Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32                 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35         ext4_grpblk_t offset;
36
37         blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38         offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39         if (offsetp)
40                 *offsetp = offset;
41         if (blockgrpp)
42                 *blockgrpp = blocknr;
43
44 }
45
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47                         ext4_group_t block_group)
48 {
49         ext4_group_t actual_group;
50         ext4_get_group_no_and_offset(sb, block, &actual_group, NULL);
51         if (actual_group == block_group)
52                 return 1;
53         return 0;
54 }
55
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57                                 ext4_group_t block_group)
58 {
59         ext4_fsblk_t tmp;
60         struct ext4_sb_info *sbi = EXT4_SB(sb);
61         /* block bitmap, inode bitmap, and inode table blocks */
62         int used_blocks = sbi->s_itb_per_group + 2;
63
64         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65                 struct ext4_group_desc *gdp;
66                 struct buffer_head *bh;
67
68                 gdp = ext4_get_group_desc(sb, block_group, &bh);
69                 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70                                         block_group))
71                         used_blocks--;
72
73                 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74                                         block_group))
75                         used_blocks--;
76
77                 tmp = ext4_inode_table(sb, gdp);
78                 for (; tmp < ext4_inode_table(sb, gdp) +
79                                 sbi->s_itb_per_group; tmp++) {
80                         if (!ext4_block_in_group(sb, tmp, block_group))
81                                 used_blocks -= 1;
82                 }
83         }
84         return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87  * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89                  ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91         int bit, bit_max;
92         unsigned free_blocks, group_blocks;
93         struct ext4_sb_info *sbi = EXT4_SB(sb);
94
95         if (bh) {
96                 J_ASSERT_BH(bh, buffer_locked(bh));
97
98                 /* If checksum is bad mark all blocks used to prevent allocation
99                  * essentially implementing a per-group read-only flag. */
100                 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101                         ext4_error(sb, __func__,
102                                   "Checksum bad for group %lu\n", block_group);
103                         gdp->bg_free_blocks_count = 0;
104                         gdp->bg_free_inodes_count = 0;
105                         gdp->bg_itable_unused = 0;
106                         memset(bh->b_data, 0xff, sb->s_blocksize);
107                         return 0;
108                 }
109                 memset(bh->b_data, 0, sb->s_blocksize);
110         }
111
112         /* Check for superblock and gdt backups in this group */
113         bit_max = ext4_bg_has_super(sb, block_group);
114
115         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116             block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117                           sbi->s_desc_per_block) {
118                 if (bit_max) {
119                         bit_max += ext4_bg_num_gdb(sb, block_group);
120                         bit_max +=
121                                 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122                 }
123         } else { /* For META_BG_BLOCK_GROUPS */
124                 bit_max += ext4_bg_num_gdb(sb, block_group);
125         }
126
127         if (block_group == sbi->s_groups_count - 1) {
128                 /*
129                  * Even though mke2fs always initialize first and last group
130                  * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
131                  * to make sure we calculate the right free blocks
132                  */
133                 group_blocks = ext4_blocks_count(sbi->s_es) -
134                         le32_to_cpu(sbi->s_es->s_first_data_block) -
135                         (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
136         } else {
137                 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
138         }
139
140         free_blocks = group_blocks - bit_max;
141
142         if (bh) {
143                 ext4_fsblk_t start, tmp;
144                 int flex_bg = 0;
145
146                 for (bit = 0; bit < bit_max; bit++)
147                         ext4_set_bit(bit, bh->b_data);
148
149                 start = ext4_group_first_block_no(sb, block_group);
150
151                 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
152                                               EXT4_FEATURE_INCOMPAT_FLEX_BG))
153                         flex_bg = 1;
154
155                 /* Set bits for block and inode bitmaps, and inode table */
156                 tmp = ext4_block_bitmap(sb, gdp);
157                 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
158                         ext4_set_bit(tmp - start, bh->b_data);
159
160                 tmp = ext4_inode_bitmap(sb, gdp);
161                 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
162                         ext4_set_bit(tmp - start, bh->b_data);
163
164                 tmp = ext4_inode_table(sb, gdp);
165                 for (; tmp < ext4_inode_table(sb, gdp) +
166                                 sbi->s_itb_per_group; tmp++) {
167                         if (!flex_bg ||
168                                 ext4_block_in_group(sb, tmp, block_group))
169                                 ext4_set_bit(tmp - start, bh->b_data);
170                 }
171                 /*
172                  * Also if the number of blocks within the group is
173                  * less than the blocksize * 8 ( which is the size
174                  * of bitmap ), set rest of the block bitmap to 1
175                  */
176                 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
177         }
178         return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
179 }
180
181
182 /*
183  * The free blocks are managed by bitmaps.  A file system contains several
184  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
185  * block for inodes, N blocks for the inode table and data blocks.
186  *
187  * The file system contains group descriptors which are located after the
188  * super block.  Each descriptor contains the number of the bitmap block and
189  * the free blocks count in the block.  The descriptors are loaded in memory
190  * when a file system is mounted (see ext4_fill_super).
191  */
192
193
194 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
195
196 /**
197  * ext4_get_group_desc() -- load group descriptor from disk
198  * @sb:                 super block
199  * @block_group:        given block group
200  * @bh:                 pointer to the buffer head to store the block
201  *                      group descriptor
202  */
203 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
204                                              ext4_group_t block_group,
205                                              struct buffer_head ** bh)
206 {
207         unsigned long group_desc;
208         unsigned long offset;
209         struct ext4_group_desc * desc;
210         struct ext4_sb_info *sbi = EXT4_SB(sb);
211
212         if (block_group >= sbi->s_groups_count) {
213                 ext4_error (sb, "ext4_get_group_desc",
214                             "block_group >= groups_count - "
215                             "block_group = %lu, groups_count = %lu",
216                             block_group, sbi->s_groups_count);
217
218                 return NULL;
219         }
220         smp_rmb();
221
222         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
223         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
224         if (!sbi->s_group_desc[group_desc]) {
225                 ext4_error (sb, "ext4_get_group_desc",
226                             "Group descriptor not loaded - "
227                             "block_group = %lu, group_desc = %lu, desc = %lu",
228                              block_group, group_desc, offset);
229                 return NULL;
230         }
231
232         desc = (struct ext4_group_desc *)(
233                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
234                 offset * EXT4_DESC_SIZE(sb));
235         if (bh)
236                 *bh = sbi->s_group_desc[group_desc];
237         return desc;
238 }
239
240 static int ext4_valid_block_bitmap(struct super_block *sb,
241                                         struct ext4_group_desc *desc,
242                                         unsigned int block_group,
243                                         struct buffer_head *bh)
244 {
245         ext4_grpblk_t offset;
246         ext4_grpblk_t next_zero_bit;
247         ext4_fsblk_t bitmap_blk;
248         ext4_fsblk_t group_first_block;
249
250         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
251                 /* with FLEX_BG, the inode/block bitmaps and itable
252                  * blocks may not be in the group at all
253                  * so the bitmap validation will be skipped for those groups
254                  * or it has to also read the block group where the bitmaps
255                  * are located to verify they are set.
256                  */
257                 return 1;
258         }
259         group_first_block = ext4_group_first_block_no(sb, block_group);
260
261         /* check whether block bitmap block number is set */
262         bitmap_blk = ext4_block_bitmap(sb, desc);
263         offset = bitmap_blk - group_first_block;
264         if (!ext4_test_bit(offset, bh->b_data))
265                 /* bad block bitmap */
266                 goto err_out;
267
268         /* check whether the inode bitmap block number is set */
269         bitmap_blk = ext4_inode_bitmap(sb, desc);
270         offset = bitmap_blk - group_first_block;
271         if (!ext4_test_bit(offset, bh->b_data))
272                 /* bad block bitmap */
273                 goto err_out;
274
275         /* check whether the inode table block number is set */
276         bitmap_blk = ext4_inode_table(sb, desc);
277         offset = bitmap_blk - group_first_block;
278         next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
279                                 offset + EXT4_SB(sb)->s_itb_per_group,
280                                 offset);
281         if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
282                 /* good bitmap for inode tables */
283                 return 1;
284
285 err_out:
286         ext4_error(sb, __func__,
287                         "Invalid block bitmap - "
288                         "block_group = %d, block = %llu",
289                         block_group, bitmap_blk);
290         return 0;
291 }
292 /**
293  * ext4_read_block_bitmap()
294  * @sb:                 super block
295  * @block_group:        given block group
296  *
297  * Read the bitmap for a given block_group,and validate the
298  * bits for block/inode/inode tables are set in the bitmaps
299  *
300  * Return buffer_head on success or NULL in case of failure.
301  */
302 struct buffer_head *
303 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
304 {
305         struct ext4_group_desc * desc;
306         struct buffer_head * bh = NULL;
307         ext4_fsblk_t bitmap_blk;
308
309         desc = ext4_get_group_desc(sb, block_group, NULL);
310         if (!desc)
311                 return NULL;
312         bitmap_blk = ext4_block_bitmap(sb, desc);
313         bh = sb_getblk(sb, bitmap_blk);
314         if (unlikely(!bh)) {
315                 ext4_error(sb, __func__,
316                             "Cannot read block bitmap - "
317                             "block_group = %lu, block_bitmap = %llu",
318                             block_group, bitmap_blk);
319                 return NULL;
320         }
321         if (bh_uptodate_or_lock(bh))
322                 return bh;
323
324         spin_lock(sb_bgl_lock(EXT4_SB(sb), block_group));
325         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
326                 ext4_init_block_bitmap(sb, bh, block_group, desc);
327                 set_buffer_uptodate(bh);
328                 unlock_buffer(bh);
329                 spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
330                 return bh;
331         }
332         spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
333         if (bh_submit_read(bh) < 0) {
334                 put_bh(bh);
335                 ext4_error(sb, __func__,
336                             "Cannot read block bitmap - "
337                             "block_group = %lu, block_bitmap = %llu",
338                             block_group, bitmap_blk);
339                 return NULL;
340         }
341         ext4_valid_block_bitmap(sb, desc, block_group, bh);
342         /*
343          * file system mounted not to panic on error,
344          * continue with corrupt bitmap
345          */
346         return bh;
347 }
348 /*
349  * The reservation window structure operations
350  * --------------------------------------------
351  * Operations include:
352  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
353  *
354  * We use a red-black tree to represent per-filesystem reservation
355  * windows.
356  *
357  */
358
359 /**
360  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
361  * @rb_root:            root of per-filesystem reservation rb tree
362  * @verbose:            verbose mode
363  * @fn:                 function which wishes to dump the reservation map
364  *
365  * If verbose is turned on, it will print the whole block reservation
366  * windows(start, end). Otherwise, it will only print out the "bad" windows,
367  * those windows that overlap with their immediate neighbors.
368  */
369 #if 1
370 static void __rsv_window_dump(struct rb_root *root, int verbose,
371                               const char *fn)
372 {
373         struct rb_node *n;
374         struct ext4_reserve_window_node *rsv, *prev;
375         int bad;
376
377 restart:
378         n = rb_first(root);
379         bad = 0;
380         prev = NULL;
381
382         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
383         while (n) {
384                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
385                 if (verbose)
386                         printk("reservation window 0x%p "
387                                "start:  %llu, end:  %llu\n",
388                                rsv, rsv->rsv_start, rsv->rsv_end);
389                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
390                         printk("Bad reservation %p (start >= end)\n",
391                                rsv);
392                         bad = 1;
393                 }
394                 if (prev && prev->rsv_end >= rsv->rsv_start) {
395                         printk("Bad reservation %p (prev->end >= start)\n",
396                                rsv);
397                         bad = 1;
398                 }
399                 if (bad) {
400                         if (!verbose) {
401                                 printk("Restarting reservation walk in verbose mode\n");
402                                 verbose = 1;
403                                 goto restart;
404                         }
405                 }
406                 n = rb_next(n);
407                 prev = rsv;
408         }
409         printk("Window map complete.\n");
410         BUG_ON(bad);
411 }
412 #define rsv_window_dump(root, verbose) \
413         __rsv_window_dump((root), (verbose), __func__)
414 #else
415 #define rsv_window_dump(root, verbose) do {} while (0)
416 #endif
417
418 /**
419  * goal_in_my_reservation()
420  * @rsv:                inode's reservation window
421  * @grp_goal:           given goal block relative to the allocation block group
422  * @group:              the current allocation block group
423  * @sb:                 filesystem super block
424  *
425  * Test if the given goal block (group relative) is within the file's
426  * own block reservation window range.
427  *
428  * If the reservation window is outside the goal allocation group, return 0;
429  * grp_goal (given goal block) could be -1, which means no specific
430  * goal block. In this case, always return 1.
431  * If the goal block is within the reservation window, return 1;
432  * otherwise, return 0;
433  */
434 static int
435 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
436                         ext4_group_t group, struct super_block *sb)
437 {
438         ext4_fsblk_t group_first_block, group_last_block;
439
440         group_first_block = ext4_group_first_block_no(sb, group);
441         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
442
443         if ((rsv->_rsv_start > group_last_block) ||
444             (rsv->_rsv_end < group_first_block))
445                 return 0;
446         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
447                 || (grp_goal + group_first_block > rsv->_rsv_end)))
448                 return 0;
449         return 1;
450 }
451
452 /**
453  * search_reserve_window()
454  * @rb_root:            root of reservation tree
455  * @goal:               target allocation block
456  *
457  * Find the reserved window which includes the goal, or the previous one
458  * if the goal is not in any window.
459  * Returns NULL if there are no windows or if all windows start after the goal.
460  */
461 static struct ext4_reserve_window_node *
462 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
463 {
464         struct rb_node *n = root->rb_node;
465         struct ext4_reserve_window_node *rsv;
466
467         if (!n)
468                 return NULL;
469
470         do {
471                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
472
473                 if (goal < rsv->rsv_start)
474                         n = n->rb_left;
475                 else if (goal > rsv->rsv_end)
476                         n = n->rb_right;
477                 else
478                         return rsv;
479         } while (n);
480         /*
481          * We've fallen off the end of the tree: the goal wasn't inside
482          * any particular node.  OK, the previous node must be to one
483          * side of the interval containing the goal.  If it's the RHS,
484          * we need to back up one.
485          */
486         if (rsv->rsv_start > goal) {
487                 n = rb_prev(&rsv->rsv_node);
488                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
489         }
490         return rsv;
491 }
492
493 /**
494  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
495  * @sb:                 super block
496  * @rsv:                reservation window to add
497  *
498  * Must be called with rsv_lock hold.
499  */
500 void ext4_rsv_window_add(struct super_block *sb,
501                     struct ext4_reserve_window_node *rsv)
502 {
503         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
504         struct rb_node *node = &rsv->rsv_node;
505         ext4_fsblk_t start = rsv->rsv_start;
506
507         struct rb_node ** p = &root->rb_node;
508         struct rb_node * parent = NULL;
509         struct ext4_reserve_window_node *this;
510
511         while (*p)
512         {
513                 parent = *p;
514                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
515
516                 if (start < this->rsv_start)
517                         p = &(*p)->rb_left;
518                 else if (start > this->rsv_end)
519                         p = &(*p)->rb_right;
520                 else {
521                         rsv_window_dump(root, 1);
522                         BUG();
523                 }
524         }
525
526         rb_link_node(node, parent, p);
527         rb_insert_color(node, root);
528 }
529
530 /**
531  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
532  * @sb:                 super block
533  * @rsv:                reservation window to remove
534  *
535  * Mark the block reservation window as not allocated, and unlink it
536  * from the filesystem reservation window rb tree. Must be called with
537  * rsv_lock hold.
538  */
539 static void rsv_window_remove(struct super_block *sb,
540                               struct ext4_reserve_window_node *rsv)
541 {
542         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
543         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
544         rsv->rsv_alloc_hit = 0;
545         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
546 }
547
548 /*
549  * rsv_is_empty() -- Check if the reservation window is allocated.
550  * @rsv:                given reservation window to check
551  *
552  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
553  */
554 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
555 {
556         /* a valid reservation end block could not be 0 */
557         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
558 }
559
560 /**
561  * ext4_init_block_alloc_info()
562  * @inode:              file inode structure
563  *
564  * Allocate and initialize the  reservation window structure, and
565  * link the window to the ext4 inode structure at last
566  *
567  * The reservation window structure is only dynamically allocated
568  * and linked to ext4 inode the first time the open file
569  * needs a new block. So, before every ext4_new_block(s) call, for
570  * regular files, we should check whether the reservation window
571  * structure exists or not. In the latter case, this function is called.
572  * Fail to do so will result in block reservation being turned off for that
573  * open file.
574  *
575  * This function is called from ext4_get_blocks_handle(), also called
576  * when setting the reservation window size through ioctl before the file
577  * is open for write (needs block allocation).
578  *
579  * Needs down_write(i_data_sem) protection prior to call this function.
580  */
581 void ext4_init_block_alloc_info(struct inode *inode)
582 {
583         struct ext4_inode_info *ei = EXT4_I(inode);
584         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
585         struct super_block *sb = inode->i_sb;
586
587         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
588         if (block_i) {
589                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
590
591                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
592                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
593
594                 /*
595                  * if filesystem is mounted with NORESERVATION, the goal
596                  * reservation window size is set to zero to indicate
597                  * block reservation is off
598                  */
599                 if (!test_opt(sb, RESERVATION))
600                         rsv->rsv_goal_size = 0;
601                 else
602                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
603                 rsv->rsv_alloc_hit = 0;
604                 block_i->last_alloc_logical_block = 0;
605                 block_i->last_alloc_physical_block = 0;
606         }
607         ei->i_block_alloc_info = block_i;
608 }
609
610 /**
611  * ext4_discard_reservation()
612  * @inode:              inode
613  *
614  * Discard(free) block reservation window on last file close, or truncate
615  * or at last iput().
616  *
617  * It is being called in three cases:
618  *      ext4_release_file(): last writer close the file
619  *      ext4_clear_inode(): last iput(), when nobody link to this file.
620  *      ext4_truncate(): when the block indirect map is about to change.
621  *
622  */
623 void ext4_discard_reservation(struct inode *inode)
624 {
625         struct ext4_inode_info *ei = EXT4_I(inode);
626         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
627         struct ext4_reserve_window_node *rsv;
628         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
629
630         ext4_mb_discard_inode_preallocations(inode);
631
632         if (!block_i)
633                 return;
634
635         rsv = &block_i->rsv_window_node;
636         if (!rsv_is_empty(&rsv->rsv_window)) {
637                 spin_lock(rsv_lock);
638                 if (!rsv_is_empty(&rsv->rsv_window))
639                         rsv_window_remove(inode->i_sb, rsv);
640                 spin_unlock(rsv_lock);
641         }
642 }
643
644 /**
645  * ext4_free_blocks_sb() -- Free given blocks and update quota
646  * @handle:                     handle to this transaction
647  * @sb:                         super block
648  * @block:                      start physcial block to free
649  * @count:                      number of blocks to free
650  * @pdquot_freed_blocks:        pointer to quota
651  */
652 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
653                          ext4_fsblk_t block, unsigned long count,
654                          unsigned long *pdquot_freed_blocks)
655 {
656         struct buffer_head *bitmap_bh = NULL;
657         struct buffer_head *gd_bh;
658         ext4_group_t block_group;
659         ext4_grpblk_t bit;
660         unsigned long i;
661         unsigned long overflow;
662         struct ext4_group_desc * desc;
663         struct ext4_super_block * es;
664         struct ext4_sb_info *sbi;
665         int err = 0, ret;
666         ext4_grpblk_t group_freed;
667
668         *pdquot_freed_blocks = 0;
669         sbi = EXT4_SB(sb);
670         es = sbi->s_es;
671         if (block < le32_to_cpu(es->s_first_data_block) ||
672             block + count < block ||
673             block + count > ext4_blocks_count(es)) {
674                 ext4_error (sb, "ext4_free_blocks",
675                             "Freeing blocks not in datazone - "
676                             "block = %llu, count = %lu", block, count);
677                 goto error_return;
678         }
679
680         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
681
682 do_more:
683         overflow = 0;
684         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
685         /*
686          * Check to see if we are freeing blocks across a group
687          * boundary.
688          */
689         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
690                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
691                 count -= overflow;
692         }
693         brelse(bitmap_bh);
694         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
695         if (!bitmap_bh)
696                 goto error_return;
697         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
698         if (!desc)
699                 goto error_return;
700
701         if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
702             in_range(ext4_inode_bitmap(sb, desc), block, count) ||
703             in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
704             in_range(block + count - 1, ext4_inode_table(sb, desc),
705                      sbi->s_itb_per_group)) {
706                 ext4_error (sb, "ext4_free_blocks",
707                             "Freeing blocks in system zones - "
708                             "Block = %llu, count = %lu",
709                             block, count);
710                 goto error_return;
711         }
712
713         /*
714          * We are about to start releasing blocks in the bitmap,
715          * so we need undo access.
716          */
717         /* @@@ check errors */
718         BUFFER_TRACE(bitmap_bh, "getting undo access");
719         err = ext4_journal_get_undo_access(handle, bitmap_bh);
720         if (err)
721                 goto error_return;
722
723         /*
724          * We are about to modify some metadata.  Call the journal APIs
725          * to unshare ->b_data if a currently-committing transaction is
726          * using it
727          */
728         BUFFER_TRACE(gd_bh, "get_write_access");
729         err = ext4_journal_get_write_access(handle, gd_bh);
730         if (err)
731                 goto error_return;
732
733         jbd_lock_bh_state(bitmap_bh);
734
735         for (i = 0, group_freed = 0; i < count; i++) {
736                 /*
737                  * An HJ special.  This is expensive...
738                  */
739 #ifdef CONFIG_JBD2_DEBUG
740                 jbd_unlock_bh_state(bitmap_bh);
741                 {
742                         struct buffer_head *debug_bh;
743                         debug_bh = sb_find_get_block(sb, block + i);
744                         if (debug_bh) {
745                                 BUFFER_TRACE(debug_bh, "Deleted!");
746                                 if (!bh2jh(bitmap_bh)->b_committed_data)
747                                         BUFFER_TRACE(debug_bh,
748                                                 "No commited data in bitmap");
749                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
750                                 __brelse(debug_bh);
751                         }
752                 }
753                 jbd_lock_bh_state(bitmap_bh);
754 #endif
755                 if (need_resched()) {
756                         jbd_unlock_bh_state(bitmap_bh);
757                         cond_resched();
758                         jbd_lock_bh_state(bitmap_bh);
759                 }
760                 /* @@@ This prevents newly-allocated data from being
761                  * freed and then reallocated within the same
762                  * transaction.
763                  *
764                  * Ideally we would want to allow that to happen, but to
765                  * do so requires making jbd2_journal_forget() capable of
766                  * revoking the queued write of a data block, which
767                  * implies blocking on the journal lock.  *forget()
768                  * cannot block due to truncate races.
769                  *
770                  * Eventually we can fix this by making jbd2_journal_forget()
771                  * return a status indicating whether or not it was able
772                  * to revoke the buffer.  On successful revoke, it is
773                  * safe not to set the allocation bit in the committed
774                  * bitmap, because we know that there is no outstanding
775                  * activity on the buffer any more and so it is safe to
776                  * reallocate it.
777                  */
778                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
779                 J_ASSERT_BH(bitmap_bh,
780                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
781                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
782                                 bh2jh(bitmap_bh)->b_committed_data);
783
784                 /*
785                  * We clear the bit in the bitmap after setting the committed
786                  * data bit, because this is the reverse order to that which
787                  * the allocator uses.
788                  */
789                 BUFFER_TRACE(bitmap_bh, "clear bit");
790                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
791                                                 bit + i, bitmap_bh->b_data)) {
792                         jbd_unlock_bh_state(bitmap_bh);
793                         ext4_error(sb, __func__,
794                                    "bit already cleared for block %llu",
795                                    (ext4_fsblk_t)(block + i));
796                         jbd_lock_bh_state(bitmap_bh);
797                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
798                 } else {
799                         group_freed++;
800                 }
801         }
802         jbd_unlock_bh_state(bitmap_bh);
803
804         spin_lock(sb_bgl_lock(sbi, block_group));
805         le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
806         desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
807         spin_unlock(sb_bgl_lock(sbi, block_group));
808         percpu_counter_add(&sbi->s_freeblocks_counter, count);
809
810         if (sbi->s_log_groups_per_flex) {
811                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
812                 spin_lock(sb_bgl_lock(sbi, flex_group));
813                 sbi->s_flex_groups[flex_group].free_blocks += count;
814                 spin_unlock(sb_bgl_lock(sbi, flex_group));
815         }
816
817         /* We dirtied the bitmap block */
818         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
819         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
820
821         /* And the group descriptor block */
822         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
823         ret = ext4_journal_dirty_metadata(handle, gd_bh);
824         if (!err) err = ret;
825         *pdquot_freed_blocks += group_freed;
826
827         if (overflow && !err) {
828                 block += count;
829                 count = overflow;
830                 goto do_more;
831         }
832         sb->s_dirt = 1;
833 error_return:
834         brelse(bitmap_bh);
835         ext4_std_error(sb, err);
836         return;
837 }
838
839 /**
840  * ext4_free_blocks() -- Free given blocks and update quota
841  * @handle:             handle for this transaction
842  * @inode:              inode
843  * @block:              start physical block to free
844  * @count:              number of blocks to count
845  * @metadata:           Are these metadata blocks
846  */
847 void ext4_free_blocks(handle_t *handle, struct inode *inode,
848                         ext4_fsblk_t block, unsigned long count,
849                         int metadata)
850 {
851         struct super_block * sb;
852         unsigned long dquot_freed_blocks;
853
854         /* this isn't the right place to decide whether block is metadata
855          * inode.c/extents.c knows better, but for safety ... */
856         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
857                         ext4_should_journal_data(inode))
858                 metadata = 1;
859
860         sb = inode->i_sb;
861
862         if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
863                 ext4_free_blocks_sb(handle, sb, block, count,
864                                                 &dquot_freed_blocks);
865         else
866                 ext4_mb_free_blocks(handle, inode, block, count,
867                                                 metadata, &dquot_freed_blocks);
868         if (dquot_freed_blocks)
869                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
870         return;
871 }
872
873 /**
874  * ext4_test_allocatable()
875  * @nr:                 given allocation block group
876  * @bh:                 bufferhead contains the bitmap of the given block group
877  *
878  * For ext4 allocations, we must not reuse any blocks which are
879  * allocated in the bitmap buffer's "last committed data" copy.  This
880  * prevents deletes from freeing up the page for reuse until we have
881  * committed the delete transaction.
882  *
883  * If we didn't do this, then deleting something and reallocating it as
884  * data would allow the old block to be overwritten before the
885  * transaction committed (because we force data to disk before commit).
886  * This would lead to corruption if we crashed between overwriting the
887  * data and committing the delete.
888  *
889  * @@@ We may want to make this allocation behaviour conditional on
890  * data-writes at some point, and disable it for metadata allocations or
891  * sync-data inodes.
892  */
893 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
894 {
895         int ret;
896         struct journal_head *jh = bh2jh(bh);
897
898         if (ext4_test_bit(nr, bh->b_data))
899                 return 0;
900
901         jbd_lock_bh_state(bh);
902         if (!jh->b_committed_data)
903                 ret = 1;
904         else
905                 ret = !ext4_test_bit(nr, jh->b_committed_data);
906         jbd_unlock_bh_state(bh);
907         return ret;
908 }
909
910 /**
911  * bitmap_search_next_usable_block()
912  * @start:              the starting block (group relative) of the search
913  * @bh:                 bufferhead contains the block group bitmap
914  * @maxblocks:          the ending block (group relative) of the reservation
915  *
916  * The bitmap search --- search forward alternately through the actual
917  * bitmap on disk and the last-committed copy in journal, until we find a
918  * bit free in both bitmaps.
919  */
920 static ext4_grpblk_t
921 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
922                                         ext4_grpblk_t maxblocks)
923 {
924         ext4_grpblk_t next;
925         struct journal_head *jh = bh2jh(bh);
926
927         while (start < maxblocks) {
928                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
929                 if (next >= maxblocks)
930                         return -1;
931                 if (ext4_test_allocatable(next, bh))
932                         return next;
933                 jbd_lock_bh_state(bh);
934                 if (jh->b_committed_data)
935                         start = ext4_find_next_zero_bit(jh->b_committed_data,
936                                                         maxblocks, next);
937                 jbd_unlock_bh_state(bh);
938         }
939         return -1;
940 }
941
942 /**
943  * find_next_usable_block()
944  * @start:              the starting block (group relative) to find next
945  *                      allocatable block in bitmap.
946  * @bh:                 bufferhead contains the block group bitmap
947  * @maxblocks:          the ending block (group relative) for the search
948  *
949  * Find an allocatable block in a bitmap.  We honor both the bitmap and
950  * its last-committed copy (if that exists), and perform the "most
951  * appropriate allocation" algorithm of looking for a free block near
952  * the initial goal; then for a free byte somewhere in the bitmap; then
953  * for any free bit in the bitmap.
954  */
955 static ext4_grpblk_t
956 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
957                         ext4_grpblk_t maxblocks)
958 {
959         ext4_grpblk_t here, next;
960         char *p, *r;
961
962         if (start > 0) {
963                 /*
964                  * The goal was occupied; search forward for a free
965                  * block within the next XX blocks.
966                  *
967                  * end_goal is more or less random, but it has to be
968                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
969                  * next 64-bit boundary is simple..
970                  */
971                 ext4_grpblk_t end_goal = (start + 63) & ~63;
972                 if (end_goal > maxblocks)
973                         end_goal = maxblocks;
974                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
975                 if (here < end_goal && ext4_test_allocatable(here, bh))
976                         return here;
977                 ext4_debug("Bit not found near goal\n");
978         }
979
980         here = start;
981         if (here < 0)
982                 here = 0;
983
984         p = ((char *)bh->b_data) + (here >> 3);
985         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
986         next = (r - ((char *)bh->b_data)) << 3;
987
988         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
989                 return next;
990
991         /*
992          * The bitmap search --- search forward alternately through the actual
993          * bitmap and the last-committed copy until we find a bit free in
994          * both
995          */
996         here = bitmap_search_next_usable_block(here, bh, maxblocks);
997         return here;
998 }
999
1000 /**
1001  * claim_block()
1002  * @block:              the free block (group relative) to allocate
1003  * @bh:                 the bufferhead containts the block group bitmap
1004  *
1005  * We think we can allocate this block in this bitmap.  Try to set the bit.
1006  * If that succeeds then check that nobody has allocated and then freed the
1007  * block since we saw that is was not marked in b_committed_data.  If it _was_
1008  * allocated and freed then clear the bit in the bitmap again and return
1009  * zero (failure).
1010  */
1011 static inline int
1012 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1013 {
1014         struct journal_head *jh = bh2jh(bh);
1015         int ret;
1016
1017         if (ext4_set_bit_atomic(lock, block, bh->b_data))
1018                 return 0;
1019         jbd_lock_bh_state(bh);
1020         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1021                 ext4_clear_bit_atomic(lock, block, bh->b_data);
1022                 ret = 0;
1023         } else {
1024                 ret = 1;
1025         }
1026         jbd_unlock_bh_state(bh);
1027         return ret;
1028 }
1029
1030 /**
1031  * ext4_try_to_allocate()
1032  * @sb:                 superblock
1033  * @handle:             handle to this transaction
1034  * @group:              given allocation block group
1035  * @bitmap_bh:          bufferhead holds the block bitmap
1036  * @grp_goal:           given target block within the group
1037  * @count:              target number of blocks to allocate
1038  * @my_rsv:             reservation window
1039  *
1040  * Attempt to allocate blocks within a give range. Set the range of allocation
1041  * first, then find the first free bit(s) from the bitmap (within the range),
1042  * and at last, allocate the blocks by claiming the found free bit as allocated.
1043  *
1044  * To set the range of this allocation:
1045  *      if there is a reservation window, only try to allocate block(s) from the
1046  *      file's own reservation window;
1047  *      Otherwise, the allocation range starts from the give goal block, ends at
1048  *      the block group's last block.
1049  *
1050  * If we failed to allocate the desired block then we may end up crossing to a
1051  * new bitmap.  In that case we must release write access to the old one via
1052  * ext4_journal_release_buffer(), else we'll run out of credits.
1053  */
1054 static ext4_grpblk_t
1055 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1056                         ext4_group_t group, struct buffer_head *bitmap_bh,
1057                         ext4_grpblk_t grp_goal, unsigned long *count,
1058                         struct ext4_reserve_window *my_rsv)
1059 {
1060         ext4_fsblk_t group_first_block;
1061         ext4_grpblk_t start, end;
1062         unsigned long num = 0;
1063
1064         /* we do allocation within the reservation window if we have a window */
1065         if (my_rsv) {
1066                 group_first_block = ext4_group_first_block_no(sb, group);
1067                 if (my_rsv->_rsv_start >= group_first_block)
1068                         start = my_rsv->_rsv_start - group_first_block;
1069                 else
1070                         /* reservation window cross group boundary */
1071                         start = 0;
1072                 end = my_rsv->_rsv_end - group_first_block + 1;
1073                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1074                         /* reservation window crosses group boundary */
1075                         end = EXT4_BLOCKS_PER_GROUP(sb);
1076                 if ((start <= grp_goal) && (grp_goal < end))
1077                         start = grp_goal;
1078                 else
1079                         grp_goal = -1;
1080         } else {
1081                 if (grp_goal > 0)
1082                         start = grp_goal;
1083                 else
1084                         start = 0;
1085                 end = EXT4_BLOCKS_PER_GROUP(sb);
1086         }
1087
1088         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1089
1090 repeat:
1091         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1092                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1093                 if (grp_goal < 0)
1094                         goto fail_access;
1095                 if (!my_rsv) {
1096                         int i;
1097
1098                         for (i = 0; i < 7 && grp_goal > start &&
1099                                         ext4_test_allocatable(grp_goal - 1,
1100                                                                 bitmap_bh);
1101                                         i++, grp_goal--)
1102                                 ;
1103                 }
1104         }
1105         start = grp_goal;
1106
1107         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1108                 grp_goal, bitmap_bh)) {
1109                 /*
1110                  * The block was allocated by another thread, or it was
1111                  * allocated and then freed by another thread
1112                  */
1113                 start++;
1114                 grp_goal++;
1115                 if (start >= end)
1116                         goto fail_access;
1117                 goto repeat;
1118         }
1119         num++;
1120         grp_goal++;
1121         while (num < *count && grp_goal < end
1122                 && ext4_test_allocatable(grp_goal, bitmap_bh)
1123                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1124                                 grp_goal, bitmap_bh)) {
1125                 num++;
1126                 grp_goal++;
1127         }
1128         *count = num;
1129         return grp_goal - num;
1130 fail_access:
1131         *count = num;
1132         return -1;
1133 }
1134
1135 /**
1136  *      find_next_reservable_window():
1137  *              find a reservable space within the given range.
1138  *              It does not allocate the reservation window for now:
1139  *              alloc_new_reservation() will do the work later.
1140  *
1141  *      @search_head: the head of the searching list;
1142  *              This is not necessarily the list head of the whole filesystem
1143  *
1144  *              We have both head and start_block to assist the search
1145  *              for the reservable space. The list starts from head,
1146  *              but we will shift to the place where start_block is,
1147  *              then start from there, when looking for a reservable space.
1148  *
1149  *      @size: the target new reservation window size
1150  *
1151  *      @group_first_block: the first block we consider to start
1152  *                      the real search from
1153  *
1154  *      @last_block:
1155  *              the maximum block number that our goal reservable space
1156  *              could start from. This is normally the last block in this
1157  *              group. The search will end when we found the start of next
1158  *              possible reservable space is out of this boundary.
1159  *              This could handle the cross boundary reservation window
1160  *              request.
1161  *
1162  *      basically we search from the given range, rather than the whole
1163  *      reservation double linked list, (start_block, last_block)
1164  *      to find a free region that is of my size and has not
1165  *      been reserved.
1166  *
1167  */
1168 static int find_next_reservable_window(
1169                                 struct ext4_reserve_window_node *search_head,
1170                                 struct ext4_reserve_window_node *my_rsv,
1171                                 struct super_block * sb,
1172                                 ext4_fsblk_t start_block,
1173                                 ext4_fsblk_t last_block)
1174 {
1175         struct rb_node *next;
1176         struct ext4_reserve_window_node *rsv, *prev;
1177         ext4_fsblk_t cur;
1178         int size = my_rsv->rsv_goal_size;
1179
1180         /* TODO: make the start of the reservation window byte-aligned */
1181         /* cur = *start_block & ~7;*/
1182         cur = start_block;
1183         rsv = search_head;
1184         if (!rsv)
1185                 return -1;
1186
1187         while (1) {
1188                 if (cur <= rsv->rsv_end)
1189                         cur = rsv->rsv_end + 1;
1190
1191                 /* TODO?
1192                  * in the case we could not find a reservable space
1193                  * that is what is expected, during the re-search, we could
1194                  * remember what's the largest reservable space we could have
1195                  * and return that one.
1196                  *
1197                  * For now it will fail if we could not find the reservable
1198                  * space with expected-size (or more)...
1199                  */
1200                 if (cur > last_block)
1201                         return -1;              /* fail */
1202
1203                 prev = rsv;
1204                 next = rb_next(&rsv->rsv_node);
1205                 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1206
1207                 /*
1208                  * Reached the last reservation, we can just append to the
1209                  * previous one.
1210                  */
1211                 if (!next)
1212                         break;
1213
1214                 if (cur + size <= rsv->rsv_start) {
1215                         /*
1216                          * Found a reserveable space big enough.  We could
1217                          * have a reservation across the group boundary here
1218                          */
1219                         break;
1220                 }
1221         }
1222         /*
1223          * we come here either :
1224          * when we reach the end of the whole list,
1225          * and there is empty reservable space after last entry in the list.
1226          * append it to the end of the list.
1227          *
1228          * or we found one reservable space in the middle of the list,
1229          * return the reservation window that we could append to.
1230          * succeed.
1231          */
1232
1233         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1234                 rsv_window_remove(sb, my_rsv);
1235
1236         /*
1237          * Let's book the whole avaliable window for now.  We will check the
1238          * disk bitmap later and then, if there are free blocks then we adjust
1239          * the window size if it's larger than requested.
1240          * Otherwise, we will remove this node from the tree next time
1241          * call find_next_reservable_window.
1242          */
1243         my_rsv->rsv_start = cur;
1244         my_rsv->rsv_end = cur + size - 1;
1245         my_rsv->rsv_alloc_hit = 0;
1246
1247         if (prev != my_rsv)
1248                 ext4_rsv_window_add(sb, my_rsv);
1249
1250         return 0;
1251 }
1252
1253 /**
1254  *      alloc_new_reservation()--allocate a new reservation window
1255  *
1256  *              To make a new reservation, we search part of the filesystem
1257  *              reservation list (the list that inside the group). We try to
1258  *              allocate a new reservation window near the allocation goal,
1259  *              or the beginning of the group, if there is no goal.
1260  *
1261  *              We first find a reservable space after the goal, then from
1262  *              there, we check the bitmap for the first free block after
1263  *              it. If there is no free block until the end of group, then the
1264  *              whole group is full, we failed. Otherwise, check if the free
1265  *              block is inside the expected reservable space, if so, we
1266  *              succeed.
1267  *              If the first free block is outside the reservable space, then
1268  *              start from the first free block, we search for next available
1269  *              space, and go on.
1270  *
1271  *      on succeed, a new reservation will be found and inserted into the list
1272  *      It contains at least one free block, and it does not overlap with other
1273  *      reservation windows.
1274  *
1275  *      failed: we failed to find a reservation window in this group
1276  *
1277  *      @rsv: the reservation
1278  *
1279  *      @grp_goal: The goal (group-relative).  It is where the search for a
1280  *              free reservable space should start from.
1281  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1282  *              no grp_goal(grp_goal = -1), we start from the first block
1283  *              of the group.
1284  *
1285  *      @sb: the super block
1286  *      @group: the group we are trying to allocate in
1287  *      @bitmap_bh: the block group block bitmap
1288  *
1289  */
1290 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1291                 ext4_grpblk_t grp_goal, struct super_block *sb,
1292                 ext4_group_t group, struct buffer_head *bitmap_bh)
1293 {
1294         struct ext4_reserve_window_node *search_head;
1295         ext4_fsblk_t group_first_block, group_end_block, start_block;
1296         ext4_grpblk_t first_free_block;
1297         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1298         unsigned long size;
1299         int ret;
1300         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1301
1302         group_first_block = ext4_group_first_block_no(sb, group);
1303         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1304
1305         if (grp_goal < 0)
1306                 start_block = group_first_block;
1307         else
1308                 start_block = grp_goal + group_first_block;
1309
1310         size = my_rsv->rsv_goal_size;
1311
1312         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1313                 /*
1314                  * if the old reservation is cross group boundary
1315                  * and if the goal is inside the old reservation window,
1316                  * we will come here when we just failed to allocate from
1317                  * the first part of the window. We still have another part
1318                  * that belongs to the next group. In this case, there is no
1319                  * point to discard our window and try to allocate a new one
1320                  * in this group(which will fail). we should
1321                  * keep the reservation window, just simply move on.
1322                  *
1323                  * Maybe we could shift the start block of the reservation
1324                  * window to the first block of next group.
1325                  */
1326
1327                 if ((my_rsv->rsv_start <= group_end_block) &&
1328                                 (my_rsv->rsv_end > group_end_block) &&
1329                                 (start_block >= my_rsv->rsv_start))
1330                         return -1;
1331
1332                 if ((my_rsv->rsv_alloc_hit >
1333                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1334                         /*
1335                          * if the previously allocation hit ratio is
1336                          * greater than 1/2, then we double the size of
1337                          * the reservation window the next time,
1338                          * otherwise we keep the same size window
1339                          */
1340                         size = size * 2;
1341                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1342                                 size = EXT4_MAX_RESERVE_BLOCKS;
1343                         my_rsv->rsv_goal_size= size;
1344                 }
1345         }
1346
1347         spin_lock(rsv_lock);
1348         /*
1349          * shift the search start to the window near the goal block
1350          */
1351         search_head = search_reserve_window(fs_rsv_root, start_block);
1352
1353         /*
1354          * find_next_reservable_window() simply finds a reservable window
1355          * inside the given range(start_block, group_end_block).
1356          *
1357          * To make sure the reservation window has a free bit inside it, we
1358          * need to check the bitmap after we found a reservable window.
1359          */
1360 retry:
1361         ret = find_next_reservable_window(search_head, my_rsv, sb,
1362                                                 start_block, group_end_block);
1363
1364         if (ret == -1) {
1365                 if (!rsv_is_empty(&my_rsv->rsv_window))
1366                         rsv_window_remove(sb, my_rsv);
1367                 spin_unlock(rsv_lock);
1368                 return -1;
1369         }
1370
1371         /*
1372          * On success, find_next_reservable_window() returns the
1373          * reservation window where there is a reservable space after it.
1374          * Before we reserve this reservable space, we need
1375          * to make sure there is at least a free block inside this region.
1376          *
1377          * searching the first free bit on the block bitmap and copy of
1378          * last committed bitmap alternatively, until we found a allocatable
1379          * block. Search start from the start block of the reservable space
1380          * we just found.
1381          */
1382         spin_unlock(rsv_lock);
1383         first_free_block = bitmap_search_next_usable_block(
1384                         my_rsv->rsv_start - group_first_block,
1385                         bitmap_bh, group_end_block - group_first_block + 1);
1386
1387         if (first_free_block < 0) {
1388                 /*
1389                  * no free block left on the bitmap, no point
1390                  * to reserve the space. return failed.
1391                  */
1392                 spin_lock(rsv_lock);
1393                 if (!rsv_is_empty(&my_rsv->rsv_window))
1394                         rsv_window_remove(sb, my_rsv);
1395                 spin_unlock(rsv_lock);
1396                 return -1;              /* failed */
1397         }
1398
1399         start_block = first_free_block + group_first_block;
1400         /*
1401          * check if the first free block is within the
1402          * free space we just reserved
1403          */
1404         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1405                 return 0;               /* success */
1406         /*
1407          * if the first free bit we found is out of the reservable space
1408          * continue search for next reservable space,
1409          * start from where the free block is,
1410          * we also shift the list head to where we stopped last time
1411          */
1412         search_head = my_rsv;
1413         spin_lock(rsv_lock);
1414         goto retry;
1415 }
1416
1417 /**
1418  * try_to_extend_reservation()
1419  * @my_rsv:             given reservation window
1420  * @sb:                 super block
1421  * @size:               the delta to extend
1422  *
1423  * Attempt to expand the reservation window large enough to have
1424  * required number of free blocks
1425  *
1426  * Since ext4_try_to_allocate() will always allocate blocks within
1427  * the reservation window range, if the window size is too small,
1428  * multiple blocks allocation has to stop at the end of the reservation
1429  * window. To make this more efficient, given the total number of
1430  * blocks needed and the current size of the window, we try to
1431  * expand the reservation window size if necessary on a best-effort
1432  * basis before ext4_new_blocks() tries to allocate blocks,
1433  */
1434 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1435                         struct super_block *sb, int size)
1436 {
1437         struct ext4_reserve_window_node *next_rsv;
1438         struct rb_node *next;
1439         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1440
1441         if (!spin_trylock(rsv_lock))
1442                 return;
1443
1444         next = rb_next(&my_rsv->rsv_node);
1445
1446         if (!next)
1447                 my_rsv->rsv_end += size;
1448         else {
1449                 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1450
1451                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1452                         my_rsv->rsv_end += size;
1453                 else
1454                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1455         }
1456         spin_unlock(rsv_lock);
1457 }
1458
1459 /**
1460  * ext4_try_to_allocate_with_rsv()
1461  * @sb:                 superblock
1462  * @handle:             handle to this transaction
1463  * @group:              given allocation block group
1464  * @bitmap_bh:          bufferhead holds the block bitmap
1465  * @grp_goal:           given target block within the group
1466  * @count:              target number of blocks to allocate
1467  * @my_rsv:             reservation window
1468  * @errp:               pointer to store the error code
1469  *
1470  * This is the main function used to allocate a new block and its reservation
1471  * window.
1472  *
1473  * Each time when a new block allocation is need, first try to allocate from
1474  * its own reservation.  If it does not have a reservation window, instead of
1475  * looking for a free bit on bitmap first, then look up the reservation list to
1476  * see if it is inside somebody else's reservation window, we try to allocate a
1477  * reservation window for it starting from the goal first. Then do the block
1478  * allocation within the reservation window.
1479  *
1480  * This will avoid keeping on searching the reservation list again and
1481  * again when somebody is looking for a free block (without
1482  * reservation), and there are lots of free blocks, but they are all
1483  * being reserved.
1484  *
1485  * We use a red-black tree for the per-filesystem reservation list.
1486  *
1487  */
1488 static ext4_grpblk_t
1489 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1490                         ext4_group_t group, struct buffer_head *bitmap_bh,
1491                         ext4_grpblk_t grp_goal,
1492                         struct ext4_reserve_window_node * my_rsv,
1493                         unsigned long *count, int *errp)
1494 {
1495         ext4_fsblk_t group_first_block, group_last_block;
1496         ext4_grpblk_t ret = 0;
1497         int fatal;
1498         unsigned long num = *count;
1499
1500         *errp = 0;
1501
1502         /*
1503          * Make sure we use undo access for the bitmap, because it is critical
1504          * that we do the frozen_data COW on bitmap buffers in all cases even
1505          * if the buffer is in BJ_Forget state in the committing transaction.
1506          */
1507         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1508         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1509         if (fatal) {
1510                 *errp = fatal;
1511                 return -1;
1512         }
1513
1514         /*
1515          * we don't deal with reservation when
1516          * filesystem is mounted without reservation
1517          * or the file is not a regular file
1518          * or last attempt to allocate a block with reservation turned on failed
1519          */
1520         if (my_rsv == NULL ) {
1521                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1522                                                 grp_goal, count, NULL);
1523                 goto out;
1524         }
1525         /*
1526          * grp_goal is a group relative block number (if there is a goal)
1527          * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1528          * first block is a filesystem wide block number
1529          * first block is the block number of the first block in this group
1530          */
1531         group_first_block = ext4_group_first_block_no(sb, group);
1532         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1533
1534         /*
1535          * Basically we will allocate a new block from inode's reservation
1536          * window.
1537          *
1538          * We need to allocate a new reservation window, if:
1539          * a) inode does not have a reservation window; or
1540          * b) last attempt to allocate a block from existing reservation
1541          *    failed; or
1542          * c) we come here with a goal and with a reservation window
1543          *
1544          * We do not need to allocate a new reservation window if we come here
1545          * at the beginning with a goal and the goal is inside the window, or
1546          * we don't have a goal but already have a reservation window.
1547          * then we could go to allocate from the reservation window directly.
1548          */
1549         while (1) {
1550                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1551                         !goal_in_my_reservation(&my_rsv->rsv_window,
1552                                                 grp_goal, group, sb)) {
1553                         if (my_rsv->rsv_goal_size < *count)
1554                                 my_rsv->rsv_goal_size = *count;
1555                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1556                                                         group, bitmap_bh);
1557                         if (ret < 0)
1558                                 break;                  /* failed */
1559
1560                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1561                                                         grp_goal, group, sb))
1562                                 grp_goal = -1;
1563                 } else if (grp_goal >= 0) {
1564                         int curr = my_rsv->rsv_end -
1565                                         (grp_goal + group_first_block) + 1;
1566
1567                         if (curr < *count)
1568                                 try_to_extend_reservation(my_rsv, sb,
1569                                                         *count - curr);
1570                 }
1571
1572                 if ((my_rsv->rsv_start > group_last_block) ||
1573                                 (my_rsv->rsv_end < group_first_block)) {
1574                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1575                         BUG();
1576                 }
1577                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1578                                            grp_goal, &num, &my_rsv->rsv_window);
1579                 if (ret >= 0) {
1580                         my_rsv->rsv_alloc_hit += num;
1581                         *count = num;
1582                         break;                          /* succeed */
1583                 }
1584                 num = *count;
1585         }
1586 out:
1587         if (ret >= 0) {
1588                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1589                                         "bitmap block");
1590                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1591                 if (fatal) {
1592                         *errp = fatal;
1593                         return -1;
1594                 }
1595                 return ret;
1596         }
1597
1598         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1599         ext4_journal_release_buffer(handle, bitmap_bh);
1600         return ret;
1601 }
1602
1603 /**
1604  * ext4_has_free_blocks()
1605  * @sbi:        in-core super block structure.
1606  * @nblocks:    number of neeed blocks
1607  *
1608  * Check if filesystem has free blocks available for allocation.
1609  * Return the number of blocks avaible for allocation for this request
1610  * On success, return nblocks
1611  */
1612 ext4_fsblk_t ext4_has_free_blocks(struct ext4_sb_info *sbi,
1613                                                 ext4_fsblk_t nblocks)
1614 {
1615         ext4_fsblk_t free_blocks;
1616         ext4_fsblk_t root_blocks = 0;
1617
1618         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1619
1620         if (!capable(CAP_SYS_RESOURCE) &&
1621                 sbi->s_resuid != current->fsuid &&
1622                 (sbi->s_resgid == 0 || !in_group_p(sbi->s_resgid)))
1623                 root_blocks = ext4_r_blocks_count(sbi->s_es);
1624 #ifdef CONFIG_SMP
1625         if (free_blocks - root_blocks < FBC_BATCH)
1626                 free_blocks =
1627                         percpu_counter_sum_and_set(&sbi->s_freeblocks_counter);
1628 #endif
1629         if (free_blocks - root_blocks < nblocks)
1630                 return free_blocks - root_blocks;
1631         return nblocks;
1632  }
1633
1634
1635 /**
1636  * ext4_should_retry_alloc()
1637  * @sb:                 super block
1638  * @retries             number of attemps has been made
1639  *
1640  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1641  * it is profitable to retry the operation, this function will wait
1642  * for the current or commiting transaction to complete, and then
1643  * return TRUE.
1644  *
1645  * if the total number of retries exceed three times, return FALSE.
1646  */
1647 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1648 {
1649         if (!ext4_has_free_blocks(EXT4_SB(sb), 1) || (*retries)++ > 3)
1650                 return 0;
1651
1652         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1653
1654         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1655 }
1656
1657 /**
1658  * ext4_old_new_blocks() -- core block bitmap based block allocation function
1659  *
1660  * @handle:             handle to this transaction
1661  * @inode:              file inode
1662  * @goal:               given target block(filesystem wide)
1663  * @count:              target number of blocks to allocate
1664  * @errp:               error code
1665  *
1666  * ext4_old_new_blocks uses a goal block to assist allocation and look up
1667  * the block bitmap directly to do block allocation.  It tries to
1668  * allocate block(s) from the block group contains the goal block first. If
1669  * that fails, it will try to allocate block(s) from other block groups
1670  * without any specific goal block.
1671  *
1672  * This function is called when -o nomballoc mount option is enabled
1673  *
1674  */
1675 ext4_fsblk_t ext4_old_new_blocks(handle_t *handle, struct inode *inode,
1676                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1677 {
1678         struct buffer_head *bitmap_bh = NULL;
1679         struct buffer_head *gdp_bh;
1680         ext4_group_t group_no;
1681         ext4_group_t goal_group;
1682         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1683         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1684         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1685         ext4_group_t bgi;                       /* blockgroup iteration index */
1686         int fatal = 0, err;
1687         int performed_allocation = 0;
1688         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1689         struct super_block *sb;
1690         struct ext4_group_desc *gdp;
1691         struct ext4_super_block *es;
1692         struct ext4_sb_info *sbi;
1693         struct ext4_reserve_window_node *my_rsv = NULL;
1694         struct ext4_block_alloc_info *block_i;
1695         unsigned short windowsz = 0;
1696         ext4_group_t ngroups;
1697         unsigned long num = *count;
1698
1699         sb = inode->i_sb;
1700         if (!sb) {
1701                 *errp = -ENODEV;
1702                 printk("ext4_new_block: nonexistent device");
1703                 return 0;
1704         }
1705
1706         sbi = EXT4_SB(sb);
1707         if (!EXT4_I(inode)->i_delalloc_reserved_flag) {
1708                 /*
1709                  * With delalloc we already reserved the blocks
1710                  */
1711                 *count = ext4_has_free_blocks(sbi, *count);
1712         }
1713         if (*count == 0) {
1714                 *errp = -ENOSPC;
1715                 return 0;       /*return with ENOSPC error */
1716         }
1717         num = *count;
1718
1719         /*
1720          * Check quota for allocation of this block.
1721          */
1722         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1723                 *errp = -EDQUOT;
1724                 return 0;
1725         }
1726
1727         sbi = EXT4_SB(sb);
1728         es = EXT4_SB(sb)->s_es;
1729         ext4_debug("goal=%llu.\n", goal);
1730         /*
1731          * Allocate a block from reservation only when
1732          * filesystem is mounted with reservation(default,-o reservation), and
1733          * it's a regular file, and
1734          * the desired window size is greater than 0 (One could use ioctl
1735          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1736          * reservation on that particular file)
1737          */
1738         block_i = EXT4_I(inode)->i_block_alloc_info;
1739         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1740                 my_rsv = &block_i->rsv_window_node;
1741
1742         /*
1743          * First, test whether the goal block is free.
1744          */
1745         if (goal < le32_to_cpu(es->s_first_data_block) ||
1746             goal >= ext4_blocks_count(es))
1747                 goal = le32_to_cpu(es->s_first_data_block);
1748         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1749         goal_group = group_no;
1750 retry_alloc:
1751         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1752         if (!gdp)
1753                 goto io_error;
1754
1755         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1756         /*
1757          * if there is not enough free blocks to make a new resevation
1758          * turn off reservation for this allocation
1759          */
1760         if (my_rsv && (free_blocks < windowsz)
1761                 && (rsv_is_empty(&my_rsv->rsv_window)))
1762                 my_rsv = NULL;
1763
1764         if (free_blocks > 0) {
1765                 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1766                 if (!bitmap_bh)
1767                         goto io_error;
1768                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1769                                         group_no, bitmap_bh, grp_target_blk,
1770                                         my_rsv, &num, &fatal);
1771                 if (fatal)
1772                         goto out;
1773                 if (grp_alloc_blk >= 0)
1774                         goto allocated;
1775         }
1776
1777         ngroups = EXT4_SB(sb)->s_groups_count;
1778         smp_rmb();
1779
1780         /*
1781          * Now search the rest of the groups.  We assume that
1782          * group_no and gdp correctly point to the last group visited.
1783          */
1784         for (bgi = 0; bgi < ngroups; bgi++) {
1785                 group_no++;
1786                 if (group_no >= ngroups)
1787                         group_no = 0;
1788                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1789                 if (!gdp)
1790                         goto io_error;
1791                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1792                 /*
1793                  * skip this group if the number of
1794                  * free blocks is less than half of the reservation
1795                  * window size.
1796                  */
1797                 if (free_blocks <= (windowsz/2))
1798                         continue;
1799
1800                 brelse(bitmap_bh);
1801                 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1802                 if (!bitmap_bh)
1803                         goto io_error;
1804                 /*
1805                  * try to allocate block(s) from this group, without a goal(-1).
1806                  */
1807                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1808                                         group_no, bitmap_bh, -1, my_rsv,
1809                                         &num, &fatal);
1810                 if (fatal)
1811                         goto out;
1812                 if (grp_alloc_blk >= 0)
1813                         goto allocated;
1814         }
1815         /*
1816          * We may end up a bogus ealier ENOSPC error due to
1817          * filesystem is "full" of reservations, but
1818          * there maybe indeed free blocks avaliable on disk
1819          * In this case, we just forget about the reservations
1820          * just do block allocation as without reservations.
1821          */
1822         if (my_rsv) {
1823                 my_rsv = NULL;
1824                 windowsz = 0;
1825                 group_no = goal_group;
1826                 goto retry_alloc;
1827         }
1828         /* No space left on the device */
1829         *errp = -ENOSPC;
1830         goto out;
1831
1832 allocated:
1833
1834         ext4_debug("using block group %lu(%d)\n",
1835                         group_no, gdp->bg_free_blocks_count);
1836
1837         BUFFER_TRACE(gdp_bh, "get_write_access");
1838         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1839         if (fatal)
1840                 goto out;
1841
1842         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1843
1844         if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1845             in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1846             in_range(ret_block, ext4_inode_table(sb, gdp),
1847                      EXT4_SB(sb)->s_itb_per_group) ||
1848             in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1849                      EXT4_SB(sb)->s_itb_per_group)) {
1850                 ext4_error(sb, "ext4_new_block",
1851                             "Allocating block in system zone - "
1852                             "blocks from %llu, length %lu",
1853                              ret_block, num);
1854                 /*
1855                  * claim_block marked the blocks we allocated
1856                  * as in use. So we may want to selectively
1857                  * mark some of the blocks as free
1858                  */
1859                 goto retry_alloc;
1860         }
1861
1862         performed_allocation = 1;
1863
1864 #ifdef CONFIG_JBD2_DEBUG
1865         {
1866                 struct buffer_head *debug_bh;
1867
1868                 /* Record bitmap buffer state in the newly allocated block */
1869                 debug_bh = sb_find_get_block(sb, ret_block);
1870                 if (debug_bh) {
1871                         BUFFER_TRACE(debug_bh, "state when allocated");
1872                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1873                         brelse(debug_bh);
1874                 }
1875         }
1876         jbd_lock_bh_state(bitmap_bh);
1877         spin_lock(sb_bgl_lock(sbi, group_no));
1878         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1879                 int i;
1880
1881                 for (i = 0; i < num; i++) {
1882                         if (ext4_test_bit(grp_alloc_blk+i,
1883                                         bh2jh(bitmap_bh)->b_committed_data)) {
1884                                 printk("%s: block was unexpectedly set in "
1885                                         "b_committed_data\n", __func__);
1886                         }
1887                 }
1888         }
1889         ext4_debug("found bit %d\n", grp_alloc_blk);
1890         spin_unlock(sb_bgl_lock(sbi, group_no));
1891         jbd_unlock_bh_state(bitmap_bh);
1892 #endif
1893
1894         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1895                 ext4_error(sb, "ext4_new_block",
1896                             "block(%llu) >= blocks count(%llu) - "
1897                             "block_group = %lu, es == %p ", ret_block,
1898                         ext4_blocks_count(es), group_no, es);
1899                 goto out;
1900         }
1901
1902         /*
1903          * It is up to the caller to add the new buffer to a journal
1904          * list of some description.  We don't know in advance whether
1905          * the caller wants to use it as metadata or data.
1906          */
1907         spin_lock(sb_bgl_lock(sbi, group_no));
1908         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1909                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1910         le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1911         gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1912         spin_unlock(sb_bgl_lock(sbi, group_no));
1913         if (!EXT4_I(inode)->i_delalloc_reserved_flag)
1914                 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1915
1916         if (sbi->s_log_groups_per_flex) {
1917                 ext4_group_t flex_group = ext4_flex_group(sbi, group_no);
1918                 spin_lock(sb_bgl_lock(sbi, flex_group));
1919                 sbi->s_flex_groups[flex_group].free_blocks -= num;
1920                 spin_unlock(sb_bgl_lock(sbi, flex_group));
1921         }
1922
1923         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1924         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1925         if (!fatal)
1926                 fatal = err;
1927
1928         sb->s_dirt = 1;
1929         if (fatal)
1930                 goto out;
1931
1932         *errp = 0;
1933         brelse(bitmap_bh);
1934         DQUOT_FREE_BLOCK(inode, *count-num);
1935         *count = num;
1936         return ret_block;
1937
1938 io_error:
1939         *errp = -EIO;
1940 out:
1941         if (fatal) {
1942                 *errp = fatal;
1943                 ext4_std_error(sb, fatal);
1944         }
1945         /*
1946          * Undo the block allocation
1947          */
1948         if (!performed_allocation)
1949                 DQUOT_FREE_BLOCK(inode, *count);
1950         brelse(bitmap_bh);
1951         return 0;
1952 }
1953
1954 #define EXT4_META_BLOCK 0x1
1955
1956 static ext4_fsblk_t do_blk_alloc(handle_t *handle, struct inode *inode,
1957                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
1958                                 unsigned long *count, int *errp, int flags)
1959 {
1960         struct ext4_allocation_request ar;
1961         ext4_fsblk_t ret;
1962
1963         if (!test_opt(inode->i_sb, MBALLOC)) {
1964                 return ext4_old_new_blocks(handle, inode, goal, count, errp);
1965         }
1966
1967         memset(&ar, 0, sizeof(ar));
1968         /* Fill with neighbour allocated blocks */
1969
1970         ar.inode = inode;
1971         ar.goal = goal;
1972         ar.len = *count;
1973         ar.logical = iblock;
1974
1975         if (S_ISREG(inode->i_mode) && !(flags & EXT4_META_BLOCK))
1976                 /* enable in-core preallocation for data block allocation */
1977                 ar.flags = EXT4_MB_HINT_DATA;
1978         else
1979                 /* disable in-core preallocation for non-regular files */
1980                 ar.flags = 0;
1981
1982         ret = ext4_mb_new_blocks(handle, &ar, errp);
1983         *count = ar.len;
1984         return ret;
1985 }
1986
1987 /*
1988  * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks
1989  *
1990  * @handle:             handle to this transaction
1991  * @inode:              file inode
1992  * @goal:               given target block(filesystem wide)
1993  * @count:              total number of blocks need
1994  * @errp:               error code
1995  *
1996  * Return 1st allocated block numberon success, *count stores total account
1997  * error stores in errp pointer
1998  */
1999 ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode,
2000                 ext4_fsblk_t goal, unsigned long *count, int *errp)
2001 {
2002         ext4_fsblk_t ret;
2003         ret = do_blk_alloc(handle, inode, 0, goal,
2004                                 count, errp, EXT4_META_BLOCK);
2005         /*
2006          * Account for the allocated meta blocks
2007          */
2008         if (!(*errp)) {
2009                 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2010                 EXT4_I(inode)->i_allocated_meta_blocks += *count;
2011                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2012         }
2013         return ret;
2014 }
2015
2016 /*
2017  * ext4_new_meta_block() -- allocate block for meta data (indexing) blocks
2018  *
2019  * @handle:             handle to this transaction
2020  * @inode:              file inode
2021  * @goal:               given target block(filesystem wide)
2022  * @errp:               error code
2023  *
2024  * Return allocated block number on success
2025  */
2026 ext4_fsblk_t ext4_new_meta_block(handle_t *handle, struct inode *inode,
2027                 ext4_fsblk_t goal, int *errp)
2028 {
2029         unsigned long count = 1;
2030         return ext4_new_meta_blocks(handle, inode, goal, &count, errp);
2031 }
2032
2033 /*
2034  * ext4_new_blocks() -- allocate data blocks
2035  *
2036  * @handle:             handle to this transaction
2037  * @inode:              file inode
2038  * @goal:               given target block(filesystem wide)
2039  * @count:              total number of blocks need
2040  * @errp:               error code
2041  *
2042  * Return 1st allocated block numberon success, *count stores total account
2043  * error stores in errp pointer
2044  */
2045
2046 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
2047                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
2048                                 unsigned long *count, int *errp)
2049 {
2050         return do_blk_alloc(handle, inode, iblock, goal, count, errp, 0);
2051 }
2052
2053 /**
2054  * ext4_count_free_blocks() -- count filesystem free blocks
2055  * @sb:         superblock
2056  *
2057  * Adds up the number of free blocks from each block group.
2058  */
2059 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
2060 {
2061         ext4_fsblk_t desc_count;
2062         struct ext4_group_desc *gdp;
2063         ext4_group_t i;
2064         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2065 #ifdef EXT4FS_DEBUG
2066         struct ext4_super_block *es;
2067         ext4_fsblk_t bitmap_count;
2068         unsigned long x;
2069         struct buffer_head *bitmap_bh = NULL;
2070
2071         es = EXT4_SB(sb)->s_es;
2072         desc_count = 0;
2073         bitmap_count = 0;
2074         gdp = NULL;
2075
2076         smp_rmb();
2077         for (i = 0; i < ngroups; i++) {
2078                 gdp = ext4_get_group_desc(sb, i, NULL);
2079                 if (!gdp)
2080                         continue;
2081                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2082                 brelse(bitmap_bh);
2083                 bitmap_bh = ext4_read_block_bitmap(sb, i);
2084                 if (bitmap_bh == NULL)
2085                         continue;
2086
2087                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
2088                 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
2089                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
2090                 bitmap_count += x;
2091         }
2092         brelse(bitmap_bh);
2093         printk("ext4_count_free_blocks: stored = %llu"
2094                 ", computed = %llu, %llu\n",
2095                 ext4_free_blocks_count(es),
2096                 desc_count, bitmap_count);
2097         return bitmap_count;
2098 #else
2099         desc_count = 0;
2100         smp_rmb();
2101         for (i = 0; i < ngroups; i++) {
2102                 gdp = ext4_get_group_desc(sb, i, NULL);
2103                 if (!gdp)
2104                         continue;
2105                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2106         }
2107
2108         return desc_count;
2109 #endif
2110 }
2111
2112 static inline int test_root(ext4_group_t a, int b)
2113 {
2114         int num = b;
2115
2116         while (a > num)
2117                 num *= b;
2118         return num == a;
2119 }
2120
2121 static int ext4_group_sparse(ext4_group_t group)
2122 {
2123         if (group <= 1)
2124                 return 1;
2125         if (!(group & 1))
2126                 return 0;
2127         return (test_root(group, 7) || test_root(group, 5) ||
2128                 test_root(group, 3));
2129 }
2130
2131 /**
2132  *      ext4_bg_has_super - number of blocks used by the superblock in group
2133  *      @sb: superblock for filesystem
2134  *      @group: group number to check
2135  *
2136  *      Return the number of blocks used by the superblock (primary or backup)
2137  *      in this group.  Currently this will be only 0 or 1.
2138  */
2139 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2140 {
2141         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2142                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2143                         !ext4_group_sparse(group))
2144                 return 0;
2145         return 1;
2146 }
2147
2148 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2149                                         ext4_group_t group)
2150 {
2151         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2152         ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2153         ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2154
2155         if (group == first || group == first + 1 || group == last)
2156                 return 1;
2157         return 0;
2158 }
2159
2160 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2161                                         ext4_group_t group)
2162 {
2163         return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2164 }
2165
2166 /**
2167  *      ext4_bg_num_gdb - number of blocks used by the group table in group
2168  *      @sb: superblock for filesystem
2169  *      @group: group number to check
2170  *
2171  *      Return the number of blocks used by the group descriptor table
2172  *      (primary or backup) in this group.  In the future there may be a
2173  *      different number of descriptor blocks in each group.
2174  */
2175 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2176 {
2177         unsigned long first_meta_bg =
2178                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2179         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2180
2181         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2182                         metagroup < first_meta_bg)
2183                 return ext4_bg_num_gdb_nometa(sb,group);
2184
2185         return ext4_bg_num_gdb_meta(sb,group);
2186
2187 }