void __exit e1000_exit_module(void)
5178 pci_unregister_driver(&e1000_driver);
5179 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5181 module_exit(e1000_exit_module);
5184 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5185 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5186 MODULE_LICENSE("GPL");
5187 MODULE_VERSION(DRV_VERSION);