2 * fs/eventpoll.c (Efficent event polling implementation)
3 * Copyright (C) 2001,...,2007 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
40 #include <asm/atomic.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is possible to drop the "ep->mtx" and to use the global
67 * mutex "epmutex" (together with "ep->lock") to have it working,
68 * but having "ep->mtx" will make the interface more scalable.
69 * Events that require holding "epmutex" are very rare, while for
70 * normal operations the epoll private "ep->mtx" will guarantee
71 * a better scalability.
77 #define DPRINTK(x) printk x
78 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
79 #else /* #if DEBUG_EPOLL > 0 */
80 #define DPRINTK(x) (void) 0
81 #define DNPRINTK(n, x) (void) 0
82 #endif /* #if DEBUG_EPOLL > 0 */
87 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
88 #else /* #if DEBUG_EPI != 0 */
89 #define EPI_SLAB_DEBUG 0
90 #endif /* #if DEBUG_EPI != 0 */
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
95 /* Maximum number of poll wake up nests we are allowing */
96 #define EP_MAX_POLLWAKE_NESTS 4
98 /* Maximum msec timeout value storeable in a long int */
99 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 #define EP_UNACTIVE_PTR ((void *) -1L)
105 struct epoll_filefd {
111 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
112 * It is used to keep track on all tasks that are currently inside the wake_up() code
113 * to 1) short-circuit the one coming from the same task and same wait queue head
114 * (loop) 2) allow a maximum number of epoll descriptors inclusion nesting
115 * 3) let go the ones coming from other tasks.
117 struct wake_task_node {
118 struct list_head llink;
119 struct task_struct *task;
120 wait_queue_head_t *wq;
124 * This is used to implement the safe poll wake up avoiding to reenter
125 * the poll callback from inside wake_up().
127 struct poll_safewake {
128 struct list_head wake_task_list;
133 * Each file descriptor added to the eventpoll interface will
134 * have an entry of this type linked to the "rbr" RB tree.
137 /* RB tree node used to link this structure to the eventpoll RB tree */
140 /* List header used to link this structure to the eventpoll ready list */
141 struct list_head rdllink;
144 * Works together "struct eventpoll"->ovflist in keeping the
145 * single linked chain of items.
149 /* The file descriptor information this item refers to */
150 struct epoll_filefd ffd;
152 /* Number of active wait queue attached to poll operations */
155 /* List containing poll wait queues */
156 struct list_head pwqlist;
158 /* The "container" of this item */
159 struct eventpoll *ep;
161 /* List header used to link this item to the "struct file" items list */
162 struct list_head fllink;
164 /* The structure that describe the interested events and the source fd */
165 struct epoll_event event;
169 * This structure is stored inside the "private_data" member of the file
170 * structure and rapresent the main data sructure for the eventpoll
174 /* Protect the this structure access */
178 * This mutex is used to ensure that files are not removed
179 * while epoll is using them. This is held during the event
180 * collection loop, the file cleanup path, the epoll file exit
181 * code and the ctl operations.
185 /* Wait queue used by sys_epoll_wait() */
186 wait_queue_head_t wq;
188 /* Wait queue used by file->poll() */
189 wait_queue_head_t poll_wait;
191 /* List of ready file descriptors */
192 struct list_head rdllist;
194 /* RB tree root used to store monitored fd structs */
198 * This is a single linked list that chains all the "struct epitem" that
199 * happened while transfering ready events to userspace w/out
202 struct epitem *ovflist;
205 /* Wait structure used by the poll hooks */
206 struct eppoll_entry {
207 /* List header used to link this structure to the "struct epitem" */
208 struct list_head llink;
210 /* The "base" pointer is set to the container "struct epitem" */
214 * Wait queue item that will be linked to the target file wait
219 /* The wait queue head that linked the "wait" wait queue item */
220 wait_queue_head_t *whead;
223 /* Wrapper struct used by poll queueing */
230 * This mutex is used to serialize ep_free() and eventpoll_release_file().
232 static struct mutex epmutex;
234 /* Safe wake up implementation */
235 static struct poll_safewake psw;
237 /* Slab cache used to allocate "struct epitem" */
238 static struct kmem_cache *epi_cache __read_mostly;
240 /* Slab cache used to allocate "struct eppoll_entry" */
241 static struct kmem_cache *pwq_cache __read_mostly;
244 /* Setup the structure that is used as key for the RB tree */
245 static inline void ep_set_ffd(struct epoll_filefd *ffd,
246 struct file *file, int fd)
252 /* Compare RB tree keys */
253 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
254 struct epoll_filefd *p2)
256 return (p1->file > p2->file ? +1:
257 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
260 /* Special initialization for the RB tree node to detect linkage */
261 static inline void ep_rb_initnode(struct rb_node *n)
266 /* Removes a node from the RB tree and marks it for a fast is-linked check */
267 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r)
273 /* Fast check to verify that the item is linked to the main RB tree */
274 static inline int ep_rb_linked(struct rb_node *n)
276 return rb_parent(n) != n;
279 /* Tells us if the item is currently linked */
280 static inline int ep_is_linked(struct list_head *p)
282 return !list_empty(p);
285 /* Get the "struct epitem" from a wait queue pointer */
286 static inline struct epitem * ep_item_from_wait(wait_queue_t *p)
288 return container_of(p, struct eppoll_entry, wait)->base;
291 /* Get the "struct epitem" from an epoll queue wrapper */
292 static inline struct epitem * ep_item_from_epqueue(poll_table *p)
294 return container_of(p, struct ep_pqueue, pt)->epi;
297 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
298 static inline int ep_op_has_event(int op)
300 return op != EPOLL_CTL_DEL;
303 /* Initialize the poll safe wake up structure */
304 static void ep_poll_safewake_init(struct poll_safewake *psw)
307 INIT_LIST_HEAD(&psw->wake_task_list);
308 spin_lock_init(&psw->lock);
312 * Perform a safe wake up of the poll wait list. The problem is that
313 * with the new callback'd wake up system, it is possible that the
314 * poll callback is reentered from inside the call to wake_up() done
315 * on the poll wait queue head. The rule is that we cannot reenter the
316 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
317 * and we cannot reenter the same wait queue head at all. This will
318 * enable to have a hierarchy of epoll file descriptor of no more than
319 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
320 * because this one gets called by the poll callback, that in turn is called
321 * from inside a wake_up(), that might be called from irq context.
323 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
327 struct task_struct *this_task = current;
328 struct list_head *lsthead = &psw->wake_task_list;
329 struct wake_task_node *tncur;
330 struct wake_task_node tnode;
332 spin_lock_irqsave(&psw->lock, flags);
334 /* Try to see if the current task is already inside this wakeup call */
335 list_for_each_entry(tncur, lsthead, llink) {
337 if (tncur->wq == wq ||
338 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
340 * Ops ... loop detected or maximum nest level reached.
341 * We abort this wake by breaking the cycle itself.
343 spin_unlock_irqrestore(&psw->lock, flags);
348 /* Add the current task to the list */
349 tnode.task = this_task;
351 list_add(&tnode.llink, lsthead);
353 spin_unlock_irqrestore(&psw->lock, flags);
355 /* Do really wake up now */
356 wake_up_nested(wq, 1 + wake_nests);
358 /* Remove the current task from the list */
359 spin_lock_irqsave(&psw->lock, flags);
360 list_del(&tnode.llink);
361 spin_unlock_irqrestore(&psw->lock, flags);
365 * This function unregister poll callbacks from the associated file descriptor.
366 * Since this must be called without holding "ep->lock" the atomic exchange trick
367 * will protect us from multiple unregister.
369 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
372 struct list_head *lsthead = &epi->pwqlist;
373 struct eppoll_entry *pwq;
375 /* This is called without locks, so we need the atomic exchange */
376 nwait = xchg(&epi->nwait, 0);
379 while (!list_empty(lsthead)) {
380 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
382 list_del_init(&pwq->llink);
383 remove_wait_queue(pwq->whead, &pwq->wait);
384 kmem_cache_free(pwq_cache, pwq);
390 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
391 * all the associated resources. Must be called with "mtx" held.
393 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
396 struct file *file = epi->ffd.file;
399 * Removes poll wait queue hooks. We _have_ to do this without holding
400 * the "ep->lock" otherwise a deadlock might occur. This because of the
401 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
402 * queue head lock when unregistering the wait queue. The wakeup callback
403 * will run by holding the wait queue head lock and will call our callback
404 * that will try to get "ep->lock".
406 ep_unregister_pollwait(ep, epi);
408 /* Remove the current item from the list of epoll hooks */
409 spin_lock(&file->f_ep_lock);
410 if (ep_is_linked(&epi->fllink))
411 list_del_init(&epi->fllink);
412 spin_unlock(&file->f_ep_lock);
414 if (ep_rb_linked(&epi->rbn))
415 ep_rb_erase(&epi->rbn, &ep->rbr);
417 spin_lock_irqsave(&ep->lock, flags);
418 if (ep_is_linked(&epi->rdllink))
419 list_del_init(&epi->rdllink);
420 spin_unlock_irqrestore(&ep->lock, flags);
422 /* At this point it is safe to free the eventpoll item */
423 kmem_cache_free(epi_cache, epi);
425 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p)\n",
431 static void ep_free(struct eventpoll *ep)
436 /* We need to release all tasks waiting for these file */
437 if (waitqueue_active(&ep->poll_wait))
438 ep_poll_safewake(&psw, &ep->poll_wait);
441 * We need to lock this because we could be hit by
442 * eventpoll_release_file() while we're freeing the "struct eventpoll".
443 * We do not need to hold "ep->mtx" here because the epoll file
444 * is on the way to be removed and no one has references to it
445 * anymore. The only hit might come from eventpoll_release_file() but
446 * holding "epmutex" is sufficent here.
448 mutex_lock(&epmutex);
451 * Walks through the whole tree by unregistering poll callbacks.
453 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
454 epi = rb_entry(rbp, struct epitem, rbn);
456 ep_unregister_pollwait(ep, epi);
460 * Walks through the whole tree by freeing each "struct epitem". At this
461 * point we are sure no poll callbacks will be lingering around, and also by
462 * holding "epmutex" we can be sure that no file cleanup code will hit
463 * us during this operation. So we can avoid the lock on "ep->lock".
465 while ((rbp = rb_first(&ep->rbr)) != NULL) {
466 epi = rb_entry(rbp, struct epitem, rbn);
470 mutex_unlock(&epmutex);
471 mutex_destroy(&ep->mtx);
475 static int ep_eventpoll_release(struct inode *inode, struct file *file)
477 struct eventpoll *ep = file->private_data;
482 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
486 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
488 unsigned int pollflags = 0;
490 struct eventpoll *ep = file->private_data;
492 /* Insert inside our poll wait queue */
493 poll_wait(file, &ep->poll_wait, wait);
495 /* Check our condition */
496 spin_lock_irqsave(&ep->lock, flags);
497 if (!list_empty(&ep->rdllist))
498 pollflags = POLLIN | POLLRDNORM;
499 spin_unlock_irqrestore(&ep->lock, flags);
504 /* File callbacks that implement the eventpoll file behaviour */
505 static const struct file_operations eventpoll_fops = {
506 .release = ep_eventpoll_release,
507 .poll = ep_eventpoll_poll
510 /* Fast test to see if the file is an evenpoll file */
511 static inline int is_file_epoll(struct file *f)
513 return f->f_op == &eventpoll_fops;
517 * This is called from eventpoll_release() to unlink files from the eventpoll
518 * interface. We need to have this facility to cleanup correctly files that are
519 * closed without being removed from the eventpoll interface.
521 void eventpoll_release_file(struct file *file)
523 struct list_head *lsthead = &file->f_ep_links;
524 struct eventpoll *ep;
528 * We don't want to get "file->f_ep_lock" because it is not
529 * necessary. It is not necessary because we're in the "struct file"
530 * cleanup path, and this means that noone is using this file anymore.
531 * So, for example, epoll_ctl() cannot hit here sicne if we reach this
532 * point, the file counter already went to zero and fget() would fail.
533 * The only hit might come from ep_free() but by holding the mutex
534 * will correctly serialize the operation. We do need to acquire
535 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
536 * from anywhere but ep_free().
538 mutex_lock(&epmutex);
540 while (!list_empty(lsthead)) {
541 epi = list_first_entry(lsthead, struct epitem, fllink);
544 list_del_init(&epi->fllink);
545 mutex_lock(&ep->mtx);
547 mutex_unlock(&ep->mtx);
550 mutex_unlock(&epmutex);
553 static int ep_alloc(struct eventpoll **pep)
555 struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL);
560 spin_lock_init(&ep->lock);
561 mutex_init(&ep->mtx);
562 init_waitqueue_head(&ep->wq);
563 init_waitqueue_head(&ep->poll_wait);
564 INIT_LIST_HEAD(&ep->rdllist);
566 ep->ovflist = EP_UNACTIVE_PTR;
570 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
576 * Search the file inside the eventpoll tree. The RB tree operations
577 * are protected by the "mtx" mutex, and ep_find() must be called with
580 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
584 struct epitem *epi, *epir = NULL;
585 struct epoll_filefd ffd;
587 ep_set_ffd(&ffd, file, fd);
588 for (rbp = ep->rbr.rb_node; rbp; ) {
589 epi = rb_entry(rbp, struct epitem, rbn);
590 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
601 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
602 current, file, epir));
608 * This is the callback that is passed to the wait queue wakeup
609 * machanism. It is called by the stored file descriptors when they
610 * have events to report.
612 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
616 struct epitem *epi = ep_item_from_wait(wait);
617 struct eventpoll *ep = epi->ep;
619 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
620 current, epi->ffd.file, epi, ep));
622 spin_lock_irqsave(&ep->lock, flags);
625 * If the event mask does not contain any poll(2) event, we consider the
626 * descriptor to be disabled. This condition is likely the effect of the
627 * EPOLLONESHOT bit that disables the descriptor when an event is received,
628 * until the next EPOLL_CTL_MOD will be issued.
630 if (!(epi->event.events & ~EP_PRIVATE_BITS))
634 * If we are trasfering events to userspace, we can hold no locks
635 * (because we're accessing user memory, and because of linux f_op->poll()
636 * semantics). All the events that happens during that period of time are
637 * chained in ep->ovflist and requeued later on.
639 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
640 if (epi->next == EP_UNACTIVE_PTR) {
641 epi->next = ep->ovflist;
647 /* If this file is already in the ready list we exit soon */
648 if (ep_is_linked(&epi->rdllink))
651 list_add_tail(&epi->rdllink, &ep->rdllist);
655 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
658 if (waitqueue_active(&ep->wq))
659 wake_up_locked(&ep->wq);
660 if (waitqueue_active(&ep->poll_wait))
664 spin_unlock_irqrestore(&ep->lock, flags);
666 /* We have to call this outside the lock */
668 ep_poll_safewake(&psw, &ep->poll_wait);
674 * This is the callback that is used to add our wait queue to the
675 * target file wakeup lists.
677 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
680 struct epitem *epi = ep_item_from_epqueue(pt);
681 struct eppoll_entry *pwq;
683 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
684 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
687 add_wait_queue(whead, &pwq->wait);
688 list_add_tail(&pwq->llink, &epi->pwqlist);
691 /* We have to signal that an error occurred */
696 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
699 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
704 epic = rb_entry(parent, struct epitem, rbn);
705 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
707 p = &parent->rb_right;
709 p = &parent->rb_left;
711 rb_link_node(&epi->rbn, parent, p);
712 rb_insert_color(&epi->rbn, &ep->rbr);
716 * Must be called with "mtx" held.
718 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
719 struct file *tfile, int fd)
721 int error, revents, pwake = 0;
724 struct ep_pqueue epq;
727 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
730 /* Item initialization follow here ... */
731 ep_rb_initnode(&epi->rbn);
732 INIT_LIST_HEAD(&epi->rdllink);
733 INIT_LIST_HEAD(&epi->fllink);
734 INIT_LIST_HEAD(&epi->pwqlist);
736 ep_set_ffd(&epi->ffd, tfile, fd);
739 epi->next = EP_UNACTIVE_PTR;
741 /* Initialize the poll table using the queue callback */
743 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
746 * Attach the item to the poll hooks and get current event bits.
747 * We can safely use the file* here because its usage count has
748 * been increased by the caller of this function. Note that after
749 * this operation completes, the poll callback can start hitting
752 revents = tfile->f_op->poll(tfile, &epq.pt);
755 * We have to check if something went wrong during the poll wait queue
756 * install process. Namely an allocation for a wait queue failed due
757 * high memory pressure.
760 goto error_unregister;
762 /* Add the current item to the list of active epoll hook for this file */
763 spin_lock(&tfile->f_ep_lock);
764 list_add_tail(&epi->fllink, &tfile->f_ep_links);
765 spin_unlock(&tfile->f_ep_lock);
768 * Add the current item to the RB tree. All RB tree operations are
769 * protected by "mtx", and ep_insert() is called with "mtx" held.
771 ep_rbtree_insert(ep, epi);
773 /* We have to drop the new item inside our item list to keep track of it */
774 spin_lock_irqsave(&ep->lock, flags);
776 /* If the file is already "ready" we drop it inside the ready list */
777 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
778 list_add_tail(&epi->rdllink, &ep->rdllist);
780 /* Notify waiting tasks that events are available */
781 if (waitqueue_active(&ep->wq))
782 wake_up_locked(&ep->wq);
783 if (waitqueue_active(&ep->poll_wait))
787 spin_unlock_irqrestore(&ep->lock, flags);
789 /* We have to call this outside the lock */
791 ep_poll_safewake(&psw, &ep->poll_wait);
793 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
794 current, ep, tfile, fd));
799 ep_unregister_pollwait(ep, epi);
802 * We need to do this because an event could have been arrived on some
803 * allocated wait queue. Note that we don't care about the ep->ovflist
804 * list, since that is used/cleaned only inside a section bound by "mtx".
805 * And ep_insert() is called with "mtx" held.
807 spin_lock_irqsave(&ep->lock, flags);
808 if (ep_is_linked(&epi->rdllink))
809 list_del_init(&epi->rdllink);
810 spin_unlock_irqrestore(&ep->lock, flags);
812 kmem_cache_free(epi_cache, epi);
818 * Modify the interest event mask by dropping an event if the new mask
819 * has a match in the current file status. Must be called with "mtx" held.
821 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
824 unsigned int revents;
828 * Set the new event interest mask before calling f_op->poll(), otherwise
829 * a potential race might occur. In fact if we do this operation inside
830 * the lock, an event might happen between the f_op->poll() call and the
831 * new event set registering.
833 epi->event.events = event->events;
836 * Get current event bits. We can safely use the file* here because
837 * its usage count has been increased by the caller of this function.
839 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
841 spin_lock_irqsave(&ep->lock, flags);
843 /* Copy the data member from inside the lock */
844 epi->event.data = event->data;
847 * If the item is "hot" and it is not registered inside the ready
848 * list, push it inside.
850 if (revents & event->events) {
851 if (!ep_is_linked(&epi->rdllink)) {
852 list_add_tail(&epi->rdllink, &ep->rdllist);
854 /* Notify waiting tasks that events are available */
855 if (waitqueue_active(&ep->wq))
856 wake_up_locked(&ep->wq);
857 if (waitqueue_active(&ep->poll_wait))
861 spin_unlock_irqrestore(&ep->lock, flags);
863 /* We have to call this outside the lock */
865 ep_poll_safewake(&psw, &ep->poll_wait);
870 static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events,
873 int eventcnt, error = -EFAULT, pwake = 0;
874 unsigned int revents;
876 struct epitem *epi, *nepi;
877 struct list_head txlist;
879 INIT_LIST_HEAD(&txlist);
882 * We need to lock this because we could be hit by
883 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
885 mutex_lock(&ep->mtx);
888 * Steal the ready list, and re-init the original one to the
889 * empty list. Also, set ep->ovflist to NULL so that events
890 * happening while looping w/out locks, are not lost. We cannot
891 * have the poll callback to queue directly on ep->rdllist,
892 * because we are doing it in the loop below, in a lockless way.
894 spin_lock_irqsave(&ep->lock, flags);
895 list_splice(&ep->rdllist, &txlist);
896 INIT_LIST_HEAD(&ep->rdllist);
898 spin_unlock_irqrestore(&ep->lock, flags);
901 * We can loop without lock because this is a task private list.
902 * We just splice'd out the ep->rdllist in ep_collect_ready_items().
903 * Items cannot vanish during the loop because we are holding "mtx".
905 for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) {
906 epi = list_first_entry(&txlist, struct epitem, rdllink);
908 list_del_init(&epi->rdllink);
911 * Get the ready file event set. We can safely use the file
912 * because we are holding the "mtx" and this will guarantee
913 * that both the file and the item will not vanish.
915 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
916 revents &= epi->event.events;
919 * Is the event mask intersect the caller-requested one,
920 * deliver the event to userspace. Again, we are holding
921 * "mtx", so no operations coming from userspace can change
925 if (__put_user(revents,
926 &events[eventcnt].events) ||
927 __put_user(epi->event.data,
928 &events[eventcnt].data))
930 if (epi->event.events & EPOLLONESHOT)
931 epi->event.events &= EP_PRIVATE_BITS;
935 * At this point, noone can insert into ep->rdllist besides
936 * us. The epoll_ctl() callers are locked out by us holding
937 * "mtx" and the poll callback will queue them in ep->ovflist.
939 if (!(epi->event.events & EPOLLET) &&
940 (revents & epi->event.events))
941 list_add_tail(&epi->rdllink, &ep->rdllist);
947 spin_lock_irqsave(&ep->lock, flags);
949 * During the time we spent in the loop above, some other events
950 * might have been queued by the poll callback. We re-insert them
951 * here (in case they are not already queued, or they're one-shot).
953 for (nepi = ep->ovflist; (epi = nepi) != NULL;
954 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
955 if (!ep_is_linked(&epi->rdllink) &&
956 (epi->event.events & ~EP_PRIVATE_BITS))
957 list_add_tail(&epi->rdllink, &ep->rdllist);
960 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
961 * releasing the lock, events will be queued in the normal way inside
964 ep->ovflist = EP_UNACTIVE_PTR;
967 * In case of error in the event-send loop, or in case the number of
968 * ready events exceeds the userspace limit, we need to splice the
969 * "txlist" back inside ep->rdllist.
971 list_splice(&txlist, &ep->rdllist);
973 if (!list_empty(&ep->rdllist)) {
975 * Wake up (if active) both the eventpoll wait list and the ->poll()
976 * wait list (delayed after we release the lock).
978 if (waitqueue_active(&ep->wq))
979 wake_up_locked(&ep->wq);
980 if (waitqueue_active(&ep->poll_wait))
983 spin_unlock_irqrestore(&ep->lock, flags);
985 mutex_unlock(&ep->mtx);
987 /* We have to call this outside the lock */
989 ep_poll_safewake(&psw, &ep->poll_wait);
991 return eventcnt == 0 ? error: eventcnt;
994 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
995 int maxevents, long timeout)
1003 * Calculate the timeout by checking for the "infinite" value ( -1 )
1004 * and the overflow condition. The passed timeout is in milliseconds,
1005 * that why (t * HZ) / 1000.
1007 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1008 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1011 spin_lock_irqsave(&ep->lock, flags);
1014 if (list_empty(&ep->rdllist)) {
1016 * We don't have any available event to return to the caller.
1017 * We need to sleep here, and we will be wake up by
1018 * ep_poll_callback() when events will become available.
1020 init_waitqueue_entry(&wait, current);
1021 wait.flags |= WQ_FLAG_EXCLUSIVE;
1022 __add_wait_queue(&ep->wq, &wait);
1026 * We don't want to sleep if the ep_poll_callback() sends us
1027 * a wakeup in between. That's why we set the task state
1028 * to TASK_INTERRUPTIBLE before doing the checks.
1030 set_current_state(TASK_INTERRUPTIBLE);
1031 if (!list_empty(&ep->rdllist) || !jtimeout)
1033 if (signal_pending(current)) {
1038 spin_unlock_irqrestore(&ep->lock, flags);
1039 jtimeout = schedule_timeout(jtimeout);
1040 spin_lock_irqsave(&ep->lock, flags);
1042 __remove_wait_queue(&ep->wq, &wait);
1044 set_current_state(TASK_RUNNING);
1047 /* Is it worth to try to dig for events ? */
1048 eavail = !list_empty(&ep->rdllist);
1050 spin_unlock_irqrestore(&ep->lock, flags);
1053 * Try to transfer events to user space. In case we get 0 events and
1054 * there's still timeout left over, we go trying again in search of
1057 if (!res && eavail &&
1058 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1065 * It opens an eventpoll file descriptor. The "size" parameter is there
1066 * for historical reasons, when epoll was using an hash instead of an
1067 * RB tree. With the current implementation, the "size" parameter is ignored
1068 * (besides sanity checks).
1070 asmlinkage long sys_epoll_create(int size)
1073 struct eventpoll *ep;
1074 struct inode *inode;
1077 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
1081 * Sanity check on the size parameter, and create the internal data
1082 * structure ( "struct eventpoll" ).
1085 if (size <= 0 || (error = ep_alloc(&ep)) != 0)
1089 * Creates all the items needed to setup an eventpoll file. That is,
1090 * a file structure, and inode and a free file descriptor.
1092 error = anon_inode_getfd(&fd, &inode, &file, "[eventpoll]",
1093 &eventpoll_fops, ep);
1097 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
1098 current, size, fd));
1105 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
1106 current, size, error));
1111 * The following function implements the controller interface for
1112 * the eventpoll file that enables the insertion/removal/change of
1113 * file descriptors inside the interest set.
1115 asmlinkage long sys_epoll_ctl(int epfd, int op, int fd,
1116 struct epoll_event __user *event)
1119 struct file *file, *tfile;
1120 struct eventpoll *ep;
1122 struct epoll_event epds;
1124 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
1125 current, epfd, op, fd, event));
1128 if (ep_op_has_event(op) &&
1129 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1132 /* Get the "struct file *" for the eventpoll file */
1138 /* Get the "struct file *" for the target file */
1143 /* The target file descriptor must support poll */
1145 if (!tfile->f_op || !tfile->f_op->poll)
1146 goto error_tgt_fput;
1149 * We have to check that the file structure underneath the file descriptor
1150 * the user passed to us _is_ an eventpoll file. And also we do not permit
1151 * adding an epoll file descriptor inside itself.
1154 if (file == tfile || !is_file_epoll(file))
1155 goto error_tgt_fput;
1158 * At this point it is safe to assume that the "private_data" contains
1159 * our own data structure.
1161 ep = file->private_data;
1163 mutex_lock(&ep->mtx);
1166 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1167 * above, we can be sure to be able to use the item looked up by
1168 * ep_find() till we release the mutex.
1170 epi = ep_find(ep, tfile, fd);
1176 epds.events |= POLLERR | POLLHUP;
1178 error = ep_insert(ep, &epds, tfile, fd);
1184 error = ep_remove(ep, epi);
1190 epds.events |= POLLERR | POLLHUP;
1191 error = ep_modify(ep, epi, &epds);
1196 mutex_unlock(&ep->mtx);
1203 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
1204 current, epfd, op, fd, event, error));
1210 * Implement the event wait interface for the eventpoll file. It is the kernel
1211 * part of the user space epoll_wait(2).
1213 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
1214 int maxevents, int timeout)
1218 struct eventpoll *ep;
1220 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
1221 current, epfd, events, maxevents, timeout));
1223 /* The maximum number of event must be greater than zero */
1224 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1227 /* Verify that the area passed by the user is writeable */
1228 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1233 /* Get the "struct file *" for the eventpoll file */
1240 * We have to check that the file structure underneath the fd
1241 * the user passed to us _is_ an eventpoll file.
1244 if (!is_file_epoll(file))
1248 * At this point it is safe to assume that the "private_data" contains
1249 * our own data structure.
1251 ep = file->private_data;
1253 /* Time to fish for events ... */
1254 error = ep_poll(ep, events, maxevents, timeout);
1259 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
1260 current, epfd, events, maxevents, timeout, error));
1265 #ifdef TIF_RESTORE_SIGMASK
1268 * Implement the event wait interface for the eventpoll file. It is the kernel
1269 * part of the user space epoll_pwait(2).
1271 asmlinkage long sys_epoll_pwait(int epfd, struct epoll_event __user *events,
1272 int maxevents, int timeout, const sigset_t __user *sigmask,
1276 sigset_t ksigmask, sigsaved;
1279 * If the caller wants a certain signal mask to be set during the wait,
1283 if (sigsetsize != sizeof(sigset_t))
1285 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1287 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1288 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1291 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1294 * If we changed the signal mask, we need to restore the original one.
1295 * In case we've got a signal while waiting, we do not restore the
1296 * signal mask yet, and we allow do_signal() to deliver the signal on
1297 * the way back to userspace, before the signal mask is restored.
1300 if (error == -EINTR) {
1301 memcpy(¤t->saved_sigmask, &sigsaved,
1303 set_thread_flag(TIF_RESTORE_SIGMASK);
1305 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1311 #endif /* #ifdef TIF_RESTORE_SIGMASK */
1313 static int __init eventpoll_init(void)
1315 mutex_init(&epmutex);
1317 /* Initialize the structure used to perform safe poll wait head wake ups */
1318 ep_poll_safewake_init(&psw);
1320 /* Allocates slab cache used to allocate "struct epitem" items */
1321 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1322 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1325 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1326 pwq_cache = kmem_cache_create("eventpoll_pwq",
1327 sizeof(struct eppoll_entry), 0,
1328 EPI_SLAB_DEBUG|SLAB_PANIC, NULL);
1332 fs_initcall(eventpoll_init);