6 extern void phy_calibration_winbond(hw_data_t *phw_data, u32 frequency);
8 // true : read command process successfully
9 // false : register not support
10 // RegisterNo : start base
11 // pRegisterData : data point
12 // NumberOfData : number of register data
13 // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
14 // NO_INCREMENT - Function will write data into the same register
16 Wb35Reg_BurstWrite(phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag)
18 struct wb35_reg *reg = &pHwData->reg;
19 struct urb *urb = NULL;
20 struct wb35_reg_queue *reg_queue = NULL;
22 struct usb_ctrlrequest *dr;
23 u16 i, DataSize = NumberOfData*4;
26 if (pHwData->SurpriseRemove)
29 // Trying to use burst write function if use new hardware
30 UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
31 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
32 urb = usb_alloc_urb(0, GFP_ATOMIC);
33 if( urb && reg_queue ) {
34 reg_queue->DIRECT = 2;// burst write register
35 reg_queue->INDEX = RegisterNo;
36 reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
37 memcpy( reg_queue->pBuffer, pRegisterData, DataSize );
38 //the function for reversing register data from little endian to big endian
39 for( i=0; i<NumberOfData ; i++ )
40 reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] );
42 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
43 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
44 dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode
45 dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment
46 dr->wIndex = cpu_to_le16( RegisterNo );
47 dr->wLength = cpu_to_le16( DataSize );
48 reg_queue->Next = NULL;
49 reg_queue->pUsbReq = dr;
52 spin_lock_irq( ®->EP0VM_spin_lock );
53 if (reg->reg_first == NULL)
54 reg->reg_first = reg_queue;
56 reg->reg_last->Next = reg_queue;
57 reg->reg_last = reg_queue;
59 spin_unlock_irq( ®->EP0VM_spin_lock );
62 Wb35Reg_EP0VM_start(pHwData);
76 Wb35Reg_Update(phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue)
78 struct wb35_reg *reg = &pHwData->reg;
80 case 0x3b0: reg->U1B0 = RegisterValue; break;
81 case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
82 case 0x400: reg->D00_DmaControl = RegisterValue; break;
83 case 0x800: reg->M00_MacControl = RegisterValue; break;
84 case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
85 case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
86 case 0x824: reg->M24_MacControl = RegisterValue; break;
87 case 0x828: reg->M28_MacControl = RegisterValue; break;
88 case 0x82c: reg->M2C_MacControl = RegisterValue; break;
89 case 0x838: reg->M38_MacControl = RegisterValue; break;
90 case 0x840: reg->M40_MacControl = RegisterValue; break;
91 case 0x844: reg->M44_MacControl = RegisterValue; break;
92 case 0x848: reg->M48_MacControl = RegisterValue; break;
93 case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
94 case 0x860: reg->M60_MacControl = RegisterValue; break;
95 case 0x868: reg->M68_MacControl = RegisterValue; break;
96 case 0x870: reg->M70_MacControl = RegisterValue; break;
97 case 0x874: reg->M74_MacControl = RegisterValue; break;
98 case 0x878: reg->M78_ERPInformation = RegisterValue; break;
99 case 0x87C: reg->M7C_MacControl = RegisterValue; break;
100 case 0x880: reg->M80_MacControl = RegisterValue; break;
101 case 0x884: reg->M84_MacControl = RegisterValue; break;
102 case 0x888: reg->M88_MacControl = RegisterValue; break;
103 case 0x898: reg->M98_MacControl = RegisterValue; break;
104 case 0x100c: reg->BB0C = RegisterValue; break;
105 case 0x102c: reg->BB2C = RegisterValue; break;
106 case 0x1030: reg->BB30 = RegisterValue; break;
107 case 0x103c: reg->BB3C = RegisterValue; break;
108 case 0x1048: reg->BB48 = RegisterValue; break;
109 case 0x104c: reg->BB4C = RegisterValue; break;
110 case 0x1050: reg->BB50 = RegisterValue; break;
111 case 0x1054: reg->BB54 = RegisterValue; break;
112 case 0x1058: reg->BB58 = RegisterValue; break;
113 case 0x105c: reg->BB5C = RegisterValue; break;
114 case 0x1060: reg->BB60 = RegisterValue; break;
118 // true : read command process successfully
119 // false : register not support
121 Wb35Reg_WriteSync( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue )
123 struct wb35_reg *reg = &pHwData->reg;
127 if (pHwData->SurpriseRemove)
130 RegisterValue = cpu_to_le32(RegisterValue);
132 // update the register by send usb message------------------------------------
133 reg->SyncIoPause = 1;
135 // 20060717.5 Wait until EP0VM stop
136 while (reg->EP0vm_state != VM_STOP)
140 reg->EP0vm_state = VM_RUNNING;
141 ret = usb_control_msg( pHwData->WbUsb.udev,
142 usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ),
143 0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
144 0x0,RegisterNo, &RegisterValue, 4, HZ*100 );
145 reg->EP0vm_state = VM_STOP;
146 reg->SyncIoPause = 0;
148 Wb35Reg_EP0VM_start(pHwData);
152 WBDEBUG(("EP0 Write register usb message sending error\n"));
155 pHwData->SurpriseRemove = 1; // 20060704.2
162 // true : read command process successfully
163 // false : register not support
165 Wb35Reg_Write( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue )
167 struct wb35_reg *reg = &pHwData->reg;
168 struct usb_ctrlrequest *dr;
169 struct urb *urb = NULL;
170 struct wb35_reg_queue *reg_queue = NULL;
175 if (pHwData->SurpriseRemove)
178 // update the register by send urb request------------------------------------
179 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
180 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
181 urb = usb_alloc_urb(0, GFP_ATOMIC);
182 if (urb && reg_queue) {
183 reg_queue->DIRECT = 1;// burst write register
184 reg_queue->INDEX = RegisterNo;
185 reg_queue->VALUE = cpu_to_le32(RegisterValue);
186 reg_queue->RESERVED_VALID = false;
187 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
188 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
189 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
190 dr->wValue = cpu_to_le16(0x0);
191 dr->wIndex = cpu_to_le16(RegisterNo);
192 dr->wLength = cpu_to_le16(4);
194 // Enter the sending queue
195 reg_queue->Next = NULL;
196 reg_queue->pUsbReq = dr;
197 reg_queue->urb = urb;
199 spin_lock_irq(®->EP0VM_spin_lock );
200 if (reg->reg_first == NULL)
201 reg->reg_first = reg_queue;
203 reg->reg_last->Next = reg_queue;
204 reg->reg_last = reg_queue;
206 spin_unlock_irq( ®->EP0VM_spin_lock );
209 Wb35Reg_EP0VM_start(pHwData);
220 //This command will be executed with a user defined value. When it completes,
221 //this value is useful. For example, hal_set_current_channel will use it.
222 // true : read command process successfully
223 // false : register not support
225 Wb35Reg_WriteWithCallbackValue( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue,
228 struct wb35_reg *reg = &pHwData->reg;
229 struct usb_ctrlrequest *dr;
230 struct urb *urb = NULL;
231 struct wb35_reg_queue *reg_queue = NULL;
235 if (pHwData->SurpriseRemove)
238 // update the register by send urb request------------------------------------
239 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
240 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
241 urb = usb_alloc_urb(0, GFP_ATOMIC);
242 if (urb && reg_queue) {
243 reg_queue->DIRECT = 1;// burst write register
244 reg_queue->INDEX = RegisterNo;
245 reg_queue->VALUE = cpu_to_le32(RegisterValue);
246 //NOTE : Users must guarantee the size of value will not exceed the buffer size.
247 memcpy(reg_queue->RESERVED, pValue, Len);
248 reg_queue->RESERVED_VALID = true;
249 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
250 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
251 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
252 dr->wValue = cpu_to_le16(0x0);
253 dr->wIndex = cpu_to_le16(RegisterNo);
254 dr->wLength = cpu_to_le16(4);
256 // Enter the sending queue
257 reg_queue->Next = NULL;
258 reg_queue->pUsbReq = dr;
259 reg_queue->urb = urb;
260 spin_lock_irq (®->EP0VM_spin_lock );
261 if( reg->reg_first == NULL )
262 reg->reg_first = reg_queue;
264 reg->reg_last->Next = reg_queue;
265 reg->reg_last = reg_queue;
267 spin_unlock_irq ( ®->EP0VM_spin_lock );
270 Wb35Reg_EP0VM_start(pHwData);
280 // true : read command process successfully
281 // false : register not support
282 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
284 Wb35Reg_ReadSync( phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterValue )
286 struct wb35_reg *reg = &pHwData->reg;
287 u32 * pltmp = pRegisterValue;
291 if (pHwData->SurpriseRemove)
294 // Read the register by send usb message------------------------------------
296 reg->SyncIoPause = 1;
298 // 20060717.5 Wait until EP0VM stop
299 while (reg->EP0vm_state != VM_STOP)
302 reg->EP0vm_state = VM_RUNNING;
303 ret = usb_control_msg( pHwData->WbUsb.udev,
304 usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
305 0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN,
306 0x0, RegisterNo, pltmp, 4, HZ*100 );
308 *pRegisterValue = cpu_to_le32(*pltmp);
310 reg->EP0vm_state = VM_STOP;
312 Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue );
313 reg->SyncIoPause = 0;
315 Wb35Reg_EP0VM_start( pHwData );
319 WBDEBUG(("EP0 Read register usb message sending error\n"));
322 pHwData->SurpriseRemove = 1; // 20060704.2
329 // true : read command process successfully
330 // false : register not support
331 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
333 Wb35Reg_Read(phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterValue )
335 struct wb35_reg *reg = &pHwData->reg;
336 struct usb_ctrlrequest * dr;
338 struct wb35_reg_queue *reg_queue;
342 if (pHwData->SurpriseRemove)
345 // update the variable by send Urb to read register ------------------------------------
346 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
347 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
348 urb = usb_alloc_urb(0, GFP_ATOMIC);
349 if( urb && reg_queue )
351 reg_queue->DIRECT = 0;// read register
352 reg_queue->INDEX = RegisterNo;
353 reg_queue->pBuffer = pRegisterValue;
354 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
355 dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN;
356 dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode
357 dr->wValue = cpu_to_le16(0x0);
358 dr->wIndex = cpu_to_le16 (RegisterNo);
359 dr->wLength = cpu_to_le16 (4);
361 // Enter the sending queue
362 reg_queue->Next = NULL;
363 reg_queue->pUsbReq = dr;
364 reg_queue->urb = urb;
365 spin_lock_irq ( ®->EP0VM_spin_lock );
366 if( reg->reg_first == NULL )
367 reg->reg_first = reg_queue;
369 reg->reg_last->Next = reg_queue;
370 reg->reg_last = reg_queue;
372 spin_unlock_irq( ®->EP0VM_spin_lock );
375 Wb35Reg_EP0VM_start( pHwData );
388 Wb35Reg_EP0VM_start( phw_data_t pHwData )
390 struct wb35_reg *reg = &pHwData->reg;
392 if (atomic_inc_return(®->RegFireCount) == 1) {
393 reg->EP0vm_state = VM_RUNNING;
394 Wb35Reg_EP0VM(pHwData);
396 atomic_dec(®->RegFireCount);
400 Wb35Reg_EP0VM(phw_data_t pHwData )
402 struct wb35_reg *reg = &pHwData->reg;
404 struct usb_ctrlrequest *dr;
407 struct wb35_reg_queue *reg_queue;
410 if (reg->SyncIoPause)
413 if (pHwData->SurpriseRemove)
416 // Get the register data and send to USB through Irp
417 spin_lock_irq( ®->EP0VM_spin_lock );
418 reg_queue = reg->reg_first;
419 spin_unlock_irq( ®->EP0VM_spin_lock );
424 // Get an Urb, send it
425 urb = (struct urb *)reg_queue->urb;
427 dr = reg_queue->pUsbReq;
428 urb = reg_queue->urb;
429 pBuffer = reg_queue->pBuffer;
430 if (reg_queue->DIRECT == 1) // output
431 pBuffer = ®_queue->VALUE;
433 usb_fill_control_urb( urb, pHwData->WbUsb.udev,
434 REG_DIRECTION(pHwData->WbUsb.udev,reg_queue),
435 (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength),
436 Wb35Reg_EP0VM_complete, (void*)pHwData);
438 reg->EP0vm_state = VM_RUNNING;
440 ret = usb_submit_urb(urb, GFP_ATOMIC);
444 WBDEBUG(("EP0 Irp sending error\n"));
452 reg->EP0vm_state = VM_STOP;
453 atomic_dec(®->RegFireCount);
458 Wb35Reg_EP0VM_complete(struct urb *urb)
460 phw_data_t pHwData = (phw_data_t)urb->context;
461 struct wb35_reg *reg = &pHwData->reg;
462 struct wb35_reg_queue *reg_queue;
466 reg->EP0vm_state = VM_COMPLETED;
467 reg->EP0VM_status = urb->status;
469 if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove
470 reg->EP0vm_state = VM_STOP;
471 atomic_dec(®->RegFireCount);
473 // Complete to send, remove the URB from the first
474 spin_lock_irq( ®->EP0VM_spin_lock );
475 reg_queue = reg->reg_first;
476 if (reg_queue == reg->reg_last)
477 reg->reg_last = NULL;
478 reg->reg_first = reg->reg_first->Next;
479 spin_unlock_irq( ®->EP0VM_spin_lock );
481 if (reg->EP0VM_status) {
483 WBDEBUG(("EP0 IoCompleteRoutine return error\n"));
484 DebugUsbdStatusInformation( reg->EP0VM_status );
486 reg->EP0vm_state = VM_STOP;
487 pHwData->SurpriseRemove = 1;
489 // Success. Update the result
491 // Start the next send
492 Wb35Reg_EP0VM(pHwData);
503 Wb35Reg_destroy(phw_data_t pHwData)
505 struct wb35_reg *reg = &pHwData->reg;
507 struct wb35_reg_queue *reg_queue;
510 Uxx_power_off_procedure(pHwData);
512 // Wait for Reg operation completed
514 msleep(10); // Delay for waiting function enter 940623.1.a
515 } while (reg->EP0vm_state != VM_STOP);
516 msleep(10); // Delay for waiting function enter 940623.1.b
518 // Release all the data in RegQueue
519 spin_lock_irq( ®->EP0VM_spin_lock );
520 reg_queue = reg->reg_first;
522 if (reg_queue == reg->reg_last)
523 reg->reg_last = NULL;
524 reg->reg_first = reg->reg_first->Next;
526 urb = reg_queue->urb;
527 spin_unlock_irq( ®->EP0VM_spin_lock );
533 WBDEBUG(("EP0 queue release error\n"));
536 spin_lock_irq( ®->EP0VM_spin_lock );
538 reg_queue = reg->reg_first;
540 spin_unlock_irq( ®->EP0VM_spin_lock );
543 //====================================================================================
544 // The function can be run in passive-level only.
545 //====================================================================================
546 unsigned char Wb35Reg_initial(phw_data_t pHwData)
548 struct wb35_reg *reg=&pHwData->reg;
550 u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
552 // Spin lock is acquired for read and write IRP command
553 spin_lock_init( ®->EP0VM_spin_lock );
555 // Getting RF module type from EEPROM ------------------------------------
556 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d)
557 Wb35Reg_ReadSync( pHwData, 0x03b4, <mp );
559 //Update RF module type and determine the PHY type by inf or EEPROM
560 reg->EEPROMPhyType = (u8)( ltmp & 0xff );
561 // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
562 // 16V AL2230, 17 - AL7230, 18 - AL2230S
564 // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
565 if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
566 if( (reg->EEPROMPhyType == RF_MAXIM_2825) ||
567 (reg->EEPROMPhyType == RF_MAXIM_2827) ||
568 (reg->EEPROMPhyType == RF_MAXIM_2828) ||
569 (reg->EEPROMPhyType == RF_MAXIM_2829) ||
570 (reg->EEPROMPhyType == RF_MAXIM_V1) ||
571 (reg->EEPROMPhyType == RF_AIROHA_2230) ||
572 (reg->EEPROMPhyType == RF_AIROHA_2230S) ||
573 (reg->EEPROMPhyType == RF_AIROHA_7230) ||
574 (reg->EEPROMPhyType == RF_WB_242) ||
575 (reg->EEPROMPhyType == RF_WB_242_1))
576 pHwData->phy_type = reg->EEPROMPhyType;
579 // Power On procedure running. The relative parameter will be set according to phy_type
580 Uxx_power_on_procedure( pHwData );
582 // Reading MAC address
583 Uxx_ReadEthernetAddress( pHwData );
585 // Read VCO trim for RF parameter
586 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 );
587 Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim );
589 // Read Antenna On/Off of software flag
590 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 );
591 Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet );
594 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 );
595 Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga );
597 // Get Scan interval setting from EEPROM offset 0x1c
598 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 );
599 Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval );
601 // Update Ethernet address
602 memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_LENGTH_OF_ADDRESS );
604 // Update software variable
605 pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
607 pHwData->PowerIndexFromEEPROM = (u8)TxVga;
608 pHwData->VCO_trim = (u8)VCO_trim & 0xff;
609 if (pHwData->VCO_trim == 0xff)
610 pHwData->VCO_trim = 0x28;
612 reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720
613 if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 )
614 reg->EEPROMRegion = REGION_AUTO;
616 //For Get Tx VGA from EEPROM 20060315.5 move here
617 GetTxVgaFromEEPROM( pHwData );
620 pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
621 if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10
622 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
625 RFSynthesizer_initial(pHwData);
627 BBProcessor_initial(pHwData); // Async write, must wait until complete
629 Wb35Reg_phy_calibration(pHwData);
631 Mxx_initial(pHwData);
632 Dxx_initial(pHwData);
634 if (pHwData->SurpriseRemove)
637 return true; // Initial fail
640 //===================================================================================
644 // Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
647 // Buffer - the input buffer
648 // Length - the length of Buffer
651 // The 32-bit CRC value.
654 // This is adapted from the comments in the assembly language
655 // version in _GENREQ.ASM of the DWB NE1000/2000 driver.
656 //==================================================================================
658 CardComputeCrc(u8 * Buffer, u32 Length)
666 for (i = 0; i < Length; i++) {
670 for (j = 0; j < 8; j++) {
672 Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
677 Crc =(Crc ^ 0x04c11db6) | Carry;
686 //==================================================================
688 // Reverse the bits in the input argument, dwData, which is
689 // regarded as a string of bits with the length, DataLength.
696 // The converted value.
697 //==================================================================
698 u32 BitReverse( u32 dwData, u32 DataLength)
700 u32 HalfLength, i, j;
703 if ( DataLength <= 0) return 0; // No conversion is done.
704 dwData = dwData & (0xffffffff >> (32 - DataLength));
706 HalfLength = DataLength / 2;
707 for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--)
709 BitA = GetBit( dwData, i);
710 BitB = GetBit( dwData, j);
712 dwData = ClearBit( dwData, i);
713 dwData = SetBit( dwData, j);
714 } else if (!BitA && BitB) {
715 dwData = SetBit( dwData, i);
716 dwData = ClearBit( dwData, j);
719 // Do nothing since these two bits are of the save values.
726 void Wb35Reg_phy_calibration( phw_data_t pHwData )
730 if ((pHwData->phy_type == RF_WB_242) ||
731 (pHwData->phy_type == RF_WB_242_1)) {
732 phy_calibration_winbond ( pHwData, 2412 ); // Sync operation
733 Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c );
734 Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 );
736 pHwData->BB3c_cal = BB3c;
737 pHwData->BB54_cal = BB54;
739 RFSynthesizer_initial(pHwData);
740 BBProcessor_initial(pHwData); // Async operation
742 Wb35Reg_WriteSync( pHwData, 0x103c, BB3c );
743 Wb35Reg_WriteSync( pHwData, 0x1054, BB54 );