4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
66 #ifndef CONFIG_NEED_MULTIPLE_NODES
67 /* use the per-pgdat data instead for discontigmem - mbligh */
68 unsigned long max_mapnr;
71 EXPORT_SYMBOL(max_mapnr);
72 EXPORT_SYMBOL(mem_map);
75 unsigned long num_physpages;
77 * A number of key systems in x86 including ioremap() rely on the assumption
78 * that high_memory defines the upper bound on direct map memory, then end
79 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 EXPORT_SYMBOL(num_physpages);
86 EXPORT_SYMBOL(high_memory);
89 * Randomize the address space (stacks, mmaps, brk, etc.).
91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92 * as ancient (libc5 based) binaries can segfault. )
94 int randomize_va_space __read_mostly =
95 #ifdef CONFIG_COMPAT_BRK
101 static int __init disable_randmaps(char *s)
103 randomize_va_space = 0;
106 __setup("norandmaps", disable_randmaps);
110 * If a p?d_bad entry is found while walking page tables, report
111 * the error, before resetting entry to p?d_none. Usually (but
112 * very seldom) called out from the p?d_none_or_clear_bad macros.
115 void pgd_clear_bad(pgd_t *pgd)
121 void pud_clear_bad(pud_t *pud)
127 void pmd_clear_bad(pmd_t *pmd)
134 * Note: this doesn't free the actual pages themselves. That
135 * has been handled earlier when unmapping all the memory regions.
137 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 pgtable_t token = pmd_pgtable(*pmd);
141 pte_free_tlb(tlb, token);
145 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 unsigned long addr, unsigned long end,
147 unsigned long floor, unsigned long ceiling)
154 pmd = pmd_offset(pud, addr);
156 next = pmd_addr_end(addr, end);
157 if (pmd_none_or_clear_bad(pmd))
159 free_pte_range(tlb, pmd);
160 } while (pmd++, addr = next, addr != end);
170 if (end - 1 > ceiling - 1)
173 pmd = pmd_offset(pud, start);
175 pmd_free_tlb(tlb, pmd);
178 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 unsigned long addr, unsigned long end,
180 unsigned long floor, unsigned long ceiling)
187 pud = pud_offset(pgd, addr);
189 next = pud_addr_end(addr, end);
190 if (pud_none_or_clear_bad(pud))
192 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
193 } while (pud++, addr = next, addr != end);
199 ceiling &= PGDIR_MASK;
203 if (end - 1 > ceiling - 1)
206 pud = pud_offset(pgd, start);
208 pud_free_tlb(tlb, pud);
212 * This function frees user-level page tables of a process.
214 * Must be called with pagetable lock held.
216 void free_pgd_range(struct mmu_gather *tlb,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
225 * The next few lines have given us lots of grief...
227 * Why are we testing PMD* at this top level? Because often
228 * there will be no work to do at all, and we'd prefer not to
229 * go all the way down to the bottom just to discover that.
231 * Why all these "- 1"s? Because 0 represents both the bottom
232 * of the address space and the top of it (using -1 for the
233 * top wouldn't help much: the masks would do the wrong thing).
234 * The rule is that addr 0 and floor 0 refer to the bottom of
235 * the address space, but end 0 and ceiling 0 refer to the top
236 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 * that end 0 case should be mythical).
239 * Wherever addr is brought up or ceiling brought down, we must
240 * be careful to reject "the opposite 0" before it confuses the
241 * subsequent tests. But what about where end is brought down
242 * by PMD_SIZE below? no, end can't go down to 0 there.
244 * Whereas we round start (addr) and ceiling down, by different
245 * masks at different levels, in order to test whether a table
246 * now has no other vmas using it, so can be freed, we don't
247 * bother to round floor or end up - the tests don't need that.
261 if (end - 1 > ceiling - 1)
267 pgd = pgd_offset(tlb->mm, addr);
269 next = pgd_addr_end(addr, end);
270 if (pgd_none_or_clear_bad(pgd))
272 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
273 } while (pgd++, addr = next, addr != end);
276 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
277 unsigned long floor, unsigned long ceiling)
280 struct vm_area_struct *next = vma->vm_next;
281 unsigned long addr = vma->vm_start;
284 * Hide vma from rmap and vmtruncate before freeing pgtables
286 anon_vma_unlink(vma);
287 unlink_file_vma(vma);
289 if (is_vm_hugetlb_page(vma)) {
290 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
291 floor, next? next->vm_start: ceiling);
294 * Optimization: gather nearby vmas into one call down
296 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
297 && !is_vm_hugetlb_page(next)) {
300 anon_vma_unlink(vma);
301 unlink_file_vma(vma);
303 free_pgd_range(tlb, addr, vma->vm_end,
304 floor, next? next->vm_start: ceiling);
310 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 pgtable_t new = pte_alloc_one(mm, address);
317 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 * visible before the pte is made visible to other CPUs by being
319 * put into page tables.
321 * The other side of the story is the pointer chasing in the page
322 * table walking code (when walking the page table without locking;
323 * ie. most of the time). Fortunately, these data accesses consist
324 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 * being the notable exception) will already guarantee loads are
326 * seen in-order. See the alpha page table accessors for the
327 * smp_read_barrier_depends() barriers in page table walking code.
329 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 spin_lock(&mm->page_table_lock);
332 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 pmd_populate(mm, pmd, new);
337 spin_unlock(&mm->page_table_lock);
343 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349 smp_wmb(); /* See comment in __pte_alloc */
351 spin_lock(&init_mm.page_table_lock);
352 if (!pmd_present(*pmd)) { /* Has another populated it ? */
353 pmd_populate_kernel(&init_mm, pmd, new);
356 spin_unlock(&init_mm.page_table_lock);
358 pte_free_kernel(&init_mm, new);
362 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
365 add_mm_counter(mm, file_rss, file_rss);
367 add_mm_counter(mm, anon_rss, anon_rss);
371 * This function is called to print an error when a bad pte
372 * is found. For example, we might have a PFN-mapped pte in
373 * a region that doesn't allow it.
375 * The calling function must still handle the error.
377 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
379 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
380 "vm_flags = %lx, vaddr = %lx\n",
381 (long long)pte_val(pte),
382 (vma->vm_mm == current->mm ? current->comm : "???"),
383 vma->vm_flags, vaddr);
387 static inline int is_cow_mapping(unsigned int flags)
389 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
393 * vm_normal_page -- This function gets the "struct page" associated with a pte.
395 * "Special" mappings do not wish to be associated with a "struct page" (either
396 * it doesn't exist, or it exists but they don't want to touch it). In this
397 * case, NULL is returned here. "Normal" mappings do have a struct page.
399 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
400 * pte bit, in which case this function is trivial. Secondly, an architecture
401 * may not have a spare pte bit, which requires a more complicated scheme,
404 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
405 * special mapping (even if there are underlying and valid "struct pages").
406 * COWed pages of a VM_PFNMAP are always normal.
408 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
409 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
410 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
411 * mapping will always honor the rule
413 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
415 * And for normal mappings this is false.
417 * This restricts such mappings to be a linear translation from virtual address
418 * to pfn. To get around this restriction, we allow arbitrary mappings so long
419 * as the vma is not a COW mapping; in that case, we know that all ptes are
420 * special (because none can have been COWed).
423 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
425 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
426 * page" backing, however the difference is that _all_ pages with a struct
427 * page (that is, those where pfn_valid is true) are refcounted and considered
428 * normal pages by the VM. The disadvantage is that pages are refcounted
429 * (which can be slower and simply not an option for some PFNMAP users). The
430 * advantage is that we don't have to follow the strict linearity rule of
431 * PFNMAP mappings in order to support COWable mappings.
434 #ifdef __HAVE_ARCH_PTE_SPECIAL
435 # define HAVE_PTE_SPECIAL 1
437 # define HAVE_PTE_SPECIAL 0
439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
444 if (HAVE_PTE_SPECIAL) {
445 if (likely(!pte_special(pte))) {
446 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
447 return pte_page(pte);
449 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
453 /* !HAVE_PTE_SPECIAL case follows: */
457 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
458 if (vma->vm_flags & VM_MIXEDMAP) {
464 off = (addr - vma->vm_start) >> PAGE_SHIFT;
465 if (pfn == vma->vm_pgoff + off)
467 if (!is_cow_mapping(vma->vm_flags))
472 VM_BUG_ON(!pfn_valid(pfn));
475 * NOTE! We still have PageReserved() pages in the page tables.
477 * eg. VDSO mappings can cause them to exist.
480 return pfn_to_page(pfn);
484 * copy one vm_area from one task to the other. Assumes the page tables
485 * already present in the new task to be cleared in the whole range
486 * covered by this vma.
490 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
492 unsigned long addr, int *rss)
494 unsigned long vm_flags = vma->vm_flags;
495 pte_t pte = *src_pte;
498 /* pte contains position in swap or file, so copy. */
499 if (unlikely(!pte_present(pte))) {
500 if (!pte_file(pte)) {
501 swp_entry_t entry = pte_to_swp_entry(pte);
503 swap_duplicate(entry);
504 /* make sure dst_mm is on swapoff's mmlist. */
505 if (unlikely(list_empty(&dst_mm->mmlist))) {
506 spin_lock(&mmlist_lock);
507 if (list_empty(&dst_mm->mmlist))
508 list_add(&dst_mm->mmlist,
510 spin_unlock(&mmlist_lock);
512 if (is_write_migration_entry(entry) &&
513 is_cow_mapping(vm_flags)) {
515 * COW mappings require pages in both parent
516 * and child to be set to read.
518 make_migration_entry_read(&entry);
519 pte = swp_entry_to_pte(entry);
520 set_pte_at(src_mm, addr, src_pte, pte);
527 * If it's a COW mapping, write protect it both
528 * in the parent and the child
530 if (is_cow_mapping(vm_flags)) {
531 ptep_set_wrprotect(src_mm, addr, src_pte);
532 pte = pte_wrprotect(pte);
536 * If it's a shared mapping, mark it clean in
539 if (vm_flags & VM_SHARED)
540 pte = pte_mkclean(pte);
541 pte = pte_mkold(pte);
543 page = vm_normal_page(vma, addr, pte);
546 page_dup_rmap(page, vma, addr);
547 rss[!!PageAnon(page)]++;
551 set_pte_at(dst_mm, addr, dst_pte, pte);
554 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
555 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
556 unsigned long addr, unsigned long end)
558 pte_t *src_pte, *dst_pte;
559 spinlock_t *src_ptl, *dst_ptl;
565 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 src_pte = pte_offset_map_nested(src_pmd, addr);
569 src_ptl = pte_lockptr(src_mm, src_pmd);
570 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
571 arch_enter_lazy_mmu_mode();
575 * We are holding two locks at this point - either of them
576 * could generate latencies in another task on another CPU.
578 if (progress >= 32) {
580 if (need_resched() ||
581 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 if (pte_none(*src_pte)) {
588 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
590 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
592 arch_leave_lazy_mmu_mode();
593 spin_unlock(src_ptl);
594 pte_unmap_nested(src_pte - 1);
595 add_mm_rss(dst_mm, rss[0], rss[1]);
596 pte_unmap_unlock(dst_pte - 1, dst_ptl);
603 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
604 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
607 pmd_t *src_pmd, *dst_pmd;
610 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 src_pmd = pmd_offset(src_pud, addr);
615 next = pmd_addr_end(addr, end);
616 if (pmd_none_or_clear_bad(src_pmd))
618 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
625 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
626 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
627 unsigned long addr, unsigned long end)
629 pud_t *src_pud, *dst_pud;
632 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 src_pud = pud_offset(src_pgd, addr);
637 next = pud_addr_end(addr, end);
638 if (pud_none_or_clear_bad(src_pud))
640 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 } while (dst_pud++, src_pud++, addr = next, addr != end);
647 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
648 struct vm_area_struct *vma)
650 pgd_t *src_pgd, *dst_pgd;
652 unsigned long addr = vma->vm_start;
653 unsigned long end = vma->vm_end;
656 * Don't copy ptes where a page fault will fill them correctly.
657 * Fork becomes much lighter when there are big shared or private
658 * readonly mappings. The tradeoff is that copy_page_range is more
659 * efficient than faulting.
661 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
666 if (is_vm_hugetlb_page(vma))
667 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
669 dst_pgd = pgd_offset(dst_mm, addr);
670 src_pgd = pgd_offset(src_mm, addr);
672 next = pgd_addr_end(addr, end);
673 if (pgd_none_or_clear_bad(src_pgd))
675 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
678 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
682 static unsigned long zap_pte_range(struct mmu_gather *tlb,
683 struct vm_area_struct *vma, pmd_t *pmd,
684 unsigned long addr, unsigned long end,
685 long *zap_work, struct zap_details *details)
687 struct mm_struct *mm = tlb->mm;
693 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
694 arch_enter_lazy_mmu_mode();
697 if (pte_none(ptent)) {
702 (*zap_work) -= PAGE_SIZE;
704 if (pte_present(ptent)) {
707 page = vm_normal_page(vma, addr, ptent);
708 if (unlikely(details) && page) {
710 * unmap_shared_mapping_pages() wants to
711 * invalidate cache without truncating:
712 * unmap shared but keep private pages.
714 if (details->check_mapping &&
715 details->check_mapping != page->mapping)
718 * Each page->index must be checked when
719 * invalidating or truncating nonlinear.
721 if (details->nonlinear_vma &&
722 (page->index < details->first_index ||
723 page->index > details->last_index))
726 ptent = ptep_get_and_clear_full(mm, addr, pte,
728 tlb_remove_tlb_entry(tlb, pte, addr);
731 if (unlikely(details) && details->nonlinear_vma
732 && linear_page_index(details->nonlinear_vma,
733 addr) != page->index)
734 set_pte_at(mm, addr, pte,
735 pgoff_to_pte(page->index));
739 if (pte_dirty(ptent))
740 set_page_dirty(page);
741 if (pte_young(ptent))
742 SetPageReferenced(page);
745 page_remove_rmap(page, vma);
746 tlb_remove_page(tlb, page);
750 * If details->check_mapping, we leave swap entries;
751 * if details->nonlinear_vma, we leave file entries.
753 if (unlikely(details))
755 if (!pte_file(ptent))
756 free_swap_and_cache(pte_to_swp_entry(ptent));
757 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
758 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
760 add_mm_rss(mm, file_rss, anon_rss);
761 arch_leave_lazy_mmu_mode();
762 pte_unmap_unlock(pte - 1, ptl);
767 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
768 struct vm_area_struct *vma, pud_t *pud,
769 unsigned long addr, unsigned long end,
770 long *zap_work, struct zap_details *details)
775 pmd = pmd_offset(pud, addr);
777 next = pmd_addr_end(addr, end);
778 if (pmd_none_or_clear_bad(pmd)) {
782 next = zap_pte_range(tlb, vma, pmd, addr, next,
784 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
789 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
790 struct vm_area_struct *vma, pgd_t *pgd,
791 unsigned long addr, unsigned long end,
792 long *zap_work, struct zap_details *details)
797 pud = pud_offset(pgd, addr);
799 next = pud_addr_end(addr, end);
800 if (pud_none_or_clear_bad(pud)) {
804 next = zap_pmd_range(tlb, vma, pud, addr, next,
806 } while (pud++, addr = next, (addr != end && *zap_work > 0));
811 static unsigned long unmap_page_range(struct mmu_gather *tlb,
812 struct vm_area_struct *vma,
813 unsigned long addr, unsigned long end,
814 long *zap_work, struct zap_details *details)
819 if (details && !details->check_mapping && !details->nonlinear_vma)
823 tlb_start_vma(tlb, vma);
824 pgd = pgd_offset(vma->vm_mm, addr);
826 next = pgd_addr_end(addr, end);
827 if (pgd_none_or_clear_bad(pgd)) {
831 next = zap_pud_range(tlb, vma, pgd, addr, next,
833 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
834 tlb_end_vma(tlb, vma);
839 #ifdef CONFIG_PREEMPT
840 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
842 /* No preempt: go for improved straight-line efficiency */
843 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
847 * unmap_vmas - unmap a range of memory covered by a list of vma's
848 * @tlbp: address of the caller's struct mmu_gather
849 * @vma: the starting vma
850 * @start_addr: virtual address at which to start unmapping
851 * @end_addr: virtual address at which to end unmapping
852 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
853 * @details: details of nonlinear truncation or shared cache invalidation
855 * Returns the end address of the unmapping (restart addr if interrupted).
857 * Unmap all pages in the vma list.
859 * We aim to not hold locks for too long (for scheduling latency reasons).
860 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
861 * return the ending mmu_gather to the caller.
863 * Only addresses between `start' and `end' will be unmapped.
865 * The VMA list must be sorted in ascending virtual address order.
867 * unmap_vmas() assumes that the caller will flush the whole unmapped address
868 * range after unmap_vmas() returns. So the only responsibility here is to
869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
870 * drops the lock and schedules.
872 unsigned long unmap_vmas(struct mmu_gather **tlbp,
873 struct vm_area_struct *vma, unsigned long start_addr,
874 unsigned long end_addr, unsigned long *nr_accounted,
875 struct zap_details *details)
877 long zap_work = ZAP_BLOCK_SIZE;
878 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
879 int tlb_start_valid = 0;
880 unsigned long start = start_addr;
881 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
882 int fullmm = (*tlbp)->fullmm;
884 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
887 start = max(vma->vm_start, start_addr);
888 if (start >= vma->vm_end)
890 end = min(vma->vm_end, end_addr);
891 if (end <= vma->vm_start)
894 if (vma->vm_flags & VM_ACCOUNT)
895 *nr_accounted += (end - start) >> PAGE_SHIFT;
897 while (start != end) {
898 if (!tlb_start_valid) {
903 if (unlikely(is_vm_hugetlb_page(vma))) {
904 unmap_hugepage_range(vma, start, end, NULL);
905 zap_work -= (end - start) /
906 pages_per_huge_page(hstate_vma(vma));
909 start = unmap_page_range(*tlbp, vma,
910 start, end, &zap_work, details);
913 BUG_ON(start != end);
917 tlb_finish_mmu(*tlbp, tlb_start, start);
919 if (need_resched() ||
920 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
928 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
930 zap_work = ZAP_BLOCK_SIZE;
934 return start; /* which is now the end (or restart) address */
938 * zap_page_range - remove user pages in a given range
939 * @vma: vm_area_struct holding the applicable pages
940 * @address: starting address of pages to zap
941 * @size: number of bytes to zap
942 * @details: details of nonlinear truncation or shared cache invalidation
944 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
945 unsigned long size, struct zap_details *details)
947 struct mm_struct *mm = vma->vm_mm;
948 struct mmu_gather *tlb;
949 unsigned long end = address + size;
950 unsigned long nr_accounted = 0;
953 tlb = tlb_gather_mmu(mm, 0);
954 update_hiwater_rss(mm);
955 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
957 tlb_finish_mmu(tlb, address, end);
962 * Do a quick page-table lookup for a single page.
964 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
973 struct mm_struct *mm = vma->vm_mm;
975 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
977 BUG_ON(flags & FOLL_GET);
982 pgd = pgd_offset(mm, address);
983 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
986 pud = pud_offset(pgd, address);
987 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
990 pmd = pmd_offset(pud, address);
994 if (pmd_huge(*pmd)) {
995 BUG_ON(flags & FOLL_GET);
996 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1000 if (unlikely(pmd_bad(*pmd)))
1003 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1006 if (!pte_present(pte))
1008 if ((flags & FOLL_WRITE) && !pte_write(pte))
1010 page = vm_normal_page(vma, address, pte);
1011 if (unlikely(!page))
1014 if (flags & FOLL_GET)
1016 if (flags & FOLL_TOUCH) {
1017 if ((flags & FOLL_WRITE) &&
1018 !pte_dirty(pte) && !PageDirty(page))
1019 set_page_dirty(page);
1020 mark_page_accessed(page);
1023 pte_unmap_unlock(ptep, ptl);
1028 pte_unmap_unlock(ptep, ptl);
1029 return ERR_PTR(-EFAULT);
1032 pte_unmap_unlock(ptep, ptl);
1035 /* Fall through to ZERO_PAGE handling */
1038 * When core dumping an enormous anonymous area that nobody
1039 * has touched so far, we don't want to allocate page tables.
1041 if (flags & FOLL_ANON) {
1042 page = ZERO_PAGE(0);
1043 if (flags & FOLL_GET)
1045 BUG_ON(flags & FOLL_WRITE);
1050 /* Can we do the FOLL_ANON optimization? */
1051 static inline int use_zero_page(struct vm_area_struct *vma)
1054 * We don't want to optimize FOLL_ANON for make_pages_present()
1055 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1056 * we want to get the page from the page tables to make sure
1057 * that we serialize and update with any other user of that
1060 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1063 * And if we have a fault routine, it's not an anonymous region.
1065 return !vma->vm_ops || !vma->vm_ops->fault;
1068 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1069 unsigned long start, int len, int write, int force,
1070 struct page **pages, struct vm_area_struct **vmas)
1073 unsigned int vm_flags;
1078 * Require read or write permissions.
1079 * If 'force' is set, we only require the "MAY" flags.
1081 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1082 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1086 struct vm_area_struct *vma;
1087 unsigned int foll_flags;
1089 vma = find_extend_vma(mm, start);
1090 if (!vma && in_gate_area(tsk, start)) {
1091 unsigned long pg = start & PAGE_MASK;
1092 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1097 if (write) /* user gate pages are read-only */
1098 return i ? : -EFAULT;
1100 pgd = pgd_offset_k(pg);
1102 pgd = pgd_offset_gate(mm, pg);
1103 BUG_ON(pgd_none(*pgd));
1104 pud = pud_offset(pgd, pg);
1105 BUG_ON(pud_none(*pud));
1106 pmd = pmd_offset(pud, pg);
1108 return i ? : -EFAULT;
1109 pte = pte_offset_map(pmd, pg);
1110 if (pte_none(*pte)) {
1112 return i ? : -EFAULT;
1115 struct page *page = vm_normal_page(gate_vma, start, *pte);
1129 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1130 || !(vm_flags & vma->vm_flags))
1131 return i ? : -EFAULT;
1133 if (is_vm_hugetlb_page(vma)) {
1134 i = follow_hugetlb_page(mm, vma, pages, vmas,
1135 &start, &len, i, write);
1139 foll_flags = FOLL_TOUCH;
1141 foll_flags |= FOLL_GET;
1142 if (!write && use_zero_page(vma))
1143 foll_flags |= FOLL_ANON;
1149 * If tsk is ooming, cut off its access to large memory
1150 * allocations. It has a pending SIGKILL, but it can't
1151 * be processed until returning to user space.
1153 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1154 return i ? i : -ENOMEM;
1157 foll_flags |= FOLL_WRITE;
1160 while (!(page = follow_page(vma, start, foll_flags))) {
1162 ret = handle_mm_fault(mm, vma, start,
1163 foll_flags & FOLL_WRITE);
1164 if (ret & VM_FAULT_ERROR) {
1165 if (ret & VM_FAULT_OOM)
1166 return i ? i : -ENOMEM;
1167 else if (ret & VM_FAULT_SIGBUS)
1168 return i ? i : -EFAULT;
1171 if (ret & VM_FAULT_MAJOR)
1177 * The VM_FAULT_WRITE bit tells us that
1178 * do_wp_page has broken COW when necessary,
1179 * even if maybe_mkwrite decided not to set
1180 * pte_write. We can thus safely do subsequent
1181 * page lookups as if they were reads.
1183 if (ret & VM_FAULT_WRITE)
1184 foll_flags &= ~FOLL_WRITE;
1189 return i ? i : PTR_ERR(page);
1193 flush_anon_page(vma, page, start);
1194 flush_dcache_page(page);
1201 } while (len && start < vma->vm_end);
1205 EXPORT_SYMBOL(get_user_pages);
1207 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1210 pgd_t * pgd = pgd_offset(mm, addr);
1211 pud_t * pud = pud_alloc(mm, pgd, addr);
1213 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1215 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1221 * This is the old fallback for page remapping.
1223 * For historical reasons, it only allows reserved pages. Only
1224 * old drivers should use this, and they needed to mark their
1225 * pages reserved for the old functions anyway.
1227 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1228 struct page *page, pgprot_t prot)
1230 struct mm_struct *mm = vma->vm_mm;
1235 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1243 flush_dcache_page(page);
1244 pte = get_locked_pte(mm, addr, &ptl);
1248 if (!pte_none(*pte))
1251 /* Ok, finally just insert the thing.. */
1253 inc_mm_counter(mm, file_rss);
1254 page_add_file_rmap(page);
1255 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1258 pte_unmap_unlock(pte, ptl);
1261 pte_unmap_unlock(pte, ptl);
1263 mem_cgroup_uncharge_page(page);
1269 * vm_insert_page - insert single page into user vma
1270 * @vma: user vma to map to
1271 * @addr: target user address of this page
1272 * @page: source kernel page
1274 * This allows drivers to insert individual pages they've allocated
1277 * The page has to be a nice clean _individual_ kernel allocation.
1278 * If you allocate a compound page, you need to have marked it as
1279 * such (__GFP_COMP), or manually just split the page up yourself
1280 * (see split_page()).
1282 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1283 * took an arbitrary page protection parameter. This doesn't allow
1284 * that. Your vma protection will have to be set up correctly, which
1285 * means that if you want a shared writable mapping, you'd better
1286 * ask for a shared writable mapping!
1288 * The page does not need to be reserved.
1290 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1293 if (addr < vma->vm_start || addr >= vma->vm_end)
1295 if (!page_count(page))
1297 vma->vm_flags |= VM_INSERTPAGE;
1298 return insert_page(vma, addr, page, vma->vm_page_prot);
1300 EXPORT_SYMBOL(vm_insert_page);
1302 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1303 unsigned long pfn, pgprot_t prot)
1305 struct mm_struct *mm = vma->vm_mm;
1311 pte = get_locked_pte(mm, addr, &ptl);
1315 if (!pte_none(*pte))
1318 /* Ok, finally just insert the thing.. */
1319 entry = pte_mkspecial(pfn_pte(pfn, prot));
1320 set_pte_at(mm, addr, pte, entry);
1321 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1325 pte_unmap_unlock(pte, ptl);
1331 * vm_insert_pfn - insert single pfn into user vma
1332 * @vma: user vma to map to
1333 * @addr: target user address of this page
1334 * @pfn: source kernel pfn
1336 * Similar to vm_inert_page, this allows drivers to insert individual pages
1337 * they've allocated into a user vma. Same comments apply.
1339 * This function should only be called from a vm_ops->fault handler, and
1340 * in that case the handler should return NULL.
1342 * vma cannot be a COW mapping.
1344 * As this is called only for pages that do not currently exist, we
1345 * do not need to flush old virtual caches or the TLB.
1347 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1351 * Technically, architectures with pte_special can avoid all these
1352 * restrictions (same for remap_pfn_range). However we would like
1353 * consistency in testing and feature parity among all, so we should
1354 * try to keep these invariants in place for everybody.
1356 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1357 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1358 (VM_PFNMAP|VM_MIXEDMAP));
1359 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1360 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1362 if (addr < vma->vm_start || addr >= vma->vm_end)
1364 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1366 EXPORT_SYMBOL(vm_insert_pfn);
1368 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1371 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1373 if (addr < vma->vm_start || addr >= vma->vm_end)
1377 * If we don't have pte special, then we have to use the pfn_valid()
1378 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1379 * refcount the page if pfn_valid is true (hence insert_page rather
1382 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1385 page = pfn_to_page(pfn);
1386 return insert_page(vma, addr, page, vma->vm_page_prot);
1388 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1390 EXPORT_SYMBOL(vm_insert_mixed);
1393 * maps a range of physical memory into the requested pages. the old
1394 * mappings are removed. any references to nonexistent pages results
1395 * in null mappings (currently treated as "copy-on-access")
1397 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1398 unsigned long addr, unsigned long end,
1399 unsigned long pfn, pgprot_t prot)
1404 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1407 arch_enter_lazy_mmu_mode();
1409 BUG_ON(!pte_none(*pte));
1410 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1412 } while (pte++, addr += PAGE_SIZE, addr != end);
1413 arch_leave_lazy_mmu_mode();
1414 pte_unmap_unlock(pte - 1, ptl);
1418 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1419 unsigned long addr, unsigned long end,
1420 unsigned long pfn, pgprot_t prot)
1425 pfn -= addr >> PAGE_SHIFT;
1426 pmd = pmd_alloc(mm, pud, addr);
1430 next = pmd_addr_end(addr, end);
1431 if (remap_pte_range(mm, pmd, addr, next,
1432 pfn + (addr >> PAGE_SHIFT), prot))
1434 } while (pmd++, addr = next, addr != end);
1438 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1439 unsigned long addr, unsigned long end,
1440 unsigned long pfn, pgprot_t prot)
1445 pfn -= addr >> PAGE_SHIFT;
1446 pud = pud_alloc(mm, pgd, addr);
1450 next = pud_addr_end(addr, end);
1451 if (remap_pmd_range(mm, pud, addr, next,
1452 pfn + (addr >> PAGE_SHIFT), prot))
1454 } while (pud++, addr = next, addr != end);
1459 * remap_pfn_range - remap kernel memory to userspace
1460 * @vma: user vma to map to
1461 * @addr: target user address to start at
1462 * @pfn: physical address of kernel memory
1463 * @size: size of map area
1464 * @prot: page protection flags for this mapping
1466 * Note: this is only safe if the mm semaphore is held when called.
1468 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1469 unsigned long pfn, unsigned long size, pgprot_t prot)
1473 unsigned long end = addr + PAGE_ALIGN(size);
1474 struct mm_struct *mm = vma->vm_mm;
1478 * Physically remapped pages are special. Tell the
1479 * rest of the world about it:
1480 * VM_IO tells people not to look at these pages
1481 * (accesses can have side effects).
1482 * VM_RESERVED is specified all over the place, because
1483 * in 2.4 it kept swapout's vma scan off this vma; but
1484 * in 2.6 the LRU scan won't even find its pages, so this
1485 * flag means no more than count its pages in reserved_vm,
1486 * and omit it from core dump, even when VM_IO turned off.
1487 * VM_PFNMAP tells the core MM that the base pages are just
1488 * raw PFN mappings, and do not have a "struct page" associated
1491 * There's a horrible special case to handle copy-on-write
1492 * behaviour that some programs depend on. We mark the "original"
1493 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1495 if (is_cow_mapping(vma->vm_flags)) {
1496 if (addr != vma->vm_start || end != vma->vm_end)
1498 vma->vm_pgoff = pfn;
1501 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1503 BUG_ON(addr >= end);
1504 pfn -= addr >> PAGE_SHIFT;
1505 pgd = pgd_offset(mm, addr);
1506 flush_cache_range(vma, addr, end);
1508 next = pgd_addr_end(addr, end);
1509 err = remap_pud_range(mm, pgd, addr, next,
1510 pfn + (addr >> PAGE_SHIFT), prot);
1513 } while (pgd++, addr = next, addr != end);
1516 EXPORT_SYMBOL(remap_pfn_range);
1518 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1519 unsigned long addr, unsigned long end,
1520 pte_fn_t fn, void *data)
1525 spinlock_t *uninitialized_var(ptl);
1527 pte = (mm == &init_mm) ?
1528 pte_alloc_kernel(pmd, addr) :
1529 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1533 BUG_ON(pmd_huge(*pmd));
1535 token = pmd_pgtable(*pmd);
1538 err = fn(pte, token, addr, data);
1541 } while (pte++, addr += PAGE_SIZE, addr != end);
1544 pte_unmap_unlock(pte-1, ptl);
1548 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1549 unsigned long addr, unsigned long end,
1550 pte_fn_t fn, void *data)
1556 pmd = pmd_alloc(mm, pud, addr);
1560 next = pmd_addr_end(addr, end);
1561 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1564 } while (pmd++, addr = next, addr != end);
1568 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1569 unsigned long addr, unsigned long end,
1570 pte_fn_t fn, void *data)
1576 pud = pud_alloc(mm, pgd, addr);
1580 next = pud_addr_end(addr, end);
1581 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1584 } while (pud++, addr = next, addr != end);
1589 * Scan a region of virtual memory, filling in page tables as necessary
1590 * and calling a provided function on each leaf page table.
1592 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1593 unsigned long size, pte_fn_t fn, void *data)
1597 unsigned long end = addr + size;
1600 BUG_ON(addr >= end);
1601 pgd = pgd_offset(mm, addr);
1603 next = pgd_addr_end(addr, end);
1604 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1607 } while (pgd++, addr = next, addr != end);
1610 EXPORT_SYMBOL_GPL(apply_to_page_range);
1613 * handle_pte_fault chooses page fault handler according to an entry
1614 * which was read non-atomically. Before making any commitment, on
1615 * those architectures or configurations (e.g. i386 with PAE) which
1616 * might give a mix of unmatched parts, do_swap_page and do_file_page
1617 * must check under lock before unmapping the pte and proceeding
1618 * (but do_wp_page is only called after already making such a check;
1619 * and do_anonymous_page and do_no_page can safely check later on).
1621 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1622 pte_t *page_table, pte_t orig_pte)
1625 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1626 if (sizeof(pte_t) > sizeof(unsigned long)) {
1627 spinlock_t *ptl = pte_lockptr(mm, pmd);
1629 same = pte_same(*page_table, orig_pte);
1633 pte_unmap(page_table);
1638 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1639 * servicing faults for write access. In the normal case, do always want
1640 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1641 * that do not have writing enabled, when used by access_process_vm.
1643 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1645 if (likely(vma->vm_flags & VM_WRITE))
1646 pte = pte_mkwrite(pte);
1650 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1653 * If the source page was a PFN mapping, we don't have
1654 * a "struct page" for it. We do a best-effort copy by
1655 * just copying from the original user address. If that
1656 * fails, we just zero-fill it. Live with it.
1658 if (unlikely(!src)) {
1659 void *kaddr = kmap_atomic(dst, KM_USER0);
1660 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1663 * This really shouldn't fail, because the page is there
1664 * in the page tables. But it might just be unreadable,
1665 * in which case we just give up and fill the result with
1668 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1669 memset(kaddr, 0, PAGE_SIZE);
1670 kunmap_atomic(kaddr, KM_USER0);
1671 flush_dcache_page(dst);
1673 copy_user_highpage(dst, src, va, vma);
1677 * This routine handles present pages, when users try to write
1678 * to a shared page. It is done by copying the page to a new address
1679 * and decrementing the shared-page counter for the old page.
1681 * Note that this routine assumes that the protection checks have been
1682 * done by the caller (the low-level page fault routine in most cases).
1683 * Thus we can safely just mark it writable once we've done any necessary
1686 * We also mark the page dirty at this point even though the page will
1687 * change only once the write actually happens. This avoids a few races,
1688 * and potentially makes it more efficient.
1690 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1691 * but allow concurrent faults), with pte both mapped and locked.
1692 * We return with mmap_sem still held, but pte unmapped and unlocked.
1694 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1695 unsigned long address, pte_t *page_table, pmd_t *pmd,
1696 spinlock_t *ptl, pte_t orig_pte)
1698 struct page *old_page, *new_page;
1700 int reuse = 0, ret = 0;
1701 int page_mkwrite = 0;
1702 struct page *dirty_page = NULL;
1704 old_page = vm_normal_page(vma, address, orig_pte);
1707 * VM_MIXEDMAP !pfn_valid() case
1709 * We should not cow pages in a shared writeable mapping.
1710 * Just mark the pages writable as we can't do any dirty
1711 * accounting on raw pfn maps.
1713 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1714 (VM_WRITE|VM_SHARED))
1720 * Take out anonymous pages first, anonymous shared vmas are
1721 * not dirty accountable.
1723 if (PageAnon(old_page)) {
1724 if (!TestSetPageLocked(old_page)) {
1725 reuse = can_share_swap_page(old_page);
1726 unlock_page(old_page);
1728 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1729 (VM_WRITE|VM_SHARED))) {
1731 * Only catch write-faults on shared writable pages,
1732 * read-only shared pages can get COWed by
1733 * get_user_pages(.write=1, .force=1).
1735 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1737 * Notify the address space that the page is about to
1738 * become writable so that it can prohibit this or wait
1739 * for the page to get into an appropriate state.
1741 * We do this without the lock held, so that it can
1742 * sleep if it needs to.
1744 page_cache_get(old_page);
1745 pte_unmap_unlock(page_table, ptl);
1747 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1748 goto unwritable_page;
1751 * Since we dropped the lock we need to revalidate
1752 * the PTE as someone else may have changed it. If
1753 * they did, we just return, as we can count on the
1754 * MMU to tell us if they didn't also make it writable.
1756 page_table = pte_offset_map_lock(mm, pmd, address,
1758 page_cache_release(old_page);
1759 if (!pte_same(*page_table, orig_pte))
1764 dirty_page = old_page;
1765 get_page(dirty_page);
1771 flush_cache_page(vma, address, pte_pfn(orig_pte));
1772 entry = pte_mkyoung(orig_pte);
1773 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1774 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1775 update_mmu_cache(vma, address, entry);
1776 ret |= VM_FAULT_WRITE;
1781 * Ok, we need to copy. Oh, well..
1783 page_cache_get(old_page);
1785 pte_unmap_unlock(page_table, ptl);
1787 if (unlikely(anon_vma_prepare(vma)))
1789 VM_BUG_ON(old_page == ZERO_PAGE(0));
1790 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1793 cow_user_page(new_page, old_page, address, vma);
1794 __SetPageUptodate(new_page);
1796 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1800 * Re-check the pte - we dropped the lock
1802 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1803 if (likely(pte_same(*page_table, orig_pte))) {
1805 if (!PageAnon(old_page)) {
1806 dec_mm_counter(mm, file_rss);
1807 inc_mm_counter(mm, anon_rss);
1810 inc_mm_counter(mm, anon_rss);
1811 flush_cache_page(vma, address, pte_pfn(orig_pte));
1812 entry = mk_pte(new_page, vma->vm_page_prot);
1813 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1815 * Clear the pte entry and flush it first, before updating the
1816 * pte with the new entry. This will avoid a race condition
1817 * seen in the presence of one thread doing SMC and another
1820 ptep_clear_flush(vma, address, page_table);
1821 set_pte_at(mm, address, page_table, entry);
1822 update_mmu_cache(vma, address, entry);
1823 lru_cache_add_active(new_page);
1824 page_add_new_anon_rmap(new_page, vma, address);
1828 * Only after switching the pte to the new page may
1829 * we remove the mapcount here. Otherwise another
1830 * process may come and find the rmap count decremented
1831 * before the pte is switched to the new page, and
1832 * "reuse" the old page writing into it while our pte
1833 * here still points into it and can be read by other
1836 * The critical issue is to order this
1837 * page_remove_rmap with the ptp_clear_flush above.
1838 * Those stores are ordered by (if nothing else,)
1839 * the barrier present in the atomic_add_negative
1840 * in page_remove_rmap.
1842 * Then the TLB flush in ptep_clear_flush ensures that
1843 * no process can access the old page before the
1844 * decremented mapcount is visible. And the old page
1845 * cannot be reused until after the decremented
1846 * mapcount is visible. So transitively, TLBs to
1847 * old page will be flushed before it can be reused.
1849 page_remove_rmap(old_page, vma);
1852 /* Free the old page.. */
1853 new_page = old_page;
1854 ret |= VM_FAULT_WRITE;
1856 mem_cgroup_uncharge_page(new_page);
1859 page_cache_release(new_page);
1861 page_cache_release(old_page);
1863 pte_unmap_unlock(page_table, ptl);
1866 file_update_time(vma->vm_file);
1869 * Yes, Virginia, this is actually required to prevent a race
1870 * with clear_page_dirty_for_io() from clearing the page dirty
1871 * bit after it clear all dirty ptes, but before a racing
1872 * do_wp_page installs a dirty pte.
1874 * do_no_page is protected similarly.
1876 wait_on_page_locked(dirty_page);
1877 set_page_dirty_balance(dirty_page, page_mkwrite);
1878 put_page(dirty_page);
1882 page_cache_release(new_page);
1885 page_cache_release(old_page);
1886 return VM_FAULT_OOM;
1889 page_cache_release(old_page);
1890 return VM_FAULT_SIGBUS;
1894 * Helper functions for unmap_mapping_range().
1896 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1898 * We have to restart searching the prio_tree whenever we drop the lock,
1899 * since the iterator is only valid while the lock is held, and anyway
1900 * a later vma might be split and reinserted earlier while lock dropped.
1902 * The list of nonlinear vmas could be handled more efficiently, using
1903 * a placeholder, but handle it in the same way until a need is shown.
1904 * It is important to search the prio_tree before nonlinear list: a vma
1905 * may become nonlinear and be shifted from prio_tree to nonlinear list
1906 * while the lock is dropped; but never shifted from list to prio_tree.
1908 * In order to make forward progress despite restarting the search,
1909 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1910 * quickly skip it next time around. Since the prio_tree search only
1911 * shows us those vmas affected by unmapping the range in question, we
1912 * can't efficiently keep all vmas in step with mapping->truncate_count:
1913 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1914 * mapping->truncate_count and vma->vm_truncate_count are protected by
1917 * In order to make forward progress despite repeatedly restarting some
1918 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1919 * and restart from that address when we reach that vma again. It might
1920 * have been split or merged, shrunk or extended, but never shifted: so
1921 * restart_addr remains valid so long as it remains in the vma's range.
1922 * unmap_mapping_range forces truncate_count to leap over page-aligned
1923 * values so we can save vma's restart_addr in its truncate_count field.
1925 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1927 static void reset_vma_truncate_counts(struct address_space *mapping)
1929 struct vm_area_struct *vma;
1930 struct prio_tree_iter iter;
1932 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1933 vma->vm_truncate_count = 0;
1934 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1935 vma->vm_truncate_count = 0;
1938 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1939 unsigned long start_addr, unsigned long end_addr,
1940 struct zap_details *details)
1942 unsigned long restart_addr;
1946 * files that support invalidating or truncating portions of the
1947 * file from under mmaped areas must have their ->fault function
1948 * return a locked page (and set VM_FAULT_LOCKED in the return).
1949 * This provides synchronisation against concurrent unmapping here.
1953 restart_addr = vma->vm_truncate_count;
1954 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1955 start_addr = restart_addr;
1956 if (start_addr >= end_addr) {
1957 /* Top of vma has been split off since last time */
1958 vma->vm_truncate_count = details->truncate_count;
1963 restart_addr = zap_page_range(vma, start_addr,
1964 end_addr - start_addr, details);
1965 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1967 if (restart_addr >= end_addr) {
1968 /* We have now completed this vma: mark it so */
1969 vma->vm_truncate_count = details->truncate_count;
1973 /* Note restart_addr in vma's truncate_count field */
1974 vma->vm_truncate_count = restart_addr;
1979 spin_unlock(details->i_mmap_lock);
1981 spin_lock(details->i_mmap_lock);
1985 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1986 struct zap_details *details)
1988 struct vm_area_struct *vma;
1989 struct prio_tree_iter iter;
1990 pgoff_t vba, vea, zba, zea;
1993 vma_prio_tree_foreach(vma, &iter, root,
1994 details->first_index, details->last_index) {
1995 /* Skip quickly over those we have already dealt with */
1996 if (vma->vm_truncate_count == details->truncate_count)
1999 vba = vma->vm_pgoff;
2000 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2001 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2002 zba = details->first_index;
2005 zea = details->last_index;
2009 if (unmap_mapping_range_vma(vma,
2010 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2011 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2017 static inline void unmap_mapping_range_list(struct list_head *head,
2018 struct zap_details *details)
2020 struct vm_area_struct *vma;
2023 * In nonlinear VMAs there is no correspondence between virtual address
2024 * offset and file offset. So we must perform an exhaustive search
2025 * across *all* the pages in each nonlinear VMA, not just the pages
2026 * whose virtual address lies outside the file truncation point.
2029 list_for_each_entry(vma, head, shared.vm_set.list) {
2030 /* Skip quickly over those we have already dealt with */
2031 if (vma->vm_truncate_count == details->truncate_count)
2033 details->nonlinear_vma = vma;
2034 if (unmap_mapping_range_vma(vma, vma->vm_start,
2035 vma->vm_end, details) < 0)
2041 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2042 * @mapping: the address space containing mmaps to be unmapped.
2043 * @holebegin: byte in first page to unmap, relative to the start of
2044 * the underlying file. This will be rounded down to a PAGE_SIZE
2045 * boundary. Note that this is different from vmtruncate(), which
2046 * must keep the partial page. In contrast, we must get rid of
2048 * @holelen: size of prospective hole in bytes. This will be rounded
2049 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2051 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2052 * but 0 when invalidating pagecache, don't throw away private data.
2054 void unmap_mapping_range(struct address_space *mapping,
2055 loff_t const holebegin, loff_t const holelen, int even_cows)
2057 struct zap_details details;
2058 pgoff_t hba = holebegin >> PAGE_SHIFT;
2059 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2061 /* Check for overflow. */
2062 if (sizeof(holelen) > sizeof(hlen)) {
2064 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2065 if (holeend & ~(long long)ULONG_MAX)
2066 hlen = ULONG_MAX - hba + 1;
2069 details.check_mapping = even_cows? NULL: mapping;
2070 details.nonlinear_vma = NULL;
2071 details.first_index = hba;
2072 details.last_index = hba + hlen - 1;
2073 if (details.last_index < details.first_index)
2074 details.last_index = ULONG_MAX;
2075 details.i_mmap_lock = &mapping->i_mmap_lock;
2077 spin_lock(&mapping->i_mmap_lock);
2079 /* Protect against endless unmapping loops */
2080 mapping->truncate_count++;
2081 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2082 if (mapping->truncate_count == 0)
2083 reset_vma_truncate_counts(mapping);
2084 mapping->truncate_count++;
2086 details.truncate_count = mapping->truncate_count;
2088 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2089 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2090 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2091 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2092 spin_unlock(&mapping->i_mmap_lock);
2094 EXPORT_SYMBOL(unmap_mapping_range);
2097 * vmtruncate - unmap mappings "freed" by truncate() syscall
2098 * @inode: inode of the file used
2099 * @offset: file offset to start truncating
2101 * NOTE! We have to be ready to update the memory sharing
2102 * between the file and the memory map for a potential last
2103 * incomplete page. Ugly, but necessary.
2105 int vmtruncate(struct inode * inode, loff_t offset)
2107 if (inode->i_size < offset) {
2108 unsigned long limit;
2110 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2111 if (limit != RLIM_INFINITY && offset > limit)
2113 if (offset > inode->i_sb->s_maxbytes)
2115 i_size_write(inode, offset);
2117 struct address_space *mapping = inode->i_mapping;
2120 * truncation of in-use swapfiles is disallowed - it would
2121 * cause subsequent swapout to scribble on the now-freed
2124 if (IS_SWAPFILE(inode))
2126 i_size_write(inode, offset);
2129 * unmap_mapping_range is called twice, first simply for
2130 * efficiency so that truncate_inode_pages does fewer
2131 * single-page unmaps. However after this first call, and
2132 * before truncate_inode_pages finishes, it is possible for
2133 * private pages to be COWed, which remain after
2134 * truncate_inode_pages finishes, hence the second
2135 * unmap_mapping_range call must be made for correctness.
2137 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2138 truncate_inode_pages(mapping, offset);
2139 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2142 if (inode->i_op && inode->i_op->truncate)
2143 inode->i_op->truncate(inode);
2147 send_sig(SIGXFSZ, current, 0);
2151 EXPORT_SYMBOL(vmtruncate);
2153 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2155 struct address_space *mapping = inode->i_mapping;
2158 * If the underlying filesystem is not going to provide
2159 * a way to truncate a range of blocks (punch a hole) -
2160 * we should return failure right now.
2162 if (!inode->i_op || !inode->i_op->truncate_range)
2165 mutex_lock(&inode->i_mutex);
2166 down_write(&inode->i_alloc_sem);
2167 unmap_mapping_range(mapping, offset, (end - offset), 1);
2168 truncate_inode_pages_range(mapping, offset, end);
2169 unmap_mapping_range(mapping, offset, (end - offset), 1);
2170 inode->i_op->truncate_range(inode, offset, end);
2171 up_write(&inode->i_alloc_sem);
2172 mutex_unlock(&inode->i_mutex);
2178 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2179 * but allow concurrent faults), and pte mapped but not yet locked.
2180 * We return with mmap_sem still held, but pte unmapped and unlocked.
2182 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2183 unsigned long address, pte_t *page_table, pmd_t *pmd,
2184 int write_access, pte_t orig_pte)
2192 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2195 entry = pte_to_swp_entry(orig_pte);
2196 if (is_migration_entry(entry)) {
2197 migration_entry_wait(mm, pmd, address);
2200 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2201 page = lookup_swap_cache(entry);
2203 grab_swap_token(); /* Contend for token _before_ read-in */
2204 page = swapin_readahead(entry,
2205 GFP_HIGHUSER_MOVABLE, vma, address);
2208 * Back out if somebody else faulted in this pte
2209 * while we released the pte lock.
2211 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2212 if (likely(pte_same(*page_table, orig_pte)))
2214 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2218 /* Had to read the page from swap area: Major fault */
2219 ret = VM_FAULT_MAJOR;
2220 count_vm_event(PGMAJFAULT);
2223 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2224 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2229 mark_page_accessed(page);
2231 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2234 * Back out if somebody else already faulted in this pte.
2236 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2237 if (unlikely(!pte_same(*page_table, orig_pte)))
2240 if (unlikely(!PageUptodate(page))) {
2241 ret = VM_FAULT_SIGBUS;
2245 /* The page isn't present yet, go ahead with the fault. */
2247 inc_mm_counter(mm, anon_rss);
2248 pte = mk_pte(page, vma->vm_page_prot);
2249 if (write_access && can_share_swap_page(page)) {
2250 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2254 flush_icache_page(vma, page);
2255 set_pte_at(mm, address, page_table, pte);
2256 page_add_anon_rmap(page, vma, address);
2260 remove_exclusive_swap_page(page);
2264 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2265 if (ret & VM_FAULT_ERROR)
2266 ret &= VM_FAULT_ERROR;
2270 /* No need to invalidate - it was non-present before */
2271 update_mmu_cache(vma, address, pte);
2273 pte_unmap_unlock(page_table, ptl);
2277 mem_cgroup_uncharge_page(page);
2278 pte_unmap_unlock(page_table, ptl);
2280 page_cache_release(page);
2285 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2286 * but allow concurrent faults), and pte mapped but not yet locked.
2287 * We return with mmap_sem still held, but pte unmapped and unlocked.
2289 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2290 unsigned long address, pte_t *page_table, pmd_t *pmd,
2297 /* Allocate our own private page. */
2298 pte_unmap(page_table);
2300 if (unlikely(anon_vma_prepare(vma)))
2302 page = alloc_zeroed_user_highpage_movable(vma, address);
2305 __SetPageUptodate(page);
2307 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2310 entry = mk_pte(page, vma->vm_page_prot);
2311 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2314 if (!pte_none(*page_table))
2316 inc_mm_counter(mm, anon_rss);
2317 lru_cache_add_active(page);
2318 page_add_new_anon_rmap(page, vma, address);
2319 set_pte_at(mm, address, page_table, entry);
2321 /* No need to invalidate - it was non-present before */
2322 update_mmu_cache(vma, address, entry);
2324 pte_unmap_unlock(page_table, ptl);
2327 mem_cgroup_uncharge_page(page);
2328 page_cache_release(page);
2331 page_cache_release(page);
2333 return VM_FAULT_OOM;
2337 * __do_fault() tries to create a new page mapping. It aggressively
2338 * tries to share with existing pages, but makes a separate copy if
2339 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2340 * the next page fault.
2342 * As this is called only for pages that do not currently exist, we
2343 * do not need to flush old virtual caches or the TLB.
2345 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2346 * but allow concurrent faults), and pte neither mapped nor locked.
2347 * We return with mmap_sem still held, but pte unmapped and unlocked.
2349 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2350 unsigned long address, pmd_t *pmd,
2351 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2358 struct page *dirty_page = NULL;
2359 struct vm_fault vmf;
2361 int page_mkwrite = 0;
2363 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2368 ret = vma->vm_ops->fault(vma, &vmf);
2369 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2373 * For consistency in subsequent calls, make the faulted page always
2376 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2377 lock_page(vmf.page);
2379 VM_BUG_ON(!PageLocked(vmf.page));
2382 * Should we do an early C-O-W break?
2385 if (flags & FAULT_FLAG_WRITE) {
2386 if (!(vma->vm_flags & VM_SHARED)) {
2388 if (unlikely(anon_vma_prepare(vma))) {
2392 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2398 copy_user_highpage(page, vmf.page, address, vma);
2399 __SetPageUptodate(page);
2402 * If the page will be shareable, see if the backing
2403 * address space wants to know that the page is about
2404 * to become writable
2406 if (vma->vm_ops->page_mkwrite) {
2408 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2409 ret = VM_FAULT_SIGBUS;
2410 anon = 1; /* no anon but release vmf.page */
2415 * XXX: this is not quite right (racy vs
2416 * invalidate) to unlock and relock the page
2417 * like this, however a better fix requires
2418 * reworking page_mkwrite locking API, which
2419 * is better done later.
2421 if (!page->mapping) {
2423 anon = 1; /* no anon but release vmf.page */
2432 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2437 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2440 * This silly early PAGE_DIRTY setting removes a race
2441 * due to the bad i386 page protection. But it's valid
2442 * for other architectures too.
2444 * Note that if write_access is true, we either now have
2445 * an exclusive copy of the page, or this is a shared mapping,
2446 * so we can make it writable and dirty to avoid having to
2447 * handle that later.
2449 /* Only go through if we didn't race with anybody else... */
2450 if (likely(pte_same(*page_table, orig_pte))) {
2451 flush_icache_page(vma, page);
2452 entry = mk_pte(page, vma->vm_page_prot);
2453 if (flags & FAULT_FLAG_WRITE)
2454 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2455 set_pte_at(mm, address, page_table, entry);
2457 inc_mm_counter(mm, anon_rss);
2458 lru_cache_add_active(page);
2459 page_add_new_anon_rmap(page, vma, address);
2461 inc_mm_counter(mm, file_rss);
2462 page_add_file_rmap(page);
2463 if (flags & FAULT_FLAG_WRITE) {
2465 get_page(dirty_page);
2469 /* no need to invalidate: a not-present page won't be cached */
2470 update_mmu_cache(vma, address, entry);
2472 mem_cgroup_uncharge_page(page);
2474 page_cache_release(page);
2476 anon = 1; /* no anon but release faulted_page */
2479 pte_unmap_unlock(page_table, ptl);
2482 unlock_page(vmf.page);
2485 page_cache_release(vmf.page);
2486 else if (dirty_page) {
2488 file_update_time(vma->vm_file);
2490 set_page_dirty_balance(dirty_page, page_mkwrite);
2491 put_page(dirty_page);
2497 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2498 unsigned long address, pte_t *page_table, pmd_t *pmd,
2499 int write_access, pte_t orig_pte)
2501 pgoff_t pgoff = (((address & PAGE_MASK)
2502 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2503 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2505 pte_unmap(page_table);
2506 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2510 * Fault of a previously existing named mapping. Repopulate the pte
2511 * from the encoded file_pte if possible. This enables swappable
2514 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2515 * but allow concurrent faults), and pte mapped but not yet locked.
2516 * We return with mmap_sem still held, but pte unmapped and unlocked.
2518 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2519 unsigned long address, pte_t *page_table, pmd_t *pmd,
2520 int write_access, pte_t orig_pte)
2522 unsigned int flags = FAULT_FLAG_NONLINEAR |
2523 (write_access ? FAULT_FLAG_WRITE : 0);
2526 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2529 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2530 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2532 * Page table corrupted: show pte and kill process.
2534 print_bad_pte(vma, orig_pte, address);
2535 return VM_FAULT_OOM;
2538 pgoff = pte_to_pgoff(orig_pte);
2539 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2543 * These routines also need to handle stuff like marking pages dirty
2544 * and/or accessed for architectures that don't do it in hardware (most
2545 * RISC architectures). The early dirtying is also good on the i386.
2547 * There is also a hook called "update_mmu_cache()" that architectures
2548 * with external mmu caches can use to update those (ie the Sparc or
2549 * PowerPC hashed page tables that act as extended TLBs).
2551 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2552 * but allow concurrent faults), and pte mapped but not yet locked.
2553 * We return with mmap_sem still held, but pte unmapped and unlocked.
2555 static inline int handle_pte_fault(struct mm_struct *mm,
2556 struct vm_area_struct *vma, unsigned long address,
2557 pte_t *pte, pmd_t *pmd, int write_access)
2563 if (!pte_present(entry)) {
2564 if (pte_none(entry)) {
2566 if (likely(vma->vm_ops->fault))
2567 return do_linear_fault(mm, vma, address,
2568 pte, pmd, write_access, entry);
2570 return do_anonymous_page(mm, vma, address,
2571 pte, pmd, write_access);
2573 if (pte_file(entry))
2574 return do_nonlinear_fault(mm, vma, address,
2575 pte, pmd, write_access, entry);
2576 return do_swap_page(mm, vma, address,
2577 pte, pmd, write_access, entry);
2580 ptl = pte_lockptr(mm, pmd);
2582 if (unlikely(!pte_same(*pte, entry)))
2585 if (!pte_write(entry))
2586 return do_wp_page(mm, vma, address,
2587 pte, pmd, ptl, entry);
2588 entry = pte_mkdirty(entry);
2590 entry = pte_mkyoung(entry);
2591 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2592 update_mmu_cache(vma, address, entry);
2595 * This is needed only for protection faults but the arch code
2596 * is not yet telling us if this is a protection fault or not.
2597 * This still avoids useless tlb flushes for .text page faults
2601 flush_tlb_page(vma, address);
2604 pte_unmap_unlock(pte, ptl);
2609 * By the time we get here, we already hold the mm semaphore
2611 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2612 unsigned long address, int write_access)
2619 __set_current_state(TASK_RUNNING);
2621 count_vm_event(PGFAULT);
2623 if (unlikely(is_vm_hugetlb_page(vma)))
2624 return hugetlb_fault(mm, vma, address, write_access);
2626 pgd = pgd_offset(mm, address);
2627 pud = pud_alloc(mm, pgd, address);
2629 return VM_FAULT_OOM;
2630 pmd = pmd_alloc(mm, pud, address);
2632 return VM_FAULT_OOM;
2633 pte = pte_alloc_map(mm, pmd, address);
2635 return VM_FAULT_OOM;
2637 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2640 #ifndef __PAGETABLE_PUD_FOLDED
2642 * Allocate page upper directory.
2643 * We've already handled the fast-path in-line.
2645 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2647 pud_t *new = pud_alloc_one(mm, address);
2651 smp_wmb(); /* See comment in __pte_alloc */
2653 spin_lock(&mm->page_table_lock);
2654 if (pgd_present(*pgd)) /* Another has populated it */
2657 pgd_populate(mm, pgd, new);
2658 spin_unlock(&mm->page_table_lock);
2661 #endif /* __PAGETABLE_PUD_FOLDED */
2663 #ifndef __PAGETABLE_PMD_FOLDED
2665 * Allocate page middle directory.
2666 * We've already handled the fast-path in-line.
2668 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2670 pmd_t *new = pmd_alloc_one(mm, address);
2674 smp_wmb(); /* See comment in __pte_alloc */
2676 spin_lock(&mm->page_table_lock);
2677 #ifndef __ARCH_HAS_4LEVEL_HACK
2678 if (pud_present(*pud)) /* Another has populated it */
2681 pud_populate(mm, pud, new);
2683 if (pgd_present(*pud)) /* Another has populated it */
2686 pgd_populate(mm, pud, new);
2687 #endif /* __ARCH_HAS_4LEVEL_HACK */
2688 spin_unlock(&mm->page_table_lock);
2691 #endif /* __PAGETABLE_PMD_FOLDED */
2693 int make_pages_present(unsigned long addr, unsigned long end)
2695 int ret, len, write;
2696 struct vm_area_struct * vma;
2698 vma = find_vma(current->mm, addr);
2701 write = (vma->vm_flags & VM_WRITE) != 0;
2702 BUG_ON(addr >= end);
2703 BUG_ON(end > vma->vm_end);
2704 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2705 ret = get_user_pages(current, current->mm, addr,
2706 len, write, 0, NULL, NULL);
2709 return ret == len ? 0 : -1;
2712 #if !defined(__HAVE_ARCH_GATE_AREA)
2714 #if defined(AT_SYSINFO_EHDR)
2715 static struct vm_area_struct gate_vma;
2717 static int __init gate_vma_init(void)
2719 gate_vma.vm_mm = NULL;
2720 gate_vma.vm_start = FIXADDR_USER_START;
2721 gate_vma.vm_end = FIXADDR_USER_END;
2722 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2723 gate_vma.vm_page_prot = __P101;
2725 * Make sure the vDSO gets into every core dump.
2726 * Dumping its contents makes post-mortem fully interpretable later
2727 * without matching up the same kernel and hardware config to see
2728 * what PC values meant.
2730 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2733 __initcall(gate_vma_init);
2736 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2738 #ifdef AT_SYSINFO_EHDR
2745 int in_gate_area_no_task(unsigned long addr)
2747 #ifdef AT_SYSINFO_EHDR
2748 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2754 #endif /* __HAVE_ARCH_GATE_AREA */
2756 #ifdef CONFIG_HAVE_IOREMAP_PROT
2757 static resource_size_t follow_phys(struct vm_area_struct *vma,
2758 unsigned long address, unsigned int flags,
2759 unsigned long *prot)
2766 resource_size_t phys_addr = 0;
2767 struct mm_struct *mm = vma->vm_mm;
2769 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2771 pgd = pgd_offset(mm, address);
2772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2775 pud = pud_offset(pgd, address);
2776 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2779 pmd = pmd_offset(pud, address);
2780 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2783 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2787 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2792 if (!pte_present(pte))
2794 if ((flags & FOLL_WRITE) && !pte_write(pte))
2796 phys_addr = pte_pfn(pte);
2797 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2799 *prot = pgprot_val(pte_pgprot(pte));
2802 pte_unmap_unlock(ptep, ptl);
2809 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2810 void *buf, int len, int write)
2812 resource_size_t phys_addr;
2813 unsigned long prot = 0;
2815 int offset = addr & (PAGE_SIZE-1);
2817 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2820 phys_addr = follow_phys(vma, addr, write, &prot);
2825 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2827 memcpy_toio(maddr + offset, buf, len);
2829 memcpy_fromio(buf, maddr + offset, len);
2837 * Access another process' address space.
2838 * Source/target buffer must be kernel space,
2839 * Do not walk the page table directly, use get_user_pages
2841 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2843 struct mm_struct *mm;
2844 struct vm_area_struct *vma;
2845 void *old_buf = buf;
2847 mm = get_task_mm(tsk);
2851 down_read(&mm->mmap_sem);
2852 /* ignore errors, just check how much was successfully transferred */
2854 int bytes, ret, offset;
2856 struct page *page = NULL;
2858 ret = get_user_pages(tsk, mm, addr, 1,
2859 write, 1, &page, &vma);
2862 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2863 * we can access using slightly different code.
2865 #ifdef CONFIG_HAVE_IOREMAP_PROT
2866 vma = find_vma(mm, addr);
2869 if (vma->vm_ops && vma->vm_ops->access)
2870 ret = vma->vm_ops->access(vma, addr, buf,
2878 offset = addr & (PAGE_SIZE-1);
2879 if (bytes > PAGE_SIZE-offset)
2880 bytes = PAGE_SIZE-offset;
2884 copy_to_user_page(vma, page, addr,
2885 maddr + offset, buf, bytes);
2886 set_page_dirty_lock(page);
2888 copy_from_user_page(vma, page, addr,
2889 buf, maddr + offset, bytes);
2892 page_cache_release(page);
2898 up_read(&mm->mmap_sem);
2901 return buf - old_buf;
2905 * Print the name of a VMA.
2907 void print_vma_addr(char *prefix, unsigned long ip)
2909 struct mm_struct *mm = current->mm;
2910 struct vm_area_struct *vma;
2913 * Do not print if we are in atomic
2914 * contexts (in exception stacks, etc.):
2916 if (preempt_count())
2919 down_read(&mm->mmap_sem);
2920 vma = find_vma(mm, ip);
2921 if (vma && vma->vm_file) {
2922 struct file *f = vma->vm_file;
2923 char *buf = (char *)__get_free_page(GFP_KERNEL);
2927 p = d_path(&f->f_path, buf, PAGE_SIZE);
2930 s = strrchr(p, '/');
2933 printk("%s%s[%lx+%lx]", prefix, p,
2935 vma->vm_end - vma->vm_start);
2936 free_page((unsigned long)buf);
2939 up_read(¤t->mm->mmap_sem);