2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
54 #include <asm/pgalloc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
61 #include <asm/hw_irq.h>
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 /* core ID of each logical CPU */
68 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
69 EXPORT_SYMBOL(phys_proc_id);
70 EXPORT_SYMBOL(cpu_core_id);
72 /* Bitmask of currently online CPUs */
73 cpumask_t cpu_online_map __read_mostly;
75 EXPORT_SYMBOL(cpu_online_map);
78 * Private maps to synchronize booting between AP and BP.
79 * Probably not needed anymore, but it makes for easier debugging. -AK
81 cpumask_t cpu_callin_map;
82 cpumask_t cpu_callout_map;
84 cpumask_t cpu_possible_map;
85 EXPORT_SYMBOL(cpu_possible_map);
87 /* Per CPU bogomips and other parameters */
88 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
90 /* Set when the idlers are all forked */
91 int smp_threads_ready;
93 /* representing HT siblings of each logical CPU */
94 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
96 /* representing HT and core siblings of each logical CPU */
97 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
98 EXPORT_SYMBOL(cpu_core_map);
101 * Trampoline 80x86 program as an array.
104 extern unsigned char trampoline_data[];
105 extern unsigned char trampoline_end[];
107 /* State of each CPU */
108 DEFINE_PER_CPU(int, cpu_state) = { 0 };
111 * Store all idle threads, this can be reused instead of creating
112 * a new thread. Also avoids complicated thread destroy functionality
115 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
117 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
118 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
121 * Currently trivial. Write the real->protected mode
122 * bootstrap into the page concerned. The caller
123 * has made sure it's suitably aligned.
126 static unsigned long __cpuinit setup_trampoline(void)
128 void *tramp = __va(SMP_TRAMPOLINE_BASE);
129 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
130 return virt_to_phys(tramp);
134 * The bootstrap kernel entry code has set these up. Save them for
138 static void __cpuinit smp_store_cpu_info(int id)
140 struct cpuinfo_x86 *c = cpu_data + id;
148 * New Funky TSC sync algorithm borrowed from IA64.
149 * Main advantage is that it doesn't reset the TSCs fully and
150 * in general looks more robust and it works better than my earlier
151 * attempts. I believe it was written by David Mosberger. Some minor
152 * adjustments for x86-64 by me -AK
154 * Original comment reproduced below.
156 * Synchronize TSC of the current (slave) CPU with the TSC of the
157 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
158 * eliminate the possibility of unaccounted-for errors (such as
159 * getting a machine check in the middle of a calibration step). The
160 * basic idea is for the slave to ask the master what itc value it has
161 * and to read its own itc before and after the master responds. Each
162 * iteration gives us three timestamps:
175 * The goal is to adjust the slave's TSC such that tm falls exactly
176 * half-way between t0 and t1. If we achieve this, the clocks are
177 * synchronized provided the interconnect between the slave and the
178 * master is symmetric. Even if the interconnect were asymmetric, we
179 * would still know that the synchronization error is smaller than the
180 * roundtrip latency (t0 - t1).
182 * When the interconnect is quiet and symmetric, this lets us
183 * synchronize the TSC to within one or two cycles. However, we can
184 * only *guarantee* that the synchronization is accurate to within a
185 * round-trip time, which is typically in the range of several hundred
186 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
187 * are usually almost perfectly synchronized, but we shouldn't assume
188 * that the accuracy is much better than half a micro second or so.
190 * [there are other errors like the latency of RDTSC and of the
191 * WRMSR. These can also account to hundreds of cycles. So it's
192 * probably worse. It claims 153 cycles error on a dual Opteron,
193 * but I suspect the numbers are actually somewhat worse -AK]
197 #define SLAVE (SMP_CACHE_BYTES/8)
199 /* Intentionally don't use cpu_relax() while TSC synchronization
200 because we don't want to go into funky power save modi or cause
201 hypervisors to schedule us away. Going to sleep would likely affect
202 latency and low latency is the primary objective here. -AK */
203 #define no_cpu_relax() barrier()
205 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
206 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
207 static int notscsync __cpuinitdata;
209 #undef DEBUG_TSC_SYNC
211 #define NUM_ROUNDS 64 /* magic value */
212 #define NUM_ITERS 5 /* likewise */
214 /* Callback on boot CPU */
215 static __cpuinit void sync_master(void *arg)
217 unsigned long flags, i;
221 local_irq_save(flags);
223 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
230 local_irq_restore(flags);
234 * Return the number of cycles by which our tsc differs from the tsc
235 * on the master (time-keeper) CPU. A positive number indicates our
236 * tsc is ahead of the master, negative that it is behind.
239 get_delta(long *rt, long *master)
241 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
242 unsigned long tcenter, t0, t1, tm;
245 for (i = 0; i < NUM_ITERS; ++i) {
248 while (!(tm = go[SLAVE]))
253 if (t1 - t0 < best_t1 - best_t0)
254 best_t0 = t0, best_t1 = t1, best_tm = tm;
257 *rt = best_t1 - best_t0;
258 *master = best_tm - best_t0;
260 /* average best_t0 and best_t1 without overflow: */
261 tcenter = (best_t0/2 + best_t1/2);
262 if (best_t0 % 2 + best_t1 % 2 == 2)
264 return tcenter - best_tm;
267 static __cpuinit void sync_tsc(unsigned int master)
270 long delta, adj, adjust_latency = 0;
271 unsigned long flags, rt, master_time_stamp, bound;
272 #ifdef DEBUG_TSC_SYNC
273 static struct syncdebug {
274 long rt; /* roundtrip time */
275 long master; /* master's timestamp */
276 long diff; /* difference between midpoint and master's timestamp */
277 long lat; /* estimate of tsc adjustment latency */
278 } t[NUM_ROUNDS] __cpuinitdata;
281 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
282 smp_processor_id(), master);
286 /* It is dangerous to broadcast IPI as cpus are coming up,
287 * as they may not be ready to accept them. So since
288 * we only need to send the ipi to the boot cpu direct
289 * the message, and avoid the race.
291 smp_call_function_single(master, sync_master, NULL, 1, 0);
293 while (go[MASTER]) /* wait for master to be ready */
296 spin_lock_irqsave(&tsc_sync_lock, flags);
298 for (i = 0; i < NUM_ROUNDS; ++i) {
299 delta = get_delta(&rt, &master_time_stamp);
301 done = 1; /* let's lock on to this... */
308 adjust_latency += -delta;
309 adj = -delta + adjust_latency/4;
314 wrmsrl(MSR_IA32_TSC, t + adj);
316 #ifdef DEBUG_TSC_SYNC
318 t[i].master = master_time_stamp;
320 t[i].lat = adjust_latency/4;
324 spin_unlock_irqrestore(&tsc_sync_lock, flags);
326 #ifdef DEBUG_TSC_SYNC
327 for (i = 0; i < NUM_ROUNDS; ++i)
328 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
329 t[i].rt, t[i].master, t[i].diff, t[i].lat);
333 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
334 "maxerr %lu cycles)\n",
335 smp_processor_id(), master, delta, rt);
338 static void __cpuinit tsc_sync_wait(void)
340 if (notscsync || !cpu_has_tsc)
345 static __init int notscsync_setup(char *s)
350 __setup("notscsync", notscsync_setup);
352 static atomic_t init_deasserted __cpuinitdata;
355 * Report back to the Boot Processor.
358 void __cpuinit smp_callin(void)
361 unsigned long timeout;
364 * If waken up by an INIT in an 82489DX configuration
365 * we may get here before an INIT-deassert IPI reaches
366 * our local APIC. We have to wait for the IPI or we'll
367 * lock up on an APIC access.
369 while (!atomic_read(&init_deasserted))
373 * (This works even if the APIC is not enabled.)
375 phys_id = GET_APIC_ID(apic_read(APIC_ID));
376 cpuid = smp_processor_id();
377 if (cpu_isset(cpuid, cpu_callin_map)) {
378 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
381 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
384 * STARTUP IPIs are fragile beasts as they might sometimes
385 * trigger some glue motherboard logic. Complete APIC bus
386 * silence for 1 second, this overestimates the time the
387 * boot CPU is spending to send the up to 2 STARTUP IPIs
388 * by a factor of two. This should be enough.
392 * Waiting 2s total for startup (udelay is not yet working)
394 timeout = jiffies + 2*HZ;
395 while (time_before(jiffies, timeout)) {
397 * Has the boot CPU finished it's STARTUP sequence?
399 if (cpu_isset(cpuid, cpu_callout_map))
404 if (!time_before(jiffies, timeout)) {
405 panic("smp_callin: CPU%d started up but did not get a callout!\n",
410 * the boot CPU has finished the init stage and is spinning
411 * on callin_map until we finish. We are free to set up this
412 * CPU, first the APIC. (this is probably redundant on most
416 Dprintk("CALLIN, before setup_local_APIC().\n");
422 * Need to enable IRQs because it can take longer and then
423 * the NMI watchdog might kill us.
428 Dprintk("Stack at about %p\n",&cpuid);
430 disable_APIC_timer();
433 * Save our processor parameters
435 smp_store_cpu_info(cpuid);
438 * Allow the master to continue.
440 cpu_set(cpuid, cpu_callin_map);
443 /* representing cpus for which sibling maps can be computed */
444 static cpumask_t cpu_sibling_setup_map;
446 static inline void set_cpu_sibling_map(int cpu)
449 struct cpuinfo_x86 *c = cpu_data;
451 cpu_set(cpu, cpu_sibling_setup_map);
453 if (smp_num_siblings > 1) {
454 for_each_cpu_mask(i, cpu_sibling_setup_map) {
455 if (phys_proc_id[cpu] == phys_proc_id[i] &&
456 cpu_core_id[cpu] == cpu_core_id[i]) {
457 cpu_set(i, cpu_sibling_map[cpu]);
458 cpu_set(cpu, cpu_sibling_map[i]);
459 cpu_set(i, cpu_core_map[cpu]);
460 cpu_set(cpu, cpu_core_map[i]);
464 cpu_set(cpu, cpu_sibling_map[cpu]);
467 if (current_cpu_data.x86_max_cores == 1) {
468 cpu_core_map[cpu] = cpu_sibling_map[cpu];
469 c[cpu].booted_cores = 1;
473 for_each_cpu_mask(i, cpu_sibling_setup_map) {
474 if (phys_proc_id[cpu] == phys_proc_id[i]) {
475 cpu_set(i, cpu_core_map[cpu]);
476 cpu_set(cpu, cpu_core_map[i]);
478 * Does this new cpu bringup a new core?
480 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
482 * for each core in package, increment
483 * the booted_cores for this new cpu
485 if (first_cpu(cpu_sibling_map[i]) == i)
486 c[cpu].booted_cores++;
488 * increment the core count for all
489 * the other cpus in this package
493 } else if (i != cpu && !c[cpu].booted_cores)
494 c[cpu].booted_cores = c[i].booted_cores;
500 * Setup code on secondary processor (after comming out of the trampoline)
502 void __cpuinit start_secondary(void)
505 * Dont put anything before smp_callin(), SMP
506 * booting is too fragile that we want to limit the
507 * things done here to the most necessary things.
512 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
515 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
516 setup_secondary_APIC_clock();
518 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
520 if (nmi_watchdog == NMI_IO_APIC) {
521 disable_8259A_irq(0);
522 enable_NMI_through_LVT0(NULL);
529 * The sibling maps must be set before turing the online map on for
532 set_cpu_sibling_map(smp_processor_id());
535 * Wait for TSC sync to not schedule things before.
536 * We still process interrupts, which could see an inconsistent
537 * time in that window unfortunately.
538 * Do this here because TSC sync has global unprotected state.
543 * We need to hold call_lock, so there is no inconsistency
544 * between the time smp_call_function() determines number of
545 * IPI receipients, and the time when the determination is made
546 * for which cpus receive the IPI in genapic_flat.c. Holding this
547 * lock helps us to not include this cpu in a currently in progress
548 * smp_call_function().
550 lock_ipi_call_lock();
553 * Allow the master to continue.
555 cpu_set(smp_processor_id(), cpu_online_map);
556 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
557 unlock_ipi_call_lock();
562 extern volatile unsigned long init_rsp;
563 extern void (*initial_code)(void);
566 static void inquire_remote_apic(int apicid)
568 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
569 char *names[] = { "ID", "VERSION", "SPIV" };
572 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
574 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
575 printk("... APIC #%d %s: ", apicid, names[i]);
580 apic_wait_icr_idle();
582 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
583 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
588 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
589 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
592 case APIC_ICR_RR_VALID:
593 status = apic_read(APIC_RRR);
594 printk("%08x\n", status);
604 * Kick the secondary to wake up.
606 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
608 unsigned long send_status = 0, accept_status = 0;
609 int maxlvt, timeout, num_starts, j;
611 Dprintk("Asserting INIT.\n");
614 * Turn INIT on target chip
616 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
621 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
624 Dprintk("Waiting for send to finish...\n");
629 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
630 } while (send_status && (timeout++ < 1000));
634 Dprintk("Deasserting INIT.\n");
637 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
640 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
642 Dprintk("Waiting for send to finish...\n");
647 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
648 } while (send_status && (timeout++ < 1000));
650 atomic_set(&init_deasserted, 1);
655 * Run STARTUP IPI loop.
657 Dprintk("#startup loops: %d.\n", num_starts);
659 maxlvt = get_maxlvt();
661 for (j = 1; j <= num_starts; j++) {
662 Dprintk("Sending STARTUP #%d.\n",j);
663 apic_read_around(APIC_SPIV);
664 apic_write(APIC_ESR, 0);
666 Dprintk("After apic_write.\n");
673 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
675 /* Boot on the stack */
676 /* Kick the second */
677 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
680 * Give the other CPU some time to accept the IPI.
684 Dprintk("Startup point 1.\n");
686 Dprintk("Waiting for send to finish...\n");
691 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
692 } while (send_status && (timeout++ < 1000));
695 * Give the other CPU some time to accept the IPI.
699 * Due to the Pentium erratum 3AP.
702 apic_read_around(APIC_SPIV);
703 apic_write(APIC_ESR, 0);
705 accept_status = (apic_read(APIC_ESR) & 0xEF);
706 if (send_status || accept_status)
709 Dprintk("After Startup.\n");
712 printk(KERN_ERR "APIC never delivered???\n");
714 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
716 return (send_status | accept_status);
720 struct task_struct *idle;
721 struct completion done;
725 void do_fork_idle(void *_c_idle)
727 struct create_idle *c_idle = _c_idle;
729 c_idle->idle = fork_idle(c_idle->cpu);
730 complete(&c_idle->done);
736 static int __cpuinit do_boot_cpu(int cpu, int apicid)
738 unsigned long boot_error;
740 unsigned long start_rip;
741 struct create_idle c_idle = {
743 .done = COMPLETION_INITIALIZER(c_idle.done),
745 DECLARE_WORK(work, do_fork_idle, &c_idle);
747 c_idle.idle = get_idle_for_cpu(cpu);
750 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
751 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
752 init_idle(c_idle.idle, cpu);
757 * During cold boot process, keventd thread is not spun up yet.
758 * When we do cpu hot-add, we create idle threads on the fly, we should
759 * not acquire any attributes from the calling context. Hence the clean
760 * way to create kernel_threads() is to do that from keventd().
761 * We do the current_is_keventd() due to the fact that ACPI notifier
762 * was also queuing to keventd() and when the caller is already running
763 * in context of keventd(), we would end up with locking up the keventd
766 if (!keventd_up() || current_is_keventd())
767 work.func(work.data);
769 schedule_work(&work);
770 wait_for_completion(&c_idle.done);
773 if (IS_ERR(c_idle.idle)) {
774 printk("failed fork for CPU %d\n", cpu);
775 return PTR_ERR(c_idle.idle);
778 set_idle_for_cpu(cpu, c_idle.idle);
782 cpu_pda[cpu].pcurrent = c_idle.idle;
784 start_rip = setup_trampoline();
786 init_rsp = c_idle.idle->thread.rsp;
787 per_cpu(init_tss,cpu).rsp0 = init_rsp;
788 initial_code = start_secondary;
789 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
791 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
792 cpus_weight(cpu_present_map),
796 * This grunge runs the startup process for
797 * the targeted processor.
800 atomic_set(&init_deasserted, 0);
802 Dprintk("Setting warm reset code and vector.\n");
804 CMOS_WRITE(0xa, 0xf);
807 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
809 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
813 * Be paranoid about clearing APIC errors.
815 if (APIC_INTEGRATED(apic_version[apicid])) {
816 apic_read_around(APIC_SPIV);
817 apic_write(APIC_ESR, 0);
822 * Status is now clean
827 * Starting actual IPI sequence...
829 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
833 * allow APs to start initializing.
835 Dprintk("Before Callout %d.\n", cpu);
836 cpu_set(cpu, cpu_callout_map);
837 Dprintk("After Callout %d.\n", cpu);
840 * Wait 5s total for a response
842 for (timeout = 0; timeout < 50000; timeout++) {
843 if (cpu_isset(cpu, cpu_callin_map))
844 break; /* It has booted */
848 if (cpu_isset(cpu, cpu_callin_map)) {
849 /* number CPUs logically, starting from 1 (BSP is 0) */
850 Dprintk("CPU has booted.\n");
853 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
855 /* trampoline started but...? */
856 printk("Stuck ??\n");
858 /* trampoline code not run */
859 printk("Not responding.\n");
861 inquire_remote_apic(apicid);
866 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
867 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
868 cpu_clear(cpu, cpu_present_map);
869 cpu_clear(cpu, cpu_possible_map);
870 x86_cpu_to_apicid[cpu] = BAD_APICID;
871 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
878 cycles_t cacheflush_time;
879 unsigned long cache_decay_ticks;
882 * Cleanup possible dangling ends...
884 static __cpuinit void smp_cleanup_boot(void)
887 * Paranoid: Set warm reset code and vector here back
893 * Reset trampoline flag
895 *((volatile int *) phys_to_virt(0x467)) = 0;
899 * Fall back to non SMP mode after errors.
901 * RED-PEN audit/test this more. I bet there is more state messed up here.
903 static __init void disable_smp(void)
905 cpu_present_map = cpumask_of_cpu(0);
906 cpu_possible_map = cpumask_of_cpu(0);
907 if (smp_found_config)
908 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
910 phys_cpu_present_map = physid_mask_of_physid(0);
911 cpu_set(0, cpu_sibling_map[0]);
912 cpu_set(0, cpu_core_map[0]);
915 #ifdef CONFIG_HOTPLUG_CPU
917 int additional_cpus __initdata = -1;
920 * cpu_possible_map should be static, it cannot change as cpu's
921 * are onlined, or offlined. The reason is per-cpu data-structures
922 * are allocated by some modules at init time, and dont expect to
923 * do this dynamically on cpu arrival/departure.
924 * cpu_present_map on the other hand can change dynamically.
925 * In case when cpu_hotplug is not compiled, then we resort to current
926 * behaviour, which is cpu_possible == cpu_present.
929 * Three ways to find out the number of additional hotplug CPUs:
930 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
931 * - otherwise use half of the available CPUs or 2, whatever is more.
932 * - The user can overwrite it with additional_cpus=NUM
933 * We do this because additional CPUs waste a lot of memory.
936 __init void prefill_possible_map(void)
941 if (additional_cpus == -1) {
942 if (disabled_cpus > 0) {
943 additional_cpus = disabled_cpus;
945 additional_cpus = num_processors / 2;
946 if (additional_cpus == 0)
950 possible = num_processors + additional_cpus;
951 if (possible > NR_CPUS)
954 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
956 max_t(int, possible - num_processors, 0));
958 for (i = 0; i < possible; i++)
959 cpu_set(i, cpu_possible_map);
964 * Various sanity checks.
966 static int __init smp_sanity_check(unsigned max_cpus)
968 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
969 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
970 hard_smp_processor_id());
971 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
975 * If we couldn't find an SMP configuration at boot time,
976 * get out of here now!
978 if (!smp_found_config) {
979 printk(KERN_NOTICE "SMP motherboard not detected.\n");
981 if (APIC_init_uniprocessor())
982 printk(KERN_NOTICE "Local APIC not detected."
983 " Using dummy APIC emulation.\n");
988 * Should not be necessary because the MP table should list the boot
989 * CPU too, but we do it for the sake of robustness anyway.
991 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
992 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
994 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
998 * If we couldn't find a local APIC, then get out of here now!
1000 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
1001 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1003 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1009 * If SMP should be disabled, then really disable it!
1012 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1021 * Prepare for SMP bootup. The MP table or ACPI has been read
1022 * earlier. Just do some sanity checking here and enable APIC mode.
1024 void __init smp_prepare_cpus(unsigned int max_cpus)
1026 nmi_watchdog_default();
1027 current_cpu_data = boot_cpu_data;
1028 current_thread_info()->cpu = 0; /* needed? */
1029 set_cpu_sibling_map(0);
1031 if (smp_sanity_check(max_cpus) < 0) {
1032 printk(KERN_INFO "SMP disabled\n");
1039 * Switch from PIC to APIC mode.
1044 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1045 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1046 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1047 /* Or can we switch back to PIC here? */
1051 * Now start the IO-APICs
1053 if (!skip_ioapic_setup && nr_ioapics)
1059 * Set up local APIC timer on boot CPU.
1062 setup_boot_APIC_clock();
1066 * Early setup to make printk work.
1068 void __init smp_prepare_boot_cpu(void)
1070 int me = smp_processor_id();
1071 cpu_set(me, cpu_online_map);
1072 cpu_set(me, cpu_callout_map);
1073 per_cpu(cpu_state, me) = CPU_ONLINE;
1077 * Entry point to boot a CPU.
1079 int __cpuinit __cpu_up(unsigned int cpu)
1082 int apicid = cpu_present_to_apicid(cpu);
1084 WARN_ON(irqs_disabled());
1086 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1088 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1089 !physid_isset(apicid, phys_cpu_present_map)) {
1090 printk("__cpu_up: bad cpu %d\n", cpu);
1095 * Already booted CPU?
1097 if (cpu_isset(cpu, cpu_callin_map)) {
1098 Dprintk("do_boot_cpu %d Already started\n", cpu);
1102 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1104 err = do_boot_cpu(cpu, apicid);
1106 Dprintk("do_boot_cpu failed %d\n", err);
1110 /* Unleash the CPU! */
1111 Dprintk("waiting for cpu %d\n", cpu);
1113 while (!cpu_isset(cpu, cpu_online_map))
1121 * Finish the SMP boot.
1123 void __init smp_cpus_done(unsigned int max_cpus)
1127 #ifdef CONFIG_X86_IO_APIC
1128 setup_ioapic_dest();
1133 check_nmi_watchdog();
1136 #ifdef CONFIG_HOTPLUG_CPU
1138 static void remove_siblinginfo(int cpu)
1141 struct cpuinfo_x86 *c = cpu_data;
1143 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1144 cpu_clear(cpu, cpu_core_map[sibling]);
1146 * last thread sibling in this cpu core going down
1148 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1149 c[sibling].booted_cores--;
1152 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1153 cpu_clear(cpu, cpu_sibling_map[sibling]);
1154 cpus_clear(cpu_sibling_map[cpu]);
1155 cpus_clear(cpu_core_map[cpu]);
1156 phys_proc_id[cpu] = BAD_APICID;
1157 cpu_core_id[cpu] = BAD_APICID;
1158 cpu_clear(cpu, cpu_sibling_setup_map);
1161 void remove_cpu_from_maps(void)
1163 int cpu = smp_processor_id();
1165 cpu_clear(cpu, cpu_callout_map);
1166 cpu_clear(cpu, cpu_callin_map);
1167 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1170 int __cpu_disable(void)
1172 int cpu = smp_processor_id();
1175 * Perhaps use cpufreq to drop frequency, but that could go
1176 * into generic code.
1178 * We won't take down the boot processor on i386 due to some
1179 * interrupts only being able to be serviced by the BSP.
1180 * Especially so if we're not using an IOAPIC -zwane
1185 disable_APIC_timer();
1189 * Allow any queued timer interrupts to get serviced
1190 * This is only a temporary solution until we cleanup
1191 * fixup_irqs as we do for IA64.
1196 local_irq_disable();
1197 remove_siblinginfo(cpu);
1199 /* It's now safe to remove this processor from the online map */
1200 cpu_clear(cpu, cpu_online_map);
1201 remove_cpu_from_maps();
1202 fixup_irqs(cpu_online_map);
1206 void __cpu_die(unsigned int cpu)
1208 /* We don't do anything here: idle task is faking death itself. */
1211 for (i = 0; i < 10; i++) {
1212 /* They ack this in play_dead by setting CPU_DEAD */
1213 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1214 printk ("CPU %d is now offline\n", cpu);
1219 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1222 static __init int setup_additional_cpus(char *s)
1224 return get_option(&s, &additional_cpus);
1226 __setup("additional_cpus=", setup_additional_cpus);
1228 #else /* ... !CONFIG_HOTPLUG_CPU */
1230 int __cpu_disable(void)
1235 void __cpu_die(unsigned int cpu)
1237 /* We said "no" in __cpu_disable */
1240 #endif /* CONFIG_HOTPLUG_CPU */