Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         cpu_set(rq->cpu, rq->rd->rto_mask);
16         /*
17          * Make sure the mask is visible before we set
18          * the overload count. That is checked to determine
19          * if we should look at the mask. It would be a shame
20          * if we looked at the mask, but the mask was not
21          * updated yet.
22          */
23         wmb();
24         atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29         /* the order here really doesn't matter */
30         atomic_dec(&rq->rd->rto_count);
31         cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37                 if (!rq->rt.overloaded) {
38                         rt_set_overload(rq);
39                         rq->rt.overloaded = 1;
40                 }
41         } else if (rq->rt.overloaded) {
42                 rt_clear_overload(rq);
43                 rq->rt.overloaded = 0;
44         }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50         return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55         return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_RT_GROUP_SCHED
59
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
61 {
62         if (!rt_rq->tg)
63                 return RUNTIME_INF;
64
65         return rt_rq->rt_runtime;
66 }
67
68 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69 {
70         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
71 }
72
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77 {
78         return rt_rq->rq;
79 }
80
81 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82 {
83         return rt_se->rt_rq;
84 }
85
86 #define for_each_sched_rt_entity(rt_se) \
87         for (; rt_se; rt_se = rt_se->parent)
88
89 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90 {
91         return rt_se->my_q;
92 }
93
94 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
97 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
98 {
99         struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
104                 enqueue_rt_entity(rt_se);
105                 if (rt_rq->highest_prio < curr->prio)
106                         resched_task(curr);
107         }
108 }
109
110 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
111 {
112         struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114         if (rt_se && on_rt_rq(rt_se))
115                 dequeue_rt_entity(rt_se);
116 }
117
118 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119 {
120         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121 }
122
123 static int rt_se_boosted(struct sched_rt_entity *rt_se)
124 {
125         struct rt_rq *rt_rq = group_rt_rq(rt_se);
126         struct task_struct *p;
127
128         if (rt_rq)
129                 return !!rt_rq->rt_nr_boosted;
130
131         p = rt_task_of(rt_se);
132         return p->prio != p->normal_prio;
133 }
134
135 #ifdef CONFIG_SMP
136 static inline cpumask_t sched_rt_period_mask(void)
137 {
138         return cpu_rq(smp_processor_id())->rd->span;
139 }
140 #else
141 static inline cpumask_t sched_rt_period_mask(void)
142 {
143         return cpu_online_map;
144 }
145 #endif
146
147 static inline
148 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
149 {
150         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151 }
152
153 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154 {
155         return &rt_rq->tg->rt_bandwidth;
156 }
157
158 #else
159
160 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161 {
162         return rt_rq->rt_runtime;
163 }
164
165 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166 {
167         return ktime_to_ns(def_rt_bandwidth.rt_period);
168 }
169
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174 {
175         return container_of(rt_rq, struct rq, rt);
176 }
177
178 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179 {
180         struct task_struct *p = rt_task_of(rt_se);
181         struct rq *rq = task_rq(p);
182
183         return &rq->rt;
184 }
185
186 #define for_each_sched_rt_entity(rt_se) \
187         for (; rt_se; rt_se = NULL)
188
189 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190 {
191         return NULL;
192 }
193
194 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
195 {
196 }
197
198 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
199 {
200 }
201
202 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203 {
204         return rt_rq->rt_throttled;
205 }
206
207 static inline cpumask_t sched_rt_period_mask(void)
208 {
209         return cpu_online_map;
210 }
211
212 static inline
213 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214 {
215         return &cpu_rq(cpu)->rt;
216 }
217
218 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219 {
220         return &def_rt_bandwidth;
221 }
222
223 #endif
224
225 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226 {
227         int i, idle = 1;
228         cpumask_t span;
229
230         if (rt_b->rt_runtime == RUNTIME_INF)
231                 return 1;
232
233         span = sched_rt_period_mask();
234         for_each_cpu_mask(i, span) {
235                 int enqueue = 0;
236                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237                 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239                 spin_lock(&rq->lock);
240                 if (rt_rq->rt_time) {
241                         u64 runtime;
242
243                         spin_lock(&rt_rq->rt_runtime_lock);
244                         runtime = rt_rq->rt_runtime;
245                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247                                 rt_rq->rt_throttled = 0;
248                                 enqueue = 1;
249                         }
250                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
251                                 idle = 0;
252                         spin_unlock(&rt_rq->rt_runtime_lock);
253                 }
254
255                 if (enqueue)
256                         sched_rt_rq_enqueue(rt_rq);
257                 spin_unlock(&rq->lock);
258         }
259
260         return idle;
261 }
262
263 #ifdef CONFIG_SMP
264 static int balance_runtime(struct rt_rq *rt_rq)
265 {
266         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268         int i, weight, more = 0;
269         u64 rt_period;
270
271         weight = cpus_weight(rd->span);
272
273         spin_lock(&rt_b->rt_runtime_lock);
274         rt_period = ktime_to_ns(rt_b->rt_period);
275         for_each_cpu_mask(i, rd->span) {
276                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277                 s64 diff;
278
279                 if (iter == rt_rq)
280                         continue;
281
282                 spin_lock(&iter->rt_runtime_lock);
283                 diff = iter->rt_runtime - iter->rt_time;
284                 if (diff > 0) {
285                         do_div(diff, weight);
286                         if (rt_rq->rt_runtime + diff > rt_period)
287                                 diff = rt_period - rt_rq->rt_runtime;
288                         iter->rt_runtime -= diff;
289                         rt_rq->rt_runtime += diff;
290                         more = 1;
291                         if (rt_rq->rt_runtime == rt_period) {
292                                 spin_unlock(&iter->rt_runtime_lock);
293                                 break;
294                         }
295                 }
296                 spin_unlock(&iter->rt_runtime_lock);
297         }
298         spin_unlock(&rt_b->rt_runtime_lock);
299
300         return more;
301 }
302 #endif
303
304 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305 {
306 #ifdef CONFIG_RT_GROUP_SCHED
307         struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309         if (rt_rq)
310                 return rt_rq->highest_prio;
311 #endif
312
313         return rt_task_of(rt_se)->prio;
314 }
315
316 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
317 {
318         u64 runtime = sched_rt_runtime(rt_rq);
319
320         if (runtime == RUNTIME_INF)
321                 return 0;
322
323         if (rt_rq->rt_throttled)
324                 return rt_rq_throttled(rt_rq);
325
326         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327                 return 0;
328
329 #ifdef CONFIG_SMP
330         if (rt_rq->rt_time > runtime) {
331                 int more;
332
333                 spin_unlock(&rt_rq->rt_runtime_lock);
334                 more = balance_runtime(rt_rq);
335                 spin_lock(&rt_rq->rt_runtime_lock);
336
337                 if (more)
338                         runtime = sched_rt_runtime(rt_rq);
339         }
340 #endif
341
342         if (rt_rq->rt_time > runtime) {
343                 rt_rq->rt_throttled = 1;
344                 if (rt_rq_throttled(rt_rq)) {
345                         sched_rt_rq_dequeue(rt_rq);
346                         return 1;
347                 }
348         }
349
350         return 0;
351 }
352
353 /*
354  * Update the current task's runtime statistics. Skip current tasks that
355  * are not in our scheduling class.
356  */
357 static void update_curr_rt(struct rq *rq)
358 {
359         struct task_struct *curr = rq->curr;
360         struct sched_rt_entity *rt_se = &curr->rt;
361         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
362         u64 delta_exec;
363
364         if (!task_has_rt_policy(curr))
365                 return;
366
367         delta_exec = rq->clock - curr->se.exec_start;
368         if (unlikely((s64)delta_exec < 0))
369                 delta_exec = 0;
370
371         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
372
373         curr->se.sum_exec_runtime += delta_exec;
374         curr->se.exec_start = rq->clock;
375         cpuacct_charge(curr, delta_exec);
376
377         for_each_sched_rt_entity(rt_se) {
378                 rt_rq = rt_rq_of_se(rt_se);
379
380                 spin_lock(&rt_rq->rt_runtime_lock);
381                 rt_rq->rt_time += delta_exec;
382                 if (sched_rt_runtime_exceeded(rt_rq))
383                         resched_task(curr);
384                 spin_unlock(&rt_rq->rt_runtime_lock);
385         }
386 }
387
388 static inline
389 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390 {
391         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392         rt_rq->rt_nr_running++;
393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394         if (rt_se_prio(rt_se) < rt_rq->highest_prio)
395                 rt_rq->highest_prio = rt_se_prio(rt_se);
396 #endif
397 #ifdef CONFIG_SMP
398         if (rt_se->nr_cpus_allowed > 1) {
399                 struct rq *rq = rq_of_rt_rq(rt_rq);
400                 rq->rt.rt_nr_migratory++;
401         }
402
403         update_rt_migration(rq_of_rt_rq(rt_rq));
404 #endif
405 #ifdef CONFIG_RT_GROUP_SCHED
406         if (rt_se_boosted(rt_se))
407                 rt_rq->rt_nr_boosted++;
408
409         if (rt_rq->tg)
410                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
411 #else
412         start_rt_bandwidth(&def_rt_bandwidth);
413 #endif
414 }
415
416 static inline
417 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 {
419         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
420         WARN_ON(!rt_rq->rt_nr_running);
421         rt_rq->rt_nr_running--;
422 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
423         if (rt_rq->rt_nr_running) {
424                 struct rt_prio_array *array;
425
426                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
427                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
428                         /* recalculate */
429                         array = &rt_rq->active;
430                         rt_rq->highest_prio =
431                                 sched_find_first_bit(array->bitmap);
432                 } /* otherwise leave rq->highest prio alone */
433         } else
434                 rt_rq->highest_prio = MAX_RT_PRIO;
435 #endif
436 #ifdef CONFIG_SMP
437         if (rt_se->nr_cpus_allowed > 1) {
438                 struct rq *rq = rq_of_rt_rq(rt_rq);
439                 rq->rt.rt_nr_migratory--;
440         }
441
442         update_rt_migration(rq_of_rt_rq(rt_rq));
443 #endif /* CONFIG_SMP */
444 #ifdef CONFIG_RT_GROUP_SCHED
445         if (rt_se_boosted(rt_se))
446                 rt_rq->rt_nr_boosted--;
447
448         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
449 #endif
450 }
451
452 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
453 {
454         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
455         struct rt_prio_array *array = &rt_rq->active;
456         struct rt_rq *group_rq = group_rt_rq(rt_se);
457
458         /*
459          * Don't enqueue the group if its throttled, or when empty.
460          * The latter is a consequence of the former when a child group
461          * get throttled and the current group doesn't have any other
462          * active members.
463          */
464         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
465                 return;
466
467         list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
468         __set_bit(rt_se_prio(rt_se), array->bitmap);
469
470         inc_rt_tasks(rt_se, rt_rq);
471 }
472
473 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
474 {
475         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
476         struct rt_prio_array *array = &rt_rq->active;
477
478         list_del_init(&rt_se->run_list);
479         if (list_empty(array->queue + rt_se_prio(rt_se)))
480                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
481
482         dec_rt_tasks(rt_se, rt_rq);
483 }
484
485 /*
486  * Because the prio of an upper entry depends on the lower
487  * entries, we must remove entries top - down.
488  */
489 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
490 {
491         struct sched_rt_entity *back = NULL;
492
493         for_each_sched_rt_entity(rt_se) {
494                 rt_se->back = back;
495                 back = rt_se;
496         }
497
498         for (rt_se = back; rt_se; rt_se = rt_se->back) {
499                 if (on_rt_rq(rt_se))
500                         __dequeue_rt_entity(rt_se);
501         }
502 }
503
504 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
505 {
506         dequeue_rt_stack(rt_se);
507         for_each_sched_rt_entity(rt_se)
508                 __enqueue_rt_entity(rt_se);
509 }
510
511 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
512 {
513         dequeue_rt_stack(rt_se);
514
515         for_each_sched_rt_entity(rt_se) {
516                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
517
518                 if (rt_rq && rt_rq->rt_nr_running)
519                         __enqueue_rt_entity(rt_se);
520         }
521 }
522
523 /*
524  * Adding/removing a task to/from a priority array:
525  */
526 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
527 {
528         struct sched_rt_entity *rt_se = &p->rt;
529
530         if (wakeup)
531                 rt_se->timeout = 0;
532
533         enqueue_rt_entity(rt_se);
534 }
535
536 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
537 {
538         struct sched_rt_entity *rt_se = &p->rt;
539
540         update_curr_rt(rq);
541         dequeue_rt_entity(rt_se);
542 }
543
544 /*
545  * Put task to the end of the run list without the overhead of dequeue
546  * followed by enqueue.
547  */
548 static
549 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
550 {
551         struct rt_prio_array *array = &rt_rq->active;
552         struct list_head *queue = array->queue + rt_se_prio(rt_se);
553
554         if (on_rt_rq(rt_se))
555                 list_move_tail(&rt_se->run_list, queue);
556 }
557
558 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
559 {
560         struct sched_rt_entity *rt_se = &p->rt;
561         struct rt_rq *rt_rq;
562
563         for_each_sched_rt_entity(rt_se) {
564                 rt_rq = rt_rq_of_se(rt_se);
565                 requeue_rt_entity(rt_rq, rt_se);
566         }
567 }
568
569 static void yield_task_rt(struct rq *rq)
570 {
571         requeue_task_rt(rq, rq->curr);
572 }
573
574 #ifdef CONFIG_SMP
575 static int find_lowest_rq(struct task_struct *task);
576
577 static int select_task_rq_rt(struct task_struct *p, int sync)
578 {
579         struct rq *rq = task_rq(p);
580
581         /*
582          * If the current task is an RT task, then
583          * try to see if we can wake this RT task up on another
584          * runqueue. Otherwise simply start this RT task
585          * on its current runqueue.
586          *
587          * We want to avoid overloading runqueues. Even if
588          * the RT task is of higher priority than the current RT task.
589          * RT tasks behave differently than other tasks. If
590          * one gets preempted, we try to push it off to another queue.
591          * So trying to keep a preempting RT task on the same
592          * cache hot CPU will force the running RT task to
593          * a cold CPU. So we waste all the cache for the lower
594          * RT task in hopes of saving some of a RT task
595          * that is just being woken and probably will have
596          * cold cache anyway.
597          */
598         if (unlikely(rt_task(rq->curr)) &&
599             (p->rt.nr_cpus_allowed > 1)) {
600                 int cpu = find_lowest_rq(p);
601
602                 return (cpu == -1) ? task_cpu(p) : cpu;
603         }
604
605         /*
606          * Otherwise, just let it ride on the affined RQ and the
607          * post-schedule router will push the preempted task away
608          */
609         return task_cpu(p);
610 }
611 #endif /* CONFIG_SMP */
612
613 /*
614  * Preempt the current task with a newly woken task if needed:
615  */
616 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
617 {
618         if (p->prio < rq->curr->prio)
619                 resched_task(rq->curr);
620 }
621
622 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
623                                                    struct rt_rq *rt_rq)
624 {
625         struct rt_prio_array *array = &rt_rq->active;
626         struct sched_rt_entity *next = NULL;
627         struct list_head *queue;
628         int idx;
629
630         idx = sched_find_first_bit(array->bitmap);
631         BUG_ON(idx >= MAX_RT_PRIO);
632
633         queue = array->queue + idx;
634         next = list_entry(queue->next, struct sched_rt_entity, run_list);
635
636         return next;
637 }
638
639 static struct task_struct *pick_next_task_rt(struct rq *rq)
640 {
641         struct sched_rt_entity *rt_se;
642         struct task_struct *p;
643         struct rt_rq *rt_rq;
644
645         rt_rq = &rq->rt;
646
647         if (unlikely(!rt_rq->rt_nr_running))
648                 return NULL;
649
650         if (rt_rq_throttled(rt_rq))
651                 return NULL;
652
653         do {
654                 rt_se = pick_next_rt_entity(rq, rt_rq);
655                 BUG_ON(!rt_se);
656                 rt_rq = group_rt_rq(rt_se);
657         } while (rt_rq);
658
659         p = rt_task_of(rt_se);
660         p->se.exec_start = rq->clock;
661         return p;
662 }
663
664 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
665 {
666         update_curr_rt(rq);
667         p->se.exec_start = 0;
668 }
669
670 #ifdef CONFIG_SMP
671
672 /* Only try algorithms three times */
673 #define RT_MAX_TRIES 3
674
675 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
676 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
677
678 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
679 {
680         if (!task_running(rq, p) &&
681             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
682             (p->rt.nr_cpus_allowed > 1))
683                 return 1;
684         return 0;
685 }
686
687 /* Return the second highest RT task, NULL otherwise */
688 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
689 {
690         struct task_struct *next = NULL;
691         struct sched_rt_entity *rt_se;
692         struct rt_prio_array *array;
693         struct rt_rq *rt_rq;
694         int idx;
695
696         for_each_leaf_rt_rq(rt_rq, rq) {
697                 array = &rt_rq->active;
698                 idx = sched_find_first_bit(array->bitmap);
699  next_idx:
700                 if (idx >= MAX_RT_PRIO)
701                         continue;
702                 if (next && next->prio < idx)
703                         continue;
704                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
705                         struct task_struct *p = rt_task_of(rt_se);
706                         if (pick_rt_task(rq, p, cpu)) {
707                                 next = p;
708                                 break;
709                         }
710                 }
711                 if (!next) {
712                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
713                         goto next_idx;
714                 }
715         }
716
717         return next;
718 }
719
720 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
721
722 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
723 {
724         int       lowest_prio = -1;
725         int       lowest_cpu  = -1;
726         int       count       = 0;
727         int       cpu;
728
729         cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
730
731         /*
732          * Scan each rq for the lowest prio.
733          */
734         for_each_cpu_mask(cpu, *lowest_mask) {
735                 struct rq *rq = cpu_rq(cpu);
736
737                 /* We look for lowest RT prio or non-rt CPU */
738                 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
739                         /*
740                          * if we already found a low RT queue
741                          * and now we found this non-rt queue
742                          * clear the mask and set our bit.
743                          * Otherwise just return the queue as is
744                          * and the count==1 will cause the algorithm
745                          * to use the first bit found.
746                          */
747                         if (lowest_cpu != -1) {
748                                 cpus_clear(*lowest_mask);
749                                 cpu_set(rq->cpu, *lowest_mask);
750                         }
751                         return 1;
752                 }
753
754                 /* no locking for now */
755                 if ((rq->rt.highest_prio > task->prio)
756                     && (rq->rt.highest_prio >= lowest_prio)) {
757                         if (rq->rt.highest_prio > lowest_prio) {
758                                 /* new low - clear old data */
759                                 lowest_prio = rq->rt.highest_prio;
760                                 lowest_cpu = cpu;
761                                 count = 0;
762                         }
763                         count++;
764                 } else
765                         cpu_clear(cpu, *lowest_mask);
766         }
767
768         /*
769          * Clear out all the set bits that represent
770          * runqueues that were of higher prio than
771          * the lowest_prio.
772          */
773         if (lowest_cpu > 0) {
774                 /*
775                  * Perhaps we could add another cpumask op to
776                  * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
777                  * Then that could be optimized to use memset and such.
778                  */
779                 for_each_cpu_mask(cpu, *lowest_mask) {
780                         if (cpu >= lowest_cpu)
781                                 break;
782                         cpu_clear(cpu, *lowest_mask);
783                 }
784         }
785
786         return count;
787 }
788
789 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
790 {
791         int first;
792
793         /* "this_cpu" is cheaper to preempt than a remote processor */
794         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
795                 return this_cpu;
796
797         first = first_cpu(*mask);
798         if (first != NR_CPUS)
799                 return first;
800
801         return -1;
802 }
803
804 static int find_lowest_rq(struct task_struct *task)
805 {
806         struct sched_domain *sd;
807         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
808         int this_cpu = smp_processor_id();
809         int cpu      = task_cpu(task);
810         int count    = find_lowest_cpus(task, lowest_mask);
811
812         if (!count)
813                 return -1; /* No targets found */
814
815         /*
816          * There is no sense in performing an optimal search if only one
817          * target is found.
818          */
819         if (count == 1)
820                 return first_cpu(*lowest_mask);
821
822         /*
823          * At this point we have built a mask of cpus representing the
824          * lowest priority tasks in the system.  Now we want to elect
825          * the best one based on our affinity and topology.
826          *
827          * We prioritize the last cpu that the task executed on since
828          * it is most likely cache-hot in that location.
829          */
830         if (cpu_isset(cpu, *lowest_mask))
831                 return cpu;
832
833         /*
834          * Otherwise, we consult the sched_domains span maps to figure
835          * out which cpu is logically closest to our hot cache data.
836          */
837         if (this_cpu == cpu)
838                 this_cpu = -1; /* Skip this_cpu opt if the same */
839
840         for_each_domain(cpu, sd) {
841                 if (sd->flags & SD_WAKE_AFFINE) {
842                         cpumask_t domain_mask;
843                         int       best_cpu;
844
845                         cpus_and(domain_mask, sd->span, *lowest_mask);
846
847                         best_cpu = pick_optimal_cpu(this_cpu,
848                                                     &domain_mask);
849                         if (best_cpu != -1)
850                                 return best_cpu;
851                 }
852         }
853
854         /*
855          * And finally, if there were no matches within the domains
856          * just give the caller *something* to work with from the compatible
857          * locations.
858          */
859         return pick_optimal_cpu(this_cpu, lowest_mask);
860 }
861
862 /* Will lock the rq it finds */
863 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
864 {
865         struct rq *lowest_rq = NULL;
866         int tries;
867         int cpu;
868
869         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
870                 cpu = find_lowest_rq(task);
871
872                 if ((cpu == -1) || (cpu == rq->cpu))
873                         break;
874
875                 lowest_rq = cpu_rq(cpu);
876
877                 /* if the prio of this runqueue changed, try again */
878                 if (double_lock_balance(rq, lowest_rq)) {
879                         /*
880                          * We had to unlock the run queue. In
881                          * the mean time, task could have
882                          * migrated already or had its affinity changed.
883                          * Also make sure that it wasn't scheduled on its rq.
884                          */
885                         if (unlikely(task_rq(task) != rq ||
886                                      !cpu_isset(lowest_rq->cpu,
887                                                 task->cpus_allowed) ||
888                                      task_running(rq, task) ||
889                                      !task->se.on_rq)) {
890
891                                 spin_unlock(&lowest_rq->lock);
892                                 lowest_rq = NULL;
893                                 break;
894                         }
895                 }
896
897                 /* If this rq is still suitable use it. */
898                 if (lowest_rq->rt.highest_prio > task->prio)
899                         break;
900
901                 /* try again */
902                 spin_unlock(&lowest_rq->lock);
903                 lowest_rq = NULL;
904         }
905
906         return lowest_rq;
907 }
908
909 /*
910  * If the current CPU has more than one RT task, see if the non
911  * running task can migrate over to a CPU that is running a task
912  * of lesser priority.
913  */
914 static int push_rt_task(struct rq *rq)
915 {
916         struct task_struct *next_task;
917         struct rq *lowest_rq;
918         int ret = 0;
919         int paranoid = RT_MAX_TRIES;
920
921         if (!rq->rt.overloaded)
922                 return 0;
923
924         next_task = pick_next_highest_task_rt(rq, -1);
925         if (!next_task)
926                 return 0;
927
928  retry:
929         if (unlikely(next_task == rq->curr)) {
930                 WARN_ON(1);
931                 return 0;
932         }
933
934         /*
935          * It's possible that the next_task slipped in of
936          * higher priority than current. If that's the case
937          * just reschedule current.
938          */
939         if (unlikely(next_task->prio < rq->curr->prio)) {
940                 resched_task(rq->curr);
941                 return 0;
942         }
943
944         /* We might release rq lock */
945         get_task_struct(next_task);
946
947         /* find_lock_lowest_rq locks the rq if found */
948         lowest_rq = find_lock_lowest_rq(next_task, rq);
949         if (!lowest_rq) {
950                 struct task_struct *task;
951                 /*
952                  * find lock_lowest_rq releases rq->lock
953                  * so it is possible that next_task has changed.
954                  * If it has, then try again.
955                  */
956                 task = pick_next_highest_task_rt(rq, -1);
957                 if (unlikely(task != next_task) && task && paranoid--) {
958                         put_task_struct(next_task);
959                         next_task = task;
960                         goto retry;
961                 }
962                 goto out;
963         }
964
965         deactivate_task(rq, next_task, 0);
966         set_task_cpu(next_task, lowest_rq->cpu);
967         activate_task(lowest_rq, next_task, 0);
968
969         resched_task(lowest_rq->curr);
970
971         spin_unlock(&lowest_rq->lock);
972
973         ret = 1;
974 out:
975         put_task_struct(next_task);
976
977         return ret;
978 }
979
980 /*
981  * TODO: Currently we just use the second highest prio task on
982  *       the queue, and stop when it can't migrate (or there's
983  *       no more RT tasks).  There may be a case where a lower
984  *       priority RT task has a different affinity than the
985  *       higher RT task. In this case the lower RT task could
986  *       possibly be able to migrate where as the higher priority
987  *       RT task could not.  We currently ignore this issue.
988  *       Enhancements are welcome!
989  */
990 static void push_rt_tasks(struct rq *rq)
991 {
992         /* push_rt_task will return true if it moved an RT */
993         while (push_rt_task(rq))
994                 ;
995 }
996
997 static int pull_rt_task(struct rq *this_rq)
998 {
999         int this_cpu = this_rq->cpu, ret = 0, cpu;
1000         struct task_struct *p, *next;
1001         struct rq *src_rq;
1002
1003         if (likely(!rt_overloaded(this_rq)))
1004                 return 0;
1005
1006         next = pick_next_task_rt(this_rq);
1007
1008         for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1009                 if (this_cpu == cpu)
1010                         continue;
1011
1012                 src_rq = cpu_rq(cpu);
1013                 /*
1014                  * We can potentially drop this_rq's lock in
1015                  * double_lock_balance, and another CPU could
1016                  * steal our next task - hence we must cause
1017                  * the caller to recalculate the next task
1018                  * in that case:
1019                  */
1020                 if (double_lock_balance(this_rq, src_rq)) {
1021                         struct task_struct *old_next = next;
1022
1023                         next = pick_next_task_rt(this_rq);
1024                         if (next != old_next)
1025                                 ret = 1;
1026                 }
1027
1028                 /*
1029                  * Are there still pullable RT tasks?
1030                  */
1031                 if (src_rq->rt.rt_nr_running <= 1)
1032                         goto skip;
1033
1034                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1035
1036                 /*
1037                  * Do we have an RT task that preempts
1038                  * the to-be-scheduled task?
1039                  */
1040                 if (p && (!next || (p->prio < next->prio))) {
1041                         WARN_ON(p == src_rq->curr);
1042                         WARN_ON(!p->se.on_rq);
1043
1044                         /*
1045                          * There's a chance that p is higher in priority
1046                          * than what's currently running on its cpu.
1047                          * This is just that p is wakeing up and hasn't
1048                          * had a chance to schedule. We only pull
1049                          * p if it is lower in priority than the
1050                          * current task on the run queue or
1051                          * this_rq next task is lower in prio than
1052                          * the current task on that rq.
1053                          */
1054                         if (p->prio < src_rq->curr->prio ||
1055                             (next && next->prio < src_rq->curr->prio))
1056                                 goto skip;
1057
1058                         ret = 1;
1059
1060                         deactivate_task(src_rq, p, 0);
1061                         set_task_cpu(p, this_cpu);
1062                         activate_task(this_rq, p, 0);
1063                         /*
1064                          * We continue with the search, just in
1065                          * case there's an even higher prio task
1066                          * in another runqueue. (low likelyhood
1067                          * but possible)
1068                          *
1069                          * Update next so that we won't pick a task
1070                          * on another cpu with a priority lower (or equal)
1071                          * than the one we just picked.
1072                          */
1073                         next = p;
1074
1075                 }
1076  skip:
1077                 spin_unlock(&src_rq->lock);
1078         }
1079
1080         return ret;
1081 }
1082
1083 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1084 {
1085         /* Try to pull RT tasks here if we lower this rq's prio */
1086         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1087                 pull_rt_task(rq);
1088 }
1089
1090 static void post_schedule_rt(struct rq *rq)
1091 {
1092         /*
1093          * If we have more than one rt_task queued, then
1094          * see if we can push the other rt_tasks off to other CPUS.
1095          * Note we may release the rq lock, and since
1096          * the lock was owned by prev, we need to release it
1097          * first via finish_lock_switch and then reaquire it here.
1098          */
1099         if (unlikely(rq->rt.overloaded)) {
1100                 spin_lock_irq(&rq->lock);
1101                 push_rt_tasks(rq);
1102                 spin_unlock_irq(&rq->lock);
1103         }
1104 }
1105
1106 /*
1107  * If we are not running and we are not going to reschedule soon, we should
1108  * try to push tasks away now
1109  */
1110 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1111 {
1112         if (!task_running(rq, p) &&
1113             !test_tsk_need_resched(rq->curr) &&
1114             rq->rt.overloaded)
1115                 push_rt_tasks(rq);
1116 }
1117
1118 static unsigned long
1119 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1120                 unsigned long max_load_move,
1121                 struct sched_domain *sd, enum cpu_idle_type idle,
1122                 int *all_pinned, int *this_best_prio)
1123 {
1124         /* don't touch RT tasks */
1125         return 0;
1126 }
1127
1128 static int
1129 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1130                  struct sched_domain *sd, enum cpu_idle_type idle)
1131 {
1132         /* don't touch RT tasks */
1133         return 0;
1134 }
1135
1136 static void set_cpus_allowed_rt(struct task_struct *p,
1137                                 const cpumask_t *new_mask)
1138 {
1139         int weight = cpus_weight(*new_mask);
1140
1141         BUG_ON(!rt_task(p));
1142
1143         /*
1144          * Update the migration status of the RQ if we have an RT task
1145          * which is running AND changing its weight value.
1146          */
1147         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1148                 struct rq *rq = task_rq(p);
1149
1150                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1151                         rq->rt.rt_nr_migratory++;
1152                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1153                         BUG_ON(!rq->rt.rt_nr_migratory);
1154                         rq->rt.rt_nr_migratory--;
1155                 }
1156
1157                 update_rt_migration(rq);
1158         }
1159
1160         p->cpus_allowed    = *new_mask;
1161         p->rt.nr_cpus_allowed = weight;
1162 }
1163
1164 /* Assumes rq->lock is held */
1165 static void join_domain_rt(struct rq *rq)
1166 {
1167         if (rq->rt.overloaded)
1168                 rt_set_overload(rq);
1169 }
1170
1171 /* Assumes rq->lock is held */
1172 static void leave_domain_rt(struct rq *rq)
1173 {
1174         if (rq->rt.overloaded)
1175                 rt_clear_overload(rq);
1176 }
1177
1178 /*
1179  * When switch from the rt queue, we bring ourselves to a position
1180  * that we might want to pull RT tasks from other runqueues.
1181  */
1182 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1183                            int running)
1184 {
1185         /*
1186          * If there are other RT tasks then we will reschedule
1187          * and the scheduling of the other RT tasks will handle
1188          * the balancing. But if we are the last RT task
1189          * we may need to handle the pulling of RT tasks
1190          * now.
1191          */
1192         if (!rq->rt.rt_nr_running)
1193                 pull_rt_task(rq);
1194 }
1195 #endif /* CONFIG_SMP */
1196
1197 /*
1198  * When switching a task to RT, we may overload the runqueue
1199  * with RT tasks. In this case we try to push them off to
1200  * other runqueues.
1201  */
1202 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1203                            int running)
1204 {
1205         int check_resched = 1;
1206
1207         /*
1208          * If we are already running, then there's nothing
1209          * that needs to be done. But if we are not running
1210          * we may need to preempt the current running task.
1211          * If that current running task is also an RT task
1212          * then see if we can move to another run queue.
1213          */
1214         if (!running) {
1215 #ifdef CONFIG_SMP
1216                 if (rq->rt.overloaded && push_rt_task(rq) &&
1217                     /* Don't resched if we changed runqueues */
1218                     rq != task_rq(p))
1219                         check_resched = 0;
1220 #endif /* CONFIG_SMP */
1221                 if (check_resched && p->prio < rq->curr->prio)
1222                         resched_task(rq->curr);
1223         }
1224 }
1225
1226 /*
1227  * Priority of the task has changed. This may cause
1228  * us to initiate a push or pull.
1229  */
1230 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1231                             int oldprio, int running)
1232 {
1233         if (running) {
1234 #ifdef CONFIG_SMP
1235                 /*
1236                  * If our priority decreases while running, we
1237                  * may need to pull tasks to this runqueue.
1238                  */
1239                 if (oldprio < p->prio)
1240                         pull_rt_task(rq);
1241                 /*
1242                  * If there's a higher priority task waiting to run
1243                  * then reschedule. Note, the above pull_rt_task
1244                  * can release the rq lock and p could migrate.
1245                  * Only reschedule if p is still on the same runqueue.
1246                  */
1247                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1248                         resched_task(p);
1249 #else
1250                 /* For UP simply resched on drop of prio */
1251                 if (oldprio < p->prio)
1252                         resched_task(p);
1253 #endif /* CONFIG_SMP */
1254         } else {
1255                 /*
1256                  * This task is not running, but if it is
1257                  * greater than the current running task
1258                  * then reschedule.
1259                  */
1260                 if (p->prio < rq->curr->prio)
1261                         resched_task(rq->curr);
1262         }
1263 }
1264
1265 static void watchdog(struct rq *rq, struct task_struct *p)
1266 {
1267         unsigned long soft, hard;
1268
1269         if (!p->signal)
1270                 return;
1271
1272         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1273         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1274
1275         if (soft != RLIM_INFINITY) {
1276                 unsigned long next;
1277
1278                 p->rt.timeout++;
1279                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1280                 if (p->rt.timeout > next)
1281                         p->it_sched_expires = p->se.sum_exec_runtime;
1282         }
1283 }
1284
1285 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1286 {
1287         update_curr_rt(rq);
1288
1289         watchdog(rq, p);
1290
1291         /*
1292          * RR tasks need a special form of timeslice management.
1293          * FIFO tasks have no timeslices.
1294          */
1295         if (p->policy != SCHED_RR)
1296                 return;
1297
1298         if (--p->rt.time_slice)
1299                 return;
1300
1301         p->rt.time_slice = DEF_TIMESLICE;
1302
1303         /*
1304          * Requeue to the end of queue if we are not the only element
1305          * on the queue:
1306          */
1307         if (p->rt.run_list.prev != p->rt.run_list.next) {
1308                 requeue_task_rt(rq, p);
1309                 set_tsk_need_resched(p);
1310         }
1311 }
1312
1313 static void set_curr_task_rt(struct rq *rq)
1314 {
1315         struct task_struct *p = rq->curr;
1316
1317         p->se.exec_start = rq->clock;
1318 }
1319
1320 static const struct sched_class rt_sched_class = {
1321         .next                   = &fair_sched_class,
1322         .enqueue_task           = enqueue_task_rt,
1323         .dequeue_task           = dequeue_task_rt,
1324         .yield_task             = yield_task_rt,
1325 #ifdef CONFIG_SMP
1326         .select_task_rq         = select_task_rq_rt,
1327 #endif /* CONFIG_SMP */
1328
1329         .check_preempt_curr     = check_preempt_curr_rt,
1330
1331         .pick_next_task         = pick_next_task_rt,
1332         .put_prev_task          = put_prev_task_rt,
1333
1334 #ifdef CONFIG_SMP
1335         .load_balance           = load_balance_rt,
1336         .move_one_task          = move_one_task_rt,
1337         .set_cpus_allowed       = set_cpus_allowed_rt,
1338         .join_domain            = join_domain_rt,
1339         .leave_domain           = leave_domain_rt,
1340         .pre_schedule           = pre_schedule_rt,
1341         .post_schedule          = post_schedule_rt,
1342         .task_wake_up           = task_wake_up_rt,
1343         .switched_from          = switched_from_rt,
1344 #endif
1345
1346         .set_curr_task          = set_curr_task_rt,
1347         .task_tick              = task_tick_rt,
1348
1349         .prio_changed           = prio_changed_rt,
1350         .switched_to            = switched_to_rt,
1351 };