4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
69 #include <asm/of_device.h>
70 #include <asm/of_platform.h>
73 #define PFX "ipmi_si: "
75 /* Measure times between events in the driver. */
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC 10000
80 #define SI_USEC_PER_JIFFY (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR 0x01
87 #define IPMI_BMC_EVT_MSG_INTR 0x02
88 #define IPMI_BMC_EVT_MSG_BUFF 0x04
89 #define IPMI_BMC_SYS_LOG 0x08
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
98 SI_ENABLE_INTERRUPTS1,
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
111 SI_KCS, SI_SMIC, SI_BT
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct device_driver ipmi_driver =
120 .bus = &platform_bus_type
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
137 /* Used to handle the various types of I/O that can occur with
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
158 #define RECEIVE_MSG_AVAIL 0x01
159 #define EVENT_MSG_BUFFER_FULL 0x02
160 #define WDT_PRE_TIMEOUT_INT 0x08
161 #define OEM0_DATA_AVAIL 0x20
162 #define OEM1_DATA_AVAIL 0x40
163 #define OEM2_DATA_AVAIL 0x80
164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
167 unsigned char msg_flags;
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
176 int run_to_completion;
178 /* The I/O port of an SI interface. */
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
186 /* zero if no irq; */
189 /* The timer for this si. */
190 struct timer_list si_timer;
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
195 /* Used to gracefully stop the timer without race conditions. */
196 atomic_t stop_operation;
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
202 int interrupt_disabled;
204 /* From the get device id response... */
205 struct ipmi_device_id device_id;
207 /* Driver model stuff. */
209 struct platform_device *pdev;
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
233 struct task_struct *thread;
235 struct list_head link;
238 #define SI_MAX_PARMS 4
240 static int force_kipmid[SI_MAX_PARMS];
241 static int num_force_kipmid;
243 static int unload_when_empty = 1;
245 static int try_smi_init(struct smi_info *smi);
246 static void cleanup_one_si(struct smi_info *to_clean);
248 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
249 static int register_xaction_notifier(struct notifier_block * nb)
251 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
254 static void deliver_recv_msg(struct smi_info *smi_info,
255 struct ipmi_smi_msg *msg)
257 /* Deliver the message to the upper layer with the lock
259 spin_unlock(&(smi_info->si_lock));
260 ipmi_smi_msg_received(smi_info->intf, msg);
261 spin_lock(&(smi_info->si_lock));
264 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
266 struct ipmi_smi_msg *msg = smi_info->curr_msg;
268 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
269 cCode = IPMI_ERR_UNSPECIFIED;
270 /* else use it as is */
272 /* Make it a reponse */
273 msg->rsp[0] = msg->data[0] | 4;
274 msg->rsp[1] = msg->data[1];
278 smi_info->curr_msg = NULL;
279 deliver_recv_msg(smi_info, msg);
282 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
285 struct list_head *entry = NULL;
290 /* No need to save flags, we aleady have interrupts off and we
291 already hold the SMI lock. */
292 spin_lock(&(smi_info->msg_lock));
294 /* Pick the high priority queue first. */
295 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
296 entry = smi_info->hp_xmit_msgs.next;
297 } else if (!list_empty(&(smi_info->xmit_msgs))) {
298 entry = smi_info->xmit_msgs.next;
302 smi_info->curr_msg = NULL;
308 smi_info->curr_msg = list_entry(entry,
313 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
315 err = atomic_notifier_call_chain(&xaction_notifier_list,
317 if (err & NOTIFY_STOP_MASK) {
318 rv = SI_SM_CALL_WITHOUT_DELAY;
321 err = smi_info->handlers->start_transaction(
323 smi_info->curr_msg->data,
324 smi_info->curr_msg->data_size);
326 return_hosed_msg(smi_info, err);
329 rv = SI_SM_CALL_WITHOUT_DELAY;
332 spin_unlock(&(smi_info->msg_lock));
337 static void start_enable_irq(struct smi_info *smi_info)
339 unsigned char msg[2];
341 /* If we are enabling interrupts, we have to tell the
343 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
344 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
347 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
350 static void start_disable_irq(struct smi_info *smi_info)
352 unsigned char msg[2];
354 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
355 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
357 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
358 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
361 static void start_clear_flags(struct smi_info *smi_info)
363 unsigned char msg[3];
365 /* Make sure the watchdog pre-timeout flag is not set at startup. */
366 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
367 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
368 msg[2] = WDT_PRE_TIMEOUT_INT;
370 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
371 smi_info->si_state = SI_CLEARING_FLAGS;
374 /* When we have a situtaion where we run out of memory and cannot
375 allocate messages, we just leave them in the BMC and run the system
376 polled until we can allocate some memory. Once we have some
377 memory, we will re-enable the interrupt. */
378 static inline void disable_si_irq(struct smi_info *smi_info)
380 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
381 start_disable_irq(smi_info);
382 smi_info->interrupt_disabled = 1;
386 static inline void enable_si_irq(struct smi_info *smi_info)
388 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
389 start_enable_irq(smi_info);
390 smi_info->interrupt_disabled = 0;
394 static void handle_flags(struct smi_info *smi_info)
397 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
398 /* Watchdog pre-timeout */
399 spin_lock(&smi_info->count_lock);
400 smi_info->watchdog_pretimeouts++;
401 spin_unlock(&smi_info->count_lock);
403 start_clear_flags(smi_info);
404 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
405 spin_unlock(&(smi_info->si_lock));
406 ipmi_smi_watchdog_pretimeout(smi_info->intf);
407 spin_lock(&(smi_info->si_lock));
408 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
409 /* Messages available. */
410 smi_info->curr_msg = ipmi_alloc_smi_msg();
411 if (!smi_info->curr_msg) {
412 disable_si_irq(smi_info);
413 smi_info->si_state = SI_NORMAL;
416 enable_si_irq(smi_info);
418 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
420 smi_info->curr_msg->data_size = 2;
422 smi_info->handlers->start_transaction(
424 smi_info->curr_msg->data,
425 smi_info->curr_msg->data_size);
426 smi_info->si_state = SI_GETTING_MESSAGES;
427 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
428 /* Events available. */
429 smi_info->curr_msg = ipmi_alloc_smi_msg();
430 if (!smi_info->curr_msg) {
431 disable_si_irq(smi_info);
432 smi_info->si_state = SI_NORMAL;
435 enable_si_irq(smi_info);
437 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
439 smi_info->curr_msg->data_size = 2;
441 smi_info->handlers->start_transaction(
443 smi_info->curr_msg->data,
444 smi_info->curr_msg->data_size);
445 smi_info->si_state = SI_GETTING_EVENTS;
446 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
447 smi_info->oem_data_avail_handler) {
448 if (smi_info->oem_data_avail_handler(smi_info))
451 smi_info->si_state = SI_NORMAL;
455 static void handle_transaction_done(struct smi_info *smi_info)
457 struct ipmi_smi_msg *msg;
462 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
464 switch (smi_info->si_state) {
466 if (!smi_info->curr_msg)
469 smi_info->curr_msg->rsp_size
470 = smi_info->handlers->get_result(
472 smi_info->curr_msg->rsp,
473 IPMI_MAX_MSG_LENGTH);
475 /* Do this here becase deliver_recv_msg() releases the
476 lock, and a new message can be put in during the
477 time the lock is released. */
478 msg = smi_info->curr_msg;
479 smi_info->curr_msg = NULL;
480 deliver_recv_msg(smi_info, msg);
483 case SI_GETTING_FLAGS:
485 unsigned char msg[4];
488 /* We got the flags from the SMI, now handle them. */
489 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
491 /* Error fetching flags, just give up for
493 smi_info->si_state = SI_NORMAL;
494 } else if (len < 4) {
495 /* Hmm, no flags. That's technically illegal, but
496 don't use uninitialized data. */
497 smi_info->si_state = SI_NORMAL;
499 smi_info->msg_flags = msg[3];
500 handle_flags(smi_info);
505 case SI_CLEARING_FLAGS:
506 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
508 unsigned char msg[3];
510 /* We cleared the flags. */
511 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
513 /* Error clearing flags */
515 "ipmi_si: Error clearing flags: %2.2x\n",
518 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
519 start_enable_irq(smi_info);
521 smi_info->si_state = SI_NORMAL;
525 case SI_GETTING_EVENTS:
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
533 /* Do this here becase deliver_recv_msg() releases the
534 lock, and a new message can be put in during the
535 time the lock is released. */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 if (msg->rsp[2] != 0) {
539 /* Error getting event, probably done. */
542 /* Take off the event flag. */
543 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
544 handle_flags(smi_info);
546 spin_lock(&smi_info->count_lock);
548 spin_unlock(&smi_info->count_lock);
550 /* Do this before we deliver the message
551 because delivering the message releases the
552 lock and something else can mess with the
554 handle_flags(smi_info);
556 deliver_recv_msg(smi_info, msg);
561 case SI_GETTING_MESSAGES:
563 smi_info->curr_msg->rsp_size
564 = smi_info->handlers->get_result(
566 smi_info->curr_msg->rsp,
567 IPMI_MAX_MSG_LENGTH);
569 /* Do this here becase deliver_recv_msg() releases the
570 lock, and a new message can be put in during the
571 time the lock is released. */
572 msg = smi_info->curr_msg;
573 smi_info->curr_msg = NULL;
574 if (msg->rsp[2] != 0) {
575 /* Error getting event, probably done. */
578 /* Take off the msg flag. */
579 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
580 handle_flags(smi_info);
582 spin_lock(&smi_info->count_lock);
583 smi_info->incoming_messages++;
584 spin_unlock(&smi_info->count_lock);
586 /* Do this before we deliver the message
587 because delivering the message releases the
588 lock and something else can mess with the
590 handle_flags(smi_info);
592 deliver_recv_msg(smi_info, msg);
597 case SI_ENABLE_INTERRUPTS1:
599 unsigned char msg[4];
601 /* We got the flags from the SMI, now handle them. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
605 "ipmi_si: Could not enable interrupts"
606 ", failed get, using polled mode.\n");
607 smi_info->si_state = SI_NORMAL;
609 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
610 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
612 IPMI_BMC_RCV_MSG_INTR |
613 IPMI_BMC_EVT_MSG_INTR);
614 smi_info->handlers->start_transaction(
615 smi_info->si_sm, msg, 3);
616 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
621 case SI_ENABLE_INTERRUPTS2:
623 unsigned char msg[4];
625 /* We got the flags from the SMI, now handle them. */
626 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
629 "ipmi_si: Could not enable interrupts"
630 ", failed set, using polled mode.\n");
632 smi_info->si_state = SI_NORMAL;
636 case SI_DISABLE_INTERRUPTS1:
638 unsigned char msg[4];
640 /* We got the flags from the SMI, now handle them. */
641 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
644 "ipmi_si: Could not disable interrupts"
646 smi_info->si_state = SI_NORMAL;
648 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
649 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
651 ~(IPMI_BMC_RCV_MSG_INTR |
652 IPMI_BMC_EVT_MSG_INTR));
653 smi_info->handlers->start_transaction(
654 smi_info->si_sm, msg, 3);
655 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
660 case SI_DISABLE_INTERRUPTS2:
662 unsigned char msg[4];
664 /* We got the flags from the SMI, now handle them. */
665 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
668 "ipmi_si: Could not disable interrupts"
671 smi_info->si_state = SI_NORMAL;
677 /* Called on timeouts and events. Timeouts should pass the elapsed
678 time, interrupts should pass in zero. */
679 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
682 enum si_sm_result si_sm_result;
685 /* There used to be a loop here that waited a little while
686 (around 25us) before giving up. That turned out to be
687 pointless, the minimum delays I was seeing were in the 300us
688 range, which is far too long to wait in an interrupt. So
689 we just run until the state machine tells us something
690 happened or it needs a delay. */
691 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
693 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
695 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
698 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
700 spin_lock(&smi_info->count_lock);
701 smi_info->complete_transactions++;
702 spin_unlock(&smi_info->count_lock);
704 handle_transaction_done(smi_info);
705 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
707 else if (si_sm_result == SI_SM_HOSED)
709 spin_lock(&smi_info->count_lock);
710 smi_info->hosed_count++;
711 spin_unlock(&smi_info->count_lock);
713 /* Do the before return_hosed_msg, because that
714 releases the lock. */
715 smi_info->si_state = SI_NORMAL;
716 if (smi_info->curr_msg != NULL) {
717 /* If we were handling a user message, format
718 a response to send to the upper layer to
719 tell it about the error. */
720 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
722 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
725 /* We prefer handling attn over new messages. */
726 if (si_sm_result == SI_SM_ATTN)
728 unsigned char msg[2];
730 spin_lock(&smi_info->count_lock);
731 smi_info->attentions++;
732 spin_unlock(&smi_info->count_lock);
734 /* Got a attn, send down a get message flags to see
735 what's causing it. It would be better to handle
736 this in the upper layer, but due to the way
737 interrupts work with the SMI, that's not really
739 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
740 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
742 smi_info->handlers->start_transaction(
743 smi_info->si_sm, msg, 2);
744 smi_info->si_state = SI_GETTING_FLAGS;
748 /* If we are currently idle, try to start the next message. */
749 if (si_sm_result == SI_SM_IDLE) {
750 spin_lock(&smi_info->count_lock);
752 spin_unlock(&smi_info->count_lock);
754 si_sm_result = start_next_msg(smi_info);
755 if (si_sm_result != SI_SM_IDLE)
759 if ((si_sm_result == SI_SM_IDLE)
760 && (atomic_read(&smi_info->req_events)))
762 /* We are idle and the upper layer requested that I fetch
764 atomic_set(&smi_info->req_events, 0);
766 smi_info->curr_msg = ipmi_alloc_smi_msg();
767 if (!smi_info->curr_msg)
770 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
771 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
772 smi_info->curr_msg->data_size = 2;
774 smi_info->handlers->start_transaction(
776 smi_info->curr_msg->data,
777 smi_info->curr_msg->data_size);
778 smi_info->si_state = SI_GETTING_EVENTS;
785 static void sender(void *send_info,
786 struct ipmi_smi_msg *msg,
789 struct smi_info *smi_info = send_info;
790 enum si_sm_result result;
796 if (atomic_read(&smi_info->stop_operation)) {
797 msg->rsp[0] = msg->data[0] | 4;
798 msg->rsp[1] = msg->data[1];
799 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
801 deliver_recv_msg(smi_info, msg);
805 spin_lock_irqsave(&(smi_info->msg_lock), flags);
808 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
811 if (smi_info->run_to_completion) {
812 /* If we are running to completion, then throw it in
813 the list and run transactions until everything is
814 clear. Priority doesn't matter here. */
815 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
817 /* We have to release the msg lock and claim the smi
818 lock in this case, because of race conditions. */
819 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
821 spin_lock_irqsave(&(smi_info->si_lock), flags);
822 result = smi_event_handler(smi_info, 0);
823 while (result != SI_SM_IDLE) {
824 udelay(SI_SHORT_TIMEOUT_USEC);
825 result = smi_event_handler(smi_info,
826 SI_SHORT_TIMEOUT_USEC);
828 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
832 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
834 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
837 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
839 spin_lock_irqsave(&(smi_info->si_lock), flags);
840 if ((smi_info->si_state == SI_NORMAL)
841 && (smi_info->curr_msg == NULL))
843 start_next_msg(smi_info);
845 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
848 static void set_run_to_completion(void *send_info, int i_run_to_completion)
850 struct smi_info *smi_info = send_info;
851 enum si_sm_result result;
854 spin_lock_irqsave(&(smi_info->si_lock), flags);
856 smi_info->run_to_completion = i_run_to_completion;
857 if (i_run_to_completion) {
858 result = smi_event_handler(smi_info, 0);
859 while (result != SI_SM_IDLE) {
860 udelay(SI_SHORT_TIMEOUT_USEC);
861 result = smi_event_handler(smi_info,
862 SI_SHORT_TIMEOUT_USEC);
866 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
869 static int ipmi_thread(void *data)
871 struct smi_info *smi_info = data;
873 enum si_sm_result smi_result;
875 set_user_nice(current, 19);
876 while (!kthread_should_stop()) {
877 spin_lock_irqsave(&(smi_info->si_lock), flags);
878 smi_result = smi_event_handler(smi_info, 0);
879 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
880 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
883 else if (smi_result == SI_SM_CALL_WITH_DELAY)
886 schedule_timeout_interruptible(1);
892 static void poll(void *send_info)
894 struct smi_info *smi_info = send_info;
897 * Make sure there is some delay in the poll loop so we can
898 * drive time forward and timeout things.
901 smi_event_handler(smi_info, 10);
904 static void request_events(void *send_info)
906 struct smi_info *smi_info = send_info;
908 if (atomic_read(&smi_info->stop_operation))
911 atomic_set(&smi_info->req_events, 1);
914 static int initialized;
916 static void smi_timeout(unsigned long data)
918 struct smi_info *smi_info = (struct smi_info *) data;
919 enum si_sm_result smi_result;
921 unsigned long jiffies_now;
927 spin_lock_irqsave(&(smi_info->si_lock), flags);
930 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
932 jiffies_now = jiffies;
933 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
934 * SI_USEC_PER_JIFFY);
935 smi_result = smi_event_handler(smi_info, time_diff);
937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
939 smi_info->last_timeout_jiffies = jiffies_now;
941 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
942 /* Running with interrupts, only do long timeouts. */
943 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
944 spin_lock_irqsave(&smi_info->count_lock, flags);
945 smi_info->long_timeouts++;
946 spin_unlock_irqrestore(&smi_info->count_lock, flags);
950 /* If the state machine asks for a short delay, then shorten
951 the timer timeout. */
952 if (smi_result == SI_SM_CALL_WITH_DELAY) {
953 spin_lock_irqsave(&smi_info->count_lock, flags);
954 smi_info->short_timeouts++;
955 spin_unlock_irqrestore(&smi_info->count_lock, flags);
956 smi_info->si_timer.expires = jiffies + 1;
958 spin_lock_irqsave(&smi_info->count_lock, flags);
959 smi_info->long_timeouts++;
960 spin_unlock_irqrestore(&smi_info->count_lock, flags);
961 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
965 add_timer(&(smi_info->si_timer));
968 static irqreturn_t si_irq_handler(int irq, void *data)
970 struct smi_info *smi_info = data;
976 spin_lock_irqsave(&(smi_info->si_lock), flags);
978 spin_lock(&smi_info->count_lock);
979 smi_info->interrupts++;
980 spin_unlock(&smi_info->count_lock);
984 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
986 smi_event_handler(smi_info, 0);
987 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
991 static irqreturn_t si_bt_irq_handler(int irq, void *data)
993 struct smi_info *smi_info = data;
994 /* We need to clear the IRQ flag for the BT interface. */
995 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
996 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
997 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
998 return si_irq_handler(irq, data);
1001 static int smi_start_processing(void *send_info,
1004 struct smi_info *new_smi = send_info;
1007 new_smi->intf = intf;
1009 /* Set up the timer that drives the interface. */
1010 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1011 new_smi->last_timeout_jiffies = jiffies;
1012 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1015 * Check if the user forcefully enabled the daemon.
1017 if (new_smi->intf_num < num_force_kipmid)
1018 enable = force_kipmid[new_smi->intf_num];
1020 * The BT interface is efficient enough to not need a thread,
1021 * and there is no need for a thread if we have interrupts.
1023 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1027 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1028 "kipmi%d", new_smi->intf_num);
1029 if (IS_ERR(new_smi->thread)) {
1030 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1031 " kernel thread due to error %ld, only using"
1032 " timers to drive the interface\n",
1033 PTR_ERR(new_smi->thread));
1034 new_smi->thread = NULL;
1041 static void set_maintenance_mode(void *send_info, int enable)
1043 struct smi_info *smi_info = send_info;
1046 atomic_set(&smi_info->req_events, 0);
1049 static struct ipmi_smi_handlers handlers =
1051 .owner = THIS_MODULE,
1052 .start_processing = smi_start_processing,
1054 .request_events = request_events,
1055 .set_maintenance_mode = set_maintenance_mode,
1056 .set_run_to_completion = set_run_to_completion,
1060 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1061 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1063 static LIST_HEAD(smi_infos);
1064 static DEFINE_MUTEX(smi_infos_lock);
1065 static int smi_num; /* Used to sequence the SMIs */
1067 #define DEFAULT_REGSPACING 1
1068 #define DEFAULT_REGSIZE 1
1070 static int si_trydefaults = 1;
1071 static char *si_type[SI_MAX_PARMS];
1072 #define MAX_SI_TYPE_STR 30
1073 static char si_type_str[MAX_SI_TYPE_STR];
1074 static unsigned long addrs[SI_MAX_PARMS];
1075 static int num_addrs;
1076 static unsigned int ports[SI_MAX_PARMS];
1077 static int num_ports;
1078 static int irqs[SI_MAX_PARMS];
1079 static int num_irqs;
1080 static int regspacings[SI_MAX_PARMS];
1081 static int num_regspacings;
1082 static int regsizes[SI_MAX_PARMS];
1083 static int num_regsizes;
1084 static int regshifts[SI_MAX_PARMS];
1085 static int num_regshifts;
1086 static int slave_addrs[SI_MAX_PARMS];
1087 static int num_slave_addrs;
1089 #define IPMI_IO_ADDR_SPACE 0
1090 #define IPMI_MEM_ADDR_SPACE 1
1091 static char *addr_space_to_str[] = { "i/o", "mem" };
1093 static int hotmod_handler(const char *val, struct kernel_param *kp);
1095 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1096 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1097 " Documentation/IPMI.txt in the kernel sources for the"
1100 module_param_named(trydefaults, si_trydefaults, bool, 0);
1101 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1102 " default scan of the KCS and SMIC interface at the standard"
1104 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1105 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1106 " interface separated by commas. The types are 'kcs',"
1107 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1108 " the first interface to kcs and the second to bt");
1109 module_param_array(addrs, long, &num_addrs, 0);
1110 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1111 " addresses separated by commas. Only use if an interface"
1112 " is in memory. Otherwise, set it to zero or leave"
1114 module_param_array(ports, int, &num_ports, 0);
1115 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1116 " addresses separated by commas. Only use if an interface"
1117 " is a port. Otherwise, set it to zero or leave"
1119 module_param_array(irqs, int, &num_irqs, 0);
1120 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1121 " addresses separated by commas. Only use if an interface"
1122 " has an interrupt. Otherwise, set it to zero or leave"
1124 module_param_array(regspacings, int, &num_regspacings, 0);
1125 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1126 " and each successive register used by the interface. For"
1127 " instance, if the start address is 0xca2 and the spacing"
1128 " is 2, then the second address is at 0xca4. Defaults"
1130 module_param_array(regsizes, int, &num_regsizes, 0);
1131 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1132 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1133 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1134 " the 8-bit IPMI register has to be read from a larger"
1136 module_param_array(regshifts, int, &num_regshifts, 0);
1137 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1138 " IPMI register, in bits. For instance, if the data"
1139 " is read from a 32-bit word and the IPMI data is in"
1140 " bit 8-15, then the shift would be 8");
1141 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1142 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1143 " the controller. Normally this is 0x20, but can be"
1144 " overridden by this parm. This is an array indexed"
1145 " by interface number.");
1146 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1147 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1148 " disabled(0). Normally the IPMI driver auto-detects"
1149 " this, but the value may be overridden by this parm.");
1150 module_param(unload_when_empty, int, 0);
1151 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1152 " specified or found, default is 1. Setting to 0"
1153 " is useful for hot add of devices using hotmod.");
1156 static void std_irq_cleanup(struct smi_info *info)
1158 if (info->si_type == SI_BT)
1159 /* Disable the interrupt in the BT interface. */
1160 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1161 free_irq(info->irq, info);
1164 static int std_irq_setup(struct smi_info *info)
1171 if (info->si_type == SI_BT) {
1172 rv = request_irq(info->irq,
1174 IRQF_SHARED | IRQF_DISABLED,
1178 /* Enable the interrupt in the BT interface. */
1179 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1180 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1182 rv = request_irq(info->irq,
1184 IRQF_SHARED | IRQF_DISABLED,
1189 "ipmi_si: %s unable to claim interrupt %d,"
1190 " running polled\n",
1191 DEVICE_NAME, info->irq);
1194 info->irq_cleanup = std_irq_cleanup;
1195 printk(" Using irq %d\n", info->irq);
1201 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1203 unsigned int addr = io->addr_data;
1205 return inb(addr + (offset * io->regspacing));
1208 static void port_outb(struct si_sm_io *io, unsigned int offset,
1211 unsigned int addr = io->addr_data;
1213 outb(b, addr + (offset * io->regspacing));
1216 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1218 unsigned int addr = io->addr_data;
1220 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1223 static void port_outw(struct si_sm_io *io, unsigned int offset,
1226 unsigned int addr = io->addr_data;
1228 outw(b << io->regshift, addr + (offset * io->regspacing));
1231 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1233 unsigned int addr = io->addr_data;
1235 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1238 static void port_outl(struct si_sm_io *io, unsigned int offset,
1241 unsigned int addr = io->addr_data;
1243 outl(b << io->regshift, addr+(offset * io->regspacing));
1246 static void port_cleanup(struct smi_info *info)
1248 unsigned int addr = info->io.addr_data;
1252 for (idx = 0; idx < info->io_size; idx++) {
1253 release_region(addr + idx * info->io.regspacing,
1259 static int port_setup(struct smi_info *info)
1261 unsigned int addr = info->io.addr_data;
1267 info->io_cleanup = port_cleanup;
1269 /* Figure out the actual inb/inw/inl/etc routine to use based
1270 upon the register size. */
1271 switch (info->io.regsize) {
1273 info->io.inputb = port_inb;
1274 info->io.outputb = port_outb;
1277 info->io.inputb = port_inw;
1278 info->io.outputb = port_outw;
1281 info->io.inputb = port_inl;
1282 info->io.outputb = port_outl;
1285 printk("ipmi_si: Invalid register size: %d\n",
1290 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1291 * tables. This causes problems when trying to register the
1292 * entire I/O region. Therefore we must register each I/O
1295 for (idx = 0; idx < info->io_size; idx++) {
1296 if (request_region(addr + idx * info->io.regspacing,
1297 info->io.regsize, DEVICE_NAME) == NULL) {
1298 /* Undo allocations */
1300 release_region(addr + idx * info->io.regspacing,
1309 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1311 return readb((io->addr)+(offset * io->regspacing));
1314 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1317 writeb(b, (io->addr)+(offset * io->regspacing));
1320 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1322 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1326 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1329 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1332 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1334 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1338 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1341 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1345 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1347 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1351 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1354 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1358 static void mem_cleanup(struct smi_info *info)
1360 unsigned long addr = info->io.addr_data;
1363 if (info->io.addr) {
1364 iounmap(info->io.addr);
1366 mapsize = ((info->io_size * info->io.regspacing)
1367 - (info->io.regspacing - info->io.regsize));
1369 release_mem_region(addr, mapsize);
1373 static int mem_setup(struct smi_info *info)
1375 unsigned long addr = info->io.addr_data;
1381 info->io_cleanup = mem_cleanup;
1383 /* Figure out the actual readb/readw/readl/etc routine to use based
1384 upon the register size. */
1385 switch (info->io.regsize) {
1387 info->io.inputb = intf_mem_inb;
1388 info->io.outputb = intf_mem_outb;
1391 info->io.inputb = intf_mem_inw;
1392 info->io.outputb = intf_mem_outw;
1395 info->io.inputb = intf_mem_inl;
1396 info->io.outputb = intf_mem_outl;
1400 info->io.inputb = mem_inq;
1401 info->io.outputb = mem_outq;
1405 printk("ipmi_si: Invalid register size: %d\n",
1410 /* Calculate the total amount of memory to claim. This is an
1411 * unusual looking calculation, but it avoids claiming any
1412 * more memory than it has to. It will claim everything
1413 * between the first address to the end of the last full
1415 mapsize = ((info->io_size * info->io.regspacing)
1416 - (info->io.regspacing - info->io.regsize));
1418 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1421 info->io.addr = ioremap(addr, mapsize);
1422 if (info->io.addr == NULL) {
1423 release_mem_region(addr, mapsize);
1430 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1431 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1439 enum hotmod_op { HM_ADD, HM_REMOVE };
1440 struct hotmod_vals {
1444 static struct hotmod_vals hotmod_ops[] = {
1446 { "remove", HM_REMOVE },
1449 static struct hotmod_vals hotmod_si[] = {
1451 { "smic", SI_SMIC },
1455 static struct hotmod_vals hotmod_as[] = {
1456 { "mem", IPMI_MEM_ADDR_SPACE },
1457 { "i/o", IPMI_IO_ADDR_SPACE },
1461 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1466 s = strchr(*curr, ',');
1468 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1473 for (i = 0; hotmod_ops[i].name; i++) {
1474 if (strcmp(*curr, v[i].name) == 0) {
1481 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1485 static int check_hotmod_int_op(const char *curr, const char *option,
1486 const char *name, int *val)
1490 if (strcmp(curr, name) == 0) {
1492 printk(KERN_WARNING PFX
1493 "No option given for '%s'\n",
1497 *val = simple_strtoul(option, &n, 0);
1498 if ((*n != '\0') || (*option == '\0')) {
1499 printk(KERN_WARNING PFX
1500 "Bad option given for '%s'\n",
1509 static int hotmod_handler(const char *val, struct kernel_param *kp)
1511 char *str = kstrdup(val, GFP_KERNEL);
1513 char *next, *curr, *s, *n, *o;
1515 enum si_type si_type;
1525 struct smi_info *info;
1530 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1533 while ((ival >= 0) && isspace(str[ival])) {
1538 for (curr = str; curr; curr = next) {
1545 next = strchr(curr, ':');
1551 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1556 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1561 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1565 s = strchr(curr, ',');
1570 addr = simple_strtoul(curr, &n, 0);
1571 if ((*n != '\0') || (*curr == '\0')) {
1572 printk(KERN_WARNING PFX "Invalid hotmod address"
1579 s = strchr(curr, ',');
1584 o = strchr(curr, '=');
1589 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1594 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1599 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1604 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1609 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1616 printk(KERN_WARNING PFX
1617 "Invalid hotmod option '%s'\n",
1623 info = kzalloc(sizeof(*info), GFP_KERNEL);
1629 info->addr_source = "hotmod";
1630 info->si_type = si_type;
1631 info->io.addr_data = addr;
1632 info->io.addr_type = addr_space;
1633 if (addr_space == IPMI_MEM_ADDR_SPACE)
1634 info->io_setup = mem_setup;
1636 info->io_setup = port_setup;
1638 info->io.addr = NULL;
1639 info->io.regspacing = regspacing;
1640 if (!info->io.regspacing)
1641 info->io.regspacing = DEFAULT_REGSPACING;
1642 info->io.regsize = regsize;
1643 if (!info->io.regsize)
1644 info->io.regsize = DEFAULT_REGSPACING;
1645 info->io.regshift = regshift;
1648 info->irq_setup = std_irq_setup;
1649 info->slave_addr = ipmb;
1654 struct smi_info *e, *tmp_e;
1656 mutex_lock(&smi_infos_lock);
1657 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1658 if (e->io.addr_type != addr_space)
1660 if (e->si_type != si_type)
1662 if (e->io.addr_data == addr)
1665 mutex_unlock(&smi_infos_lock);
1674 static __devinit void hardcode_find_bmc(void)
1677 struct smi_info *info;
1679 for (i = 0; i < SI_MAX_PARMS; i++) {
1680 if (!ports[i] && !addrs[i])
1683 info = kzalloc(sizeof(*info), GFP_KERNEL);
1687 info->addr_source = "hardcoded";
1689 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1690 info->si_type = SI_KCS;
1691 } else if (strcmp(si_type[i], "smic") == 0) {
1692 info->si_type = SI_SMIC;
1693 } else if (strcmp(si_type[i], "bt") == 0) {
1694 info->si_type = SI_BT;
1697 "ipmi_si: Interface type specified "
1698 "for interface %d, was invalid: %s\n",
1706 info->io_setup = port_setup;
1707 info->io.addr_data = ports[i];
1708 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1709 } else if (addrs[i]) {
1711 info->io_setup = mem_setup;
1712 info->io.addr_data = addrs[i];
1713 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1716 "ipmi_si: Interface type specified "
1717 "for interface %d, "
1718 "but port and address were not set or "
1719 "set to zero.\n", i);
1724 info->io.addr = NULL;
1725 info->io.regspacing = regspacings[i];
1726 if (!info->io.regspacing)
1727 info->io.regspacing = DEFAULT_REGSPACING;
1728 info->io.regsize = regsizes[i];
1729 if (!info->io.regsize)
1730 info->io.regsize = DEFAULT_REGSPACING;
1731 info->io.regshift = regshifts[i];
1732 info->irq = irqs[i];
1734 info->irq_setup = std_irq_setup;
1742 #include <linux/acpi.h>
1744 /* Once we get an ACPI failure, we don't try any more, because we go
1745 through the tables sequentially. Once we don't find a table, there
1747 static int acpi_failure;
1749 /* For GPE-type interrupts. */
1750 static u32 ipmi_acpi_gpe(void *context)
1752 struct smi_info *smi_info = context;
1753 unsigned long flags;
1758 spin_lock_irqsave(&(smi_info->si_lock), flags);
1760 spin_lock(&smi_info->count_lock);
1761 smi_info->interrupts++;
1762 spin_unlock(&smi_info->count_lock);
1765 do_gettimeofday(&t);
1766 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1768 smi_event_handler(smi_info, 0);
1769 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1771 return ACPI_INTERRUPT_HANDLED;
1774 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1779 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1782 static int acpi_gpe_irq_setup(struct smi_info *info)
1789 /* FIXME - is level triggered right? */
1790 status = acpi_install_gpe_handler(NULL,
1792 ACPI_GPE_LEVEL_TRIGGERED,
1795 if (status != AE_OK) {
1797 "ipmi_si: %s unable to claim ACPI GPE %d,"
1798 " running polled\n",
1799 DEVICE_NAME, info->irq);
1803 info->irq_cleanup = acpi_gpe_irq_cleanup;
1804 printk(" Using ACPI GPE %d\n", info->irq);
1811 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1822 s8 CreatorRevision[4];
1825 s16 SpecificationRevision;
1828 * Bit 0 - SCI interrupt supported
1829 * Bit 1 - I/O APIC/SAPIC
1833 /* If bit 0 of InterruptType is set, then this is the SCI
1834 interrupt in the GPEx_STS register. */
1839 /* If bit 1 of InterruptType is set, then this is the I/O
1840 APIC/SAPIC interrupt. */
1841 u32 GlobalSystemInterrupt;
1843 /* The actual register address. */
1844 struct acpi_generic_address addr;
1848 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1851 static __devinit int try_init_acpi(struct SPMITable *spmi)
1853 struct smi_info *info;
1856 if (spmi->IPMIlegacy != 1) {
1857 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1861 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1862 addr_space = IPMI_MEM_ADDR_SPACE;
1864 addr_space = IPMI_IO_ADDR_SPACE;
1866 info = kzalloc(sizeof(*info), GFP_KERNEL);
1868 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1872 info->addr_source = "ACPI";
1874 /* Figure out the interface type. */
1875 switch (spmi->InterfaceType)
1878 info->si_type = SI_KCS;
1881 info->si_type = SI_SMIC;
1884 info->si_type = SI_BT;
1887 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1888 spmi->InterfaceType);
1893 if (spmi->InterruptType & 1) {
1894 /* We've got a GPE interrupt. */
1895 info->irq = spmi->GPE;
1896 info->irq_setup = acpi_gpe_irq_setup;
1897 } else if (spmi->InterruptType & 2) {
1898 /* We've got an APIC/SAPIC interrupt. */
1899 info->irq = spmi->GlobalSystemInterrupt;
1900 info->irq_setup = std_irq_setup;
1902 /* Use the default interrupt setting. */
1904 info->irq_setup = NULL;
1907 if (spmi->addr.bit_width) {
1908 /* A (hopefully) properly formed register bit width. */
1909 info->io.regspacing = spmi->addr.bit_width / 8;
1911 info->io.regspacing = DEFAULT_REGSPACING;
1913 info->io.regsize = info->io.regspacing;
1914 info->io.regshift = spmi->addr.bit_offset;
1916 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1917 info->io_setup = mem_setup;
1918 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1919 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1920 info->io_setup = port_setup;
1921 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1924 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1927 info->io.addr_data = spmi->addr.address;
1934 static __devinit void acpi_find_bmc(void)
1937 struct SPMITable *spmi;
1946 for (i = 0; ; i++) {
1947 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
1948 (struct acpi_table_header **)&spmi);
1949 if (status != AE_OK)
1952 try_init_acpi(spmi);
1958 struct dmi_ipmi_data
1962 unsigned long base_addr;
1968 static int __devinit decode_dmi(struct dmi_header *dm,
1969 struct dmi_ipmi_data *dmi)
1971 u8 *data = (u8 *)dm;
1972 unsigned long base_addr;
1974 u8 len = dm->length;
1976 dmi->type = data[4];
1978 memcpy(&base_addr, data+8, sizeof(unsigned long));
1980 if (base_addr & 1) {
1982 base_addr &= 0xFFFE;
1983 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1987 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1989 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1991 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1993 dmi->irq = data[0x11];
1995 /* The top two bits of byte 0x10 hold the register spacing. */
1996 reg_spacing = (data[0x10] & 0xC0) >> 6;
1997 switch(reg_spacing){
1998 case 0x00: /* Byte boundaries */
2001 case 0x01: /* 32-bit boundaries */
2004 case 0x02: /* 16-byte boundaries */
2008 /* Some other interface, just ignore it. */
2013 /* Note that technically, the lower bit of the base
2014 * address should be 1 if the address is I/O and 0 if
2015 * the address is in memory. So many systems get that
2016 * wrong (and all that I have seen are I/O) so we just
2017 * ignore that bit and assume I/O. Systems that use
2018 * memory should use the newer spec, anyway. */
2019 dmi->base_addr = base_addr & 0xfffe;
2020 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2024 dmi->slave_addr = data[6];
2029 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2031 struct smi_info *info;
2033 info = kzalloc(sizeof(*info), GFP_KERNEL);
2036 "ipmi_si: Could not allocate SI data\n");
2040 info->addr_source = "SMBIOS";
2042 switch (ipmi_data->type) {
2043 case 0x01: /* KCS */
2044 info->si_type = SI_KCS;
2046 case 0x02: /* SMIC */
2047 info->si_type = SI_SMIC;
2050 info->si_type = SI_BT;
2056 switch (ipmi_data->addr_space) {
2057 case IPMI_MEM_ADDR_SPACE:
2058 info->io_setup = mem_setup;
2059 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2062 case IPMI_IO_ADDR_SPACE:
2063 info->io_setup = port_setup;
2064 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2070 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2071 ipmi_data->addr_space);
2074 info->io.addr_data = ipmi_data->base_addr;
2076 info->io.regspacing = ipmi_data->offset;
2077 if (!info->io.regspacing)
2078 info->io.regspacing = DEFAULT_REGSPACING;
2079 info->io.regsize = DEFAULT_REGSPACING;
2080 info->io.regshift = 0;
2082 info->slave_addr = ipmi_data->slave_addr;
2084 info->irq = ipmi_data->irq;
2086 info->irq_setup = std_irq_setup;
2091 static void __devinit dmi_find_bmc(void)
2093 struct dmi_device *dev = NULL;
2094 struct dmi_ipmi_data data;
2097 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2098 memset(&data, 0, sizeof(data));
2099 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
2101 try_init_dmi(&data);
2104 #endif /* CONFIG_DMI */
2108 #define PCI_ERMC_CLASSCODE 0x0C0700
2109 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2110 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2111 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2112 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2113 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2115 #define PCI_HP_VENDOR_ID 0x103C
2116 #define PCI_MMC_DEVICE_ID 0x121A
2117 #define PCI_MMC_ADDR_CW 0x10
2119 static void ipmi_pci_cleanup(struct smi_info *info)
2121 struct pci_dev *pdev = info->addr_source_data;
2123 pci_disable_device(pdev);
2126 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2127 const struct pci_device_id *ent)
2130 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2131 struct smi_info *info;
2132 int first_reg_offset = 0;
2134 info = kzalloc(sizeof(*info), GFP_KERNEL);
2138 info->addr_source = "PCI";
2140 switch (class_type) {
2141 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2142 info->si_type = SI_SMIC;
2145 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2146 info->si_type = SI_KCS;
2149 case PCI_ERMC_CLASSCODE_TYPE_BT:
2150 info->si_type = SI_BT;
2155 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2156 pci_name(pdev), class_type);
2160 rv = pci_enable_device(pdev);
2162 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2168 info->addr_source_cleanup = ipmi_pci_cleanup;
2169 info->addr_source_data = pdev;
2171 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2172 first_reg_offset = 1;
2174 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2175 info->io_setup = port_setup;
2176 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2178 info->io_setup = mem_setup;
2179 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2181 info->io.addr_data = pci_resource_start(pdev, 0);
2183 info->io.regspacing = DEFAULT_REGSPACING;
2184 info->io.regsize = DEFAULT_REGSPACING;
2185 info->io.regshift = 0;
2187 info->irq = pdev->irq;
2189 info->irq_setup = std_irq_setup;
2191 info->dev = &pdev->dev;
2192 pci_set_drvdata(pdev, info);
2194 return try_smi_init(info);
2197 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2199 struct smi_info *info = pci_get_drvdata(pdev);
2200 cleanup_one_si(info);
2204 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2209 static int ipmi_pci_resume(struct pci_dev *pdev)
2215 static struct pci_device_id ipmi_pci_devices[] = {
2216 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2217 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }
2219 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2221 static struct pci_driver ipmi_pci_driver = {
2222 .name = DEVICE_NAME,
2223 .id_table = ipmi_pci_devices,
2224 .probe = ipmi_pci_probe,
2225 .remove = __devexit_p(ipmi_pci_remove),
2227 .suspend = ipmi_pci_suspend,
2228 .resume = ipmi_pci_resume,
2231 #endif /* CONFIG_PCI */
2234 #ifdef CONFIG_PPC_OF
2235 static int __devinit ipmi_of_probe(struct of_device *dev,
2236 const struct of_device_id *match)
2238 struct smi_info *info;
2239 struct resource resource;
2240 const int *regsize, *regspacing, *regshift;
2241 struct device_node *np = dev->node;
2245 dev_info(&dev->dev, PFX "probing via device tree\n");
2247 ret = of_address_to_resource(np, 0, &resource);
2249 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2253 regsize = get_property(np, "reg-size", &proplen);
2254 if (regsize && proplen != 4) {
2255 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2259 regspacing = get_property(np, "reg-spacing", &proplen);
2260 if (regspacing && proplen != 4) {
2261 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2265 regshift = get_property(np, "reg-shift", &proplen);
2266 if (regshift && proplen != 4) {
2267 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2271 info = kzalloc(sizeof(*info), GFP_KERNEL);
2275 PFX "could not allocate memory for OF probe\n");
2279 info->si_type = (enum si_type) match->data;
2280 info->addr_source = "device-tree";
2281 info->io_setup = mem_setup;
2282 info->irq_setup = std_irq_setup;
2284 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2285 info->io.addr_data = resource.start;
2287 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2288 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2289 info->io.regshift = regshift ? *regshift : 0;
2291 info->irq = irq_of_parse_and_map(dev->node, 0);
2292 info->dev = &dev->dev;
2294 dev_dbg(&dev->dev, "addr 0x%lx regsize %ld spacing %ld irq %x\n",
2295 info->io.addr_data, info->io.regsize, info->io.regspacing,
2298 dev->dev.driver_data = (void*) info;
2300 return try_smi_init(info);
2303 static int __devexit ipmi_of_remove(struct of_device *dev)
2305 cleanup_one_si(dev->dev.driver_data);
2309 static struct of_device_id ipmi_match[] =
2311 { .type = "ipmi", .compatible = "ipmi-kcs", .data = (void *)(unsigned long) SI_KCS },
2312 { .type = "ipmi", .compatible = "ipmi-smic", .data = (void *)(unsigned long) SI_SMIC },
2313 { .type = "ipmi", .compatible = "ipmi-bt", .data = (void *)(unsigned long) SI_BT },
2317 static struct of_platform_driver ipmi_of_platform_driver =
2320 .match_table = ipmi_match,
2321 .probe = ipmi_of_probe,
2322 .remove = __devexit_p(ipmi_of_remove),
2324 #endif /* CONFIG_PPC_OF */
2327 static int try_get_dev_id(struct smi_info *smi_info)
2329 unsigned char msg[2];
2330 unsigned char *resp;
2331 unsigned long resp_len;
2332 enum si_sm_result smi_result;
2335 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2339 /* Do a Get Device ID command, since it comes back with some
2341 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2342 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2343 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2345 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2348 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2349 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2350 schedule_timeout_uninterruptible(1);
2351 smi_result = smi_info->handlers->event(
2352 smi_info->si_sm, 100);
2354 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
2356 smi_result = smi_info->handlers->event(
2357 smi_info->si_sm, 0);
2362 if (smi_result == SI_SM_HOSED) {
2363 /* We couldn't get the state machine to run, so whatever's at
2364 the port is probably not an IPMI SMI interface. */
2369 /* Otherwise, we got some data. */
2370 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2371 resp, IPMI_MAX_MSG_LENGTH);
2372 if (resp_len < 14) {
2373 /* That's odd, it should be longer. */
2378 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
2379 /* That's odd, it shouldn't be able to fail. */
2384 /* Record info from the get device id, in case we need it. */
2385 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
2392 static int type_file_read_proc(char *page, char **start, off_t off,
2393 int count, int *eof, void *data)
2395 struct smi_info *smi = data;
2397 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2400 static int stat_file_read_proc(char *page, char **start, off_t off,
2401 int count, int *eof, void *data)
2403 char *out = (char *) page;
2404 struct smi_info *smi = data;
2406 out += sprintf(out, "interrupts_enabled: %d\n",
2407 smi->irq && !smi->interrupt_disabled);
2408 out += sprintf(out, "short_timeouts: %ld\n",
2409 smi->short_timeouts);
2410 out += sprintf(out, "long_timeouts: %ld\n",
2411 smi->long_timeouts);
2412 out += sprintf(out, "timeout_restarts: %ld\n",
2413 smi->timeout_restarts);
2414 out += sprintf(out, "idles: %ld\n",
2416 out += sprintf(out, "interrupts: %ld\n",
2418 out += sprintf(out, "attentions: %ld\n",
2420 out += sprintf(out, "flag_fetches: %ld\n",
2422 out += sprintf(out, "hosed_count: %ld\n",
2424 out += sprintf(out, "complete_transactions: %ld\n",
2425 smi->complete_transactions);
2426 out += sprintf(out, "events: %ld\n",
2428 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2429 smi->watchdog_pretimeouts);
2430 out += sprintf(out, "incoming_messages: %ld\n",
2431 smi->incoming_messages);
2436 static int param_read_proc(char *page, char **start, off_t off,
2437 int count, int *eof, void *data)
2439 struct smi_info *smi = data;
2441 return sprintf(page,
2442 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2443 si_to_str[smi->si_type],
2444 addr_space_to_str[smi->io.addr_type],
2454 * oem_data_avail_to_receive_msg_avail
2455 * @info - smi_info structure with msg_flags set
2457 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2458 * Returns 1 indicating need to re-run handle_flags().
2460 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2462 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2468 * setup_dell_poweredge_oem_data_handler
2469 * @info - smi_info.device_id must be populated
2471 * Systems that match, but have firmware version < 1.40 may assert
2472 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2473 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2474 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2475 * as RECEIVE_MSG_AVAIL instead.
2477 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2478 * assert the OEM[012] bits, and if it did, the driver would have to
2479 * change to handle that properly, we don't actually check for the
2481 * Device ID = 0x20 BMC on PowerEdge 8G servers
2482 * Device Revision = 0x80
2483 * Firmware Revision1 = 0x01 BMC version 1.40
2484 * Firmware Revision2 = 0x40 BCD encoded
2485 * IPMI Version = 0x51 IPMI 1.5
2486 * Manufacturer ID = A2 02 00 Dell IANA
2488 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2489 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2492 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2493 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2494 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2495 #define DELL_IANA_MFR_ID 0x0002a2
2496 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2498 struct ipmi_device_id *id = &smi_info->device_id;
2499 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2500 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2501 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2502 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2503 smi_info->oem_data_avail_handler =
2504 oem_data_avail_to_receive_msg_avail;
2506 else if (ipmi_version_major(id) < 1 ||
2507 (ipmi_version_major(id) == 1 &&
2508 ipmi_version_minor(id) < 5)) {
2509 smi_info->oem_data_avail_handler =
2510 oem_data_avail_to_receive_msg_avail;
2515 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2516 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2518 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2520 /* Make it a reponse */
2521 msg->rsp[0] = msg->data[0] | 4;
2522 msg->rsp[1] = msg->data[1];
2523 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2525 smi_info->curr_msg = NULL;
2526 deliver_recv_msg(smi_info, msg);
2530 * dell_poweredge_bt_xaction_handler
2531 * @info - smi_info.device_id must be populated
2533 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2534 * not respond to a Get SDR command if the length of the data
2535 * requested is exactly 0x3A, which leads to command timeouts and no
2536 * data returned. This intercepts such commands, and causes userspace
2537 * callers to try again with a different-sized buffer, which succeeds.
2540 #define STORAGE_NETFN 0x0A
2541 #define STORAGE_CMD_GET_SDR 0x23
2542 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2543 unsigned long unused,
2546 struct smi_info *smi_info = in;
2547 unsigned char *data = smi_info->curr_msg->data;
2548 unsigned int size = smi_info->curr_msg->data_size;
2550 (data[0]>>2) == STORAGE_NETFN &&
2551 data[1] == STORAGE_CMD_GET_SDR &&
2553 return_hosed_msg_badsize(smi_info);
2559 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2560 .notifier_call = dell_poweredge_bt_xaction_handler,
2564 * setup_dell_poweredge_bt_xaction_handler
2565 * @info - smi_info.device_id must be filled in already
2567 * Fills in smi_info.device_id.start_transaction_pre_hook
2568 * when we know what function to use there.
2571 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2573 struct ipmi_device_id *id = &smi_info->device_id;
2574 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2575 smi_info->si_type == SI_BT)
2576 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2580 * setup_oem_data_handler
2581 * @info - smi_info.device_id must be filled in already
2583 * Fills in smi_info.device_id.oem_data_available_handler
2584 * when we know what function to use there.
2587 static void setup_oem_data_handler(struct smi_info *smi_info)
2589 setup_dell_poweredge_oem_data_handler(smi_info);
2592 static void setup_xaction_handlers(struct smi_info *smi_info)
2594 setup_dell_poweredge_bt_xaction_handler(smi_info);
2597 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2599 if (smi_info->intf) {
2600 /* The timer and thread are only running if the
2601 interface has been started up and registered. */
2602 if (smi_info->thread != NULL)
2603 kthread_stop(smi_info->thread);
2604 del_timer_sync(&smi_info->si_timer);
2608 static __devinitdata struct ipmi_default_vals
2614 { .type = SI_KCS, .port = 0xca2 },
2615 { .type = SI_SMIC, .port = 0xca9 },
2616 { .type = SI_BT, .port = 0xe4 },
2620 static __devinit void default_find_bmc(void)
2622 struct smi_info *info;
2625 for (i = 0; ; i++) {
2626 if (!ipmi_defaults[i].port)
2629 info = kzalloc(sizeof(*info), GFP_KERNEL);
2633 #ifdef CONFIG_PPC_MERGE
2634 if (check_legacy_ioport(ipmi_defaults[i].port))
2638 info->addr_source = NULL;
2640 info->si_type = ipmi_defaults[i].type;
2641 info->io_setup = port_setup;
2642 info->io.addr_data = ipmi_defaults[i].port;
2643 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2645 info->io.addr = NULL;
2646 info->io.regspacing = DEFAULT_REGSPACING;
2647 info->io.regsize = DEFAULT_REGSPACING;
2648 info->io.regshift = 0;
2650 if (try_smi_init(info) == 0) {
2652 printk(KERN_INFO "ipmi_si: Found default %s state"
2653 " machine at %s address 0x%lx\n",
2654 si_to_str[info->si_type],
2655 addr_space_to_str[info->io.addr_type],
2656 info->io.addr_data);
2662 static int is_new_interface(struct smi_info *info)
2666 list_for_each_entry(e, &smi_infos, link) {
2667 if (e->io.addr_type != info->io.addr_type)
2669 if (e->io.addr_data == info->io.addr_data)
2676 static int try_smi_init(struct smi_info *new_smi)
2680 if (new_smi->addr_source) {
2681 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2682 " machine at %s address 0x%lx, slave address 0x%x,"
2684 new_smi->addr_source,
2685 si_to_str[new_smi->si_type],
2686 addr_space_to_str[new_smi->io.addr_type],
2687 new_smi->io.addr_data,
2688 new_smi->slave_addr, new_smi->irq);
2691 mutex_lock(&smi_infos_lock);
2692 if (!is_new_interface(new_smi)) {
2693 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2698 /* So we know not to free it unless we have allocated one. */
2699 new_smi->intf = NULL;
2700 new_smi->si_sm = NULL;
2701 new_smi->handlers = NULL;
2703 switch (new_smi->si_type) {
2705 new_smi->handlers = &kcs_smi_handlers;
2709 new_smi->handlers = &smic_smi_handlers;
2713 new_smi->handlers = &bt_smi_handlers;
2717 /* No support for anything else yet. */
2722 /* Allocate the state machine's data and initialize it. */
2723 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2724 if (!new_smi->si_sm) {
2725 printk(" Could not allocate state machine memory\n");
2729 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2732 /* Now that we know the I/O size, we can set up the I/O. */
2733 rv = new_smi->io_setup(new_smi);
2735 printk(" Could not set up I/O space\n");
2739 spin_lock_init(&(new_smi->si_lock));
2740 spin_lock_init(&(new_smi->msg_lock));
2741 spin_lock_init(&(new_smi->count_lock));
2743 /* Do low-level detection first. */
2744 if (new_smi->handlers->detect(new_smi->si_sm)) {
2745 if (new_smi->addr_source)
2746 printk(KERN_INFO "ipmi_si: Interface detection"
2752 /* Attempt a get device id command. If it fails, we probably
2753 don't have a BMC here. */
2754 rv = try_get_dev_id(new_smi);
2756 if (new_smi->addr_source)
2757 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2758 " at this location\n");
2762 setup_oem_data_handler(new_smi);
2763 setup_xaction_handlers(new_smi);
2765 /* Try to claim any interrupts. */
2766 if (new_smi->irq_setup)
2767 new_smi->irq_setup(new_smi);
2769 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2770 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2771 new_smi->curr_msg = NULL;
2772 atomic_set(&new_smi->req_events, 0);
2773 new_smi->run_to_completion = 0;
2775 new_smi->interrupt_disabled = 0;
2776 atomic_set(&new_smi->stop_operation, 0);
2777 new_smi->intf_num = smi_num;
2780 /* Start clearing the flags before we enable interrupts or the
2781 timer to avoid racing with the timer. */
2782 start_clear_flags(new_smi);
2783 /* IRQ is defined to be set when non-zero. */
2785 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2787 if (!new_smi->dev) {
2788 /* If we don't already have a device from something
2789 * else (like PCI), then register a new one. */
2790 new_smi->pdev = platform_device_alloc("ipmi_si",
2795 " Unable to allocate platform device\n");
2798 new_smi->dev = &new_smi->pdev->dev;
2799 new_smi->dev->driver = &ipmi_driver;
2801 rv = platform_device_add(new_smi->pdev);
2805 " Unable to register system interface device:"
2810 new_smi->dev_registered = 1;
2813 rv = ipmi_register_smi(&handlers,
2815 &new_smi->device_id,
2818 new_smi->slave_addr);
2821 "ipmi_si: Unable to register device: error %d\n",
2823 goto out_err_stop_timer;
2826 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2827 type_file_read_proc, NULL,
2828 new_smi, THIS_MODULE);
2831 "ipmi_si: Unable to create proc entry: %d\n",
2833 goto out_err_stop_timer;
2836 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2837 stat_file_read_proc, NULL,
2838 new_smi, THIS_MODULE);
2841 "ipmi_si: Unable to create proc entry: %d\n",
2843 goto out_err_stop_timer;
2846 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2847 param_read_proc, NULL,
2848 new_smi, THIS_MODULE);
2851 "ipmi_si: Unable to create proc entry: %d\n",
2853 goto out_err_stop_timer;
2856 list_add_tail(&new_smi->link, &smi_infos);
2858 mutex_unlock(&smi_infos_lock);
2860 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2865 atomic_inc(&new_smi->stop_operation);
2866 wait_for_timer_and_thread(new_smi);
2870 ipmi_unregister_smi(new_smi->intf);
2872 if (new_smi->irq_cleanup)
2873 new_smi->irq_cleanup(new_smi);
2875 /* Wait until we know that we are out of any interrupt
2876 handlers might have been running before we freed the
2878 synchronize_sched();
2880 if (new_smi->si_sm) {
2881 if (new_smi->handlers)
2882 new_smi->handlers->cleanup(new_smi->si_sm);
2883 kfree(new_smi->si_sm);
2885 if (new_smi->addr_source_cleanup)
2886 new_smi->addr_source_cleanup(new_smi);
2887 if (new_smi->io_cleanup)
2888 new_smi->io_cleanup(new_smi);
2890 if (new_smi->dev_registered)
2891 platform_device_unregister(new_smi->pdev);
2895 mutex_unlock(&smi_infos_lock);
2900 static __devinit int init_ipmi_si(void)
2910 /* Register the device drivers. */
2911 rv = driver_register(&ipmi_driver);
2914 "init_ipmi_si: Unable to register driver: %d\n",
2920 /* Parse out the si_type string into its components. */
2923 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2925 str = strchr(str, ',');
2935 printk(KERN_INFO "IPMI System Interface driver.\n");
2937 hardcode_find_bmc();
2948 rv = pci_register_driver(&ipmi_pci_driver);
2951 "init_ipmi_si: Unable to register PCI driver: %d\n",
2956 #ifdef CONFIG_PPC_OF
2957 of_register_platform_driver(&ipmi_of_platform_driver);
2960 if (si_trydefaults) {
2961 mutex_lock(&smi_infos_lock);
2962 if (list_empty(&smi_infos)) {
2963 /* No BMC was found, try defaults. */
2964 mutex_unlock(&smi_infos_lock);
2967 mutex_unlock(&smi_infos_lock);
2971 mutex_lock(&smi_infos_lock);
2972 if (unload_when_empty && list_empty(&smi_infos)) {
2973 mutex_unlock(&smi_infos_lock);
2975 pci_unregister_driver(&ipmi_pci_driver);
2977 driver_unregister(&ipmi_driver);
2978 printk("ipmi_si: Unable to find any System Interface(s)\n");
2981 mutex_unlock(&smi_infos_lock);
2985 module_init(init_ipmi_si);
2987 static void cleanup_one_si(struct smi_info *to_clean)
2990 unsigned long flags;
2995 list_del(&to_clean->link);
2997 /* Tell the driver that we are shutting down. */
2998 atomic_inc(&to_clean->stop_operation);
3000 /* Make sure the timer and thread are stopped and will not run
3002 wait_for_timer_and_thread(to_clean);
3004 /* Timeouts are stopped, now make sure the interrupts are off
3005 for the device. A little tricky with locks to make sure
3006 there are no races. */
3007 spin_lock_irqsave(&to_clean->si_lock, flags);
3008 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3009 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3011 schedule_timeout_uninterruptible(1);
3012 spin_lock_irqsave(&to_clean->si_lock, flags);
3014 disable_si_irq(to_clean);
3015 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3016 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3018 schedule_timeout_uninterruptible(1);
3021 /* Clean up interrupts and make sure that everything is done. */
3022 if (to_clean->irq_cleanup)
3023 to_clean->irq_cleanup(to_clean);
3024 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3026 schedule_timeout_uninterruptible(1);
3029 rv = ipmi_unregister_smi(to_clean->intf);
3032 "ipmi_si: Unable to unregister device: errno=%d\n",
3036 to_clean->handlers->cleanup(to_clean->si_sm);
3038 kfree(to_clean->si_sm);
3040 if (to_clean->addr_source_cleanup)
3041 to_clean->addr_source_cleanup(to_clean);
3042 if (to_clean->io_cleanup)
3043 to_clean->io_cleanup(to_clean);
3045 if (to_clean->dev_registered)
3046 platform_device_unregister(to_clean->pdev);
3051 static __exit void cleanup_ipmi_si(void)
3053 struct smi_info *e, *tmp_e;
3059 pci_unregister_driver(&ipmi_pci_driver);
3062 #ifdef CONFIG_PPC_OF
3063 of_unregister_platform_driver(&ipmi_of_platform_driver);
3066 mutex_lock(&smi_infos_lock);
3067 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3069 mutex_unlock(&smi_infos_lock);
3071 driver_unregister(&ipmi_driver);
3073 module_exit(cleanup_ipmi_si);
3075 MODULE_LICENSE("GPL");
3076 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3077 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");