synclink_gt: add serial bit order control
[linux-2.6] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_RESERVE       3
42 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
43 #define MIGRATE_TYPES         5
44
45 #define for_each_migratetype_order(order, type) \
46         for (order = 0; order < MAX_ORDER; order++) \
47                 for (type = 0; type < MIGRATE_TYPES; type++)
48
49 extern int page_group_by_mobility_disabled;
50
51 static inline int get_pageblock_migratetype(struct page *page)
52 {
53         if (unlikely(page_group_by_mobility_disabled))
54                 return MIGRATE_UNMOVABLE;
55
56         return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57 }
58
59 struct free_area {
60         struct list_head        free_list[MIGRATE_TYPES];
61         unsigned long           nr_free;
62 };
63
64 struct pglist_data;
65
66 /*
67  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
68  * So add a wild amount of padding here to ensure that they fall into separate
69  * cachelines.  There are very few zone structures in the machine, so space
70  * consumption is not a concern here.
71  */
72 #if defined(CONFIG_SMP)
73 struct zone_padding {
74         char x[0];
75 } ____cacheline_internodealigned_in_smp;
76 #define ZONE_PADDING(name)      struct zone_padding name;
77 #else
78 #define ZONE_PADDING(name)
79 #endif
80
81 enum zone_stat_item {
82         /* First 128 byte cacheline (assuming 64 bit words) */
83         NR_FREE_PAGES,
84         NR_INACTIVE,
85         NR_ACTIVE,
86         NR_ANON_PAGES,  /* Mapped anonymous pages */
87         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
88                            only modified from process context */
89         NR_FILE_PAGES,
90         NR_FILE_DIRTY,
91         NR_WRITEBACK,
92         /* Second 128 byte cacheline */
93         NR_SLAB_RECLAIMABLE,
94         NR_SLAB_UNRECLAIMABLE,
95         NR_PAGETABLE,           /* used for pagetables */
96         NR_UNSTABLE_NFS,        /* NFS unstable pages */
97         NR_BOUNCE,
98         NR_VMSCAN_WRITE,
99         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
100 #ifdef CONFIG_NUMA
101         NUMA_HIT,               /* allocated in intended node */
102         NUMA_MISS,              /* allocated in non intended node */
103         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
104         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
105         NUMA_LOCAL,             /* allocation from local node */
106         NUMA_OTHER,             /* allocation from other node */
107 #endif
108         NR_VM_ZONE_STAT_ITEMS };
109
110 struct per_cpu_pages {
111         int count;              /* number of pages in the list */
112         int high;               /* high watermark, emptying needed */
113         int batch;              /* chunk size for buddy add/remove */
114         struct list_head list;  /* the list of pages */
115 };
116
117 struct per_cpu_pageset {
118         struct per_cpu_pages pcp;
119 #ifdef CONFIG_NUMA
120         s8 expire;
121 #endif
122 #ifdef CONFIG_SMP
123         s8 stat_threshold;
124         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
125 #endif
126 } ____cacheline_aligned_in_smp;
127
128 #ifdef CONFIG_NUMA
129 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
130 #else
131 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
132 #endif
133
134 #endif /* !__GENERATING_BOUNDS.H */
135
136 enum zone_type {
137 #ifdef CONFIG_ZONE_DMA
138         /*
139          * ZONE_DMA is used when there are devices that are not able
140          * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
141          * carve out the portion of memory that is needed for these devices.
142          * The range is arch specific.
143          *
144          * Some examples
145          *
146          * Architecture         Limit
147          * ---------------------------
148          * parisc, ia64, sparc  <4G
149          * s390                 <2G
150          * arm                  Various
151          * alpha                Unlimited or 0-16MB.
152          *
153          * i386, x86_64 and multiple other arches
154          *                      <16M.
155          */
156         ZONE_DMA,
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159         /*
160          * x86_64 needs two ZONE_DMAs because it supports devices that are
161          * only able to do DMA to the lower 16M but also 32 bit devices that
162          * can only do DMA areas below 4G.
163          */
164         ZONE_DMA32,
165 #endif
166         /*
167          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
168          * performed on pages in ZONE_NORMAL if the DMA devices support
169          * transfers to all addressable memory.
170          */
171         ZONE_NORMAL,
172 #ifdef CONFIG_HIGHMEM
173         /*
174          * A memory area that is only addressable by the kernel through
175          * mapping portions into its own address space. This is for example
176          * used by i386 to allow the kernel to address the memory beyond
177          * 900MB. The kernel will set up special mappings (page
178          * table entries on i386) for each page that the kernel needs to
179          * access.
180          */
181         ZONE_HIGHMEM,
182 #endif
183         ZONE_MOVABLE,
184         __MAX_NR_ZONES
185 };
186
187 #ifndef __GENERATING_BOUNDS_H
188
189 /*
190  * When a memory allocation must conform to specific limitations (such
191  * as being suitable for DMA) the caller will pass in hints to the
192  * allocator in the gfp_mask, in the zone modifier bits.  These bits
193  * are used to select a priority ordered list of memory zones which
194  * match the requested limits. See gfp_zone() in include/linux/gfp.h
195  */
196
197 #if MAX_NR_ZONES < 2
198 #define ZONES_SHIFT 0
199 #elif MAX_NR_ZONES <= 2
200 #define ZONES_SHIFT 1
201 #elif MAX_NR_ZONES <= 4
202 #define ZONES_SHIFT 2
203 #else
204 #error ZONES_SHIFT -- too many zones configured adjust calculation
205 #endif
206
207 struct zone {
208         /* Fields commonly accessed by the page allocator */
209         unsigned long           pages_min, pages_low, pages_high;
210         /*
211          * We don't know if the memory that we're going to allocate will be freeable
212          * or/and it will be released eventually, so to avoid totally wasting several
213          * GB of ram we must reserve some of the lower zone memory (otherwise we risk
214          * to run OOM on the lower zones despite there's tons of freeable ram
215          * on the higher zones). This array is recalculated at runtime if the
216          * sysctl_lowmem_reserve_ratio sysctl changes.
217          */
218         unsigned long           lowmem_reserve[MAX_NR_ZONES];
219
220 #ifdef CONFIG_NUMA
221         int node;
222         /*
223          * zone reclaim becomes active if more unmapped pages exist.
224          */
225         unsigned long           min_unmapped_pages;
226         unsigned long           min_slab_pages;
227         struct per_cpu_pageset  *pageset[NR_CPUS];
228 #else
229         struct per_cpu_pageset  pageset[NR_CPUS];
230 #endif
231         /*
232          * free areas of different sizes
233          */
234         spinlock_t              lock;
235 #ifdef CONFIG_MEMORY_HOTPLUG
236         /* see spanned/present_pages for more description */
237         seqlock_t               span_seqlock;
238 #endif
239         struct free_area        free_area[MAX_ORDER];
240
241 #ifndef CONFIG_SPARSEMEM
242         /*
243          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
244          * In SPARSEMEM, this map is stored in struct mem_section
245          */
246         unsigned long           *pageblock_flags;
247 #endif /* CONFIG_SPARSEMEM */
248
249
250         ZONE_PADDING(_pad1_)
251
252         /* Fields commonly accessed by the page reclaim scanner */
253         spinlock_t              lru_lock;       
254         struct list_head        active_list;
255         struct list_head        inactive_list;
256         unsigned long           nr_scan_active;
257         unsigned long           nr_scan_inactive;
258         unsigned long           pages_scanned;     /* since last reclaim */
259         unsigned long           flags;             /* zone flags, see below */
260
261         /* Zone statistics */
262         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
263
264         /*
265          * prev_priority holds the scanning priority for this zone.  It is
266          * defined as the scanning priority at which we achieved our reclaim
267          * target at the previous try_to_free_pages() or balance_pgdat()
268          * invokation.
269          *
270          * We use prev_priority as a measure of how much stress page reclaim is
271          * under - it drives the swappiness decision: whether to unmap mapped
272          * pages.
273          *
274          * Access to both this field is quite racy even on uniprocessor.  But
275          * it is expected to average out OK.
276          */
277         int prev_priority;
278
279
280         ZONE_PADDING(_pad2_)
281         /* Rarely used or read-mostly fields */
282
283         /*
284          * wait_table           -- the array holding the hash table
285          * wait_table_hash_nr_entries   -- the size of the hash table array
286          * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
287          *
288          * The purpose of all these is to keep track of the people
289          * waiting for a page to become available and make them
290          * runnable again when possible. The trouble is that this
291          * consumes a lot of space, especially when so few things
292          * wait on pages at a given time. So instead of using
293          * per-page waitqueues, we use a waitqueue hash table.
294          *
295          * The bucket discipline is to sleep on the same queue when
296          * colliding and wake all in that wait queue when removing.
297          * When something wakes, it must check to be sure its page is
298          * truly available, a la thundering herd. The cost of a
299          * collision is great, but given the expected load of the
300          * table, they should be so rare as to be outweighed by the
301          * benefits from the saved space.
302          *
303          * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
304          * primary users of these fields, and in mm/page_alloc.c
305          * free_area_init_core() performs the initialization of them.
306          */
307         wait_queue_head_t       * wait_table;
308         unsigned long           wait_table_hash_nr_entries;
309         unsigned long           wait_table_bits;
310
311         /*
312          * Discontig memory support fields.
313          */
314         struct pglist_data      *zone_pgdat;
315         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
316         unsigned long           zone_start_pfn;
317
318         /*
319          * zone_start_pfn, spanned_pages and present_pages are all
320          * protected by span_seqlock.  It is a seqlock because it has
321          * to be read outside of zone->lock, and it is done in the main
322          * allocator path.  But, it is written quite infrequently.
323          *
324          * The lock is declared along with zone->lock because it is
325          * frequently read in proximity to zone->lock.  It's good to
326          * give them a chance of being in the same cacheline.
327          */
328         unsigned long           spanned_pages;  /* total size, including holes */
329         unsigned long           present_pages;  /* amount of memory (excluding holes) */
330
331         /*
332          * rarely used fields:
333          */
334         const char              *name;
335 } ____cacheline_internodealigned_in_smp;
336
337 typedef enum {
338         ZONE_ALL_UNRECLAIMABLE,         /* all pages pinned */
339         ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
340         ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
341 } zone_flags_t;
342
343 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
344 {
345         set_bit(flag, &zone->flags);
346 }
347
348 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
349 {
350         return test_and_set_bit(flag, &zone->flags);
351 }
352
353 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
354 {
355         clear_bit(flag, &zone->flags);
356 }
357
358 static inline int zone_is_all_unreclaimable(const struct zone *zone)
359 {
360         return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
361 }
362
363 static inline int zone_is_reclaim_locked(const struct zone *zone)
364 {
365         return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
366 }
367
368 static inline int zone_is_oom_locked(const struct zone *zone)
369 {
370         return test_bit(ZONE_OOM_LOCKED, &zone->flags);
371 }
372
373 /*
374  * The "priority" of VM scanning is how much of the queues we will scan in one
375  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
376  * queues ("queue_length >> 12") during an aging round.
377  */
378 #define DEF_PRIORITY 12
379
380 /* Maximum number of zones on a zonelist */
381 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
382
383 #ifdef CONFIG_NUMA
384
385 /*
386  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
387  * allocations to a single node for GFP_THISNODE.
388  *
389  * [0]  : Zonelist with fallback
390  * [1]  : No fallback (GFP_THISNODE)
391  */
392 #define MAX_ZONELISTS 2
393
394
395 /*
396  * We cache key information from each zonelist for smaller cache
397  * footprint when scanning for free pages in get_page_from_freelist().
398  *
399  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
400  *    up short of free memory since the last time (last_fullzone_zap)
401  *    we zero'd fullzones.
402  * 2) The array z_to_n[] maps each zone in the zonelist to its node
403  *    id, so that we can efficiently evaluate whether that node is
404  *    set in the current tasks mems_allowed.
405  *
406  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
407  * indexed by a zones offset in the zonelist zones[] array.
408  *
409  * The get_page_from_freelist() routine does two scans.  During the
410  * first scan, we skip zones whose corresponding bit in 'fullzones'
411  * is set or whose corresponding node in current->mems_allowed (which
412  * comes from cpusets) is not set.  During the second scan, we bypass
413  * this zonelist_cache, to ensure we look methodically at each zone.
414  *
415  * Once per second, we zero out (zap) fullzones, forcing us to
416  * reconsider nodes that might have regained more free memory.
417  * The field last_full_zap is the time we last zapped fullzones.
418  *
419  * This mechanism reduces the amount of time we waste repeatedly
420  * reexaming zones for free memory when they just came up low on
421  * memory momentarilly ago.
422  *
423  * The zonelist_cache struct members logically belong in struct
424  * zonelist.  However, the mempolicy zonelists constructed for
425  * MPOL_BIND are intentionally variable length (and usually much
426  * shorter).  A general purpose mechanism for handling structs with
427  * multiple variable length members is more mechanism than we want
428  * here.  We resort to some special case hackery instead.
429  *
430  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
431  * part because they are shorter), so we put the fixed length stuff
432  * at the front of the zonelist struct, ending in a variable length
433  * zones[], as is needed by MPOL_BIND.
434  *
435  * Then we put the optional zonelist cache on the end of the zonelist
436  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
437  * the fixed length portion at the front of the struct.  This pointer
438  * both enables us to find the zonelist cache, and in the case of
439  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
440  * to know that the zonelist cache is not there.
441  *
442  * The end result is that struct zonelists come in two flavors:
443  *  1) The full, fixed length version, shown below, and
444  *  2) The custom zonelists for MPOL_BIND.
445  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
446  *
447  * Even though there may be multiple CPU cores on a node modifying
448  * fullzones or last_full_zap in the same zonelist_cache at the same
449  * time, we don't lock it.  This is just hint data - if it is wrong now
450  * and then, the allocator will still function, perhaps a bit slower.
451  */
452
453
454 struct zonelist_cache {
455         unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
456         DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
457         unsigned long last_full_zap;            /* when last zap'd (jiffies) */
458 };
459 #else
460 #define MAX_ZONELISTS 1
461 struct zonelist_cache;
462 #endif
463
464 /*
465  * This struct contains information about a zone in a zonelist. It is stored
466  * here to avoid dereferences into large structures and lookups of tables
467  */
468 struct zoneref {
469         struct zone *zone;      /* Pointer to actual zone */
470         int zone_idx;           /* zone_idx(zoneref->zone) */
471 };
472
473 /*
474  * One allocation request operates on a zonelist. A zonelist
475  * is a list of zones, the first one is the 'goal' of the
476  * allocation, the other zones are fallback zones, in decreasing
477  * priority.
478  *
479  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
480  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
481  * *
482  * To speed the reading of the zonelist, the zonerefs contain the zone index
483  * of the entry being read. Helper functions to access information given
484  * a struct zoneref are
485  *
486  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
487  * zonelist_zone_idx()  - Return the index of the zone for an entry
488  * zonelist_node_idx()  - Return the index of the node for an entry
489  */
490 struct zonelist {
491         struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
492         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
493 #ifdef CONFIG_NUMA
494         struct zonelist_cache zlcache;                       // optional ...
495 #endif
496 };
497
498 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
499 struct node_active_region {
500         unsigned long start_pfn;
501         unsigned long end_pfn;
502         int nid;
503 };
504 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
505
506 #ifndef CONFIG_DISCONTIGMEM
507 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
508 extern struct page *mem_map;
509 #endif
510
511 /*
512  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
513  * (mostly NUMA machines?) to denote a higher-level memory zone than the
514  * zone denotes.
515  *
516  * On NUMA machines, each NUMA node would have a pg_data_t to describe
517  * it's memory layout.
518  *
519  * Memory statistics and page replacement data structures are maintained on a
520  * per-zone basis.
521  */
522 struct bootmem_data;
523 typedef struct pglist_data {
524         struct zone node_zones[MAX_NR_ZONES];
525         struct zonelist node_zonelists[MAX_ZONELISTS];
526         int nr_zones;
527 #ifdef CONFIG_FLAT_NODE_MEM_MAP
528         struct page *node_mem_map;
529 #endif
530         struct bootmem_data *bdata;
531 #ifdef CONFIG_MEMORY_HOTPLUG
532         /*
533          * Must be held any time you expect node_start_pfn, node_present_pages
534          * or node_spanned_pages stay constant.  Holding this will also
535          * guarantee that any pfn_valid() stays that way.
536          *
537          * Nests above zone->lock and zone->size_seqlock.
538          */
539         spinlock_t node_size_lock;
540 #endif
541         unsigned long node_start_pfn;
542         unsigned long node_present_pages; /* total number of physical pages */
543         unsigned long node_spanned_pages; /* total size of physical page
544                                              range, including holes */
545         int node_id;
546         wait_queue_head_t kswapd_wait;
547         struct task_struct *kswapd;
548         int kswapd_max_order;
549 } pg_data_t;
550
551 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
552 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
553 #ifdef CONFIG_FLAT_NODE_MEM_MAP
554 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
555 #else
556 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
557 #endif
558 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
559
560 #include <linux/memory_hotplug.h>
561
562 void get_zone_counts(unsigned long *active, unsigned long *inactive,
563                         unsigned long *free);
564 void build_all_zonelists(void);
565 void wakeup_kswapd(struct zone *zone, int order);
566 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
567                 int classzone_idx, int alloc_flags);
568 enum memmap_context {
569         MEMMAP_EARLY,
570         MEMMAP_HOTPLUG,
571 };
572 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
573                                      unsigned long size,
574                                      enum memmap_context context);
575
576 #ifdef CONFIG_HAVE_MEMORY_PRESENT
577 void memory_present(int nid, unsigned long start, unsigned long end);
578 #else
579 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
580 #endif
581
582 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
583 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
584 #endif
585
586 /*
587  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
588  */
589 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
590
591 static inline int populated_zone(struct zone *zone)
592 {
593         return (!!zone->present_pages);
594 }
595
596 extern int movable_zone;
597
598 static inline int zone_movable_is_highmem(void)
599 {
600 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
601         return movable_zone == ZONE_HIGHMEM;
602 #else
603         return 0;
604 #endif
605 }
606
607 static inline int is_highmem_idx(enum zone_type idx)
608 {
609 #ifdef CONFIG_HIGHMEM
610         return (idx == ZONE_HIGHMEM ||
611                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
612 #else
613         return 0;
614 #endif
615 }
616
617 static inline int is_normal_idx(enum zone_type idx)
618 {
619         return (idx == ZONE_NORMAL);
620 }
621
622 /**
623  * is_highmem - helper function to quickly check if a struct zone is a 
624  *              highmem zone or not.  This is an attempt to keep references
625  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
626  * @zone - pointer to struct zone variable
627  */
628 static inline int is_highmem(struct zone *zone)
629 {
630 #ifdef CONFIG_HIGHMEM
631         int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
632         return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
633                (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
634                 zone_movable_is_highmem());
635 #else
636         return 0;
637 #endif
638 }
639
640 static inline int is_normal(struct zone *zone)
641 {
642         return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
643 }
644
645 static inline int is_dma32(struct zone *zone)
646 {
647 #ifdef CONFIG_ZONE_DMA32
648         return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
649 #else
650         return 0;
651 #endif
652 }
653
654 static inline int is_dma(struct zone *zone)
655 {
656 #ifdef CONFIG_ZONE_DMA
657         return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
658 #else
659         return 0;
660 #endif
661 }
662
663 /* These two functions are used to setup the per zone pages min values */
664 struct ctl_table;
665 struct file;
666 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
667                                         void __user *, size_t *, loff_t *);
668 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
669 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
670                                         void __user *, size_t *, loff_t *);
671 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
672                                         void __user *, size_t *, loff_t *);
673 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
674                         struct file *, void __user *, size_t *, loff_t *);
675 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
676                         struct file *, void __user *, size_t *, loff_t *);
677
678 extern int numa_zonelist_order_handler(struct ctl_table *, int,
679                         struct file *, void __user *, size_t *, loff_t *);
680 extern char numa_zonelist_order[];
681 #define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
682
683 #include <linux/topology.h>
684 /* Returns the number of the current Node. */
685 #ifndef numa_node_id
686 #define numa_node_id()          (cpu_to_node(raw_smp_processor_id()))
687 #endif
688
689 #ifndef CONFIG_NEED_MULTIPLE_NODES
690
691 extern struct pglist_data contig_page_data;
692 #define NODE_DATA(nid)          (&contig_page_data)
693 #define NODE_MEM_MAP(nid)       mem_map
694
695 #else /* CONFIG_NEED_MULTIPLE_NODES */
696
697 #include <asm/mmzone.h>
698
699 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
700
701 extern struct pglist_data *first_online_pgdat(void);
702 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
703 extern struct zone *next_zone(struct zone *zone);
704
705 /**
706  * for_each_online_pgdat - helper macro to iterate over all online nodes
707  * @pgdat - pointer to a pg_data_t variable
708  */
709 #define for_each_online_pgdat(pgdat)                    \
710         for (pgdat = first_online_pgdat();              \
711              pgdat;                                     \
712              pgdat = next_online_pgdat(pgdat))
713 /**
714  * for_each_zone - helper macro to iterate over all memory zones
715  * @zone - pointer to struct zone variable
716  *
717  * The user only needs to declare the zone variable, for_each_zone
718  * fills it in.
719  */
720 #define for_each_zone(zone)                             \
721         for (zone = (first_online_pgdat())->node_zones; \
722              zone;                                      \
723              zone = next_zone(zone))
724
725 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
726 {
727         return zoneref->zone;
728 }
729
730 static inline int zonelist_zone_idx(struct zoneref *zoneref)
731 {
732         return zoneref->zone_idx;
733 }
734
735 static inline int zonelist_node_idx(struct zoneref *zoneref)
736 {
737 #ifdef CONFIG_NUMA
738         /* zone_to_nid not available in this context */
739         return zoneref->zone->node;
740 #else
741         return 0;
742 #endif /* CONFIG_NUMA */
743 }
744
745 /**
746  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
747  * @z - The cursor used as a starting point for the search
748  * @highest_zoneidx - The zone index of the highest zone to return
749  * @nodes - An optional nodemask to filter the zonelist with
750  * @zone - The first suitable zone found is returned via this parameter
751  *
752  * This function returns the next zone at or below a given zone index that is
753  * within the allowed nodemask using a cursor as the starting point for the
754  * search. The zoneref returned is a cursor that is used as the next starting
755  * point for future calls to next_zones_zonelist().
756  */
757 struct zoneref *next_zones_zonelist(struct zoneref *z,
758                                         enum zone_type highest_zoneidx,
759                                         nodemask_t *nodes,
760                                         struct zone **zone);
761
762 /**
763  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
764  * @zonelist - The zonelist to search for a suitable zone
765  * @highest_zoneidx - The zone index of the highest zone to return
766  * @nodes - An optional nodemask to filter the zonelist with
767  * @zone - The first suitable zone found is returned via this parameter
768  *
769  * This function returns the first zone at or below a given zone index that is
770  * within the allowed nodemask. The zoneref returned is a cursor that can be
771  * used to iterate the zonelist with next_zones_zonelist. The cursor should
772  * not be used by the caller as it does not match the value of the zone
773  * returned.
774  */
775 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
776                                         enum zone_type highest_zoneidx,
777                                         nodemask_t *nodes,
778                                         struct zone **zone)
779 {
780         return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
781                                                                 zone);
782 }
783
784 /**
785  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
786  * @zone - The current zone in the iterator
787  * @z - The current pointer within zonelist->zones being iterated
788  * @zlist - The zonelist being iterated
789  * @highidx - The zone index of the highest zone to return
790  * @nodemask - Nodemask allowed by the allocator
791  *
792  * This iterator iterates though all zones at or below a given zone index and
793  * within a given nodemask
794  */
795 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
796         for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
797                 zone;                                                   \
798                 z = next_zones_zonelist(z, highidx, nodemask, &zone))   \
799
800 /**
801  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
802  * @zone - The current zone in the iterator
803  * @z - The current pointer within zonelist->zones being iterated
804  * @zlist - The zonelist being iterated
805  * @highidx - The zone index of the highest zone to return
806  *
807  * This iterator iterates though all zones at or below a given zone index.
808  */
809 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
810         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
811
812 #ifdef CONFIG_SPARSEMEM
813 #include <asm/sparsemem.h>
814 #endif
815
816 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
817         !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
818 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
819 {
820         return 0;
821 }
822 #endif
823
824 #ifdef CONFIG_FLATMEM
825 #define pfn_to_nid(pfn)         (0)
826 #endif
827
828 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
829 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
830
831 #ifdef CONFIG_SPARSEMEM
832
833 /*
834  * SECTION_SHIFT                #bits space required to store a section #
835  *
836  * PA_SECTION_SHIFT             physical address to/from section number
837  * PFN_SECTION_SHIFT            pfn to/from section number
838  */
839 #define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
840
841 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
842 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
843
844 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
845
846 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
847 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
848
849 #define SECTION_BLOCKFLAGS_BITS \
850         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
851
852 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
853 #error Allocator MAX_ORDER exceeds SECTION_SIZE
854 #endif
855
856 struct page;
857 struct mem_section {
858         /*
859          * This is, logically, a pointer to an array of struct
860          * pages.  However, it is stored with some other magic.
861          * (see sparse.c::sparse_init_one_section())
862          *
863          * Additionally during early boot we encode node id of
864          * the location of the section here to guide allocation.
865          * (see sparse.c::memory_present())
866          *
867          * Making it a UL at least makes someone do a cast
868          * before using it wrong.
869          */
870         unsigned long section_mem_map;
871
872         /* See declaration of similar field in struct zone */
873         unsigned long *pageblock_flags;
874 };
875
876 #ifdef CONFIG_SPARSEMEM_EXTREME
877 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
878 #else
879 #define SECTIONS_PER_ROOT       1
880 #endif
881
882 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
883 #define NR_SECTION_ROOTS        (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
884 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
885
886 #ifdef CONFIG_SPARSEMEM_EXTREME
887 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
888 #else
889 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
890 #endif
891
892 static inline struct mem_section *__nr_to_section(unsigned long nr)
893 {
894         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
895                 return NULL;
896         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
897 }
898 extern int __section_nr(struct mem_section* ms);
899 extern unsigned long usemap_size(void);
900
901 /*
902  * We use the lower bits of the mem_map pointer to store
903  * a little bit of information.  There should be at least
904  * 3 bits here due to 32-bit alignment.
905  */
906 #define SECTION_MARKED_PRESENT  (1UL<<0)
907 #define SECTION_HAS_MEM_MAP     (1UL<<1)
908 #define SECTION_MAP_LAST_BIT    (1UL<<2)
909 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
910 #define SECTION_NID_SHIFT       2
911
912 static inline struct page *__section_mem_map_addr(struct mem_section *section)
913 {
914         unsigned long map = section->section_mem_map;
915         map &= SECTION_MAP_MASK;
916         return (struct page *)map;
917 }
918
919 static inline int present_section(struct mem_section *section)
920 {
921         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
922 }
923
924 static inline int present_section_nr(unsigned long nr)
925 {
926         return present_section(__nr_to_section(nr));
927 }
928
929 static inline int valid_section(struct mem_section *section)
930 {
931         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
932 }
933
934 static inline int valid_section_nr(unsigned long nr)
935 {
936         return valid_section(__nr_to_section(nr));
937 }
938
939 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
940 {
941         return __nr_to_section(pfn_to_section_nr(pfn));
942 }
943
944 static inline int pfn_valid(unsigned long pfn)
945 {
946         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
947                 return 0;
948         return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
949 }
950
951 static inline int pfn_present(unsigned long pfn)
952 {
953         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
954                 return 0;
955         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
956 }
957
958 /*
959  * These are _only_ used during initialisation, therefore they
960  * can use __initdata ...  They could have names to indicate
961  * this restriction.
962  */
963 #ifdef CONFIG_NUMA
964 #define pfn_to_nid(pfn)                                                 \
965 ({                                                                      \
966         unsigned long __pfn_to_nid_pfn = (pfn);                         \
967         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
968 })
969 #else
970 #define pfn_to_nid(pfn)         (0)
971 #endif
972
973 #define early_pfn_valid(pfn)    pfn_valid(pfn)
974 void sparse_init(void);
975 #else
976 #define sparse_init()   do {} while (0)
977 #define sparse_index_init(_sec, _nid)  do {} while (0)
978 #endif /* CONFIG_SPARSEMEM */
979
980 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
981 #define early_pfn_in_nid(pfn, nid)      (early_pfn_to_nid(pfn) == (nid))
982 #else
983 #define early_pfn_in_nid(pfn, nid)      (1)
984 #endif
985
986 #ifndef early_pfn_valid
987 #define early_pfn_valid(pfn)    (1)
988 #endif
989
990 void memory_present(int nid, unsigned long start, unsigned long end);
991 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
992
993 /*
994  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
995  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
996  * pfn_valid_within() should be used in this case; we optimise this away
997  * when we have no holes within a MAX_ORDER_NR_PAGES block.
998  */
999 #ifdef CONFIG_HOLES_IN_ZONE
1000 #define pfn_valid_within(pfn) pfn_valid(pfn)
1001 #else
1002 #define pfn_valid_within(pfn) (1)
1003 #endif
1004
1005 #endif /* !__GENERATING_BOUNDS.H */
1006 #endif /* !__ASSEMBLY__ */
1007 #endif /* _LINUX_MMZONE_H */