Merge branch 'for-2.6.31' of git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[linux-2.6] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt73usb
23         Abstract: rt73usb device specific routines.
24         Supported chipsets: rt2571W & rt2671.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2x00usb_register_read and rt2x00usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * The _lock versions must be used if you already hold the csr_mutex
59  */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61         rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63         rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
64
65 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
66                               const unsigned int word, const u8 value)
67 {
68         u32 reg;
69
70         mutex_lock(&rt2x00dev->csr_mutex);
71
72         /*
73          * Wait until the BBP becomes available, afterwards we
74          * can safely write the new data into the register.
75          */
76         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77                 reg = 0;
78                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82
83                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
84         }
85
86         mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88
89 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
90                              const unsigned int word, u8 *value)
91 {
92         u32 reg;
93
94         mutex_lock(&rt2x00dev->csr_mutex);
95
96         /*
97          * Wait until the BBP becomes available, afterwards we
98          * can safely write the read request into the register.
99          * After the data has been written, we wait until hardware
100          * returns the correct value, if at any time the register
101          * doesn't become available in time, reg will be 0xffffffff
102          * which means we return 0xff to the caller.
103          */
104         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105                 reg = 0;
106                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109
110                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
111
112                 WAIT_FOR_BBP(rt2x00dev, &reg);
113         }
114
115         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116
117         mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119
120 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
121                              const unsigned int word, const u32 value)
122 {
123         u32 reg;
124
125         mutex_lock(&rt2x00dev->csr_mutex);
126
127         /*
128          * Wait until the RF becomes available, afterwards we
129          * can safely write the new data into the register.
130          */
131         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
132                 reg = 0;
133                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
134                 /*
135                  * RF5225 and RF2527 contain 21 bits per RF register value,
136                  * all others contain 20 bits.
137                  */
138                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
139                                    20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
140                                          rt2x00_rf(&rt2x00dev->chip, RF2527)));
141                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
142                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
143
144                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
145                 rt2x00_rf_write(rt2x00dev, word, value);
146         }
147
148         mutex_unlock(&rt2x00dev->csr_mutex);
149 }
150
151 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
152 static const struct rt2x00debug rt73usb_rt2x00debug = {
153         .owner  = THIS_MODULE,
154         .csr    = {
155                 .read           = rt2x00usb_register_read,
156                 .write          = rt2x00usb_register_write,
157                 .flags          = RT2X00DEBUGFS_OFFSET,
158                 .word_base      = CSR_REG_BASE,
159                 .word_size      = sizeof(u32),
160                 .word_count     = CSR_REG_SIZE / sizeof(u32),
161         },
162         .eeprom = {
163                 .read           = rt2x00_eeprom_read,
164                 .write          = rt2x00_eeprom_write,
165                 .word_base      = EEPROM_BASE,
166                 .word_size      = sizeof(u16),
167                 .word_count     = EEPROM_SIZE / sizeof(u16),
168         },
169         .bbp    = {
170                 .read           = rt73usb_bbp_read,
171                 .write          = rt73usb_bbp_write,
172                 .word_base      = BBP_BASE,
173                 .word_size      = sizeof(u8),
174                 .word_count     = BBP_SIZE / sizeof(u8),
175         },
176         .rf     = {
177                 .read           = rt2x00_rf_read,
178                 .write          = rt73usb_rf_write,
179                 .word_base      = RF_BASE,
180                 .word_size      = sizeof(u32),
181                 .word_count     = RF_SIZE / sizeof(u32),
182         },
183 };
184 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
185
186 #ifdef CONFIG_RT2X00_LIB_RFKILL
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188 {
189         u32 reg;
190
191         rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192         return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
193 }
194 #else
195 #define rt73usb_rfkill_poll     NULL
196 #endif /* CONFIG_RT2X00_LIB_RFKILL */
197
198 #ifdef CONFIG_RT2X00_LIB_LEDS
199 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
200                                    enum led_brightness brightness)
201 {
202         struct rt2x00_led *led =
203            container_of(led_cdev, struct rt2x00_led, led_dev);
204         unsigned int enabled = brightness != LED_OFF;
205         unsigned int a_mode =
206             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
207         unsigned int bg_mode =
208             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
209
210         if (led->type == LED_TYPE_RADIO) {
211                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
212                                    MCU_LEDCS_RADIO_STATUS, enabled);
213
214                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
215                                             0, led->rt2x00dev->led_mcu_reg,
216                                             REGISTER_TIMEOUT);
217         } else if (led->type == LED_TYPE_ASSOC) {
218                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
219                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
220                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
221                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
222
223                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
224                                             0, led->rt2x00dev->led_mcu_reg,
225                                             REGISTER_TIMEOUT);
226         } else if (led->type == LED_TYPE_QUALITY) {
227                 /*
228                  * The brightness is divided into 6 levels (0 - 5),
229                  * this means we need to convert the brightness
230                  * argument into the matching level within that range.
231                  */
232                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
233                                             brightness / (LED_FULL / 6),
234                                             led->rt2x00dev->led_mcu_reg,
235                                             REGISTER_TIMEOUT);
236         }
237 }
238
239 static int rt73usb_blink_set(struct led_classdev *led_cdev,
240                              unsigned long *delay_on,
241                              unsigned long *delay_off)
242 {
243         struct rt2x00_led *led =
244             container_of(led_cdev, struct rt2x00_led, led_dev);
245         u32 reg;
246
247         rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
248         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
249         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
250         rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
251
252         return 0;
253 }
254
255 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
256                              struct rt2x00_led *led,
257                              enum led_type type)
258 {
259         led->rt2x00dev = rt2x00dev;
260         led->type = type;
261         led->led_dev.brightness_set = rt73usb_brightness_set;
262         led->led_dev.blink_set = rt73usb_blink_set;
263         led->flags = LED_INITIALIZED;
264 }
265 #endif /* CONFIG_RT2X00_LIB_LEDS */
266
267 /*
268  * Configuration handlers.
269  */
270 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
271                                      struct rt2x00lib_crypto *crypto,
272                                      struct ieee80211_key_conf *key)
273 {
274         struct hw_key_entry key_entry;
275         struct rt2x00_field32 field;
276         int timeout;
277         u32 mask;
278         u32 reg;
279
280         if (crypto->cmd == SET_KEY) {
281                 /*
282                  * rt2x00lib can't determine the correct free
283                  * key_idx for shared keys. We have 1 register
284                  * with key valid bits. The goal is simple, read
285                  * the register, if that is full we have no slots
286                  * left.
287                  * Note that each BSS is allowed to have up to 4
288                  * shared keys, so put a mask over the allowed
289                  * entries.
290                  */
291                 mask = (0xf << crypto->bssidx);
292
293                 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
294                 reg &= mask;
295
296                 if (reg && reg == mask)
297                         return -ENOSPC;
298
299                 key->hw_key_idx += reg ? ffz(reg) : 0;
300
301                 /*
302                  * Upload key to hardware
303                  */
304                 memcpy(key_entry.key, crypto->key,
305                        sizeof(key_entry.key));
306                 memcpy(key_entry.tx_mic, crypto->tx_mic,
307                        sizeof(key_entry.tx_mic));
308                 memcpy(key_entry.rx_mic, crypto->rx_mic,
309                        sizeof(key_entry.rx_mic));
310
311                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
312                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
313                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
314                                                     USB_VENDOR_REQUEST_OUT, reg,
315                                                     &key_entry,
316                                                     sizeof(key_entry),
317                                                     timeout);
318
319                 /*
320                  * The cipher types are stored over 2 registers.
321                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
322                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
323                  * Using the correct defines correctly will cause overhead,
324                  * so just calculate the correct offset.
325                  */
326                 if (key->hw_key_idx < 8) {
327                         field.bit_offset = (3 * key->hw_key_idx);
328                         field.bit_mask = 0x7 << field.bit_offset;
329
330                         rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
331                         rt2x00_set_field32(&reg, field, crypto->cipher);
332                         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
333                 } else {
334                         field.bit_offset = (3 * (key->hw_key_idx - 8));
335                         field.bit_mask = 0x7 << field.bit_offset;
336
337                         rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
338                         rt2x00_set_field32(&reg, field, crypto->cipher);
339                         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
340                 }
341
342                 /*
343                  * The driver does not support the IV/EIV generation
344                  * in hardware. However it doesn't support the IV/EIV
345                  * inside the ieee80211 frame either, but requires it
346                  * to be provided seperately for the descriptor.
347                  * rt2x00lib will cut the IV/EIV data out of all frames
348                  * given to us by mac80211, but we must tell mac80211
349                  * to generate the IV/EIV data.
350                  */
351                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
352         }
353
354         /*
355          * SEC_CSR0 contains only single-bit fields to indicate
356          * a particular key is valid. Because using the FIELD32()
357          * defines directly will cause a lot of overhead we use
358          * a calculation to determine the correct bit directly.
359          */
360         mask = 1 << key->hw_key_idx;
361
362         rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
363         if (crypto->cmd == SET_KEY)
364                 reg |= mask;
365         else if (crypto->cmd == DISABLE_KEY)
366                 reg &= ~mask;
367         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
368
369         return 0;
370 }
371
372 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
373                                        struct rt2x00lib_crypto *crypto,
374                                        struct ieee80211_key_conf *key)
375 {
376         struct hw_pairwise_ta_entry addr_entry;
377         struct hw_key_entry key_entry;
378         int timeout;
379         u32 mask;
380         u32 reg;
381
382         if (crypto->cmd == SET_KEY) {
383                 /*
384                  * rt2x00lib can't determine the correct free
385                  * key_idx for pairwise keys. We have 2 registers
386                  * with key valid bits. The goal is simple, read
387                  * the first register, if that is full move to
388                  * the next register.
389                  * When both registers are full, we drop the key,
390                  * otherwise we use the first invalid entry.
391                  */
392                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
393                 if (reg && reg == ~0) {
394                         key->hw_key_idx = 32;
395                         rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
396                         if (reg && reg == ~0)
397                                 return -ENOSPC;
398                 }
399
400                 key->hw_key_idx += reg ? ffz(reg) : 0;
401
402                 /*
403                  * Upload key to hardware
404                  */
405                 memcpy(key_entry.key, crypto->key,
406                        sizeof(key_entry.key));
407                 memcpy(key_entry.tx_mic, crypto->tx_mic,
408                        sizeof(key_entry.tx_mic));
409                 memcpy(key_entry.rx_mic, crypto->rx_mic,
410                        sizeof(key_entry.rx_mic));
411
412                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
413                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
414                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
415                                                     USB_VENDOR_REQUEST_OUT, reg,
416                                                     &key_entry,
417                                                     sizeof(key_entry),
418                                                     timeout);
419
420                 /*
421                  * Send the address and cipher type to the hardware register.
422                  * This data fits within the CSR cache size, so we can use
423                  * rt2x00usb_register_multiwrite() directly.
424                  */
425                 memset(&addr_entry, 0, sizeof(addr_entry));
426                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
427                 addr_entry.cipher = crypto->cipher;
428
429                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
430                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
431                                             &addr_entry, sizeof(addr_entry));
432
433                 /*
434                  * Enable pairwise lookup table for given BSS idx,
435                  * without this received frames will not be decrypted
436                  * by the hardware.
437                  */
438                 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
439                 reg |= (1 << crypto->bssidx);
440                 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
441
442                 /*
443                  * The driver does not support the IV/EIV generation
444                  * in hardware. However it doesn't support the IV/EIV
445                  * inside the ieee80211 frame either, but requires it
446                  * to be provided seperately for the descriptor.
447                  * rt2x00lib will cut the IV/EIV data out of all frames
448                  * given to us by mac80211, but we must tell mac80211
449                  * to generate the IV/EIV data.
450                  */
451                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
452         }
453
454         /*
455          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
456          * a particular key is valid. Because using the FIELD32()
457          * defines directly will cause a lot of overhead we use
458          * a calculation to determine the correct bit directly.
459          */
460         if (key->hw_key_idx < 32) {
461                 mask = 1 << key->hw_key_idx;
462
463                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
464                 if (crypto->cmd == SET_KEY)
465                         reg |= mask;
466                 else if (crypto->cmd == DISABLE_KEY)
467                         reg &= ~mask;
468                 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
469         } else {
470                 mask = 1 << (key->hw_key_idx - 32);
471
472                 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
473                 if (crypto->cmd == SET_KEY)
474                         reg |= mask;
475                 else if (crypto->cmd == DISABLE_KEY)
476                         reg &= ~mask;
477                 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
478         }
479
480         return 0;
481 }
482
483 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
484                                   const unsigned int filter_flags)
485 {
486         u32 reg;
487
488         /*
489          * Start configuration steps.
490          * Note that the version error will always be dropped
491          * and broadcast frames will always be accepted since
492          * there is no filter for it at this time.
493          */
494         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
495         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
496                            !(filter_flags & FIF_FCSFAIL));
497         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
498                            !(filter_flags & FIF_PLCPFAIL));
499         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
500                            !(filter_flags & FIF_CONTROL));
501         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
502                            !(filter_flags & FIF_PROMISC_IN_BSS));
503         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
504                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
505                            !rt2x00dev->intf_ap_count);
506         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
507         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
508                            !(filter_flags & FIF_ALLMULTI));
509         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
510         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
511                            !(filter_flags & FIF_CONTROL));
512         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
513 }
514
515 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
516                                 struct rt2x00_intf *intf,
517                                 struct rt2x00intf_conf *conf,
518                                 const unsigned int flags)
519 {
520         unsigned int beacon_base;
521         u32 reg;
522
523         if (flags & CONFIG_UPDATE_TYPE) {
524                 /*
525                  * Clear current synchronisation setup.
526                  * For the Beacon base registers we only need to clear
527                  * the first byte since that byte contains the VALID and OWNER
528                  * bits which (when set to 0) will invalidate the entire beacon.
529                  */
530                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
531                 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
532
533                 /*
534                  * Enable synchronisation.
535                  */
536                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
537                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
538                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
539                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
540                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
541         }
542
543         if (flags & CONFIG_UPDATE_MAC) {
544                 reg = le32_to_cpu(conf->mac[1]);
545                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
546                 conf->mac[1] = cpu_to_le32(reg);
547
548                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
549                                             conf->mac, sizeof(conf->mac));
550         }
551
552         if (flags & CONFIG_UPDATE_BSSID) {
553                 reg = le32_to_cpu(conf->bssid[1]);
554                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
555                 conf->bssid[1] = cpu_to_le32(reg);
556
557                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
558                                             conf->bssid, sizeof(conf->bssid));
559         }
560 }
561
562 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
563                                struct rt2x00lib_erp *erp)
564 {
565         u32 reg;
566
567         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
568         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
569         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
570         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
571
572         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
573         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
574         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
575                            !!erp->short_preamble);
576         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
577
578         rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
579
580         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
581         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
582                            erp->beacon_int * 16);
583         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
584
585         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
586         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
587         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
588
589         rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
590         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
591         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
592         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
593         rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
594 }
595
596 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
597                                       struct antenna_setup *ant)
598 {
599         u8 r3;
600         u8 r4;
601         u8 r77;
602         u8 temp;
603
604         rt73usb_bbp_read(rt2x00dev, 3, &r3);
605         rt73usb_bbp_read(rt2x00dev, 4, &r4);
606         rt73usb_bbp_read(rt2x00dev, 77, &r77);
607
608         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
609
610         /*
611          * Configure the RX antenna.
612          */
613         switch (ant->rx) {
614         case ANTENNA_HW_DIVERSITY:
615                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
616                 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
617                        && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
618                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
619                 break;
620         case ANTENNA_A:
621                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
622                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
623                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
624                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
625                 else
626                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
627                 break;
628         case ANTENNA_B:
629         default:
630                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
631                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
632                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
633                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
634                 else
635                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
636                 break;
637         }
638
639         rt73usb_bbp_write(rt2x00dev, 77, r77);
640         rt73usb_bbp_write(rt2x00dev, 3, r3);
641         rt73usb_bbp_write(rt2x00dev, 4, r4);
642 }
643
644 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
645                                       struct antenna_setup *ant)
646 {
647         u8 r3;
648         u8 r4;
649         u8 r77;
650
651         rt73usb_bbp_read(rt2x00dev, 3, &r3);
652         rt73usb_bbp_read(rt2x00dev, 4, &r4);
653         rt73usb_bbp_read(rt2x00dev, 77, &r77);
654
655         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
656         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
657                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
658
659         /*
660          * Configure the RX antenna.
661          */
662         switch (ant->rx) {
663         case ANTENNA_HW_DIVERSITY:
664                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
665                 break;
666         case ANTENNA_A:
667                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
668                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
669                 break;
670         case ANTENNA_B:
671         default:
672                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
673                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
674                 break;
675         }
676
677         rt73usb_bbp_write(rt2x00dev, 77, r77);
678         rt73usb_bbp_write(rt2x00dev, 3, r3);
679         rt73usb_bbp_write(rt2x00dev, 4, r4);
680 }
681
682 struct antenna_sel {
683         u8 word;
684         /*
685          * value[0] -> non-LNA
686          * value[1] -> LNA
687          */
688         u8 value[2];
689 };
690
691 static const struct antenna_sel antenna_sel_a[] = {
692         { 96,  { 0x58, 0x78 } },
693         { 104, { 0x38, 0x48 } },
694         { 75,  { 0xfe, 0x80 } },
695         { 86,  { 0xfe, 0x80 } },
696         { 88,  { 0xfe, 0x80 } },
697         { 35,  { 0x60, 0x60 } },
698         { 97,  { 0x58, 0x58 } },
699         { 98,  { 0x58, 0x58 } },
700 };
701
702 static const struct antenna_sel antenna_sel_bg[] = {
703         { 96,  { 0x48, 0x68 } },
704         { 104, { 0x2c, 0x3c } },
705         { 75,  { 0xfe, 0x80 } },
706         { 86,  { 0xfe, 0x80 } },
707         { 88,  { 0xfe, 0x80 } },
708         { 35,  { 0x50, 0x50 } },
709         { 97,  { 0x48, 0x48 } },
710         { 98,  { 0x48, 0x48 } },
711 };
712
713 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
714                                struct antenna_setup *ant)
715 {
716         const struct antenna_sel *sel;
717         unsigned int lna;
718         unsigned int i;
719         u32 reg;
720
721         /*
722          * We should never come here because rt2x00lib is supposed
723          * to catch this and send us the correct antenna explicitely.
724          */
725         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
726                ant->tx == ANTENNA_SW_DIVERSITY);
727
728         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
729                 sel = antenna_sel_a;
730                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
731         } else {
732                 sel = antenna_sel_bg;
733                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
734         }
735
736         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
737                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
738
739         rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
740
741         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
742                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
743         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
744                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
745
746         rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
747
748         if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
749             rt2x00_rf(&rt2x00dev->chip, RF5225))
750                 rt73usb_config_antenna_5x(rt2x00dev, ant);
751         else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
752                  rt2x00_rf(&rt2x00dev->chip, RF2527))
753                 rt73usb_config_antenna_2x(rt2x00dev, ant);
754 }
755
756 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
757                                     struct rt2x00lib_conf *libconf)
758 {
759         u16 eeprom;
760         short lna_gain = 0;
761
762         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
763                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
764                         lna_gain += 14;
765
766                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
767                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
768         } else {
769                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
770                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
771         }
772
773         rt2x00dev->lna_gain = lna_gain;
774 }
775
776 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
777                                    struct rf_channel *rf, const int txpower)
778 {
779         u8 r3;
780         u8 r94;
781         u8 smart;
782
783         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
784         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
785
786         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
787                   rt2x00_rf(&rt2x00dev->chip, RF2527));
788
789         rt73usb_bbp_read(rt2x00dev, 3, &r3);
790         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
791         rt73usb_bbp_write(rt2x00dev, 3, r3);
792
793         r94 = 6;
794         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
795                 r94 += txpower - MAX_TXPOWER;
796         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
797                 r94 += txpower;
798         rt73usb_bbp_write(rt2x00dev, 94, r94);
799
800         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
801         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
802         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
803         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
804
805         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
806         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
807         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
808         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
809
810         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
811         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
812         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
813         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
814
815         udelay(10);
816 }
817
818 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
819                                    const int txpower)
820 {
821         struct rf_channel rf;
822
823         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
824         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
825         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
826         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
827
828         rt73usb_config_channel(rt2x00dev, &rf, txpower);
829 }
830
831 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
832                                        struct rt2x00lib_conf *libconf)
833 {
834         u32 reg;
835
836         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
837         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
838                            libconf->conf->long_frame_max_tx_count);
839         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
840                            libconf->conf->short_frame_max_tx_count);
841         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
842 }
843
844 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
845                                 struct rt2x00lib_conf *libconf)
846 {
847         enum dev_state state =
848             (libconf->conf->flags & IEEE80211_CONF_PS) ?
849                 STATE_SLEEP : STATE_AWAKE;
850         u32 reg;
851
852         if (state == STATE_SLEEP) {
853                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
854                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
855                                    rt2x00dev->beacon_int - 10);
856                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
857                                    libconf->conf->listen_interval - 1);
858                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
859
860                 /* We must first disable autowake before it can be enabled */
861                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
862                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
863
864                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
865                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
866
867                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
868                                             USB_MODE_SLEEP, REGISTER_TIMEOUT);
869         } else {
870                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
871                                             USB_MODE_WAKEUP, REGISTER_TIMEOUT);
872
873                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
874                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
875                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
876                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
877                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
878                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
879         }
880 }
881
882 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
883                            struct rt2x00lib_conf *libconf,
884                            const unsigned int flags)
885 {
886         /* Always recalculate LNA gain before changing configuration */
887         rt73usb_config_lna_gain(rt2x00dev, libconf);
888
889         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
890                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
891                                        libconf->conf->power_level);
892         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
893             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
894                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
895         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
896                 rt73usb_config_retry_limit(rt2x00dev, libconf);
897         if (flags & IEEE80211_CONF_CHANGE_PS)
898                 rt73usb_config_ps(rt2x00dev, libconf);
899 }
900
901 /*
902  * Link tuning
903  */
904 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
905                                struct link_qual *qual)
906 {
907         u32 reg;
908
909         /*
910          * Update FCS error count from register.
911          */
912         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
913         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
914
915         /*
916          * Update False CCA count from register.
917          */
918         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
919         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
920 }
921
922 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
923                                    struct link_qual *qual, u8 vgc_level)
924 {
925         if (qual->vgc_level != vgc_level) {
926                 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
927                 qual->vgc_level = vgc_level;
928                 qual->vgc_level_reg = vgc_level;
929         }
930 }
931
932 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
933                                 struct link_qual *qual)
934 {
935         rt73usb_set_vgc(rt2x00dev, qual, 0x20);
936 }
937
938 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
939                                struct link_qual *qual, const u32 count)
940 {
941         u8 up_bound;
942         u8 low_bound;
943
944         /*
945          * Determine r17 bounds.
946          */
947         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
948                 low_bound = 0x28;
949                 up_bound = 0x48;
950
951                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
952                         low_bound += 0x10;
953                         up_bound += 0x10;
954                 }
955         } else {
956                 if (qual->rssi > -82) {
957                         low_bound = 0x1c;
958                         up_bound = 0x40;
959                 } else if (qual->rssi > -84) {
960                         low_bound = 0x1c;
961                         up_bound = 0x20;
962                 } else {
963                         low_bound = 0x1c;
964                         up_bound = 0x1c;
965                 }
966
967                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
968                         low_bound += 0x14;
969                         up_bound += 0x10;
970                 }
971         }
972
973         /*
974          * If we are not associated, we should go straight to the
975          * dynamic CCA tuning.
976          */
977         if (!rt2x00dev->intf_associated)
978                 goto dynamic_cca_tune;
979
980         /*
981          * Special big-R17 for very short distance
982          */
983         if (qual->rssi > -35) {
984                 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
985                 return;
986         }
987
988         /*
989          * Special big-R17 for short distance
990          */
991         if (qual->rssi >= -58) {
992                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
993                 return;
994         }
995
996         /*
997          * Special big-R17 for middle-short distance
998          */
999         if (qual->rssi >= -66) {
1000                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1001                 return;
1002         }
1003
1004         /*
1005          * Special mid-R17 for middle distance
1006          */
1007         if (qual->rssi >= -74) {
1008                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1009                 return;
1010         }
1011
1012         /*
1013          * Special case: Change up_bound based on the rssi.
1014          * Lower up_bound when rssi is weaker then -74 dBm.
1015          */
1016         up_bound -= 2 * (-74 - qual->rssi);
1017         if (low_bound > up_bound)
1018                 up_bound = low_bound;
1019
1020         if (qual->vgc_level > up_bound) {
1021                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1022                 return;
1023         }
1024
1025 dynamic_cca_tune:
1026
1027         /*
1028          * r17 does not yet exceed upper limit, continue and base
1029          * the r17 tuning on the false CCA count.
1030          */
1031         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1032                 rt73usb_set_vgc(rt2x00dev, qual,
1033                                 min_t(u8, qual->vgc_level + 4, up_bound));
1034         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1035                 rt73usb_set_vgc(rt2x00dev, qual,
1036                                 max_t(u8, qual->vgc_level - 4, low_bound));
1037 }
1038
1039 /*
1040  * Firmware functions
1041  */
1042 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1043 {
1044         return FIRMWARE_RT2571;
1045 }
1046
1047 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1048                                   const u8 *data, const size_t len)
1049 {
1050         u16 fw_crc;
1051         u16 crc;
1052
1053         /*
1054          * Only support 2kb firmware files.
1055          */
1056         if (len != 2048)
1057                 return FW_BAD_LENGTH;
1058
1059         /*
1060          * The last 2 bytes in the firmware array are the crc checksum itself,
1061          * this means that we should never pass those 2 bytes to the crc
1062          * algorithm.
1063          */
1064         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1065
1066         /*
1067          * Use the crc itu-t algorithm.
1068          */
1069         crc = crc_itu_t(0, data, len - 2);
1070         crc = crc_itu_t_byte(crc, 0);
1071         crc = crc_itu_t_byte(crc, 0);
1072
1073         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1074 }
1075
1076 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1077                                  const u8 *data, const size_t len)
1078 {
1079         unsigned int i;
1080         int status;
1081         u32 reg;
1082
1083         /*
1084          * Wait for stable hardware.
1085          */
1086         for (i = 0; i < 100; i++) {
1087                 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1088                 if (reg)
1089                         break;
1090                 msleep(1);
1091         }
1092
1093         if (!reg) {
1094                 ERROR(rt2x00dev, "Unstable hardware.\n");
1095                 return -EBUSY;
1096         }
1097
1098         /*
1099          * Write firmware to device.
1100          */
1101         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1102                                             USB_VENDOR_REQUEST_OUT,
1103                                             FIRMWARE_IMAGE_BASE,
1104                                             data, len,
1105                                             REGISTER_TIMEOUT32(len));
1106
1107         /*
1108          * Send firmware request to device to load firmware,
1109          * we need to specify a long timeout time.
1110          */
1111         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1112                                              0, USB_MODE_FIRMWARE,
1113                                              REGISTER_TIMEOUT_FIRMWARE);
1114         if (status < 0) {
1115                 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1116                 return status;
1117         }
1118
1119         return 0;
1120 }
1121
1122 /*
1123  * Initialization functions.
1124  */
1125 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1126 {
1127         u32 reg;
1128
1129         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1130         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1131         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1132         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1133         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1134
1135         rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1136         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1137         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1138         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1139         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1140         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1141         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1142         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1143         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1144         rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1145
1146         /*
1147          * CCK TXD BBP registers
1148          */
1149         rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1150         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1151         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1152         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1153         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1154         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1155         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1156         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1157         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1158         rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1159
1160         /*
1161          * OFDM TXD BBP registers
1162          */
1163         rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1164         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1165         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1166         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1167         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1168         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1169         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1170         rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1171
1172         rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1173         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1174         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1175         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1176         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1177         rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1178
1179         rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1180         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1181         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1182         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1183         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1184         rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1185
1186         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1187         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1188         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1189         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1190         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1191         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1192         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1193         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1194
1195         rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1196
1197         rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1198         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1199         rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1200
1201         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1202
1203         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1204                 return -EBUSY;
1205
1206         rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1207
1208         /*
1209          * Invalidate all Shared Keys (SEC_CSR0),
1210          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1211          */
1212         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1213         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1214         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1215
1216         reg = 0x000023b0;
1217         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1218             rt2x00_rf(&rt2x00dev->chip, RF2527))
1219                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1220         rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1221
1222         rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1223         rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1224         rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1225
1226         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1227         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1228         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1229
1230         /*
1231          * Clear all beacons
1232          * For the Beacon base registers we only need to clear
1233          * the first byte since that byte contains the VALID and OWNER
1234          * bits which (when set to 0) will invalidate the entire beacon.
1235          */
1236         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1237         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1238         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1239         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1240
1241         /*
1242          * We must clear the error counters.
1243          * These registers are cleared on read,
1244          * so we may pass a useless variable to store the value.
1245          */
1246         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1247         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1248         rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1249
1250         /*
1251          * Reset MAC and BBP registers.
1252          */
1253         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1254         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1255         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1256         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1257
1258         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1259         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1260         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1261         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1262
1263         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1264         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1265         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1266
1267         return 0;
1268 }
1269
1270 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1271 {
1272         unsigned int i;
1273         u8 value;
1274
1275         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1276                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1277                 if ((value != 0xff) && (value != 0x00))
1278                         return 0;
1279                 udelay(REGISTER_BUSY_DELAY);
1280         }
1281
1282         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1283         return -EACCES;
1284 }
1285
1286 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1287 {
1288         unsigned int i;
1289         u16 eeprom;
1290         u8 reg_id;
1291         u8 value;
1292
1293         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1294                 return -EACCES;
1295
1296         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1297         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1298         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1299         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1300         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1301         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1302         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1303         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1304         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1305         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1306         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1307         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1308         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1309         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1310         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1311         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1312         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1313         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1314         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1315         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1316         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1317         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1318         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1319         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1320         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1321
1322         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1323                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1324
1325                 if (eeprom != 0xffff && eeprom != 0x0000) {
1326                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1327                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1328                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1329                 }
1330         }
1331
1332         return 0;
1333 }
1334
1335 /*
1336  * Device state switch handlers.
1337  */
1338 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1339                               enum dev_state state)
1340 {
1341         u32 reg;
1342
1343         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1344         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1345                            (state == STATE_RADIO_RX_OFF) ||
1346                            (state == STATE_RADIO_RX_OFF_LINK));
1347         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1348 }
1349
1350 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1351 {
1352         /*
1353          * Initialize all registers.
1354          */
1355         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1356                      rt73usb_init_bbp(rt2x00dev)))
1357                 return -EIO;
1358
1359         return 0;
1360 }
1361
1362 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1363 {
1364         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1365
1366         /*
1367          * Disable synchronisation.
1368          */
1369         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1370
1371         rt2x00usb_disable_radio(rt2x00dev);
1372 }
1373
1374 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1375 {
1376         u32 reg;
1377         unsigned int i;
1378         char put_to_sleep;
1379
1380         put_to_sleep = (state != STATE_AWAKE);
1381
1382         rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1383         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1384         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1385         rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1386
1387         /*
1388          * Device is not guaranteed to be in the requested state yet.
1389          * We must wait until the register indicates that the
1390          * device has entered the correct state.
1391          */
1392         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1393                 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1394                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1395                 if (state == !put_to_sleep)
1396                         return 0;
1397                 msleep(10);
1398         }
1399
1400         return -EBUSY;
1401 }
1402
1403 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1404                                     enum dev_state state)
1405 {
1406         int retval = 0;
1407
1408         switch (state) {
1409         case STATE_RADIO_ON:
1410                 retval = rt73usb_enable_radio(rt2x00dev);
1411                 break;
1412         case STATE_RADIO_OFF:
1413                 rt73usb_disable_radio(rt2x00dev);
1414                 break;
1415         case STATE_RADIO_RX_ON:
1416         case STATE_RADIO_RX_ON_LINK:
1417         case STATE_RADIO_RX_OFF:
1418         case STATE_RADIO_RX_OFF_LINK:
1419                 rt73usb_toggle_rx(rt2x00dev, state);
1420                 break;
1421         case STATE_RADIO_IRQ_ON:
1422         case STATE_RADIO_IRQ_OFF:
1423                 /* No support, but no error either */
1424                 break;
1425         case STATE_DEEP_SLEEP:
1426         case STATE_SLEEP:
1427         case STATE_STANDBY:
1428         case STATE_AWAKE:
1429                 retval = rt73usb_set_state(rt2x00dev, state);
1430                 break;
1431         default:
1432                 retval = -ENOTSUPP;
1433                 break;
1434         }
1435
1436         if (unlikely(retval))
1437                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1438                       state, retval);
1439
1440         return retval;
1441 }
1442
1443 /*
1444  * TX descriptor initialization
1445  */
1446 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1447                                   struct sk_buff *skb,
1448                                   struct txentry_desc *txdesc)
1449 {
1450         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1451         __le32 *txd = skbdesc->desc;
1452         u32 word;
1453
1454         /*
1455          * Start writing the descriptor words.
1456          */
1457         rt2x00_desc_read(txd, 1, &word);
1458         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1459         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1460         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1461         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1462         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1463         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1464                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1465         rt2x00_desc_write(txd, 1, word);
1466
1467         rt2x00_desc_read(txd, 2, &word);
1468         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1469         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1470         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1471         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1472         rt2x00_desc_write(txd, 2, word);
1473
1474         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1475                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1476                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1477         }
1478
1479         rt2x00_desc_read(txd, 5, &word);
1480         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1481                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1482         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1483         rt2x00_desc_write(txd, 5, word);
1484
1485         rt2x00_desc_read(txd, 0, &word);
1486         rt2x00_set_field32(&word, TXD_W0_BURST,
1487                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1488         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1489         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1490                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1491         rt2x00_set_field32(&word, TXD_W0_ACK,
1492                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1493         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1494                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1495         rt2x00_set_field32(&word, TXD_W0_OFDM,
1496                            (txdesc->rate_mode == RATE_MODE_OFDM));
1497         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1498         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1499                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1500         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1501                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1502         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1503                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1504         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1505         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1506         rt2x00_set_field32(&word, TXD_W0_BURST2,
1507                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1508         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1509         rt2x00_desc_write(txd, 0, word);
1510 }
1511
1512 /*
1513  * TX data initialization
1514  */
1515 static void rt73usb_write_beacon(struct queue_entry *entry)
1516 {
1517         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1518         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1519         unsigned int beacon_base;
1520         u32 reg;
1521
1522         /*
1523          * Add the descriptor in front of the skb.
1524          */
1525         skb_push(entry->skb, entry->queue->desc_size);
1526         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1527         skbdesc->desc = entry->skb->data;
1528
1529         /*
1530          * Disable beaconing while we are reloading the beacon data,
1531          * otherwise we might be sending out invalid data.
1532          */
1533         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1534         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1535         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1536         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1537         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1538
1539         /*
1540          * Write entire beacon with descriptor to register.
1541          */
1542         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1543         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1544                                             USB_VENDOR_REQUEST_OUT, beacon_base,
1545                                             entry->skb->data, entry->skb->len,
1546                                             REGISTER_TIMEOUT32(entry->skb->len));
1547
1548         /*
1549          * Clean up the beacon skb.
1550          */
1551         dev_kfree_skb(entry->skb);
1552         entry->skb = NULL;
1553 }
1554
1555 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1556 {
1557         int length;
1558
1559         /*
1560          * The length _must_ be a multiple of 4,
1561          * but it must _not_ be a multiple of the USB packet size.
1562          */
1563         length = roundup(entry->skb->len, 4);
1564         length += (4 * !(length % entry->queue->usb_maxpacket));
1565
1566         return length;
1567 }
1568
1569 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1570                                   const enum data_queue_qid queue)
1571 {
1572         u32 reg;
1573
1574         if (queue != QID_BEACON) {
1575                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1576                 return;
1577         }
1578
1579         /*
1580          * For Wi-Fi faily generated beacons between participating stations.
1581          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1582          */
1583         rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1584
1585         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1586         if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1587                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1588                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1589                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1590                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1591         }
1592 }
1593
1594 /*
1595  * RX control handlers
1596  */
1597 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1598 {
1599         u8 offset = rt2x00dev->lna_gain;
1600         u8 lna;
1601
1602         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1603         switch (lna) {
1604         case 3:
1605                 offset += 90;
1606                 break;
1607         case 2:
1608                 offset += 74;
1609                 break;
1610         case 1:
1611                 offset += 64;
1612                 break;
1613         default:
1614                 return 0;
1615         }
1616
1617         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1618                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1619                         if (lna == 3 || lna == 2)
1620                                 offset += 10;
1621                 } else {
1622                         if (lna == 3)
1623                                 offset += 6;
1624                         else if (lna == 2)
1625                                 offset += 8;
1626                 }
1627         }
1628
1629         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1630 }
1631
1632 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1633                                 struct rxdone_entry_desc *rxdesc)
1634 {
1635         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1636         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1637         __le32 *rxd = (__le32 *)entry->skb->data;
1638         u32 word0;
1639         u32 word1;
1640
1641         /*
1642          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1643          * frame data in rt2x00usb.
1644          */
1645         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1646         rxd = (__le32 *)skbdesc->desc;
1647
1648         /*
1649          * It is now safe to read the descriptor on all architectures.
1650          */
1651         rt2x00_desc_read(rxd, 0, &word0);
1652         rt2x00_desc_read(rxd, 1, &word1);
1653
1654         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1655                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1656
1657         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1658                 rxdesc->cipher =
1659                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1660                 rxdesc->cipher_status =
1661                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1662         }
1663
1664         if (rxdesc->cipher != CIPHER_NONE) {
1665                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1666                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1667                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1668
1669                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1670                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1671
1672                 /*
1673                  * Hardware has stripped IV/EIV data from 802.11 frame during
1674                  * decryption. It has provided the data seperately but rt2x00lib
1675                  * should decide if it should be reinserted.
1676                  */
1677                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1678
1679                 /*
1680                  * FIXME: Legacy driver indicates that the frame does
1681                  * contain the Michael Mic. Unfortunately, in rt2x00
1682                  * the MIC seems to be missing completely...
1683                  */
1684                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1685
1686                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1687                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1688                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1689                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1690         }
1691
1692         /*
1693          * Obtain the status about this packet.
1694          * When frame was received with an OFDM bitrate,
1695          * the signal is the PLCP value. If it was received with
1696          * a CCK bitrate the signal is the rate in 100kbit/s.
1697          */
1698         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1699         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1700         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1701
1702         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1703                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1704         else
1705                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1706         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1707                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1708
1709         /*
1710          * Set skb pointers, and update frame information.
1711          */
1712         skb_pull(entry->skb, entry->queue->desc_size);
1713         skb_trim(entry->skb, rxdesc->size);
1714 }
1715
1716 /*
1717  * Device probe functions.
1718  */
1719 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1720 {
1721         u16 word;
1722         u8 *mac;
1723         s8 value;
1724
1725         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1726
1727         /*
1728          * Start validation of the data that has been read.
1729          */
1730         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1731         if (!is_valid_ether_addr(mac)) {
1732                 random_ether_addr(mac);
1733                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1734         }
1735
1736         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1737         if (word == 0xffff) {
1738                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1739                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1740                                    ANTENNA_B);
1741                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1742                                    ANTENNA_B);
1743                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1744                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1745                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1746                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1747                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1748                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1749         }
1750
1751         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1752         if (word == 0xffff) {
1753                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1754                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1755                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1756         }
1757
1758         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1759         if (word == 0xffff) {
1760                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1761                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1762                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1763                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1764                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1765                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1766                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1767                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1768                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1769                                    LED_MODE_DEFAULT);
1770                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1771                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1772         }
1773
1774         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1775         if (word == 0xffff) {
1776                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1777                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1778                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1779                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1780         }
1781
1782         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1783         if (word == 0xffff) {
1784                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1785                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1786                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1787                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1788         } else {
1789                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1790                 if (value < -10 || value > 10)
1791                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1792                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1793                 if (value < -10 || value > 10)
1794                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1795                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1796         }
1797
1798         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1799         if (word == 0xffff) {
1800                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1801                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1802                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1803                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1804         } else {
1805                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1806                 if (value < -10 || value > 10)
1807                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1808                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1809                 if (value < -10 || value > 10)
1810                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1811                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1812         }
1813
1814         return 0;
1815 }
1816
1817 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1818 {
1819         u32 reg;
1820         u16 value;
1821         u16 eeprom;
1822
1823         /*
1824          * Read EEPROM word for configuration.
1825          */
1826         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1827
1828         /*
1829          * Identify RF chipset.
1830          */
1831         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1832         rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1833         rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1834
1835         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x000ffff0, 0x25730) ||
1836             rt2x00_check_rev(&rt2x00dev->chip, 0x0000000f, 0)) {
1837                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1838                 return -ENODEV;
1839         }
1840
1841         if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1842             !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1843             !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1844             !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1845                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1846                 return -ENODEV;
1847         }
1848
1849         /*
1850          * Identify default antenna configuration.
1851          */
1852         rt2x00dev->default_ant.tx =
1853             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1854         rt2x00dev->default_ant.rx =
1855             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1856
1857         /*
1858          * Read the Frame type.
1859          */
1860         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1861                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1862
1863         /*
1864          * Detect if this device has an hardware controlled radio.
1865          */
1866 #ifdef CONFIG_RT2X00_LIB_RFKILL
1867         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1868                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1869 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1870
1871         /*
1872          * Read frequency offset.
1873          */
1874         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1875         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1876
1877         /*
1878          * Read external LNA informations.
1879          */
1880         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1881
1882         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1883                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1884                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1885         }
1886
1887         /*
1888          * Store led settings, for correct led behaviour.
1889          */
1890 #ifdef CONFIG_RT2X00_LIB_LEDS
1891         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1892
1893         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1894         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1895         if (value == LED_MODE_SIGNAL_STRENGTH)
1896                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1897                                  LED_TYPE_QUALITY);
1898
1899         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1900         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1901                            rt2x00_get_field16(eeprom,
1902                                               EEPROM_LED_POLARITY_GPIO_0));
1903         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1904                            rt2x00_get_field16(eeprom,
1905                                               EEPROM_LED_POLARITY_GPIO_1));
1906         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1907                            rt2x00_get_field16(eeprom,
1908                                               EEPROM_LED_POLARITY_GPIO_2));
1909         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1910                            rt2x00_get_field16(eeprom,
1911                                               EEPROM_LED_POLARITY_GPIO_3));
1912         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1913                            rt2x00_get_field16(eeprom,
1914                                               EEPROM_LED_POLARITY_GPIO_4));
1915         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1916                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1917         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1918                            rt2x00_get_field16(eeprom,
1919                                               EEPROM_LED_POLARITY_RDY_G));
1920         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1921                            rt2x00_get_field16(eeprom,
1922                                               EEPROM_LED_POLARITY_RDY_A));
1923 #endif /* CONFIG_RT2X00_LIB_LEDS */
1924
1925         return 0;
1926 }
1927
1928 /*
1929  * RF value list for RF2528
1930  * Supports: 2.4 GHz
1931  */
1932 static const struct rf_channel rf_vals_bg_2528[] = {
1933         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1934         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1935         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1936         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1937         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1938         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1939         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1940         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1941         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1942         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1943         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1944         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1945         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1946         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1947 };
1948
1949 /*
1950  * RF value list for RF5226
1951  * Supports: 2.4 GHz & 5.2 GHz
1952  */
1953 static const struct rf_channel rf_vals_5226[] = {
1954         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1955         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1956         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1957         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1958         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1959         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1960         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1961         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1962         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1963         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1964         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1965         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1966         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1967         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1968
1969         /* 802.11 UNI / HyperLan 2 */
1970         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1971         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1972         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1973         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1974         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1975         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1976         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1977         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1978
1979         /* 802.11 HyperLan 2 */
1980         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1981         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1982         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1983         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1984         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1985         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1986         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1987         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1988         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1989         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1990
1991         /* 802.11 UNII */
1992         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1993         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1994         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1995         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1996         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1997         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1998
1999         /* MMAC(Japan)J52 ch 34,38,42,46 */
2000         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2001         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2002         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2003         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2004 };
2005
2006 /*
2007  * RF value list for RF5225 & RF2527
2008  * Supports: 2.4 GHz & 5.2 GHz
2009  */
2010 static const struct rf_channel rf_vals_5225_2527[] = {
2011         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2012         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2013         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2014         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2015         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2016         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2017         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2018         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2019         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2020         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2021         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2022         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2023         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2024         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2025
2026         /* 802.11 UNI / HyperLan 2 */
2027         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2028         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2029         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2030         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2031         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2032         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2033         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2034         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2035
2036         /* 802.11 HyperLan 2 */
2037         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2038         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2039         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2040         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2041         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2042         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2043         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2044         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2045         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2046         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2047
2048         /* 802.11 UNII */
2049         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2050         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2051         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2052         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2053         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2054         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2055
2056         /* MMAC(Japan)J52 ch 34,38,42,46 */
2057         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2058         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2059         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2060         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2061 };
2062
2063
2064 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2065 {
2066         struct hw_mode_spec *spec = &rt2x00dev->spec;
2067         struct channel_info *info;
2068         char *tx_power;
2069         unsigned int i;
2070
2071         /*
2072          * Initialize all hw fields.
2073          */
2074         rt2x00dev->hw->flags =
2075             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2076             IEEE80211_HW_SIGNAL_DBM |
2077             IEEE80211_HW_SUPPORTS_PS |
2078             IEEE80211_HW_PS_NULLFUNC_STACK;
2079         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2080
2081         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2082         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2083                                 rt2x00_eeprom_addr(rt2x00dev,
2084                                                    EEPROM_MAC_ADDR_0));
2085
2086         /*
2087          * Initialize hw_mode information.
2088          */
2089         spec->supported_bands = SUPPORT_BAND_2GHZ;
2090         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2091
2092         if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2093                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2094                 spec->channels = rf_vals_bg_2528;
2095         } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2096                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2097                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2098                 spec->channels = rf_vals_5226;
2099         } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2100                 spec->num_channels = 14;
2101                 spec->channels = rf_vals_5225_2527;
2102         } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2103                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2104                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2105                 spec->channels = rf_vals_5225_2527;
2106         }
2107
2108         /*
2109          * Create channel information array
2110          */
2111         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2112         if (!info)
2113                 return -ENOMEM;
2114
2115         spec->channels_info = info;
2116
2117         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2118         for (i = 0; i < 14; i++)
2119                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2120
2121         if (spec->num_channels > 14) {
2122                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2123                 for (i = 14; i < spec->num_channels; i++)
2124                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2125         }
2126
2127         return 0;
2128 }
2129
2130 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2131 {
2132         int retval;
2133
2134         /*
2135          * Allocate eeprom data.
2136          */
2137         retval = rt73usb_validate_eeprom(rt2x00dev);
2138         if (retval)
2139                 return retval;
2140
2141         retval = rt73usb_init_eeprom(rt2x00dev);
2142         if (retval)
2143                 return retval;
2144
2145         /*
2146          * Initialize hw specifications.
2147          */
2148         retval = rt73usb_probe_hw_mode(rt2x00dev);
2149         if (retval)
2150                 return retval;
2151
2152         /*
2153          * This device requires firmware.
2154          */
2155         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2156         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2157         if (!modparam_nohwcrypt)
2158                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2159
2160         /*
2161          * Set the rssi offset.
2162          */
2163         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2164
2165         return 0;
2166 }
2167
2168 /*
2169  * IEEE80211 stack callback functions.
2170  */
2171 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2172                            const struct ieee80211_tx_queue_params *params)
2173 {
2174         struct rt2x00_dev *rt2x00dev = hw->priv;
2175         struct data_queue *queue;
2176         struct rt2x00_field32 field;
2177         int retval;
2178         u32 reg;
2179         u32 offset;
2180
2181         /*
2182          * First pass the configuration through rt2x00lib, that will
2183          * update the queue settings and validate the input. After that
2184          * we are free to update the registers based on the value
2185          * in the queue parameter.
2186          */
2187         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2188         if (retval)
2189                 return retval;
2190
2191         /*
2192          * We only need to perform additional register initialization
2193          * for WMM queues/
2194          */
2195         if (queue_idx >= 4)
2196                 return 0;
2197
2198         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2199
2200         /* Update WMM TXOP register */
2201         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2202         field.bit_offset = (queue_idx & 1) * 16;
2203         field.bit_mask = 0xffff << field.bit_offset;
2204
2205         rt2x00usb_register_read(rt2x00dev, offset, &reg);
2206         rt2x00_set_field32(&reg, field, queue->txop);
2207         rt2x00usb_register_write(rt2x00dev, offset, reg);
2208
2209         /* Update WMM registers */
2210         field.bit_offset = queue_idx * 4;
2211         field.bit_mask = 0xf << field.bit_offset;
2212
2213         rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2214         rt2x00_set_field32(&reg, field, queue->aifs);
2215         rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2216
2217         rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2218         rt2x00_set_field32(&reg, field, queue->cw_min);
2219         rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2220
2221         rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2222         rt2x00_set_field32(&reg, field, queue->cw_max);
2223         rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2224
2225         return 0;
2226 }
2227
2228 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2229 {
2230         struct rt2x00_dev *rt2x00dev = hw->priv;
2231         u64 tsf;
2232         u32 reg;
2233
2234         rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2235         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2236         rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2237         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2238
2239         return tsf;
2240 }
2241
2242 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2243         .tx                     = rt2x00mac_tx,
2244         .start                  = rt2x00mac_start,
2245         .stop                   = rt2x00mac_stop,
2246         .add_interface          = rt2x00mac_add_interface,
2247         .remove_interface       = rt2x00mac_remove_interface,
2248         .config                 = rt2x00mac_config,
2249         .configure_filter       = rt2x00mac_configure_filter,
2250         .set_key                = rt2x00mac_set_key,
2251         .get_stats              = rt2x00mac_get_stats,
2252         .bss_info_changed       = rt2x00mac_bss_info_changed,
2253         .conf_tx                = rt73usb_conf_tx,
2254         .get_tx_stats           = rt2x00mac_get_tx_stats,
2255         .get_tsf                = rt73usb_get_tsf,
2256 };
2257
2258 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2259         .probe_hw               = rt73usb_probe_hw,
2260         .get_firmware_name      = rt73usb_get_firmware_name,
2261         .check_firmware         = rt73usb_check_firmware,
2262         .load_firmware          = rt73usb_load_firmware,
2263         .initialize             = rt2x00usb_initialize,
2264         .uninitialize           = rt2x00usb_uninitialize,
2265         .clear_entry            = rt2x00usb_clear_entry,
2266         .set_device_state       = rt73usb_set_device_state,
2267         .rfkill_poll            = rt73usb_rfkill_poll,
2268         .link_stats             = rt73usb_link_stats,
2269         .reset_tuner            = rt73usb_reset_tuner,
2270         .link_tuner             = rt73usb_link_tuner,
2271         .write_tx_desc          = rt73usb_write_tx_desc,
2272         .write_tx_data          = rt2x00usb_write_tx_data,
2273         .write_beacon           = rt73usb_write_beacon,
2274         .get_tx_data_len        = rt73usb_get_tx_data_len,
2275         .kick_tx_queue          = rt73usb_kick_tx_queue,
2276         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
2277         .fill_rxdone            = rt73usb_fill_rxdone,
2278         .config_shared_key      = rt73usb_config_shared_key,
2279         .config_pairwise_key    = rt73usb_config_pairwise_key,
2280         .config_filter          = rt73usb_config_filter,
2281         .config_intf            = rt73usb_config_intf,
2282         .config_erp             = rt73usb_config_erp,
2283         .config_ant             = rt73usb_config_ant,
2284         .config                 = rt73usb_config,
2285 };
2286
2287 static const struct data_queue_desc rt73usb_queue_rx = {
2288         .entry_num              = RX_ENTRIES,
2289         .data_size              = DATA_FRAME_SIZE,
2290         .desc_size              = RXD_DESC_SIZE,
2291         .priv_size              = sizeof(struct queue_entry_priv_usb),
2292 };
2293
2294 static const struct data_queue_desc rt73usb_queue_tx = {
2295         .entry_num              = TX_ENTRIES,
2296         .data_size              = DATA_FRAME_SIZE,
2297         .desc_size              = TXD_DESC_SIZE,
2298         .priv_size              = sizeof(struct queue_entry_priv_usb),
2299 };
2300
2301 static const struct data_queue_desc rt73usb_queue_bcn = {
2302         .entry_num              = 4 * BEACON_ENTRIES,
2303         .data_size              = MGMT_FRAME_SIZE,
2304         .desc_size              = TXINFO_SIZE,
2305         .priv_size              = sizeof(struct queue_entry_priv_usb),
2306 };
2307
2308 static const struct rt2x00_ops rt73usb_ops = {
2309         .name           = KBUILD_MODNAME,
2310         .max_sta_intf   = 1,
2311         .max_ap_intf    = 4,
2312         .eeprom_size    = EEPROM_SIZE,
2313         .rf_size        = RF_SIZE,
2314         .tx_queues      = NUM_TX_QUEUES,
2315         .rx             = &rt73usb_queue_rx,
2316         .tx             = &rt73usb_queue_tx,
2317         .bcn            = &rt73usb_queue_bcn,
2318         .lib            = &rt73usb_rt2x00_ops,
2319         .hw             = &rt73usb_mac80211_ops,
2320 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2321         .debugfs        = &rt73usb_rt2x00debug,
2322 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2323 };
2324
2325 /*
2326  * rt73usb module information.
2327  */
2328 static struct usb_device_id rt73usb_device_table[] = {
2329         /* AboCom */
2330         { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2331         { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2332         { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2333         { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2334         { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2335         /* AL */
2336         { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2337         /* Amigo */
2338         { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2339         { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2340         /* AMIT  */
2341         { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2342         /* Askey */
2343         { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2344         /* ASUS */
2345         { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2346         { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2347         /* Belkin */
2348         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2349         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2350         { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2351         { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2352         /* Billionton */
2353         { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2354         { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2355         /* Buffalo */
2356         { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2357         { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2358         { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2359         { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2360         /* CNet */
2361         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2362         { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2363         /* Conceptronic */
2364         { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2365         /* Corega */
2366         { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2367         /* D-Link */
2368         { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2369         { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2370         { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2371         { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2372         /* Edimax */
2373         { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2374         { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2375         /* EnGenius */
2376         { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2377         /* Gemtek */
2378         { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2379         /* Gigabyte */
2380         { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2381         { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2382         /* Huawei-3Com */
2383         { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2384         /* Hercules */
2385         { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2386         { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2387         /* Linksys */
2388         { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2389         { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2390         { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2391         /* MSI */
2392         { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2393         { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2394         { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2395         { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2396         /* Ralink */
2397         { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2398         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2399         { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2400         /* Qcom */
2401         { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2402         { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2403         { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2404         /* Samsung */
2405         { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2406         /* Senao */
2407         { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2408         /* Sitecom */
2409         { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2410         { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2411         { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2412         { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2413         { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2414         /* Surecom */
2415         { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2416         /* Tilgin */
2417         { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2418         /* Philips */
2419         { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2420         /* Planex */
2421         { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2422         { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2423         /* Zcom */
2424         { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2425         /* ZyXEL */
2426         { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2427         { 0, }
2428 };
2429
2430 MODULE_AUTHOR(DRV_PROJECT);
2431 MODULE_VERSION(DRV_VERSION);
2432 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2433 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2434 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2435 MODULE_FIRMWARE(FIRMWARE_RT2571);
2436 MODULE_LICENSE("GPL");
2437
2438 static struct usb_driver rt73usb_driver = {
2439         .name           = KBUILD_MODNAME,
2440         .id_table       = rt73usb_device_table,
2441         .probe          = rt2x00usb_probe,
2442         .disconnect     = rt2x00usb_disconnect,
2443         .suspend        = rt2x00usb_suspend,
2444         .resume         = rt2x00usb_resume,
2445 };
2446
2447 static int __init rt73usb_init(void)
2448 {
2449         return usb_register(&rt73usb_driver);
2450 }
2451
2452 static void __exit rt73usb_exit(void)
2453 {
2454         usb_deregister(&rt73usb_driver);
2455 }
2456
2457 module_init(rt73usb_init);
2458 module_exit(rt73usb_exit);