4 * Copyright (C) 1999 Ingo Molnar
5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
7 * simple boot-time physical memory area allocator and
8 * free memory collector. It's used to deal with reserved
9 * system memory and memory holes as well.
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
18 #include <asm/processor.h>
23 * Access to this subsystem has to be serialized externally. (this is
24 * true for the boot process anyway)
26 unsigned long max_low_pfn;
27 unsigned long min_low_pfn;
28 unsigned long max_pfn;
30 static LIST_HEAD(bdata_list);
31 #ifdef CONFIG_CRASH_DUMP
33 * If we have booted due to a crash, max_pfn will be a very low value. We need
34 * to know the amount of memory that the previous kernel used.
36 unsigned long saved_max_pfn;
39 /* return the number of _pages_ that will be allocated for the boot bitmap */
40 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
42 unsigned long mapsize;
44 mapsize = (pages+7)/8;
45 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
46 mapsize >>= PAGE_SHIFT;
54 static void __init link_bootmem(bootmem_data_t *bdata)
58 if (list_empty(&bdata_list)) {
59 list_add(&bdata->list, &bdata_list);
63 list_for_each_entry(ent, &bdata_list, list) {
64 if (bdata->node_boot_start < ent->node_boot_start) {
65 list_add_tail(&bdata->list, &ent->list);
69 list_add_tail(&bdata->list, &bdata_list);
73 * Given an initialised bdata, it returns the size of the boot bitmap
75 static unsigned long __init get_mapsize(bootmem_data_t *bdata)
77 unsigned long mapsize;
78 unsigned long start = PFN_DOWN(bdata->node_boot_start);
79 unsigned long end = bdata->node_low_pfn;
81 mapsize = ((end - start) + 7) / 8;
82 return ALIGN(mapsize, sizeof(long));
86 * Called once to set up the allocator itself.
88 static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
89 unsigned long mapstart, unsigned long start, unsigned long end)
91 bootmem_data_t *bdata = pgdat->bdata;
92 unsigned long mapsize;
94 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
95 bdata->node_boot_start = PFN_PHYS(start);
96 bdata->node_low_pfn = end;
100 * Initially all pages are reserved - setup_arch() has to
101 * register free RAM areas explicitly.
103 mapsize = get_mapsize(bdata);
104 memset(bdata->node_bootmem_map, 0xff, mapsize);
110 * Marks a particular physical memory range as unallocatable. Usable RAM
111 * might be used for boot-time allocations - or it might get added
112 * to the free page pool later on.
114 static int __init can_reserve_bootmem_core(bootmem_data_t *bdata,
115 unsigned long addr, unsigned long size, int flags)
117 unsigned long sidx, eidx;
122 /* out of range, don't hold other */
123 if (addr + size < bdata->node_boot_start ||
124 PFN_DOWN(addr) > bdata->node_low_pfn)
128 * Round up to index to the range.
130 if (addr > bdata->node_boot_start)
131 sidx= PFN_DOWN(addr - bdata->node_boot_start);
135 eidx = PFN_UP(addr + size - bdata->node_boot_start);
136 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
137 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
139 for (i = sidx; i < eidx; i++) {
140 if (test_bit(i, bdata->node_bootmem_map)) {
141 if (flags & BOOTMEM_EXCLUSIVE)
150 static void __init reserve_bootmem_core(bootmem_data_t *bdata,
151 unsigned long addr, unsigned long size, int flags)
153 unsigned long sidx, eidx;
159 if (addr + size < bdata->node_boot_start ||
160 PFN_DOWN(addr) > bdata->node_low_pfn)
164 * Round up to index to the range.
166 if (addr > bdata->node_boot_start)
167 sidx= PFN_DOWN(addr - bdata->node_boot_start);
171 eidx = PFN_UP(addr + size - bdata->node_boot_start);
172 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
173 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
175 for (i = sidx; i < eidx; i++) {
176 if (test_and_set_bit(i, bdata->node_bootmem_map)) {
177 #ifdef CONFIG_DEBUG_BOOTMEM
178 printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
184 static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
187 unsigned long sidx, eidx;
193 if (addr + size < bdata->node_boot_start ||
194 PFN_DOWN(addr) > bdata->node_low_pfn)
197 * round down end of usable mem, partially free pages are
198 * considered reserved.
201 if (addr >= bdata->node_boot_start && addr < bdata->last_success)
202 bdata->last_success = addr;
205 * Round up to index to the range.
207 if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
208 sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
212 eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
213 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
214 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
216 for (i = sidx; i < eidx; i++) {
217 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
223 * We 'merge' subsequent allocations to save space. We might 'lose'
224 * some fraction of a page if allocations cannot be satisfied due to
225 * size constraints on boxes where there is physical RAM space
226 * fragmentation - in these cases (mostly large memory boxes) this
229 * On low memory boxes we get it right in 100% of the cases.
231 * alignment has to be a power of 2 value.
233 * NOTE: This function is _not_ reentrant.
236 __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
237 unsigned long align, unsigned long goal, unsigned long limit)
239 unsigned long areasize, preferred;
240 unsigned long i, start = 0, incr, eidx, end_pfn;
242 unsigned long node_boot_start;
243 void *node_bootmem_map;
246 printk("__alloc_bootmem_core(): zero-sized request\n");
249 BUG_ON(align & (align-1));
251 /* on nodes without memory - bootmem_map is NULL */
252 if (!bdata->node_bootmem_map)
255 /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */
256 node_boot_start = bdata->node_boot_start;
257 node_bootmem_map = bdata->node_bootmem_map;
259 node_boot_start = ALIGN(bdata->node_boot_start, align);
260 if (node_boot_start > bdata->node_boot_start)
261 node_bootmem_map = (unsigned long *)bdata->node_bootmem_map +
262 PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG;
265 if (limit && node_boot_start >= limit)
268 end_pfn = bdata->node_low_pfn;
269 limit = PFN_DOWN(limit);
270 if (limit && end_pfn > limit)
273 eidx = end_pfn - PFN_DOWN(node_boot_start);
276 * We try to allocate bootmem pages above 'goal'
277 * first, then we try to allocate lower pages.
280 if (goal && PFN_DOWN(goal) < end_pfn) {
281 if (goal > node_boot_start)
282 preferred = goal - node_boot_start;
284 if (bdata->last_success > node_boot_start &&
285 bdata->last_success - node_boot_start >= preferred)
286 if (!limit || (limit && limit > bdata->last_success))
287 preferred = bdata->last_success - node_boot_start;
290 preferred = PFN_DOWN(ALIGN(preferred, align));
291 areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
292 incr = align >> PAGE_SHIFT ? : 1;
295 for (i = preferred; i < eidx;) {
298 i = find_next_zero_bit(node_bootmem_map, eidx, i);
302 if (test_bit(i, node_bootmem_map)) {
306 for (j = i + 1; j < i + areasize; ++j) {
309 if (test_bit(j, node_bootmem_map))
327 bdata->last_success = PFN_PHYS(start) + node_boot_start;
328 BUG_ON(start >= eidx);
331 * Is the next page of the previous allocation-end the start
332 * of this allocation's buffer? If yes then we can 'merge'
333 * the previous partial page with this allocation.
335 if (align < PAGE_SIZE &&
336 bdata->last_offset && bdata->last_pos+1 == start) {
337 unsigned long offset, remaining_size;
338 offset = ALIGN(bdata->last_offset, align);
339 BUG_ON(offset > PAGE_SIZE);
340 remaining_size = PAGE_SIZE - offset;
341 if (size < remaining_size) {
343 /* last_pos unchanged */
344 bdata->last_offset = offset + size;
345 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
346 offset + node_boot_start);
348 remaining_size = size - remaining_size;
349 areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
350 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
351 offset + node_boot_start);
352 bdata->last_pos = start + areasize - 1;
353 bdata->last_offset = remaining_size;
355 bdata->last_offset &= ~PAGE_MASK;
357 bdata->last_pos = start + areasize - 1;
358 bdata->last_offset = size & ~PAGE_MASK;
359 ret = phys_to_virt(start * PAGE_SIZE + node_boot_start);
363 * Reserve the area now:
365 for (i = start; i < start + areasize; i++)
366 if (unlikely(test_and_set_bit(i, node_bootmem_map)))
368 memset(ret, 0, size);
372 static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
376 bootmem_data_t *bdata = pgdat->bdata;
377 unsigned long i, count, total = 0;
382 BUG_ON(!bdata->node_bootmem_map);
385 /* first extant page of the node */
386 pfn = PFN_DOWN(bdata->node_boot_start);
387 idx = bdata->node_low_pfn - pfn;
388 map = bdata->node_bootmem_map;
389 /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
390 if (bdata->node_boot_start == 0 ||
391 ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
393 for (i = 0; i < idx; ) {
394 unsigned long v = ~map[i / BITS_PER_LONG];
396 if (gofast && v == ~0UL) {
399 page = pfn_to_page(pfn);
400 count += BITS_PER_LONG;
401 order = ffs(BITS_PER_LONG) - 1;
402 __free_pages_bootmem(page, order);
404 page += BITS_PER_LONG;
408 page = pfn_to_page(pfn);
409 for (m = 1; m && i < idx; m<<=1, page++, i++) {
412 __free_pages_bootmem(page, 0);
418 pfn += BITS_PER_LONG;
423 * Now free the allocator bitmap itself, it's not
426 page = virt_to_page(bdata->node_bootmem_map);
428 idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
429 for (i = 0; i < idx; i++, page++) {
430 __free_pages_bootmem(page, 0);
434 bdata->node_bootmem_map = NULL;
439 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
440 unsigned long startpfn, unsigned long endpfn)
442 return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
445 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
446 unsigned long size, int flags)
450 ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
453 reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
458 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
461 free_bootmem_core(pgdat->bdata, physaddr, size);
464 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
466 register_page_bootmem_info_node(pgdat);
467 return free_all_bootmem_core(pgdat);
470 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
474 return init_bootmem_core(NODE_DATA(0), start, 0, pages);
477 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
478 int __init reserve_bootmem(unsigned long addr, unsigned long size,
481 bootmem_data_t *bdata;
484 list_for_each_entry(bdata, &bdata_list, list) {
485 ret = can_reserve_bootmem_core(bdata, addr, size, flags);
489 list_for_each_entry(bdata, &bdata_list, list)
490 reserve_bootmem_core(bdata, addr, size, flags);
494 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
496 void __init free_bootmem(unsigned long addr, unsigned long size)
498 bootmem_data_t *bdata;
499 list_for_each_entry(bdata, &bdata_list, list)
500 free_bootmem_core(bdata, addr, size);
503 unsigned long __init free_all_bootmem(void)
505 return free_all_bootmem_core(NODE_DATA(0));
508 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
511 bootmem_data_t *bdata;
514 list_for_each_entry(bdata, &bdata_list, list) {
515 ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
522 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
525 void *mem = __alloc_bootmem_nopanic(size,align,goal);
530 * Whoops, we cannot satisfy the allocation request.
532 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
533 panic("Out of memory");
538 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
539 unsigned long align, unsigned long goal)
543 ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
547 return __alloc_bootmem(size, align, goal);
550 #ifdef CONFIG_SPARSEMEM
551 void * __init alloc_bootmem_section(unsigned long size,
552 unsigned long section_nr)
555 unsigned long limit, goal, start_nr, end_nr, pfn;
556 struct pglist_data *pgdat;
558 pfn = section_nr_to_pfn(section_nr);
559 goal = PFN_PHYS(pfn);
560 limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1;
561 pgdat = NODE_DATA(early_pfn_to_nid(pfn));
562 ptr = __alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal,
568 start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr)));
569 end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size));
570 if (start_nr != section_nr || end_nr != section_nr) {
571 printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n",
573 free_bootmem_core(pgdat->bdata, __pa(ptr), size);
581 #ifndef ARCH_LOW_ADDRESS_LIMIT
582 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
585 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
588 bootmem_data_t *bdata;
591 list_for_each_entry(bdata, &bdata_list, list) {
592 ptr = __alloc_bootmem_core(bdata, size, align, goal,
593 ARCH_LOW_ADDRESS_LIMIT);
599 * Whoops, we cannot satisfy the allocation request.
601 printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
602 panic("Out of low memory");
606 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
607 unsigned long align, unsigned long goal)
609 return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
610 ARCH_LOW_ADDRESS_LIMIT);