Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[linux-2.6] / drivers / staging / winbond / wb35reg.c
1 #include "sysdef.h"
2 #include "wb35reg_f.h"
3
4 #include <linux/usb.h>
5
6 extern void phy_calibration_winbond(hw_data_t *phw_data, u32 frequency);
7
8 // true  : read command process successfully
9 // false : register not support
10 // RegisterNo : start base
11 // pRegisterData : data point
12 // NumberOfData : number of register data
13 // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
14 //                NO_INCREMENT - Function will write data into the same register
15 unsigned char
16 Wb35Reg_BurstWrite(phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag)
17 {
18         struct wb35_reg *reg = &pHwData->reg;
19         struct urb      *urb = NULL;
20         struct wb35_reg_queue *reg_queue = NULL;
21         u16             UrbSize;
22         struct      usb_ctrlrequest *dr;
23         u16             i, DataSize = NumberOfData*4;
24
25         // Module shutdown
26         if (pHwData->SurpriseRemove)
27                 return false;
28
29         // Trying to use burst write function if use new hardware
30         UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
31         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
32         urb = usb_alloc_urb(0, GFP_ATOMIC);
33         if( urb && reg_queue ) {
34                 reg_queue->DIRECT = 2;// burst write register
35                 reg_queue->INDEX = RegisterNo;
36                 reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
37                 memcpy( reg_queue->pBuffer, pRegisterData, DataSize );
38                 //the function for reversing register data from little endian to big endian
39                 for( i=0; i<NumberOfData ; i++ )
40                         reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] );
41
42                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
43                 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
44                 dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode
45                 dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment
46                 dr->wIndex = cpu_to_le16( RegisterNo );
47                 dr->wLength = cpu_to_le16( DataSize );
48                 reg_queue->Next = NULL;
49                 reg_queue->pUsbReq = dr;
50                 reg_queue->urb = urb;
51
52                 spin_lock_irq( &reg->EP0VM_spin_lock );
53                 if (reg->reg_first == NULL)
54                         reg->reg_first = reg_queue;
55                 else
56                         reg->reg_last->Next = reg_queue;
57                 reg->reg_last = reg_queue;
58
59                 spin_unlock_irq( &reg->EP0VM_spin_lock );
60
61                 // Start EP0VM
62                 Wb35Reg_EP0VM_start(pHwData);
63
64                 return true;
65         } else {
66                 if (urb)
67                         usb_free_urb(urb);
68                 if (reg_queue)
69                         kfree(reg_queue);
70                 return false;
71         }
72    return false;
73 }
74
75 void
76 Wb35Reg_Update(phw_data_t pHwData,  u16 RegisterNo,  u32 RegisterValue)
77 {
78         struct wb35_reg *reg = &pHwData->reg;
79         switch (RegisterNo) {
80         case 0x3b0: reg->U1B0 = RegisterValue; break;
81         case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
82         case 0x400: reg->D00_DmaControl = RegisterValue; break;
83         case 0x800: reg->M00_MacControl = RegisterValue; break;
84         case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
85         case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
86         case 0x824: reg->M24_MacControl = RegisterValue; break;
87         case 0x828: reg->M28_MacControl = RegisterValue; break;
88         case 0x82c: reg->M2C_MacControl = RegisterValue; break;
89         case 0x838: reg->M38_MacControl = RegisterValue; break;
90         case 0x840: reg->M40_MacControl = RegisterValue; break;
91         case 0x844: reg->M44_MacControl = RegisterValue; break;
92         case 0x848: reg->M48_MacControl = RegisterValue; break;
93         case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
94         case 0x860: reg->M60_MacControl = RegisterValue; break;
95         case 0x868: reg->M68_MacControl = RegisterValue; break;
96         case 0x870: reg->M70_MacControl = RegisterValue; break;
97         case 0x874: reg->M74_MacControl = RegisterValue; break;
98         case 0x878: reg->M78_ERPInformation = RegisterValue; break;
99         case 0x87C: reg->M7C_MacControl = RegisterValue; break;
100         case 0x880: reg->M80_MacControl = RegisterValue; break;
101         case 0x884: reg->M84_MacControl = RegisterValue; break;
102         case 0x888: reg->M88_MacControl = RegisterValue; break;
103         case 0x898: reg->M98_MacControl = RegisterValue; break;
104         case 0x100c: reg->BB0C = RegisterValue; break;
105         case 0x102c: reg->BB2C = RegisterValue; break;
106         case 0x1030: reg->BB30 = RegisterValue; break;
107         case 0x103c: reg->BB3C = RegisterValue; break;
108         case 0x1048: reg->BB48 = RegisterValue; break;
109         case 0x104c: reg->BB4C = RegisterValue; break;
110         case 0x1050: reg->BB50 = RegisterValue; break;
111         case 0x1054: reg->BB54 = RegisterValue; break;
112         case 0x1058: reg->BB58 = RegisterValue; break;
113         case 0x105c: reg->BB5C = RegisterValue; break;
114         case 0x1060: reg->BB60 = RegisterValue; break;
115         }
116 }
117
118 // true  : read command process successfully
119 // false : register not support
120 unsigned char
121 Wb35Reg_WriteSync(  phw_data_t pHwData,  u16 RegisterNo,  u32 RegisterValue )
122 {
123         struct wb35_reg *reg = &pHwData->reg;
124         int ret = -1;
125
126         // Module shutdown
127         if (pHwData->SurpriseRemove)
128                 return false;
129
130         RegisterValue = cpu_to_le32(RegisterValue);
131
132         // update the register by send usb message------------------------------------
133         reg->SyncIoPause = 1;
134
135         // 20060717.5 Wait until EP0VM stop
136         while (reg->EP0vm_state != VM_STOP)
137                 msleep(10);
138
139         // Sync IoCallDriver
140         reg->EP0vm_state = VM_RUNNING;
141         ret = usb_control_msg( pHwData->WbUsb.udev,
142                                usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ),
143                                0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
144                                0x0,RegisterNo, &RegisterValue, 4, HZ*100 );
145         reg->EP0vm_state = VM_STOP;
146         reg->SyncIoPause = 0;
147
148         Wb35Reg_EP0VM_start(pHwData);
149
150         if (ret < 0) {
151                 #ifdef _PE_REG_DUMP_
152                 WBDEBUG(("EP0 Write register usb message sending error\n"));
153                 #endif
154
155                 pHwData->SurpriseRemove = 1; // 20060704.2
156                 return false;
157         }
158
159         return true;
160 }
161
162 // true  : read command process successfully
163 // false : register not support
164 unsigned char
165 Wb35Reg_Write(  phw_data_t pHwData,  u16 RegisterNo,  u32 RegisterValue )
166 {
167         struct wb35_reg *reg = &pHwData->reg;
168         struct usb_ctrlrequest *dr;
169         struct urb      *urb = NULL;
170         struct wb35_reg_queue *reg_queue = NULL;
171         u16             UrbSize;
172
173
174         // Module shutdown
175         if (pHwData->SurpriseRemove)
176                 return false;
177
178         // update the register by send urb request------------------------------------
179         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
180         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
181         urb = usb_alloc_urb(0, GFP_ATOMIC);
182         if (urb && reg_queue) {
183                 reg_queue->DIRECT = 1;// burst write register
184                 reg_queue->INDEX = RegisterNo;
185                 reg_queue->VALUE = cpu_to_le32(RegisterValue);
186                 reg_queue->RESERVED_VALID = false;
187                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
188                 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
189                 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
190                 dr->wValue = cpu_to_le16(0x0);
191                 dr->wIndex = cpu_to_le16(RegisterNo);
192                 dr->wLength = cpu_to_le16(4);
193
194                 // Enter the sending queue
195                 reg_queue->Next = NULL;
196                 reg_queue->pUsbReq = dr;
197                 reg_queue->urb = urb;
198
199                 spin_lock_irq(&reg->EP0VM_spin_lock );
200                 if (reg->reg_first == NULL)
201                         reg->reg_first = reg_queue;
202                 else
203                         reg->reg_last->Next = reg_queue;
204                 reg->reg_last = reg_queue;
205
206                 spin_unlock_irq( &reg->EP0VM_spin_lock );
207
208                 // Start EP0VM
209                 Wb35Reg_EP0VM_start(pHwData);
210
211                 return true;
212         } else {
213                 if (urb)
214                         usb_free_urb(urb);
215                 kfree(reg_queue);
216                 return false;
217         }
218 }
219
220 //This command will be executed with a user defined value. When it completes,
221 //this value is useful. For example, hal_set_current_channel will use it.
222 // true  : read command process successfully
223 // false : register not support
224 unsigned char
225 Wb35Reg_WriteWithCallbackValue( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue,
226                                 s8 *pValue, s8 Len)
227 {
228         struct wb35_reg *reg = &pHwData->reg;
229         struct usb_ctrlrequest *dr;
230         struct urb      *urb = NULL;
231         struct wb35_reg_queue *reg_queue = NULL;
232         u16             UrbSize;
233
234         // Module shutdown
235         if (pHwData->SurpriseRemove)
236                 return false;
237
238         // update the register by send urb request------------------------------------
239         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
240         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
241         urb = usb_alloc_urb(0, GFP_ATOMIC);
242         if (urb && reg_queue) {
243                 reg_queue->DIRECT = 1;// burst write register
244                 reg_queue->INDEX = RegisterNo;
245                 reg_queue->VALUE = cpu_to_le32(RegisterValue);
246                 //NOTE : Users must guarantee the size of value will not exceed the buffer size.
247                 memcpy(reg_queue->RESERVED, pValue, Len);
248                 reg_queue->RESERVED_VALID = true;
249                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
250                 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
251                 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
252                 dr->wValue = cpu_to_le16(0x0);
253                 dr->wIndex = cpu_to_le16(RegisterNo);
254                 dr->wLength = cpu_to_le16(4);
255
256                 // Enter the sending queue
257                 reg_queue->Next = NULL;
258                 reg_queue->pUsbReq = dr;
259                 reg_queue->urb = urb;
260                 spin_lock_irq (&reg->EP0VM_spin_lock );
261                 if( reg->reg_first == NULL )
262                         reg->reg_first = reg_queue;
263                 else
264                         reg->reg_last->Next = reg_queue;
265                 reg->reg_last = reg_queue;
266
267                 spin_unlock_irq ( &reg->EP0VM_spin_lock );
268
269                 // Start EP0VM
270                 Wb35Reg_EP0VM_start(pHwData);
271                 return true;
272         } else {
273                 if (urb)
274                         usb_free_urb(urb);
275                 kfree(reg_queue);
276                 return false;
277         }
278 }
279
280 // true  : read command process successfully
281 // false : register not support
282 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
283 unsigned char
284 Wb35Reg_ReadSync(  phw_data_t pHwData,  u16 RegisterNo,   u32 * pRegisterValue )
285 {
286         struct wb35_reg *reg = &pHwData->reg;
287         u32 *   pltmp = pRegisterValue;
288         int ret = -1;
289
290         // Module shutdown
291         if (pHwData->SurpriseRemove)
292                 return false;
293
294         // Read the register by send usb message------------------------------------
295
296         reg->SyncIoPause = 1;
297
298         // 20060717.5 Wait until EP0VM stop
299         while (reg->EP0vm_state != VM_STOP)
300                 msleep(10);
301
302         reg->EP0vm_state = VM_RUNNING;
303         ret = usb_control_msg( pHwData->WbUsb.udev,
304                                usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
305                                0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN,
306                                0x0, RegisterNo, pltmp, 4, HZ*100 );
307
308         *pRegisterValue = cpu_to_le32(*pltmp);
309
310         reg->EP0vm_state = VM_STOP;
311
312         Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue );
313         reg->SyncIoPause = 0;
314
315         Wb35Reg_EP0VM_start( pHwData );
316
317         if (ret < 0) {
318                 #ifdef _PE_REG_DUMP_
319                 WBDEBUG(("EP0 Read register usb message sending error\n"));
320                 #endif
321
322                 pHwData->SurpriseRemove = 1; // 20060704.2
323                 return false;
324         }
325
326         return true;
327 }
328
329 // true  : read command process successfully
330 // false : register not support
331 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
332 unsigned char
333 Wb35Reg_Read(phw_data_t pHwData, u16 RegisterNo,  u32 * pRegisterValue )
334 {
335         struct wb35_reg *reg = &pHwData->reg;
336         struct usb_ctrlrequest * dr;
337         struct urb      *urb;
338         struct wb35_reg_queue *reg_queue;
339         u16             UrbSize;
340
341         // Module shutdown
342         if (pHwData->SurpriseRemove)
343                 return false;
344
345         // update the variable by send Urb to read register ------------------------------------
346         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
347         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
348         urb = usb_alloc_urb(0, GFP_ATOMIC);
349         if( urb && reg_queue )
350         {
351                 reg_queue->DIRECT = 0;// read register
352                 reg_queue->INDEX = RegisterNo;
353                 reg_queue->pBuffer = pRegisterValue;
354                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
355                 dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN;
356                 dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode
357                 dr->wValue = cpu_to_le16(0x0);
358                 dr->wIndex = cpu_to_le16 (RegisterNo);
359                 dr->wLength = cpu_to_le16 (4);
360
361                 // Enter the sending queue
362                 reg_queue->Next = NULL;
363                 reg_queue->pUsbReq = dr;
364                 reg_queue->urb = urb;
365                 spin_lock_irq ( &reg->EP0VM_spin_lock );
366                 if( reg->reg_first == NULL )
367                         reg->reg_first = reg_queue;
368                 else
369                         reg->reg_last->Next = reg_queue;
370                 reg->reg_last = reg_queue;
371
372                 spin_unlock_irq( &reg->EP0VM_spin_lock );
373
374                 // Start EP0VM
375                 Wb35Reg_EP0VM_start( pHwData );
376
377                 return true;
378         } else {
379                 if (urb)
380                         usb_free_urb( urb );
381                 kfree(reg_queue);
382                 return false;
383         }
384 }
385
386
387 void
388 Wb35Reg_EP0VM_start(  phw_data_t pHwData )
389 {
390         struct wb35_reg *reg = &pHwData->reg;
391
392         if (atomic_inc_return(&reg->RegFireCount) == 1) {
393                 reg->EP0vm_state = VM_RUNNING;
394                 Wb35Reg_EP0VM(pHwData);
395         } else
396                 atomic_dec(&reg->RegFireCount);
397 }
398
399 void
400 Wb35Reg_EP0VM(phw_data_t pHwData )
401 {
402         struct wb35_reg *reg = &pHwData->reg;
403         struct urb      *urb;
404         struct usb_ctrlrequest *dr;
405         u32 *           pBuffer;
406         int                     ret = -1;
407         struct wb35_reg_queue *reg_queue;
408
409
410         if (reg->SyncIoPause)
411                 goto cleanup;
412
413         if (pHwData->SurpriseRemove)
414                 goto cleanup;
415
416         // Get the register data and send to USB through Irp
417         spin_lock_irq( &reg->EP0VM_spin_lock );
418         reg_queue = reg->reg_first;
419         spin_unlock_irq( &reg->EP0VM_spin_lock );
420
421         if (!reg_queue)
422                 goto cleanup;
423
424         // Get an Urb, send it
425         urb = (struct urb *)reg_queue->urb;
426
427         dr = reg_queue->pUsbReq;
428         urb = reg_queue->urb;
429         pBuffer = reg_queue->pBuffer;
430         if (reg_queue->DIRECT == 1) // output
431                 pBuffer = &reg_queue->VALUE;
432
433         usb_fill_control_urb( urb, pHwData->WbUsb.udev,
434                               REG_DIRECTION(pHwData->WbUsb.udev,reg_queue),
435                               (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength),
436                               Wb35Reg_EP0VM_complete, (void*)pHwData);
437
438         reg->EP0vm_state = VM_RUNNING;
439
440         ret = usb_submit_urb(urb, GFP_ATOMIC);
441
442         if (ret < 0) {
443 #ifdef _PE_REG_DUMP_
444                 WBDEBUG(("EP0 Irp sending error\n"));
445 #endif
446                 goto cleanup;
447         }
448
449         return;
450
451  cleanup:
452         reg->EP0vm_state = VM_STOP;
453         atomic_dec(&reg->RegFireCount);
454 }
455
456
457 void
458 Wb35Reg_EP0VM_complete(struct urb *urb)
459 {
460         phw_data_t  pHwData = (phw_data_t)urb->context;
461         struct wb35_reg *reg = &pHwData->reg;
462         struct wb35_reg_queue *reg_queue;
463
464
465         // Variable setting
466         reg->EP0vm_state = VM_COMPLETED;
467         reg->EP0VM_status = urb->status;
468
469         if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove
470                 reg->EP0vm_state = VM_STOP;
471                 atomic_dec(&reg->RegFireCount);
472         } else {
473                 // Complete to send, remove the URB from the first
474                 spin_lock_irq( &reg->EP0VM_spin_lock );
475                 reg_queue = reg->reg_first;
476                 if (reg_queue == reg->reg_last)
477                         reg->reg_last = NULL;
478                 reg->reg_first = reg->reg_first->Next;
479                 spin_unlock_irq( &reg->EP0VM_spin_lock );
480
481                 if (reg->EP0VM_status) {
482 #ifdef _PE_REG_DUMP_
483                         WBDEBUG(("EP0 IoCompleteRoutine return error\n"));
484                         DebugUsbdStatusInformation( reg->EP0VM_status );
485 #endif
486                         reg->EP0vm_state = VM_STOP;
487                         pHwData->SurpriseRemove = 1;
488                 } else {
489                         // Success. Update the result
490
491                         // Start the next send
492                         Wb35Reg_EP0VM(pHwData);
493                 }
494
495                 kfree(reg_queue);
496         }
497
498         usb_free_urb(urb);
499 }
500
501
502 void
503 Wb35Reg_destroy(phw_data_t pHwData)
504 {
505         struct wb35_reg *reg = &pHwData->reg;
506         struct urb      *urb;
507         struct wb35_reg_queue *reg_queue;
508
509
510         Uxx_power_off_procedure(pHwData);
511
512         // Wait for Reg operation completed
513         do {
514                 msleep(10); // Delay for waiting function enter 940623.1.a
515         } while (reg->EP0vm_state != VM_STOP);
516         msleep(10);  // Delay for waiting function enter 940623.1.b
517
518         // Release all the data in RegQueue
519         spin_lock_irq( &reg->EP0VM_spin_lock );
520         reg_queue = reg->reg_first;
521         while (reg_queue) {
522                 if (reg_queue == reg->reg_last)
523                         reg->reg_last = NULL;
524                 reg->reg_first = reg->reg_first->Next;
525
526                 urb = reg_queue->urb;
527                 spin_unlock_irq( &reg->EP0VM_spin_lock );
528                 if (urb) {
529                         usb_free_urb(urb);
530                         kfree(reg_queue);
531                 } else {
532                         #ifdef _PE_REG_DUMP_
533                         WBDEBUG(("EP0 queue release error\n"));
534                         #endif
535                 }
536                 spin_lock_irq( &reg->EP0VM_spin_lock );
537
538                 reg_queue = reg->reg_first;
539         }
540         spin_unlock_irq( &reg->EP0VM_spin_lock );
541 }
542
543 //====================================================================================
544 // The function can be run in passive-level only.
545 //====================================================================================
546 unsigned char Wb35Reg_initial(phw_data_t pHwData)
547 {
548         struct wb35_reg *reg=&pHwData->reg;
549         u32 ltmp;
550         u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
551
552         // Spin lock is acquired for read and write IRP command
553         spin_lock_init( &reg->EP0VM_spin_lock );
554
555         // Getting RF module type from EEPROM ------------------------------------
556         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d)
557         Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
558
559         //Update RF module type and determine the PHY type by inf or EEPROM
560         reg->EEPROMPhyType = (u8)( ltmp & 0xff );
561         // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
562         // 16V AL2230, 17 - AL7230, 18 - AL2230S
563         // 32 Reserved
564         // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
565         if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
566                 if( (reg->EEPROMPhyType == RF_MAXIM_2825)       ||
567                         (reg->EEPROMPhyType == RF_MAXIM_2827)   ||
568                         (reg->EEPROMPhyType == RF_MAXIM_2828)   ||
569                         (reg->EEPROMPhyType == RF_MAXIM_2829)   ||
570                         (reg->EEPROMPhyType == RF_MAXIM_V1)     ||
571                         (reg->EEPROMPhyType == RF_AIROHA_2230)  ||
572                         (reg->EEPROMPhyType == RF_AIROHA_2230S)    ||
573                         (reg->EEPROMPhyType == RF_AIROHA_7230)  ||
574                         (reg->EEPROMPhyType == RF_WB_242)               ||
575                         (reg->EEPROMPhyType == RF_WB_242_1))
576                         pHwData->phy_type = reg->EEPROMPhyType;
577         }
578
579         // Power On procedure running. The relative parameter will be set according to phy_type
580         Uxx_power_on_procedure( pHwData );
581
582         // Reading MAC address
583         Uxx_ReadEthernetAddress( pHwData );
584
585         // Read VCO trim for RF parameter
586         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 );
587         Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim );
588
589         // Read Antenna On/Off of software flag
590         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 );
591         Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet );
592
593         // Read TXVGA
594         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 );
595         Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga );
596
597         // Get Scan interval setting from EEPROM offset 0x1c
598         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 );
599         Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval );
600
601         // Update Ethernet address
602         memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_LENGTH_OF_ADDRESS );
603
604         // Update software variable
605         pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
606         TxVga &= 0x000000ff;
607         pHwData->PowerIndexFromEEPROM = (u8)TxVga;
608         pHwData->VCO_trim = (u8)VCO_trim & 0xff;
609         if (pHwData->VCO_trim == 0xff)
610                 pHwData->VCO_trim = 0x28;
611
612         reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720
613         if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 )
614                 reg->EEPROMRegion = REGION_AUTO;
615
616         //For Get Tx VGA from EEPROM 20060315.5 move here
617         GetTxVgaFromEEPROM( pHwData );
618
619         // Set Scan Interval
620         pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
621         if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10
622                 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
623
624         // Initial register
625         RFSynthesizer_initial(pHwData);
626
627         BBProcessor_initial(pHwData); // Async write, must wait until complete
628
629         Wb35Reg_phy_calibration(pHwData);
630
631         Mxx_initial(pHwData);
632         Dxx_initial(pHwData);
633
634         if (pHwData->SurpriseRemove)
635                 return false;
636         else
637                 return true; // Initial fail
638 }
639
640 //===================================================================================
641 //  CardComputeCrc --
642 //
643 //  Description:
644 //    Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
645 //
646 //  Arguments:
647 //    Buffer - the input buffer
648 //    Length - the length of Buffer
649 //
650 //  Return Value:
651 //    The 32-bit CRC value.
652 //
653 //  Note:
654 //    This is adapted from the comments in the assembly language
655 //    version in _GENREQ.ASM of the DWB NE1000/2000 driver.
656 //==================================================================================
657 u32
658 CardComputeCrc(u8 * Buffer, u32 Length)
659 {
660     u32 Crc, Carry;
661     u32  i, j;
662     u8 CurByte;
663
664     Crc = 0xffffffff;
665
666     for (i = 0; i < Length; i++) {
667
668         CurByte = Buffer[i];
669
670         for (j = 0; j < 8; j++) {
671
672             Carry     = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
673             Crc     <<= 1;
674             CurByte >>= 1;
675
676             if (Carry) {
677                 Crc =(Crc ^ 0x04c11db6) | Carry;
678             }
679         }
680     }
681
682     return Crc;
683 }
684
685
686 //==================================================================
687 // BitReverse --
688 //   Reverse the bits in the input argument, dwData, which is
689 //   regarded as a string of bits with the length, DataLength.
690 //
691 // Arguments:
692 //   dwData     :
693 //   DataLength :
694 //
695 // Return:
696 //   The converted value.
697 //==================================================================
698 u32 BitReverse( u32 dwData, u32 DataLength)
699 {
700         u32   HalfLength, i, j;
701         u32   BitA, BitB;
702
703         if ( DataLength <= 0)       return 0;   // No conversion is done.
704         dwData = dwData & (0xffffffff >> (32 - DataLength));
705
706         HalfLength = DataLength / 2;
707         for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--)
708         {
709                 BitA = GetBit( dwData, i);
710                 BitB = GetBit( dwData, j);
711                 if (BitA && !BitB) {
712                         dwData = ClearBit( dwData, i);
713                         dwData = SetBit( dwData, j);
714                 } else if (!BitA && BitB) {
715                         dwData = SetBit( dwData, i);
716                         dwData = ClearBit( dwData, j);
717                 } else
718                 {
719                         // Do nothing since these two bits are of the save values.
720                 }
721         }
722
723         return dwData;
724 }
725
726 void Wb35Reg_phy_calibration(  phw_data_t pHwData )
727 {
728         u32 BB3c, BB54;
729
730         if ((pHwData->phy_type == RF_WB_242) ||
731                 (pHwData->phy_type == RF_WB_242_1)) {
732                 phy_calibration_winbond ( pHwData, 2412 ); // Sync operation
733                 Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c );
734                 Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 );
735
736                 pHwData->BB3c_cal = BB3c;
737                 pHwData->BB54_cal = BB54;
738
739                 RFSynthesizer_initial(pHwData);
740                 BBProcessor_initial(pHwData); // Async operation
741
742                 Wb35Reg_WriteSync( pHwData, 0x103c, BB3c );
743                 Wb35Reg_WriteSync( pHwData, 0x1054, BB54 );
744         }
745 }
746
747