[PATCH] i386: add command line option "local_apic_timer_c2_ok"
[linux-2.6] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53
54 /*
55  * Include the apic definitions for x86 to have the APIC timer related defines
56  * available also for UP (on SMP it gets magically included via linux/smp.h).
57  */
58 #ifdef CONFIG_X86
59 #include <asm/apic.h>
60 #endif
61
62 #include <asm/io.h>
63 #include <asm/uaccess.h>
64
65 #include <acpi/acpi_bus.h>
66 #include <acpi/processor.h>
67
68 #define ACPI_PROCESSOR_COMPONENT        0x01000000
69 #define ACPI_PROCESSOR_CLASS            "processor"
70 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
71 ACPI_MODULE_NAME("processor_idle");
72 #define ACPI_PROCESSOR_FILE_POWER       "power"
73 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
74 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
75 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
76 static void (*pm_idle_save) (void) __read_mostly;
77 module_param(max_cstate, uint, 0644);
78
79 static unsigned int nocst __read_mostly;
80 module_param(nocst, uint, 0000);
81
82 /*
83  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
84  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
85  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
86  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
87  * reduce history for more aggressive entry into C3
88  */
89 static unsigned int bm_history __read_mostly =
90     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
91 module_param(bm_history, uint, 0644);
92 /* --------------------------------------------------------------------------
93                                 Power Management
94    -------------------------------------------------------------------------- */
95
96 /*
97  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
98  * For now disable this. Probably a bug somewhere else.
99  *
100  * To skip this limit, boot/load with a large max_cstate limit.
101  */
102 static int set_max_cstate(struct dmi_system_id *id)
103 {
104         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
105                 return 0;
106
107         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
108                " Override with \"processor.max_cstate=%d\"\n", id->ident,
109                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
110
111         max_cstate = (long)id->driver_data;
112
113         return 0;
114 }
115
116 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
117    callers to only run once -AK */
118 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
119         { set_max_cstate, "IBM ThinkPad R40e", {
120           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
122         { set_max_cstate, "IBM ThinkPad R40e", {
123           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
125         { set_max_cstate, "IBM ThinkPad R40e", {
126           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
128         { set_max_cstate, "IBM ThinkPad R40e", {
129           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
131         { set_max_cstate, "IBM ThinkPad R40e", {
132           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
134         { set_max_cstate, "IBM ThinkPad R40e", {
135           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
137         { set_max_cstate, "IBM ThinkPad R40e", {
138           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
140         { set_max_cstate, "IBM ThinkPad R40e", {
141           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
143         { set_max_cstate, "IBM ThinkPad R40e", {
144           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
146         { set_max_cstate, "IBM ThinkPad R40e", {
147           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
149         { set_max_cstate, "IBM ThinkPad R40e", {
150           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
152         { set_max_cstate, "IBM ThinkPad R40e", {
153           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
155         { set_max_cstate, "IBM ThinkPad R40e", {
156           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
158         { set_max_cstate, "IBM ThinkPad R40e", {
159           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
161         { set_max_cstate, "IBM ThinkPad R40e", {
162           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
164         { set_max_cstate, "IBM ThinkPad R40e", {
165           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
167         { set_max_cstate, "Medion 41700", {
168           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
169           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
170         { set_max_cstate, "Clevo 5600D", {
171           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
173          (void *)2},
174         {},
175 };
176
177 static inline u32 ticks_elapsed(u32 t1, u32 t2)
178 {
179         if (t2 >= t1)
180                 return (t2 - t1);
181         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
182                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
183         else
184                 return ((0xFFFFFFFF - t1) + t2);
185 }
186
187 static void
188 acpi_processor_power_activate(struct acpi_processor *pr,
189                               struct acpi_processor_cx *new)
190 {
191         struct acpi_processor_cx *old;
192
193         if (!pr || !new)
194                 return;
195
196         old = pr->power.state;
197
198         if (old)
199                 old->promotion.count = 0;
200         new->demotion.count = 0;
201
202         /* Cleanup from old state. */
203         if (old) {
204                 switch (old->type) {
205                 case ACPI_STATE_C3:
206                         /* Disable bus master reload */
207                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
208                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
209                         break;
210                 }
211         }
212
213         /* Prepare to use new state. */
214         switch (new->type) {
215         case ACPI_STATE_C3:
216                 /* Enable bus master reload */
217                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
218                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
219                 break;
220         }
221
222         pr->power.state = new;
223
224         return;
225 }
226
227 static void acpi_safe_halt(void)
228 {
229         current_thread_info()->status &= ~TS_POLLING;
230         /*
231          * TS_POLLING-cleared state must be visible before we
232          * test NEED_RESCHED:
233          */
234         smp_mb();
235         if (!need_resched())
236                 safe_halt();
237         current_thread_info()->status |= TS_POLLING;
238 }
239
240 static atomic_t c3_cpu_count;
241
242 /* Common C-state entry for C2, C3, .. */
243 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
244 {
245         if (cstate->space_id == ACPI_CSTATE_FFH) {
246                 /* Call into architectural FFH based C-state */
247                 acpi_processor_ffh_cstate_enter(cstate);
248         } else {
249                 int unused;
250                 /* IO port based C-state */
251                 inb(cstate->address);
252                 /* Dummy wait op - must do something useless after P_LVL2 read
253                    because chipsets cannot guarantee that STPCLK# signal
254                    gets asserted in time to freeze execution properly. */
255                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
256         }
257 }
258
259 #ifdef ARCH_APICTIMER_STOPS_ON_C3
260
261 /*
262  * Some BIOS implementations switch to C3 in the published C2 state.
263  * This seems to be a common problem on AMD boxen, but other vendors
264  * are affected too. We pick the most conservative approach: we assume
265  * that the local APIC stops in both C2 and C3.
266  */
267 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
268                                    struct acpi_processor_cx *cx)
269 {
270         struct acpi_processor_power *pwr = &pr->power;
271         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
272
273         /*
274          * Check, if one of the previous states already marked the lapic
275          * unstable
276          */
277         if (pwr->timer_broadcast_on_state < state)
278                 return;
279
280         if (cx->type >= type)
281                 pr->power.timer_broadcast_on_state = state;
282 }
283
284 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
285 {
286 #ifdef CONFIG_GENERIC_CLOCKEVENTS
287         unsigned long reason;
288
289         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
290                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
291
292         clockevents_notify(reason, &pr->id);
293 #else
294         cpumask_t mask = cpumask_of_cpu(pr->id);
295
296         if (pr->power.timer_broadcast_on_state < INT_MAX)
297                 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
298         else
299                 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
300 #endif
301 }
302
303 /* Power(C) State timer broadcast control */
304 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
305                                        struct acpi_processor_cx *cx,
306                                        int broadcast)
307 {
308 #ifdef CONFIG_GENERIC_CLOCKEVENTS
309
310         int state = cx - pr->power.states;
311
312         if (state >= pr->power.timer_broadcast_on_state) {
313                 unsigned long reason;
314
315                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
316                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
317                 clockevents_notify(reason, &pr->id);
318         }
319 #endif
320 }
321
322 #else
323
324 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
325                                    struct acpi_processor_cx *cstate) { }
326 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
327 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
328                                        struct acpi_processor_cx *cx,
329                                        int broadcast)
330 {
331 }
332
333 #endif
334
335 static void acpi_processor_idle(void)
336 {
337         struct acpi_processor *pr = NULL;
338         struct acpi_processor_cx *cx = NULL;
339         struct acpi_processor_cx *next_state = NULL;
340         int sleep_ticks = 0;
341         u32 t1, t2 = 0;
342
343         pr = processors[smp_processor_id()];
344         if (!pr)
345                 return;
346
347         /*
348          * Interrupts must be disabled during bus mastering calculations and
349          * for C2/C3 transitions.
350          */
351         local_irq_disable();
352
353         /*
354          * Check whether we truly need to go idle, or should
355          * reschedule:
356          */
357         if (unlikely(need_resched())) {
358                 local_irq_enable();
359                 return;
360         }
361
362         cx = pr->power.state;
363         if (!cx) {
364                 if (pm_idle_save)
365                         pm_idle_save();
366                 else
367                         acpi_safe_halt();
368                 return;
369         }
370
371         /*
372          * Check BM Activity
373          * -----------------
374          * Check for bus mastering activity (if required), record, and check
375          * for demotion.
376          */
377         if (pr->flags.bm_check) {
378                 u32 bm_status = 0;
379                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
380
381                 if (diff > 31)
382                         diff = 31;
383
384                 pr->power.bm_activity <<= diff;
385
386                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
387                 if (bm_status) {
388                         pr->power.bm_activity |= 0x1;
389                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
390                 }
391                 /*
392                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
393                  * the true state of bus mastering activity; forcing us to
394                  * manually check the BMIDEA bit of each IDE channel.
395                  */
396                 else if (errata.piix4.bmisx) {
397                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
398                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
399                                 pr->power.bm_activity |= 0x1;
400                 }
401
402                 pr->power.bm_check_timestamp = jiffies;
403
404                 /*
405                  * If bus mastering is or was active this jiffy, demote
406                  * to avoid a faulty transition.  Note that the processor
407                  * won't enter a low-power state during this call (to this
408                  * function) but should upon the next.
409                  *
410                  * TBD: A better policy might be to fallback to the demotion
411                  *      state (use it for this quantum only) istead of
412                  *      demoting -- and rely on duration as our sole demotion
413                  *      qualification.  This may, however, introduce DMA
414                  *      issues (e.g. floppy DMA transfer overrun/underrun).
415                  */
416                 if ((pr->power.bm_activity & 0x1) &&
417                     cx->demotion.threshold.bm) {
418                         local_irq_enable();
419                         next_state = cx->demotion.state;
420                         goto end;
421                 }
422         }
423
424 #ifdef CONFIG_HOTPLUG_CPU
425         /*
426          * Check for P_LVL2_UP flag before entering C2 and above on
427          * an SMP system. We do it here instead of doing it at _CST/P_LVL
428          * detection phase, to work cleanly with logical CPU hotplug.
429          */
430         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
431             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
432                 cx = &pr->power.states[ACPI_STATE_C1];
433 #endif
434
435         /*
436          * Sleep:
437          * ------
438          * Invoke the current Cx state to put the processor to sleep.
439          */
440         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
441                 current_thread_info()->status &= ~TS_POLLING;
442                 /*
443                  * TS_POLLING-cleared state must be visible before we
444                  * test NEED_RESCHED:
445                  */
446                 smp_mb();
447                 if (need_resched()) {
448                         current_thread_info()->status |= TS_POLLING;
449                         local_irq_enable();
450                         return;
451                 }
452         }
453
454         switch (cx->type) {
455
456         case ACPI_STATE_C1:
457                 /*
458                  * Invoke C1.
459                  * Use the appropriate idle routine, the one that would
460                  * be used without acpi C-states.
461                  */
462                 if (pm_idle_save)
463                         pm_idle_save();
464                 else
465                         acpi_safe_halt();
466
467                 /*
468                  * TBD: Can't get time duration while in C1, as resumes
469                  *      go to an ISR rather than here.  Need to instrument
470                  *      base interrupt handler.
471                  */
472                 sleep_ticks = 0xFFFFFFFF;
473                 break;
474
475         case ACPI_STATE_C2:
476                 /* Get start time (ticks) */
477                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
478                 /* Invoke C2 */
479                 acpi_state_timer_broadcast(pr, cx, 1);
480                 acpi_cstate_enter(cx);
481                 /* Get end time (ticks) */
482                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
483
484 #ifdef CONFIG_GENERIC_TIME
485                 /* TSC halts in C2, so notify users */
486                 mark_tsc_unstable();
487 #endif
488                 /* Re-enable interrupts */
489                 local_irq_enable();
490                 current_thread_info()->status |= TS_POLLING;
491                 /* Compute time (ticks) that we were actually asleep */
492                 sleep_ticks =
493                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
494                 acpi_state_timer_broadcast(pr, cx, 0);
495                 break;
496
497         case ACPI_STATE_C3:
498
499                 if (pr->flags.bm_check) {
500                         if (atomic_inc_return(&c3_cpu_count) ==
501                             num_online_cpus()) {
502                                 /*
503                                  * All CPUs are trying to go to C3
504                                  * Disable bus master arbitration
505                                  */
506                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
507                         }
508                 } else {
509                         /* SMP with no shared cache... Invalidate cache  */
510                         ACPI_FLUSH_CPU_CACHE();
511                 }
512
513                 /* Get start time (ticks) */
514                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
515                 /* Invoke C3 */
516                 acpi_state_timer_broadcast(pr, cx, 1);
517                 acpi_cstate_enter(cx);
518                 /* Get end time (ticks) */
519                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
520                 if (pr->flags.bm_check) {
521                         /* Enable bus master arbitration */
522                         atomic_dec(&c3_cpu_count);
523                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
524                 }
525
526 #ifdef CONFIG_GENERIC_TIME
527                 /* TSC halts in C3, so notify users */
528                 mark_tsc_unstable();
529 #endif
530                 /* Re-enable interrupts */
531                 local_irq_enable();
532                 current_thread_info()->status |= TS_POLLING;
533                 /* Compute time (ticks) that we were actually asleep */
534                 sleep_ticks =
535                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
536                 acpi_state_timer_broadcast(pr, cx, 0);
537                 break;
538
539         default:
540                 local_irq_enable();
541                 return;
542         }
543         cx->usage++;
544         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
545                 cx->time += sleep_ticks;
546
547         next_state = pr->power.state;
548
549 #ifdef CONFIG_HOTPLUG_CPU
550         /* Don't do promotion/demotion */
551         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
552             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
553                 next_state = cx;
554                 goto end;
555         }
556 #endif
557
558         /*
559          * Promotion?
560          * ----------
561          * Track the number of longs (time asleep is greater than threshold)
562          * and promote when the count threshold is reached.  Note that bus
563          * mastering activity may prevent promotions.
564          * Do not promote above max_cstate.
565          */
566         if (cx->promotion.state &&
567             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
568                 if (sleep_ticks > cx->promotion.threshold.ticks &&
569                   cx->promotion.state->latency <= system_latency_constraint()) {
570                         cx->promotion.count++;
571                         cx->demotion.count = 0;
572                         if (cx->promotion.count >=
573                             cx->promotion.threshold.count) {
574                                 if (pr->flags.bm_check) {
575                                         if (!
576                                             (pr->power.bm_activity & cx->
577                                              promotion.threshold.bm)) {
578                                                 next_state =
579                                                     cx->promotion.state;
580                                                 goto end;
581                                         }
582                                 } else {
583                                         next_state = cx->promotion.state;
584                                         goto end;
585                                 }
586                         }
587                 }
588         }
589
590         /*
591          * Demotion?
592          * ---------
593          * Track the number of shorts (time asleep is less than time threshold)
594          * and demote when the usage threshold is reached.
595          */
596         if (cx->demotion.state) {
597                 if (sleep_ticks < cx->demotion.threshold.ticks) {
598                         cx->demotion.count++;
599                         cx->promotion.count = 0;
600                         if (cx->demotion.count >= cx->demotion.threshold.count) {
601                                 next_state = cx->demotion.state;
602                                 goto end;
603                         }
604                 }
605         }
606
607       end:
608         /*
609          * Demote if current state exceeds max_cstate
610          * or if the latency of the current state is unacceptable
611          */
612         if ((pr->power.state - pr->power.states) > max_cstate ||
613                 pr->power.state->latency > system_latency_constraint()) {
614                 if (cx->demotion.state)
615                         next_state = cx->demotion.state;
616         }
617
618         /*
619          * New Cx State?
620          * -------------
621          * If we're going to start using a new Cx state we must clean up
622          * from the previous and prepare to use the new.
623          */
624         if (next_state != pr->power.state)
625                 acpi_processor_power_activate(pr, next_state);
626 }
627
628 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
629 {
630         unsigned int i;
631         unsigned int state_is_set = 0;
632         struct acpi_processor_cx *lower = NULL;
633         struct acpi_processor_cx *higher = NULL;
634         struct acpi_processor_cx *cx;
635
636
637         if (!pr)
638                 return -EINVAL;
639
640         /*
641          * This function sets the default Cx state policy (OS idle handler).
642          * Our scheme is to promote quickly to C2 but more conservatively
643          * to C3.  We're favoring C2  for its characteristics of low latency
644          * (quick response), good power savings, and ability to allow bus
645          * mastering activity.  Note that the Cx state policy is completely
646          * customizable and can be altered dynamically.
647          */
648
649         /* startup state */
650         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
651                 cx = &pr->power.states[i];
652                 if (!cx->valid)
653                         continue;
654
655                 if (!state_is_set)
656                         pr->power.state = cx;
657                 state_is_set++;
658                 break;
659         }
660
661         if (!state_is_set)
662                 return -ENODEV;
663
664         /* demotion */
665         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
666                 cx = &pr->power.states[i];
667                 if (!cx->valid)
668                         continue;
669
670                 if (lower) {
671                         cx->demotion.state = lower;
672                         cx->demotion.threshold.ticks = cx->latency_ticks;
673                         cx->demotion.threshold.count = 1;
674                         if (cx->type == ACPI_STATE_C3)
675                                 cx->demotion.threshold.bm = bm_history;
676                 }
677
678                 lower = cx;
679         }
680
681         /* promotion */
682         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
683                 cx = &pr->power.states[i];
684                 if (!cx->valid)
685                         continue;
686
687                 if (higher) {
688                         cx->promotion.state = higher;
689                         cx->promotion.threshold.ticks = cx->latency_ticks;
690                         if (cx->type >= ACPI_STATE_C2)
691                                 cx->promotion.threshold.count = 4;
692                         else
693                                 cx->promotion.threshold.count = 10;
694                         if (higher->type == ACPI_STATE_C3)
695                                 cx->promotion.threshold.bm = bm_history;
696                 }
697
698                 higher = cx;
699         }
700
701         return 0;
702 }
703
704 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
705 {
706
707         if (!pr)
708                 return -EINVAL;
709
710         if (!pr->pblk)
711                 return -ENODEV;
712
713         /* if info is obtained from pblk/fadt, type equals state */
714         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
715         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
716
717 #ifndef CONFIG_HOTPLUG_CPU
718         /*
719          * Check for P_LVL2_UP flag before entering C2 and above on
720          * an SMP system. 
721          */
722         if ((num_online_cpus() > 1) &&
723             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
724                 return -ENODEV;
725 #endif
726
727         /* determine C2 and C3 address from pblk */
728         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
729         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
730
731         /* determine latencies from FADT */
732         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
733         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
734
735         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
736                           "lvl2[0x%08x] lvl3[0x%08x]\n",
737                           pr->power.states[ACPI_STATE_C2].address,
738                           pr->power.states[ACPI_STATE_C3].address));
739
740         return 0;
741 }
742
743 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
744 {
745         if (!pr->power.states[ACPI_STATE_C1].valid) {
746                 /* set the first C-State to C1 */
747                 /* all processors need to support C1 */
748                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
749                 pr->power.states[ACPI_STATE_C1].valid = 1;
750         }
751         /* the C0 state only exists as a filler in our array */
752         pr->power.states[ACPI_STATE_C0].valid = 1;
753         return 0;
754 }
755
756 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
757 {
758         acpi_status status = 0;
759         acpi_integer count;
760         int current_count;
761         int i;
762         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
763         union acpi_object *cst;
764
765
766         if (nocst)
767                 return -ENODEV;
768
769         current_count = 0;
770
771         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
772         if (ACPI_FAILURE(status)) {
773                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
774                 return -ENODEV;
775         }
776
777         cst = buffer.pointer;
778
779         /* There must be at least 2 elements */
780         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
781                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
782                 status = -EFAULT;
783                 goto end;
784         }
785
786         count = cst->package.elements[0].integer.value;
787
788         /* Validate number of power states. */
789         if (count < 1 || count != cst->package.count - 1) {
790                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
791                 status = -EFAULT;
792                 goto end;
793         }
794
795         /* Tell driver that at least _CST is supported. */
796         pr->flags.has_cst = 1;
797
798         for (i = 1; i <= count; i++) {
799                 union acpi_object *element;
800                 union acpi_object *obj;
801                 struct acpi_power_register *reg;
802                 struct acpi_processor_cx cx;
803
804                 memset(&cx, 0, sizeof(cx));
805
806                 element = &(cst->package.elements[i]);
807                 if (element->type != ACPI_TYPE_PACKAGE)
808                         continue;
809
810                 if (element->package.count != 4)
811                         continue;
812
813                 obj = &(element->package.elements[0]);
814
815                 if (obj->type != ACPI_TYPE_BUFFER)
816                         continue;
817
818                 reg = (struct acpi_power_register *)obj->buffer.pointer;
819
820                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
821                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
822                         continue;
823
824                 /* There should be an easy way to extract an integer... */
825                 obj = &(element->package.elements[1]);
826                 if (obj->type != ACPI_TYPE_INTEGER)
827                         continue;
828
829                 cx.type = obj->integer.value;
830                 /*
831                  * Some buggy BIOSes won't list C1 in _CST -
832                  * Let acpi_processor_get_power_info_default() handle them later
833                  */
834                 if (i == 1 && cx.type != ACPI_STATE_C1)
835                         current_count++;
836
837                 cx.address = reg->address;
838                 cx.index = current_count + 1;
839
840                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
841                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
842                         if (acpi_processor_ffh_cstate_probe
843                                         (pr->id, &cx, reg) == 0) {
844                                 cx.space_id = ACPI_CSTATE_FFH;
845                         } else if (cx.type != ACPI_STATE_C1) {
846                                 /*
847                                  * C1 is a special case where FIXED_HARDWARE
848                                  * can be handled in non-MWAIT way as well.
849                                  * In that case, save this _CST entry info.
850                                  * That is, we retain space_id of SYSTEM_IO for
851                                  * halt based C1.
852                                  * Otherwise, ignore this info and continue.
853                                  */
854                                 continue;
855                         }
856                 }
857
858                 obj = &(element->package.elements[2]);
859                 if (obj->type != ACPI_TYPE_INTEGER)
860                         continue;
861
862                 cx.latency = obj->integer.value;
863
864                 obj = &(element->package.elements[3]);
865                 if (obj->type != ACPI_TYPE_INTEGER)
866                         continue;
867
868                 cx.power = obj->integer.value;
869
870                 current_count++;
871                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
872
873                 /*
874                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
875                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
876                  */
877                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
878                         printk(KERN_WARNING
879                                "Limiting number of power states to max (%d)\n",
880                                ACPI_PROCESSOR_MAX_POWER);
881                         printk(KERN_WARNING
882                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
883                         break;
884                 }
885         }
886
887         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
888                           current_count));
889
890         /* Validate number of power states discovered */
891         if (current_count < 2)
892                 status = -EFAULT;
893
894       end:
895         kfree(buffer.pointer);
896
897         return status;
898 }
899
900 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
901 {
902
903         if (!cx->address)
904                 return;
905
906         /*
907          * C2 latency must be less than or equal to 100
908          * microseconds.
909          */
910         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
911                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
912                                   "latency too large [%d]\n", cx->latency));
913                 return;
914         }
915
916         /*
917          * Otherwise we've met all of our C2 requirements.
918          * Normalize the C2 latency to expidite policy
919          */
920         cx->valid = 1;
921         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
922
923         return;
924 }
925
926 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
927                                            struct acpi_processor_cx *cx)
928 {
929         static int bm_check_flag;
930
931
932         if (!cx->address)
933                 return;
934
935         /*
936          * C3 latency must be less than or equal to 1000
937          * microseconds.
938          */
939         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
940                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
941                                   "latency too large [%d]\n", cx->latency));
942                 return;
943         }
944
945         /*
946          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
947          * DMA transfers are used by any ISA device to avoid livelock.
948          * Note that we could disable Type-F DMA (as recommended by
949          * the erratum), but this is known to disrupt certain ISA
950          * devices thus we take the conservative approach.
951          */
952         else if (errata.piix4.fdma) {
953                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
954                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
955                 return;
956         }
957
958         /* All the logic here assumes flags.bm_check is same across all CPUs */
959         if (!bm_check_flag) {
960                 /* Determine whether bm_check is needed based on CPU  */
961                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
962                 bm_check_flag = pr->flags.bm_check;
963         } else {
964                 pr->flags.bm_check = bm_check_flag;
965         }
966
967         if (pr->flags.bm_check) {
968                 /* bus mastering control is necessary */
969                 if (!pr->flags.bm_control) {
970                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
971                                           "C3 support requires bus mastering control\n"));
972                         return;
973                 }
974         } else {
975                 /*
976                  * WBINVD should be set in fadt, for C3 state to be
977                  * supported on when bm_check is not required.
978                  */
979                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
980                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
981                                           "Cache invalidation should work properly"
982                                           " for C3 to be enabled on SMP systems\n"));
983                         return;
984                 }
985                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
986         }
987
988         /*
989          * Otherwise we've met all of our C3 requirements.
990          * Normalize the C3 latency to expidite policy.  Enable
991          * checking of bus mastering status (bm_check) so we can
992          * use this in our C3 policy
993          */
994         cx->valid = 1;
995         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
996
997         return;
998 }
999
1000 static int acpi_processor_power_verify(struct acpi_processor *pr)
1001 {
1002         unsigned int i;
1003         unsigned int working = 0;
1004
1005         pr->power.timer_broadcast_on_state = INT_MAX;
1006
1007         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1008                 struct acpi_processor_cx *cx = &pr->power.states[i];
1009
1010                 switch (cx->type) {
1011                 case ACPI_STATE_C1:
1012                         cx->valid = 1;
1013                         break;
1014
1015                 case ACPI_STATE_C2:
1016                         acpi_processor_power_verify_c2(cx);
1017                         if (cx->valid)
1018                                 acpi_timer_check_state(i, pr, cx);
1019                         break;
1020
1021                 case ACPI_STATE_C3:
1022                         acpi_processor_power_verify_c3(pr, cx);
1023                         if (cx->valid)
1024                                 acpi_timer_check_state(i, pr, cx);
1025                         break;
1026                 }
1027
1028                 if (cx->valid)
1029                         working++;
1030         }
1031
1032         acpi_propagate_timer_broadcast(pr);
1033
1034         return (working);
1035 }
1036
1037 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1038 {
1039         unsigned int i;
1040         int result;
1041
1042
1043         /* NOTE: the idle thread may not be running while calling
1044          * this function */
1045
1046         /* Zero initialize all the C-states info. */
1047         memset(pr->power.states, 0, sizeof(pr->power.states));
1048
1049         result = acpi_processor_get_power_info_cst(pr);
1050         if (result == -ENODEV)
1051                 result = acpi_processor_get_power_info_fadt(pr);
1052
1053         if (result)
1054                 return result;
1055
1056         acpi_processor_get_power_info_default(pr);
1057
1058         pr->power.count = acpi_processor_power_verify(pr);
1059
1060         /*
1061          * Set Default Policy
1062          * ------------------
1063          * Now that we know which states are supported, set the default
1064          * policy.  Note that this policy can be changed dynamically
1065          * (e.g. encourage deeper sleeps to conserve battery life when
1066          * not on AC).
1067          */
1068         result = acpi_processor_set_power_policy(pr);
1069         if (result)
1070                 return result;
1071
1072         /*
1073          * if one state of type C2 or C3 is available, mark this
1074          * CPU as being "idle manageable"
1075          */
1076         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1077                 if (pr->power.states[i].valid) {
1078                         pr->power.count = i;
1079                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1080                                 pr->flags.power = 1;
1081                 }
1082         }
1083
1084         return 0;
1085 }
1086
1087 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1088 {
1089         int result = 0;
1090
1091
1092         if (!pr)
1093                 return -EINVAL;
1094
1095         if (nocst) {
1096                 return -ENODEV;
1097         }
1098
1099         if (!pr->flags.power_setup_done)
1100                 return -ENODEV;
1101
1102         /* Fall back to the default idle loop */
1103         pm_idle = pm_idle_save;
1104         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1105
1106         pr->flags.power = 0;
1107         result = acpi_processor_get_power_info(pr);
1108         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1109                 pm_idle = acpi_processor_idle;
1110
1111         return result;
1112 }
1113
1114 /* proc interface */
1115
1116 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1117 {
1118         struct acpi_processor *pr = seq->private;
1119         unsigned int i;
1120
1121
1122         if (!pr)
1123                 goto end;
1124
1125         seq_printf(seq, "active state:            C%zd\n"
1126                    "max_cstate:              C%d\n"
1127                    "bus master activity:     %08x\n"
1128                    "maximum allowed latency: %d usec\n",
1129                    pr->power.state ? pr->power.state - pr->power.states : 0,
1130                    max_cstate, (unsigned)pr->power.bm_activity,
1131                    system_latency_constraint());
1132
1133         seq_puts(seq, "states:\n");
1134
1135         for (i = 1; i <= pr->power.count; i++) {
1136                 seq_printf(seq, "   %cC%d:                  ",
1137                            (&pr->power.states[i] ==
1138                             pr->power.state ? '*' : ' '), i);
1139
1140                 if (!pr->power.states[i].valid) {
1141                         seq_puts(seq, "<not supported>\n");
1142                         continue;
1143                 }
1144
1145                 switch (pr->power.states[i].type) {
1146                 case ACPI_STATE_C1:
1147                         seq_printf(seq, "type[C1] ");
1148                         break;
1149                 case ACPI_STATE_C2:
1150                         seq_printf(seq, "type[C2] ");
1151                         break;
1152                 case ACPI_STATE_C3:
1153                         seq_printf(seq, "type[C3] ");
1154                         break;
1155                 default:
1156                         seq_printf(seq, "type[--] ");
1157                         break;
1158                 }
1159
1160                 if (pr->power.states[i].promotion.state)
1161                         seq_printf(seq, "promotion[C%zd] ",
1162                                    (pr->power.states[i].promotion.state -
1163                                     pr->power.states));
1164                 else
1165                         seq_puts(seq, "promotion[--] ");
1166
1167                 if (pr->power.states[i].demotion.state)
1168                         seq_printf(seq, "demotion[C%zd] ",
1169                                    (pr->power.states[i].demotion.state -
1170                                     pr->power.states));
1171                 else
1172                         seq_puts(seq, "demotion[--] ");
1173
1174                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1175                            pr->power.states[i].latency,
1176                            pr->power.states[i].usage,
1177                            (unsigned long long)pr->power.states[i].time);
1178         }
1179
1180       end:
1181         return 0;
1182 }
1183
1184 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1185 {
1186         return single_open(file, acpi_processor_power_seq_show,
1187                            PDE(inode)->data);
1188 }
1189
1190 static const struct file_operations acpi_processor_power_fops = {
1191         .open = acpi_processor_power_open_fs,
1192         .read = seq_read,
1193         .llseek = seq_lseek,
1194         .release = single_release,
1195 };
1196
1197 #ifdef CONFIG_SMP
1198 static void smp_callback(void *v)
1199 {
1200         /* we already woke the CPU up, nothing more to do */
1201 }
1202
1203 /*
1204  * This function gets called when a part of the kernel has a new latency
1205  * requirement.  This means we need to get all processors out of their C-state,
1206  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1207  * wakes them all right up.
1208  */
1209 static int acpi_processor_latency_notify(struct notifier_block *b,
1210                 unsigned long l, void *v)
1211 {
1212         smp_call_function(smp_callback, NULL, 0, 1);
1213         return NOTIFY_OK;
1214 }
1215
1216 static struct notifier_block acpi_processor_latency_notifier = {
1217         .notifier_call = acpi_processor_latency_notify,
1218 };
1219 #endif
1220
1221 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1222                               struct acpi_device *device)
1223 {
1224         acpi_status status = 0;
1225         static int first_run;
1226         struct proc_dir_entry *entry = NULL;
1227         unsigned int i;
1228
1229
1230         if (!first_run) {
1231                 dmi_check_system(processor_power_dmi_table);
1232                 if (max_cstate < ACPI_C_STATES_MAX)
1233                         printk(KERN_NOTICE
1234                                "ACPI: processor limited to max C-state %d\n",
1235                                max_cstate);
1236                 first_run++;
1237 #ifdef CONFIG_SMP
1238                 register_latency_notifier(&acpi_processor_latency_notifier);
1239 #endif
1240         }
1241
1242         if (!pr)
1243                 return -EINVAL;
1244
1245         if (acpi_gbl_FADT.cst_control && !nocst) {
1246                 status =
1247                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1248                 if (ACPI_FAILURE(status)) {
1249                         ACPI_EXCEPTION((AE_INFO, status,
1250                                         "Notifying BIOS of _CST ability failed"));
1251                 }
1252         }
1253
1254         acpi_processor_get_power_info(pr);
1255
1256         /*
1257          * Install the idle handler if processor power management is supported.
1258          * Note that we use previously set idle handler will be used on
1259          * platforms that only support C1.
1260          */
1261         if ((pr->flags.power) && (!boot_option_idle_override)) {
1262                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1263                 for (i = 1; i <= pr->power.count; i++)
1264                         if (pr->power.states[i].valid)
1265                                 printk(" C%d[C%d]", i,
1266                                        pr->power.states[i].type);
1267                 printk(")\n");
1268
1269                 if (pr->id == 0) {
1270                         pm_idle_save = pm_idle;
1271                         pm_idle = acpi_processor_idle;
1272                 }
1273         }
1274
1275         /* 'power' [R] */
1276         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1277                                   S_IRUGO, acpi_device_dir(device));
1278         if (!entry)
1279                 return -EIO;
1280         else {
1281                 entry->proc_fops = &acpi_processor_power_fops;
1282                 entry->data = acpi_driver_data(device);
1283                 entry->owner = THIS_MODULE;
1284         }
1285
1286         pr->flags.power_setup_done = 1;
1287
1288         return 0;
1289 }
1290
1291 int acpi_processor_power_exit(struct acpi_processor *pr,
1292                               struct acpi_device *device)
1293 {
1294
1295         pr->flags.power_setup_done = 0;
1296
1297         if (acpi_device_dir(device))
1298                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1299                                   acpi_device_dir(device));
1300
1301         /* Unregister the idle handler when processor #0 is removed. */
1302         if (pr->id == 0) {
1303                 pm_idle = pm_idle_save;
1304
1305                 /*
1306                  * We are about to unload the current idle thread pm callback
1307                  * (pm_idle), Wait for all processors to update cached/local
1308                  * copies of pm_idle before proceeding.
1309                  */
1310                 cpu_idle_wait();
1311 #ifdef CONFIG_SMP
1312                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1313 #endif
1314         }
1315
1316         return 0;
1317 }