2 * Kernel Probes (KProbes)
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
76 spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
81 return &(kretprobe_table_locks[hash].lock);
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
89 * For such cases, we now have a blacklist
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 {"preempt_schedule",},
93 {NULL} /* Terminator */
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
103 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
105 struct kprobe_insn_page {
106 struct hlist_node hlist;
107 kprobe_opcode_t *insns; /* Page of instruction slots */
108 char slot_used[INSNS_PER_PAGE];
113 enum kprobe_slot_state {
119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
124 static int __kprobes check_safety(void)
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 ret = freeze_processes();
130 struct task_struct *p, *q;
131 do_each_thread(p, q) {
132 if (p != current && p->state == TASK_RUNNING &&
134 printk("Check failed: %s is running\n",p->comm);
138 } while_each_thread(p, q);
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
154 struct kprobe_insn_page *kip;
155 struct hlist_node *pos;
158 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159 if (kip->nused < INSNS_PER_PAGE) {
161 for (i = 0; i < INSNS_PER_PAGE; i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
165 return kip->insns + (i * MAX_INSN_SIZE);
168 /* Surprise! No unused slots. Fix kip->nused. */
169 kip->nused = INSNS_PER_PAGE;
173 /* If there are any garbage slots, collect it and try again. */
174 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
177 /* All out of space. Need to allocate a new page. Use slot 0. */
178 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
183 * Use module_alloc so this page is within +/- 2GB of where the
184 * kernel image and loaded module images reside. This is required
185 * so x86_64 can correctly handle the %rip-relative fixups.
187 kip->insns = module_alloc(PAGE_SIZE);
192 INIT_HLIST_NODE(&kip->hlist);
193 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 kip->slot_used[0] = SLOT_USED;
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 kprobe_opcode_t *ret;
204 mutex_lock(&kprobe_insn_mutex);
205 ret = __get_insn_slot();
206 mutex_unlock(&kprobe_insn_mutex);
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
213 kip->slot_used[idx] = SLOT_CLEAN;
215 if (kip->nused == 0) {
217 * Page is no longer in use. Free it unless
218 * it's the last one. We keep the last one
219 * so as not to have to set it up again the
220 * next time somebody inserts a probe.
222 hlist_del(&kip->hlist);
223 if (hlist_empty(&kprobe_insn_pages)) {
224 INIT_HLIST_NODE(&kip->hlist);
225 hlist_add_head(&kip->hlist,
228 module_free(NULL, kip->insns);
236 static int __kprobes collect_garbage_slots(void)
238 struct kprobe_insn_page *kip;
239 struct hlist_node *pos, *next;
242 /* Ensure no-one is preepmted on the garbages */
243 mutex_unlock(&kprobe_insn_mutex);
244 safety = check_safety();
245 mutex_lock(&kprobe_insn_mutex);
249 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
251 if (kip->ngarbage == 0)
253 kip->ngarbage = 0; /* we will collect all garbages */
254 for (i = 0; i < INSNS_PER_PAGE; i++) {
255 if (kip->slot_used[i] == SLOT_DIRTY &&
256 collect_one_slot(kip, i))
260 kprobe_garbage_slots = 0;
264 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
266 struct kprobe_insn_page *kip;
267 struct hlist_node *pos;
269 mutex_lock(&kprobe_insn_mutex);
270 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271 if (kip->insns <= slot &&
272 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273 int i = (slot - kip->insns) / MAX_INSN_SIZE;
275 kip->slot_used[i] = SLOT_DIRTY;
278 collect_one_slot(kip, i);
284 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285 collect_garbage_slots();
287 mutex_unlock(&kprobe_insn_mutex);
291 /* We have preemption disabled.. so it is safe to use __ versions */
292 static inline void set_kprobe_instance(struct kprobe *kp)
294 __get_cpu_var(kprobe_instance) = kp;
297 static inline void reset_kprobe_instance(void)
299 __get_cpu_var(kprobe_instance) = NULL;
303 * This routine is called either:
304 * - under the kprobe_mutex - during kprobe_[un]register()
306 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
308 struct kprobe __kprobes *get_kprobe(void *addr)
310 struct hlist_head *head;
311 struct hlist_node *node;
314 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315 hlist_for_each_entry_rcu(p, node, head, hlist) {
323 * Aggregate handlers for multiple kprobes support - these handlers
324 * take care of invoking the individual kprobe handlers on p->list
326 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
330 list_for_each_entry_rcu(kp, &p->list, list) {
331 if (kp->pre_handler && !kprobe_gone(kp)) {
332 set_kprobe_instance(kp);
333 if (kp->pre_handler(kp, regs))
336 reset_kprobe_instance();
341 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
346 list_for_each_entry_rcu(kp, &p->list, list) {
347 if (kp->post_handler && !kprobe_gone(kp)) {
348 set_kprobe_instance(kp);
349 kp->post_handler(kp, regs, flags);
350 reset_kprobe_instance();
355 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
358 struct kprobe *cur = __get_cpu_var(kprobe_instance);
361 * if we faulted "during" the execution of a user specified
362 * probe handler, invoke just that probe's fault handler
364 if (cur && cur->fault_handler) {
365 if (cur->fault_handler(cur, regs, trapnr))
371 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
373 struct kprobe *cur = __get_cpu_var(kprobe_instance);
376 if (cur && cur->break_handler) {
377 if (cur->break_handler(cur, regs))
380 reset_kprobe_instance();
384 /* Walks the list and increments nmissed count for multiprobe case */
385 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
388 if (p->pre_handler != aggr_pre_handler) {
391 list_for_each_entry_rcu(kp, &p->list, list)
397 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
398 struct hlist_head *head)
400 struct kretprobe *rp = ri->rp;
402 /* remove rp inst off the rprobe_inst_table */
403 hlist_del(&ri->hlist);
404 INIT_HLIST_NODE(&ri->hlist);
406 spin_lock(&rp->lock);
407 hlist_add_head(&ri->hlist, &rp->free_instances);
408 spin_unlock(&rp->lock);
411 hlist_add_head(&ri->hlist, head);
414 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
415 struct hlist_head **head, unsigned long *flags)
417 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
418 spinlock_t *hlist_lock;
420 *head = &kretprobe_inst_table[hash];
421 hlist_lock = kretprobe_table_lock_ptr(hash);
422 spin_lock_irqsave(hlist_lock, *flags);
425 static void __kprobes kretprobe_table_lock(unsigned long hash,
426 unsigned long *flags)
428 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
429 spin_lock_irqsave(hlist_lock, *flags);
432 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
433 unsigned long *flags)
435 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
436 spinlock_t *hlist_lock;
438 hlist_lock = kretprobe_table_lock_ptr(hash);
439 spin_unlock_irqrestore(hlist_lock, *flags);
442 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
444 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445 spin_unlock_irqrestore(hlist_lock, *flags);
449 * This function is called from finish_task_switch when task tk becomes dead,
450 * so that we can recycle any function-return probe instances associated
451 * with this task. These left over instances represent probed functions
452 * that have been called but will never return.
454 void __kprobes kprobe_flush_task(struct task_struct *tk)
456 struct kretprobe_instance *ri;
457 struct hlist_head *head, empty_rp;
458 struct hlist_node *node, *tmp;
459 unsigned long hash, flags = 0;
461 if (unlikely(!kprobes_initialized))
462 /* Early boot. kretprobe_table_locks not yet initialized. */
465 hash = hash_ptr(tk, KPROBE_HASH_BITS);
466 head = &kretprobe_inst_table[hash];
467 kretprobe_table_lock(hash, &flags);
468 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
470 recycle_rp_inst(ri, &empty_rp);
472 kretprobe_table_unlock(hash, &flags);
473 INIT_HLIST_HEAD(&empty_rp);
474 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
475 hlist_del(&ri->hlist);
480 static inline void free_rp_inst(struct kretprobe *rp)
482 struct kretprobe_instance *ri;
483 struct hlist_node *pos, *next;
485 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
486 hlist_del(&ri->hlist);
491 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
493 unsigned long flags, hash;
494 struct kretprobe_instance *ri;
495 struct hlist_node *pos, *next;
496 struct hlist_head *head;
499 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
500 kretprobe_table_lock(hash, &flags);
501 head = &kretprobe_inst_table[hash];
502 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
506 kretprobe_table_unlock(hash, &flags);
512 * Keep all fields in the kprobe consistent
514 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
516 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
517 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
521 * Add the new probe to ap->list. Fail if this is the
522 * second jprobe at the address - two jprobes can't coexist
524 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
526 if (p->break_handler) {
527 if (ap->break_handler)
529 list_add_tail_rcu(&p->list, &ap->list);
530 ap->break_handler = aggr_break_handler;
532 list_add_rcu(&p->list, &ap->list);
533 if (p->post_handler && !ap->post_handler)
534 ap->post_handler = aggr_post_handler;
539 * Fill in the required fields of the "manager kprobe". Replace the
540 * earlier kprobe in the hlist with the manager kprobe
542 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
547 ap->flags = p->flags;
548 ap->pre_handler = aggr_pre_handler;
549 ap->fault_handler = aggr_fault_handler;
550 /* We don't care the kprobe which has gone. */
551 if (p->post_handler && !kprobe_gone(p))
552 ap->post_handler = aggr_post_handler;
553 if (p->break_handler && !kprobe_gone(p))
554 ap->break_handler = aggr_break_handler;
556 INIT_LIST_HEAD(&ap->list);
557 list_add_rcu(&p->list, &ap->list);
559 hlist_replace_rcu(&p->hlist, &ap->hlist);
563 * This is the second or subsequent kprobe at the address - handle
566 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
570 struct kprobe *ap = old_p;
572 if (old_p->pre_handler != aggr_pre_handler) {
573 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
574 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
577 add_aggr_kprobe(ap, old_p);
580 if (kprobe_gone(ap)) {
582 * Attempting to insert new probe at the same location that
583 * had a probe in the module vaddr area which already
584 * freed. So, the instruction slot has already been
585 * released. We need a new slot for the new probe.
587 ret = arch_prepare_kprobe(ap);
590 * Even if fail to allocate new slot, don't need to
591 * free aggr_probe. It will be used next time, or
592 * freed by unregister_kprobe.
595 /* Clear gone flag to prevent allocating new slot again. */
596 ap->flags &= ~KPROBE_FLAG_GONE;
598 * If the old_p has gone, its breakpoint has been disarmed.
599 * We have to arm it again after preparing real kprobes.
601 if (!kprobes_all_disarmed)
606 return add_new_kprobe(ap, p);
609 static int __kprobes in_kprobes_functions(unsigned long addr)
611 struct kprobe_blackpoint *kb;
613 if (addr >= (unsigned long)__kprobes_text_start &&
614 addr < (unsigned long)__kprobes_text_end)
617 * If there exists a kprobe_blacklist, verify and
618 * fail any probe registration in the prohibited area
620 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
621 if (kb->start_addr) {
622 if (addr >= kb->start_addr &&
623 addr < (kb->start_addr + kb->range))
631 * If we have a symbol_name argument, look it up and add the offset field
632 * to it. This way, we can specify a relative address to a symbol.
634 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
636 kprobe_opcode_t *addr = p->addr;
637 if (p->symbol_name) {
640 kprobe_lookup_name(p->symbol_name, addr);
645 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
648 int __kprobes register_kprobe(struct kprobe *p)
651 struct kprobe *old_p;
652 struct module *probed_mod;
653 kprobe_opcode_t *addr;
655 addr = kprobe_addr(p);
661 if (!__kernel_text_address((unsigned long) p->addr) ||
662 in_kprobes_functions((unsigned long) p->addr)) {
669 * Check if are we probing a module.
671 probed_mod = __module_text_address((unsigned long) p->addr);
674 * We must hold a refcount of the probed module while updating
675 * its code to prohibit unexpected unloading.
677 if (unlikely(!try_module_get(probed_mod))) {
682 * If the module freed .init.text, we couldn't insert
685 if (within_module_init((unsigned long)p->addr, probed_mod) &&
686 probed_mod->state != MODULE_STATE_COMING) {
687 module_put(probed_mod);
695 INIT_LIST_HEAD(&p->list);
696 mutex_lock(&kprobe_mutex);
697 old_p = get_kprobe(p->addr);
699 ret = register_aggr_kprobe(old_p, p);
703 mutex_lock(&text_mutex);
704 ret = arch_prepare_kprobe(p);
706 goto out_unlock_text;
708 INIT_HLIST_NODE(&p->hlist);
709 hlist_add_head_rcu(&p->hlist,
710 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
712 if (!kprobes_all_disarmed)
716 mutex_unlock(&text_mutex);
718 mutex_unlock(&kprobe_mutex);
721 module_put(probed_mod);
725 EXPORT_SYMBOL_GPL(register_kprobe);
728 * Unregister a kprobe without a scheduler synchronization.
730 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
732 struct kprobe *old_p, *list_p;
734 old_p = get_kprobe(p->addr);
735 if (unlikely(!old_p))
739 list_for_each_entry_rcu(list_p, &old_p->list, list)
741 /* kprobe p is a valid probe */
747 (old_p->pre_handler == aggr_pre_handler &&
748 list_is_singular(&old_p->list))) {
750 * Only probe on the hash list. Disarm only if kprobes are
751 * enabled and not gone - otherwise, the breakpoint would
752 * already have been removed. We save on flushing icache.
754 if (!kprobes_all_disarmed && !kprobe_gone(old_p)) {
755 mutex_lock(&text_mutex);
756 arch_disarm_kprobe(p);
757 mutex_unlock(&text_mutex);
759 hlist_del_rcu(&old_p->hlist);
761 if (p->break_handler && !kprobe_gone(p))
762 old_p->break_handler = NULL;
763 if (p->post_handler && !kprobe_gone(p)) {
764 list_for_each_entry_rcu(list_p, &old_p->list, list) {
765 if ((list_p != p) && (list_p->post_handler))
768 old_p->post_handler = NULL;
771 list_del_rcu(&p->list);
776 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
778 struct kprobe *old_p;
780 if (list_empty(&p->list))
781 arch_remove_kprobe(p);
782 else if (list_is_singular(&p->list)) {
783 /* "p" is the last child of an aggr_kprobe */
784 old_p = list_entry(p->list.next, struct kprobe, list);
786 arch_remove_kprobe(old_p);
791 int __kprobes register_kprobes(struct kprobe **kps, int num)
797 for (i = 0; i < num; i++) {
798 ret = register_kprobe(kps[i]);
801 unregister_kprobes(kps, i);
807 EXPORT_SYMBOL_GPL(register_kprobes);
809 void __kprobes unregister_kprobe(struct kprobe *p)
811 unregister_kprobes(&p, 1);
813 EXPORT_SYMBOL_GPL(unregister_kprobe);
815 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
821 mutex_lock(&kprobe_mutex);
822 for (i = 0; i < num; i++)
823 if (__unregister_kprobe_top(kps[i]) < 0)
825 mutex_unlock(&kprobe_mutex);
828 for (i = 0; i < num; i++)
830 __unregister_kprobe_bottom(kps[i]);
832 EXPORT_SYMBOL_GPL(unregister_kprobes);
834 static struct notifier_block kprobe_exceptions_nb = {
835 .notifier_call = kprobe_exceptions_notify,
836 .priority = 0x7fffffff /* we need to be notified first */
839 unsigned long __weak arch_deref_entry_point(void *entry)
841 return (unsigned long)entry;
844 int __kprobes register_jprobes(struct jprobe **jps, int num)
851 for (i = 0; i < num; i++) {
854 addr = arch_deref_entry_point(jp->entry);
856 if (!kernel_text_address(addr))
859 /* Todo: Verify probepoint is a function entry point */
860 jp->kp.pre_handler = setjmp_pre_handler;
861 jp->kp.break_handler = longjmp_break_handler;
862 ret = register_kprobe(&jp->kp);
866 unregister_jprobes(jps, i);
872 EXPORT_SYMBOL_GPL(register_jprobes);
874 int __kprobes register_jprobe(struct jprobe *jp)
876 return register_jprobes(&jp, 1);
878 EXPORT_SYMBOL_GPL(register_jprobe);
880 void __kprobes unregister_jprobe(struct jprobe *jp)
882 unregister_jprobes(&jp, 1);
884 EXPORT_SYMBOL_GPL(unregister_jprobe);
886 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
892 mutex_lock(&kprobe_mutex);
893 for (i = 0; i < num; i++)
894 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
895 jps[i]->kp.addr = NULL;
896 mutex_unlock(&kprobe_mutex);
899 for (i = 0; i < num; i++) {
901 __unregister_kprobe_bottom(&jps[i]->kp);
904 EXPORT_SYMBOL_GPL(unregister_jprobes);
906 #ifdef CONFIG_KRETPROBES
908 * This kprobe pre_handler is registered with every kretprobe. When probe
909 * hits it will set up the return probe.
911 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
912 struct pt_regs *regs)
914 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
915 unsigned long hash, flags = 0;
916 struct kretprobe_instance *ri;
918 /*TODO: consider to only swap the RA after the last pre_handler fired */
919 hash = hash_ptr(current, KPROBE_HASH_BITS);
920 spin_lock_irqsave(&rp->lock, flags);
921 if (!hlist_empty(&rp->free_instances)) {
922 ri = hlist_entry(rp->free_instances.first,
923 struct kretprobe_instance, hlist);
924 hlist_del(&ri->hlist);
925 spin_unlock_irqrestore(&rp->lock, flags);
930 if (rp->entry_handler && rp->entry_handler(ri, regs))
933 arch_prepare_kretprobe(ri, regs);
935 /* XXX(hch): why is there no hlist_move_head? */
936 INIT_HLIST_NODE(&ri->hlist);
937 kretprobe_table_lock(hash, &flags);
938 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
939 kretprobe_table_unlock(hash, &flags);
942 spin_unlock_irqrestore(&rp->lock, flags);
947 int __kprobes register_kretprobe(struct kretprobe *rp)
950 struct kretprobe_instance *inst;
954 if (kretprobe_blacklist_size) {
955 addr = kprobe_addr(&rp->kp);
959 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
960 if (kretprobe_blacklist[i].addr == addr)
965 rp->kp.pre_handler = pre_handler_kretprobe;
966 rp->kp.post_handler = NULL;
967 rp->kp.fault_handler = NULL;
968 rp->kp.break_handler = NULL;
970 /* Pre-allocate memory for max kretprobe instances */
971 if (rp->maxactive <= 0) {
972 #ifdef CONFIG_PREEMPT
973 rp->maxactive = max(10, 2 * NR_CPUS);
975 rp->maxactive = NR_CPUS;
978 spin_lock_init(&rp->lock);
979 INIT_HLIST_HEAD(&rp->free_instances);
980 for (i = 0; i < rp->maxactive; i++) {
981 inst = kmalloc(sizeof(struct kretprobe_instance) +
982 rp->data_size, GFP_KERNEL);
987 INIT_HLIST_NODE(&inst->hlist);
988 hlist_add_head(&inst->hlist, &rp->free_instances);
992 /* Establish function entry probe point */
993 ret = register_kprobe(&rp->kp);
998 EXPORT_SYMBOL_GPL(register_kretprobe);
1000 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1006 for (i = 0; i < num; i++) {
1007 ret = register_kretprobe(rps[i]);
1010 unregister_kretprobes(rps, i);
1016 EXPORT_SYMBOL_GPL(register_kretprobes);
1018 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1020 unregister_kretprobes(&rp, 1);
1022 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1024 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1030 mutex_lock(&kprobe_mutex);
1031 for (i = 0; i < num; i++)
1032 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1033 rps[i]->kp.addr = NULL;
1034 mutex_unlock(&kprobe_mutex);
1036 synchronize_sched();
1037 for (i = 0; i < num; i++) {
1038 if (rps[i]->kp.addr) {
1039 __unregister_kprobe_bottom(&rps[i]->kp);
1040 cleanup_rp_inst(rps[i]);
1044 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1046 #else /* CONFIG_KRETPROBES */
1047 int __kprobes register_kretprobe(struct kretprobe *rp)
1051 EXPORT_SYMBOL_GPL(register_kretprobe);
1053 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1057 EXPORT_SYMBOL_GPL(register_kretprobes);
1059 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1062 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1064 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1067 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1069 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1070 struct pt_regs *regs)
1075 #endif /* CONFIG_KRETPROBES */
1077 /* Set the kprobe gone and remove its instruction buffer. */
1078 static void __kprobes kill_kprobe(struct kprobe *p)
1081 p->flags |= KPROBE_FLAG_GONE;
1082 if (p->pre_handler == aggr_pre_handler) {
1084 * If this is an aggr_kprobe, we have to list all the
1085 * chained probes and mark them GONE.
1087 list_for_each_entry_rcu(kp, &p->list, list)
1088 kp->flags |= KPROBE_FLAG_GONE;
1089 p->post_handler = NULL;
1090 p->break_handler = NULL;
1093 * Here, we can remove insn_slot safely, because no thread calls
1094 * the original probed function (which will be freed soon) any more.
1096 arch_remove_kprobe(p);
1099 /* Module notifier call back, checking kprobes on the module */
1100 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1101 unsigned long val, void *data)
1103 struct module *mod = data;
1104 struct hlist_head *head;
1105 struct hlist_node *node;
1108 int checkcore = (val == MODULE_STATE_GOING);
1110 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1114 * When MODULE_STATE_GOING was notified, both of module .text and
1115 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1116 * notified, only .init.text section would be freed. We need to
1117 * disable kprobes which have been inserted in the sections.
1119 mutex_lock(&kprobe_mutex);
1120 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1121 head = &kprobe_table[i];
1122 hlist_for_each_entry_rcu(p, node, head, hlist)
1123 if (within_module_init((unsigned long)p->addr, mod) ||
1125 within_module_core((unsigned long)p->addr, mod))) {
1127 * The vaddr this probe is installed will soon
1128 * be vfreed buy not synced to disk. Hence,
1129 * disarming the breakpoint isn't needed.
1134 mutex_unlock(&kprobe_mutex);
1138 static struct notifier_block kprobe_module_nb = {
1139 .notifier_call = kprobes_module_callback,
1143 static int __init init_kprobes(void)
1146 unsigned long offset = 0, size = 0;
1147 char *modname, namebuf[128];
1148 const char *symbol_name;
1150 struct kprobe_blackpoint *kb;
1152 /* FIXME allocate the probe table, currently defined statically */
1153 /* initialize all list heads */
1154 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1155 INIT_HLIST_HEAD(&kprobe_table[i]);
1156 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1157 spin_lock_init(&(kretprobe_table_locks[i].lock));
1161 * Lookup and populate the kprobe_blacklist.
1163 * Unlike the kretprobe blacklist, we'll need to determine
1164 * the range of addresses that belong to the said functions,
1165 * since a kprobe need not necessarily be at the beginning
1168 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1169 kprobe_lookup_name(kb->name, addr);
1173 kb->start_addr = (unsigned long)addr;
1174 symbol_name = kallsyms_lookup(kb->start_addr,
1175 &size, &offset, &modname, namebuf);
1182 if (kretprobe_blacklist_size) {
1183 /* lookup the function address from its name */
1184 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1185 kprobe_lookup_name(kretprobe_blacklist[i].name,
1186 kretprobe_blacklist[i].addr);
1187 if (!kretprobe_blacklist[i].addr)
1188 printk("kretprobe: lookup failed: %s\n",
1189 kretprobe_blacklist[i].name);
1193 /* By default, kprobes are armed */
1194 kprobes_all_disarmed = false;
1196 err = arch_init_kprobes();
1198 err = register_die_notifier(&kprobe_exceptions_nb);
1200 err = register_module_notifier(&kprobe_module_nb);
1202 kprobes_initialized = (err == 0);
1209 #ifdef CONFIG_DEBUG_FS
1210 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1211 const char *sym, int offset,char *modname)
1215 if (p->pre_handler == pre_handler_kretprobe)
1217 else if (p->pre_handler == setjmp_pre_handler)
1222 seq_printf(pi, "%p %s %s+0x%x %s %s\n", p->addr, kprobe_type,
1223 sym, offset, (modname ? modname : " "),
1224 (kprobe_gone(p) ? "[GONE]" : ""));
1226 seq_printf(pi, "%p %s %p %s\n", p->addr, kprobe_type, p->addr,
1227 (kprobe_gone(p) ? "[GONE]" : ""));
1230 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1232 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1235 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1238 if (*pos >= KPROBE_TABLE_SIZE)
1243 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1248 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1250 struct hlist_head *head;
1251 struct hlist_node *node;
1252 struct kprobe *p, *kp;
1253 const char *sym = NULL;
1254 unsigned int i = *(loff_t *) v;
1255 unsigned long offset = 0;
1256 char *modname, namebuf[128];
1258 head = &kprobe_table[i];
1260 hlist_for_each_entry_rcu(p, node, head, hlist) {
1261 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1262 &offset, &modname, namebuf);
1263 if (p->pre_handler == aggr_pre_handler) {
1264 list_for_each_entry_rcu(kp, &p->list, list)
1265 report_probe(pi, kp, sym, offset, modname);
1267 report_probe(pi, p, sym, offset, modname);
1273 static struct seq_operations kprobes_seq_ops = {
1274 .start = kprobe_seq_start,
1275 .next = kprobe_seq_next,
1276 .stop = kprobe_seq_stop,
1277 .show = show_kprobe_addr
1280 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1282 return seq_open(filp, &kprobes_seq_ops);
1285 static struct file_operations debugfs_kprobes_operations = {
1286 .open = kprobes_open,
1288 .llseek = seq_lseek,
1289 .release = seq_release,
1292 static void __kprobes arm_all_kprobes(void)
1294 struct hlist_head *head;
1295 struct hlist_node *node;
1299 mutex_lock(&kprobe_mutex);
1301 /* If kprobes are armed, just return */
1302 if (!kprobes_all_disarmed)
1303 goto already_enabled;
1305 mutex_lock(&text_mutex);
1306 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1307 head = &kprobe_table[i];
1308 hlist_for_each_entry_rcu(p, node, head, hlist)
1309 if (!kprobe_gone(p))
1312 mutex_unlock(&text_mutex);
1314 kprobes_all_disarmed = false;
1315 printk(KERN_INFO "Kprobes globally enabled\n");
1318 mutex_unlock(&kprobe_mutex);
1322 static void __kprobes disarm_all_kprobes(void)
1324 struct hlist_head *head;
1325 struct hlist_node *node;
1329 mutex_lock(&kprobe_mutex);
1331 /* If kprobes are already disarmed, just return */
1332 if (kprobes_all_disarmed)
1333 goto already_disabled;
1335 kprobes_all_disarmed = true;
1336 printk(KERN_INFO "Kprobes globally disabled\n");
1337 mutex_lock(&text_mutex);
1338 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1339 head = &kprobe_table[i];
1340 hlist_for_each_entry_rcu(p, node, head, hlist) {
1341 if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1342 arch_disarm_kprobe(p);
1346 mutex_unlock(&text_mutex);
1347 mutex_unlock(&kprobe_mutex);
1348 /* Allow all currently running kprobes to complete */
1349 synchronize_sched();
1353 mutex_unlock(&kprobe_mutex);
1358 * XXX: The debugfs bool file interface doesn't allow for callbacks
1359 * when the bool state is switched. We can reuse that facility when
1362 static ssize_t read_enabled_file_bool(struct file *file,
1363 char __user *user_buf, size_t count, loff_t *ppos)
1367 if (!kprobes_all_disarmed)
1373 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1376 static ssize_t write_enabled_file_bool(struct file *file,
1377 const char __user *user_buf, size_t count, loff_t *ppos)
1382 buf_size = min(count, (sizeof(buf)-1));
1383 if (copy_from_user(buf, user_buf, buf_size))
1395 disarm_all_kprobes();
1402 static struct file_operations fops_kp = {
1403 .read = read_enabled_file_bool,
1404 .write = write_enabled_file_bool,
1407 static int __kprobes debugfs_kprobe_init(void)
1409 struct dentry *dir, *file;
1410 unsigned int value = 1;
1412 dir = debugfs_create_dir("kprobes", NULL);
1416 file = debugfs_create_file("list", 0444, dir, NULL,
1417 &debugfs_kprobes_operations);
1419 debugfs_remove(dir);
1423 file = debugfs_create_file("enabled", 0600, dir,
1426 debugfs_remove(dir);
1433 late_initcall(debugfs_kprobe_init);
1434 #endif /* CONFIG_DEBUG_FS */
1436 module_init(init_kprobes);
1438 /* defined in arch/.../kernel/kprobes.c */
1439 EXPORT_SYMBOL_GPL(jprobe_return);