capabilities: define get_vfs_caps_from_disk when file caps are not enabled
[linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         security_fixup_ops(&default_security_ops);
61         security_ops = &default_security_ops;
62         do_security_initcalls();
63
64         return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71         return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *      -The passed LSM is the one chosen by user at boot time,
85  *      -or user didn't specify a specific LSM and we're the first to ask
86  *       for registration permission,
87  *      -or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92         if (!*chosen_lsm)
93                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95                 return 0;
96
97         return 1;
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_may_access(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(struct task_struct *tsk, int cap)
158 {
159         return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
160 }
161
162 int security_capable_noaudit(struct task_struct *tsk, int cap)
163 {
164         return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
165 }
166
167 int security_acct(struct file *file)
168 {
169         return security_ops->acct(file);
170 }
171
172 int security_sysctl(struct ctl_table *table, int op)
173 {
174         return security_ops->sysctl(table, op);
175 }
176
177 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
178 {
179         return security_ops->quotactl(cmds, type, id, sb);
180 }
181
182 int security_quota_on(struct dentry *dentry)
183 {
184         return security_ops->quota_on(dentry);
185 }
186
187 int security_syslog(int type)
188 {
189         return security_ops->syslog(type);
190 }
191
192 int security_settime(struct timespec *ts, struct timezone *tz)
193 {
194         return security_ops->settime(ts, tz);
195 }
196
197 int security_vm_enough_memory(long pages)
198 {
199         WARN_ON(current->mm == NULL);
200         return security_ops->vm_enough_memory(current->mm, pages);
201 }
202
203 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
204 {
205         WARN_ON(mm == NULL);
206         return security_ops->vm_enough_memory(mm, pages);
207 }
208
209 int security_vm_enough_memory_kern(long pages)
210 {
211         /* If current->mm is a kernel thread then we will pass NULL,
212            for this specific case that is fine */
213         return security_ops->vm_enough_memory(current->mm, pages);
214 }
215
216 int security_bprm_set_creds(struct linux_binprm *bprm)
217 {
218         return security_ops->bprm_set_creds(bprm);
219 }
220
221 int security_bprm_check(struct linux_binprm *bprm)
222 {
223         return security_ops->bprm_check_security(bprm);
224 }
225
226 void security_bprm_committing_creds(struct linux_binprm *bprm)
227 {
228         return security_ops->bprm_committing_creds(bprm);
229 }
230
231 void security_bprm_committed_creds(struct linux_binprm *bprm)
232 {
233         return security_ops->bprm_committed_creds(bprm);
234 }
235
236 int security_bprm_secureexec(struct linux_binprm *bprm)
237 {
238         return security_ops->bprm_secureexec(bprm);
239 }
240
241 int security_sb_alloc(struct super_block *sb)
242 {
243         return security_ops->sb_alloc_security(sb);
244 }
245
246 void security_sb_free(struct super_block *sb)
247 {
248         security_ops->sb_free_security(sb);
249 }
250
251 int security_sb_copy_data(char *orig, char *copy)
252 {
253         return security_ops->sb_copy_data(orig, copy);
254 }
255 EXPORT_SYMBOL(security_sb_copy_data);
256
257 int security_sb_kern_mount(struct super_block *sb, void *data)
258 {
259         return security_ops->sb_kern_mount(sb, data);
260 }
261
262 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
263 {
264         return security_ops->sb_show_options(m, sb);
265 }
266
267 int security_sb_statfs(struct dentry *dentry)
268 {
269         return security_ops->sb_statfs(dentry);
270 }
271
272 int security_sb_mount(char *dev_name, struct path *path,
273                        char *type, unsigned long flags, void *data)
274 {
275         return security_ops->sb_mount(dev_name, path, type, flags, data);
276 }
277
278 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
279 {
280         return security_ops->sb_check_sb(mnt, path);
281 }
282
283 int security_sb_umount(struct vfsmount *mnt, int flags)
284 {
285         return security_ops->sb_umount(mnt, flags);
286 }
287
288 void security_sb_umount_close(struct vfsmount *mnt)
289 {
290         security_ops->sb_umount_close(mnt);
291 }
292
293 void security_sb_umount_busy(struct vfsmount *mnt)
294 {
295         security_ops->sb_umount_busy(mnt);
296 }
297
298 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
299 {
300         security_ops->sb_post_remount(mnt, flags, data);
301 }
302
303 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
304 {
305         security_ops->sb_post_addmount(mnt, mountpoint);
306 }
307
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310         return security_ops->sb_pivotroot(old_path, new_path);
311 }
312
313 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
314 {
315         security_ops->sb_post_pivotroot(old_path, new_path);
316 }
317
318 int security_sb_set_mnt_opts(struct super_block *sb,
319                                 struct security_mnt_opts *opts)
320 {
321         return security_ops->sb_set_mnt_opts(sb, opts);
322 }
323 EXPORT_SYMBOL(security_sb_set_mnt_opts);
324
325 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
326                                 struct super_block *newsb)
327 {
328         security_ops->sb_clone_mnt_opts(oldsb, newsb);
329 }
330 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
331
332 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
333 {
334         return security_ops->sb_parse_opts_str(options, opts);
335 }
336 EXPORT_SYMBOL(security_sb_parse_opts_str);
337
338 int security_inode_alloc(struct inode *inode)
339 {
340         inode->i_security = NULL;
341         return security_ops->inode_alloc_security(inode);
342 }
343
344 void security_inode_free(struct inode *inode)
345 {
346         security_ops->inode_free_security(inode);
347 }
348
349 int security_inode_init_security(struct inode *inode, struct inode *dir,
350                                   char **name, void **value, size_t *len)
351 {
352         if (unlikely(IS_PRIVATE(inode)))
353                 return -EOPNOTSUPP;
354         return security_ops->inode_init_security(inode, dir, name, value, len);
355 }
356 EXPORT_SYMBOL(security_inode_init_security);
357
358 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
359 {
360         if (unlikely(IS_PRIVATE(dir)))
361                 return 0;
362         return security_ops->inode_create(dir, dentry, mode);
363 }
364
365 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
366                          struct dentry *new_dentry)
367 {
368         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
369                 return 0;
370         return security_ops->inode_link(old_dentry, dir, new_dentry);
371 }
372
373 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
374 {
375         if (unlikely(IS_PRIVATE(dentry->d_inode)))
376                 return 0;
377         return security_ops->inode_unlink(dir, dentry);
378 }
379
380 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
381                             const char *old_name)
382 {
383         if (unlikely(IS_PRIVATE(dir)))
384                 return 0;
385         return security_ops->inode_symlink(dir, dentry, old_name);
386 }
387
388 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
389 {
390         if (unlikely(IS_PRIVATE(dir)))
391                 return 0;
392         return security_ops->inode_mkdir(dir, dentry, mode);
393 }
394
395 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
396 {
397         if (unlikely(IS_PRIVATE(dentry->d_inode)))
398                 return 0;
399         return security_ops->inode_rmdir(dir, dentry);
400 }
401
402 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
403 {
404         if (unlikely(IS_PRIVATE(dir)))
405                 return 0;
406         return security_ops->inode_mknod(dir, dentry, mode, dev);
407 }
408
409 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
410                            struct inode *new_dir, struct dentry *new_dentry)
411 {
412         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
413             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
414                 return 0;
415         return security_ops->inode_rename(old_dir, old_dentry,
416                                            new_dir, new_dentry);
417 }
418
419 int security_inode_readlink(struct dentry *dentry)
420 {
421         if (unlikely(IS_PRIVATE(dentry->d_inode)))
422                 return 0;
423         return security_ops->inode_readlink(dentry);
424 }
425
426 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
427 {
428         if (unlikely(IS_PRIVATE(dentry->d_inode)))
429                 return 0;
430         return security_ops->inode_follow_link(dentry, nd);
431 }
432
433 int security_inode_permission(struct inode *inode, int mask)
434 {
435         if (unlikely(IS_PRIVATE(inode)))
436                 return 0;
437         return security_ops->inode_permission(inode, mask);
438 }
439
440 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
441 {
442         if (unlikely(IS_PRIVATE(dentry->d_inode)))
443                 return 0;
444         return security_ops->inode_setattr(dentry, attr);
445 }
446 EXPORT_SYMBOL_GPL(security_inode_setattr);
447
448 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
449 {
450         if (unlikely(IS_PRIVATE(dentry->d_inode)))
451                 return 0;
452         return security_ops->inode_getattr(mnt, dentry);
453 }
454
455 void security_inode_delete(struct inode *inode)
456 {
457         if (unlikely(IS_PRIVATE(inode)))
458                 return;
459         security_ops->inode_delete(inode);
460 }
461
462 int security_inode_setxattr(struct dentry *dentry, const char *name,
463                             const void *value, size_t size, int flags)
464 {
465         if (unlikely(IS_PRIVATE(dentry->d_inode)))
466                 return 0;
467         return security_ops->inode_setxattr(dentry, name, value, size, flags);
468 }
469
470 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
471                                   const void *value, size_t size, int flags)
472 {
473         if (unlikely(IS_PRIVATE(dentry->d_inode)))
474                 return;
475         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
476 }
477
478 int security_inode_getxattr(struct dentry *dentry, const char *name)
479 {
480         if (unlikely(IS_PRIVATE(dentry->d_inode)))
481                 return 0;
482         return security_ops->inode_getxattr(dentry, name);
483 }
484
485 int security_inode_listxattr(struct dentry *dentry)
486 {
487         if (unlikely(IS_PRIVATE(dentry->d_inode)))
488                 return 0;
489         return security_ops->inode_listxattr(dentry);
490 }
491
492 int security_inode_removexattr(struct dentry *dentry, const char *name)
493 {
494         if (unlikely(IS_PRIVATE(dentry->d_inode)))
495                 return 0;
496         return security_ops->inode_removexattr(dentry, name);
497 }
498
499 int security_inode_need_killpriv(struct dentry *dentry)
500 {
501         return security_ops->inode_need_killpriv(dentry);
502 }
503
504 int security_inode_killpriv(struct dentry *dentry)
505 {
506         return security_ops->inode_killpriv(dentry);
507 }
508
509 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
510 {
511         if (unlikely(IS_PRIVATE(inode)))
512                 return 0;
513         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
514 }
515
516 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
517 {
518         if (unlikely(IS_PRIVATE(inode)))
519                 return 0;
520         return security_ops->inode_setsecurity(inode, name, value, size, flags);
521 }
522
523 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
524 {
525         if (unlikely(IS_PRIVATE(inode)))
526                 return 0;
527         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
528 }
529
530 void security_inode_getsecid(const struct inode *inode, u32 *secid)
531 {
532         security_ops->inode_getsecid(inode, secid);
533 }
534
535 int security_file_permission(struct file *file, int mask)
536 {
537         return security_ops->file_permission(file, mask);
538 }
539
540 int security_file_alloc(struct file *file)
541 {
542         return security_ops->file_alloc_security(file);
543 }
544
545 void security_file_free(struct file *file)
546 {
547         security_ops->file_free_security(file);
548 }
549
550 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
551 {
552         return security_ops->file_ioctl(file, cmd, arg);
553 }
554
555 int security_file_mmap(struct file *file, unsigned long reqprot,
556                         unsigned long prot, unsigned long flags,
557                         unsigned long addr, unsigned long addr_only)
558 {
559         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
560 }
561
562 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
563                             unsigned long prot)
564 {
565         return security_ops->file_mprotect(vma, reqprot, prot);
566 }
567
568 int security_file_lock(struct file *file, unsigned int cmd)
569 {
570         return security_ops->file_lock(file, cmd);
571 }
572
573 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
574 {
575         return security_ops->file_fcntl(file, cmd, arg);
576 }
577
578 int security_file_set_fowner(struct file *file)
579 {
580         return security_ops->file_set_fowner(file);
581 }
582
583 int security_file_send_sigiotask(struct task_struct *tsk,
584                                   struct fown_struct *fown, int sig)
585 {
586         return security_ops->file_send_sigiotask(tsk, fown, sig);
587 }
588
589 int security_file_receive(struct file *file)
590 {
591         return security_ops->file_receive(file);
592 }
593
594 int security_dentry_open(struct file *file, const struct cred *cred)
595 {
596         return security_ops->dentry_open(file, cred);
597 }
598
599 int security_task_create(unsigned long clone_flags)
600 {
601         return security_ops->task_create(clone_flags);
602 }
603
604 void security_cred_free(struct cred *cred)
605 {
606         security_ops->cred_free(cred);
607 }
608
609 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
610 {
611         return security_ops->cred_prepare(new, old, gfp);
612 }
613
614 void security_commit_creds(struct cred *new, const struct cred *old)
615 {
616         return security_ops->cred_commit(new, old);
617 }
618
619 int security_kernel_act_as(struct cred *new, u32 secid)
620 {
621         return security_ops->kernel_act_as(new, secid);
622 }
623
624 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
625 {
626         return security_ops->kernel_create_files_as(new, inode);
627 }
628
629 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
630 {
631         return security_ops->task_setuid(id0, id1, id2, flags);
632 }
633
634 int security_task_fix_setuid(struct cred *new, const struct cred *old,
635                              int flags)
636 {
637         return security_ops->task_fix_setuid(new, old, flags);
638 }
639
640 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
641 {
642         return security_ops->task_setgid(id0, id1, id2, flags);
643 }
644
645 int security_task_setpgid(struct task_struct *p, pid_t pgid)
646 {
647         return security_ops->task_setpgid(p, pgid);
648 }
649
650 int security_task_getpgid(struct task_struct *p)
651 {
652         return security_ops->task_getpgid(p);
653 }
654
655 int security_task_getsid(struct task_struct *p)
656 {
657         return security_ops->task_getsid(p);
658 }
659
660 void security_task_getsecid(struct task_struct *p, u32 *secid)
661 {
662         security_ops->task_getsecid(p, secid);
663 }
664 EXPORT_SYMBOL(security_task_getsecid);
665
666 int security_task_setgroups(struct group_info *group_info)
667 {
668         return security_ops->task_setgroups(group_info);
669 }
670
671 int security_task_setnice(struct task_struct *p, int nice)
672 {
673         return security_ops->task_setnice(p, nice);
674 }
675
676 int security_task_setioprio(struct task_struct *p, int ioprio)
677 {
678         return security_ops->task_setioprio(p, ioprio);
679 }
680
681 int security_task_getioprio(struct task_struct *p)
682 {
683         return security_ops->task_getioprio(p);
684 }
685
686 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
687 {
688         return security_ops->task_setrlimit(resource, new_rlim);
689 }
690
691 int security_task_setscheduler(struct task_struct *p,
692                                 int policy, struct sched_param *lp)
693 {
694         return security_ops->task_setscheduler(p, policy, lp);
695 }
696
697 int security_task_getscheduler(struct task_struct *p)
698 {
699         return security_ops->task_getscheduler(p);
700 }
701
702 int security_task_movememory(struct task_struct *p)
703 {
704         return security_ops->task_movememory(p);
705 }
706
707 int security_task_kill(struct task_struct *p, struct siginfo *info,
708                         int sig, u32 secid)
709 {
710         return security_ops->task_kill(p, info, sig, secid);
711 }
712
713 int security_task_wait(struct task_struct *p)
714 {
715         return security_ops->task_wait(p);
716 }
717
718 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
719                          unsigned long arg4, unsigned long arg5)
720 {
721         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
722 }
723
724 void security_task_to_inode(struct task_struct *p, struct inode *inode)
725 {
726         security_ops->task_to_inode(p, inode);
727 }
728
729 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
730 {
731         return security_ops->ipc_permission(ipcp, flag);
732 }
733
734 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
735 {
736         security_ops->ipc_getsecid(ipcp, secid);
737 }
738
739 int security_msg_msg_alloc(struct msg_msg *msg)
740 {
741         return security_ops->msg_msg_alloc_security(msg);
742 }
743
744 void security_msg_msg_free(struct msg_msg *msg)
745 {
746         security_ops->msg_msg_free_security(msg);
747 }
748
749 int security_msg_queue_alloc(struct msg_queue *msq)
750 {
751         return security_ops->msg_queue_alloc_security(msq);
752 }
753
754 void security_msg_queue_free(struct msg_queue *msq)
755 {
756         security_ops->msg_queue_free_security(msq);
757 }
758
759 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
760 {
761         return security_ops->msg_queue_associate(msq, msqflg);
762 }
763
764 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
765 {
766         return security_ops->msg_queue_msgctl(msq, cmd);
767 }
768
769 int security_msg_queue_msgsnd(struct msg_queue *msq,
770                                struct msg_msg *msg, int msqflg)
771 {
772         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
773 }
774
775 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
776                                struct task_struct *target, long type, int mode)
777 {
778         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
779 }
780
781 int security_shm_alloc(struct shmid_kernel *shp)
782 {
783         return security_ops->shm_alloc_security(shp);
784 }
785
786 void security_shm_free(struct shmid_kernel *shp)
787 {
788         security_ops->shm_free_security(shp);
789 }
790
791 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
792 {
793         return security_ops->shm_associate(shp, shmflg);
794 }
795
796 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
797 {
798         return security_ops->shm_shmctl(shp, cmd);
799 }
800
801 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
802 {
803         return security_ops->shm_shmat(shp, shmaddr, shmflg);
804 }
805
806 int security_sem_alloc(struct sem_array *sma)
807 {
808         return security_ops->sem_alloc_security(sma);
809 }
810
811 void security_sem_free(struct sem_array *sma)
812 {
813         security_ops->sem_free_security(sma);
814 }
815
816 int security_sem_associate(struct sem_array *sma, int semflg)
817 {
818         return security_ops->sem_associate(sma, semflg);
819 }
820
821 int security_sem_semctl(struct sem_array *sma, int cmd)
822 {
823         return security_ops->sem_semctl(sma, cmd);
824 }
825
826 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
827                         unsigned nsops, int alter)
828 {
829         return security_ops->sem_semop(sma, sops, nsops, alter);
830 }
831
832 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
833 {
834         if (unlikely(inode && IS_PRIVATE(inode)))
835                 return;
836         security_ops->d_instantiate(dentry, inode);
837 }
838 EXPORT_SYMBOL(security_d_instantiate);
839
840 int security_getprocattr(struct task_struct *p, char *name, char **value)
841 {
842         return security_ops->getprocattr(p, name, value);
843 }
844
845 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
846 {
847         return security_ops->setprocattr(p, name, value, size);
848 }
849
850 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
851 {
852         return security_ops->netlink_send(sk, skb);
853 }
854
855 int security_netlink_recv(struct sk_buff *skb, int cap)
856 {
857         return security_ops->netlink_recv(skb, cap);
858 }
859 EXPORT_SYMBOL(security_netlink_recv);
860
861 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
862 {
863         return security_ops->secid_to_secctx(secid, secdata, seclen);
864 }
865 EXPORT_SYMBOL(security_secid_to_secctx);
866
867 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
868 {
869         return security_ops->secctx_to_secid(secdata, seclen, secid);
870 }
871 EXPORT_SYMBOL(security_secctx_to_secid);
872
873 void security_release_secctx(char *secdata, u32 seclen)
874 {
875         security_ops->release_secctx(secdata, seclen);
876 }
877 EXPORT_SYMBOL(security_release_secctx);
878
879 #ifdef CONFIG_SECURITY_NETWORK
880
881 int security_unix_stream_connect(struct socket *sock, struct socket *other,
882                                  struct sock *newsk)
883 {
884         return security_ops->unix_stream_connect(sock, other, newsk);
885 }
886 EXPORT_SYMBOL(security_unix_stream_connect);
887
888 int security_unix_may_send(struct socket *sock,  struct socket *other)
889 {
890         return security_ops->unix_may_send(sock, other);
891 }
892 EXPORT_SYMBOL(security_unix_may_send);
893
894 int security_socket_create(int family, int type, int protocol, int kern)
895 {
896         return security_ops->socket_create(family, type, protocol, kern);
897 }
898
899 int security_socket_post_create(struct socket *sock, int family,
900                                 int type, int protocol, int kern)
901 {
902         return security_ops->socket_post_create(sock, family, type,
903                                                 protocol, kern);
904 }
905
906 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
907 {
908         return security_ops->socket_bind(sock, address, addrlen);
909 }
910
911 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
912 {
913         return security_ops->socket_connect(sock, address, addrlen);
914 }
915
916 int security_socket_listen(struct socket *sock, int backlog)
917 {
918         return security_ops->socket_listen(sock, backlog);
919 }
920
921 int security_socket_accept(struct socket *sock, struct socket *newsock)
922 {
923         return security_ops->socket_accept(sock, newsock);
924 }
925
926 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
927 {
928         security_ops->socket_post_accept(sock, newsock);
929 }
930
931 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
932 {
933         return security_ops->socket_sendmsg(sock, msg, size);
934 }
935
936 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
937                             int size, int flags)
938 {
939         return security_ops->socket_recvmsg(sock, msg, size, flags);
940 }
941
942 int security_socket_getsockname(struct socket *sock)
943 {
944         return security_ops->socket_getsockname(sock);
945 }
946
947 int security_socket_getpeername(struct socket *sock)
948 {
949         return security_ops->socket_getpeername(sock);
950 }
951
952 int security_socket_getsockopt(struct socket *sock, int level, int optname)
953 {
954         return security_ops->socket_getsockopt(sock, level, optname);
955 }
956
957 int security_socket_setsockopt(struct socket *sock, int level, int optname)
958 {
959         return security_ops->socket_setsockopt(sock, level, optname);
960 }
961
962 int security_socket_shutdown(struct socket *sock, int how)
963 {
964         return security_ops->socket_shutdown(sock, how);
965 }
966
967 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
968 {
969         return security_ops->socket_sock_rcv_skb(sk, skb);
970 }
971 EXPORT_SYMBOL(security_sock_rcv_skb);
972
973 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
974                                       int __user *optlen, unsigned len)
975 {
976         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
977 }
978
979 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
980 {
981         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
982 }
983 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
984
985 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
986 {
987         return security_ops->sk_alloc_security(sk, family, priority);
988 }
989
990 void security_sk_free(struct sock *sk)
991 {
992         security_ops->sk_free_security(sk);
993 }
994
995 void security_sk_clone(const struct sock *sk, struct sock *newsk)
996 {
997         security_ops->sk_clone_security(sk, newsk);
998 }
999
1000 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1001 {
1002         security_ops->sk_getsecid(sk, &fl->secid);
1003 }
1004 EXPORT_SYMBOL(security_sk_classify_flow);
1005
1006 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1007 {
1008         security_ops->req_classify_flow(req, fl);
1009 }
1010 EXPORT_SYMBOL(security_req_classify_flow);
1011
1012 void security_sock_graft(struct sock *sk, struct socket *parent)
1013 {
1014         security_ops->sock_graft(sk, parent);
1015 }
1016 EXPORT_SYMBOL(security_sock_graft);
1017
1018 int security_inet_conn_request(struct sock *sk,
1019                         struct sk_buff *skb, struct request_sock *req)
1020 {
1021         return security_ops->inet_conn_request(sk, skb, req);
1022 }
1023 EXPORT_SYMBOL(security_inet_conn_request);
1024
1025 void security_inet_csk_clone(struct sock *newsk,
1026                         const struct request_sock *req)
1027 {
1028         security_ops->inet_csk_clone(newsk, req);
1029 }
1030
1031 void security_inet_conn_established(struct sock *sk,
1032                         struct sk_buff *skb)
1033 {
1034         security_ops->inet_conn_established(sk, skb);
1035 }
1036
1037 #endif  /* CONFIG_SECURITY_NETWORK */
1038
1039 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1040
1041 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1042 {
1043         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1044 }
1045 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1046
1047 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1048                               struct xfrm_sec_ctx **new_ctxp)
1049 {
1050         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1051 }
1052
1053 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1054 {
1055         security_ops->xfrm_policy_free_security(ctx);
1056 }
1057 EXPORT_SYMBOL(security_xfrm_policy_free);
1058
1059 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1060 {
1061         return security_ops->xfrm_policy_delete_security(ctx);
1062 }
1063
1064 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1065 {
1066         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1067 }
1068 EXPORT_SYMBOL(security_xfrm_state_alloc);
1069
1070 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1071                                       struct xfrm_sec_ctx *polsec, u32 secid)
1072 {
1073         if (!polsec)
1074                 return 0;
1075         /*
1076          * We want the context to be taken from secid which is usually
1077          * from the sock.
1078          */
1079         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1080 }
1081
1082 int security_xfrm_state_delete(struct xfrm_state *x)
1083 {
1084         return security_ops->xfrm_state_delete_security(x);
1085 }
1086 EXPORT_SYMBOL(security_xfrm_state_delete);
1087
1088 void security_xfrm_state_free(struct xfrm_state *x)
1089 {
1090         security_ops->xfrm_state_free_security(x);
1091 }
1092
1093 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1094 {
1095         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1096 }
1097
1098 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1099                                        struct xfrm_policy *xp, struct flowi *fl)
1100 {
1101         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1102 }
1103
1104 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1105 {
1106         return security_ops->xfrm_decode_session(skb, secid, 1);
1107 }
1108
1109 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1110 {
1111         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1112
1113         BUG_ON(rc);
1114 }
1115 EXPORT_SYMBOL(security_skb_classify_flow);
1116
1117 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1118
1119 #ifdef CONFIG_KEYS
1120
1121 int security_key_alloc(struct key *key, const struct cred *cred,
1122                        unsigned long flags)
1123 {
1124         return security_ops->key_alloc(key, cred, flags);
1125 }
1126
1127 void security_key_free(struct key *key)
1128 {
1129         security_ops->key_free(key);
1130 }
1131
1132 int security_key_permission(key_ref_t key_ref,
1133                             const struct cred *cred, key_perm_t perm)
1134 {
1135         return security_ops->key_permission(key_ref, cred, perm);
1136 }
1137
1138 int security_key_getsecurity(struct key *key, char **_buffer)
1139 {
1140         return security_ops->key_getsecurity(key, _buffer);
1141 }
1142
1143 #endif  /* CONFIG_KEYS */
1144
1145 #ifdef CONFIG_AUDIT
1146
1147 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1148 {
1149         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1150 }
1151
1152 int security_audit_rule_known(struct audit_krule *krule)
1153 {
1154         return security_ops->audit_rule_known(krule);
1155 }
1156
1157 void security_audit_rule_free(void *lsmrule)
1158 {
1159         security_ops->audit_rule_free(lsmrule);
1160 }
1161
1162 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1163                               struct audit_context *actx)
1164 {
1165         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1166 }
1167
1168 #endif /* CONFIG_AUDIT */