2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
39 #include <asm/fixmap.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
49 #include <asm/cacheflush.h>
52 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53 * The direct mapping extends to max_pfn_mapped, so that we can directly access
54 * apertures, ACPI and other tables without having to play with fixmaps.
56 unsigned long max_low_pfn_mapped;
57 unsigned long max_pfn_mapped;
59 static unsigned long dma_reserve __initdata;
61 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
64 #ifdef CONFIG_DIRECT_GBPAGES
69 static int __init parse_direct_gbpages_off(char *arg)
74 early_param("nogbpages", parse_direct_gbpages_off);
76 static int __init parse_direct_gbpages_on(char *arg)
81 early_param("gbpages", parse_direct_gbpages_on);
84 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85 * physical space so we can cache the place of the first one and move
86 * around without checking the pgd every time.
92 * NOTE: This function is marked __ref because it calls __init function
93 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
95 static __ref void *spp_getpage(void)
100 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
102 ptr = alloc_bootmem_pages(PAGE_SIZE);
104 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
105 panic("set_pte_phys: cannot allocate page data %s\n",
106 after_bootmem ? "after bootmem" : "");
109 pr_debug("spp_getpage %p\n", ptr);
115 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
121 pud = pud_page + pud_index(vaddr);
122 if (pud_none(*pud)) {
123 pmd = (pmd_t *) spp_getpage();
124 pud_populate(&init_mm, pud, pmd);
125 if (pmd != pmd_offset(pud, 0)) {
126 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
127 pmd, pmd_offset(pud, 0));
131 pmd = pmd_offset(pud, vaddr);
132 if (pmd_none(*pmd)) {
133 pte = (pte_t *) spp_getpage();
134 pmd_populate_kernel(&init_mm, pmd, pte);
135 if (pte != pte_offset_kernel(pmd, 0)) {
136 printk(KERN_ERR "PAGETABLE BUG #02!\n");
141 pte = pte_offset_kernel(pmd, vaddr);
142 if (!pte_none(*pte) && pte_val(new_pte) &&
143 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
145 set_pte(pte, new_pte);
148 * It's enough to flush this one mapping.
149 * (PGE mappings get flushed as well)
151 __flush_tlb_one(vaddr);
155 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
160 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
162 pgd = pgd_offset_k(vaddr);
163 if (pgd_none(*pgd)) {
165 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
168 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
169 set_pte_vaddr_pud(pud_page, vaddr, pteval);
173 * Create large page table mappings for a range of physical addresses.
175 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
182 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
183 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
184 pgd = pgd_offset_k((unsigned long)__va(phys));
185 if (pgd_none(*pgd)) {
186 pud = (pud_t *) spp_getpage();
187 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
190 pud = pud_offset(pgd, (unsigned long)__va(phys));
191 if (pud_none(*pud)) {
192 pmd = (pmd_t *) spp_getpage();
193 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
196 pmd = pmd_offset(pud, phys);
197 BUG_ON(!pmd_none(*pmd));
198 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
202 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
204 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
207 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
209 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
213 * The head.S code sets up the kernel high mapping:
215 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
217 * phys_addr holds the negative offset to the kernel, which is added
218 * to the compile time generated pmds. This results in invalid pmds up
219 * to the point where we hit the physaddr 0 mapping.
221 * We limit the mappings to the region from _text to _end. _end is
222 * rounded up to the 2MB boundary. This catches the invalid pmds as
223 * well, as they are located before _text:
225 void __init cleanup_highmap(void)
227 unsigned long vaddr = __START_KERNEL_map;
228 unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
229 pmd_t *pmd = level2_kernel_pgt;
230 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
232 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
235 if (vaddr < (unsigned long) _text || vaddr > end)
236 set_pmd(pmd, __pmd(0));
240 static unsigned long __initdata table_start;
241 static unsigned long __meminitdata table_end;
242 static unsigned long __meminitdata table_top;
244 static __ref void *alloc_low_page(unsigned long *phys)
246 unsigned long pfn = table_end++;
250 adr = (void *)get_zeroed_page(GFP_ATOMIC);
256 if (pfn >= table_top)
257 panic("alloc_low_page: ran out of memory");
259 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
260 memset(adr, 0, PAGE_SIZE);
261 *phys = pfn * PAGE_SIZE;
265 static __ref void unmap_low_page(void *adr)
270 early_iounmap(adr, PAGE_SIZE);
273 static unsigned long __meminit
274 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
277 unsigned long last_map_addr = end;
280 pte_t *pte = pte_page + pte_index(addr);
282 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
285 if (!after_bootmem) {
286 for(; i < PTRS_PER_PTE; i++, pte++)
287 set_pte(pte, __pte(0));
296 printk(" pte=%p addr=%lx pte=%016lx\n",
297 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
298 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
299 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
302 update_page_count(PG_LEVEL_4K, pages);
304 return last_map_addr;
307 static unsigned long __meminit
308 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
310 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
312 return phys_pte_init(pte, address, end);
315 static unsigned long __meminit
316 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
317 unsigned long page_size_mask)
319 unsigned long pages = 0;
320 unsigned long last_map_addr = end;
321 unsigned long start = address;
323 int i = pmd_index(address);
325 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
326 unsigned long pte_phys;
327 pmd_t *pmd = pmd_page + pmd_index(address);
330 if (address >= end) {
331 if (!after_bootmem) {
332 for (; i < PTRS_PER_PMD; i++, pmd++)
333 set_pmd(pmd, __pmd(0));
339 if (!pmd_large(*pmd)) {
340 spin_lock(&init_mm.page_table_lock);
341 last_map_addr = phys_pte_update(pmd, address,
343 spin_unlock(&init_mm.page_table_lock);
345 /* Count entries we're using from level2_ident_pgt */
351 if (page_size_mask & (1<<PG_LEVEL_2M)) {
353 spin_lock(&init_mm.page_table_lock);
354 set_pte((pte_t *)pmd,
355 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
356 spin_unlock(&init_mm.page_table_lock);
357 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
361 pte = alloc_low_page(&pte_phys);
362 last_map_addr = phys_pte_init(pte, address, end);
365 spin_lock(&init_mm.page_table_lock);
366 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
367 spin_unlock(&init_mm.page_table_lock);
369 update_page_count(PG_LEVEL_2M, pages);
370 return last_map_addr;
373 static unsigned long __meminit
374 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
375 unsigned long page_size_mask)
377 pmd_t *pmd = pmd_offset(pud, 0);
378 unsigned long last_map_addr;
380 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
382 return last_map_addr;
385 static unsigned long __meminit
386 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
387 unsigned long page_size_mask)
389 unsigned long pages = 0;
390 unsigned long last_map_addr = end;
391 int i = pud_index(addr);
393 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
394 unsigned long pmd_phys;
395 pud_t *pud = pud_page + pud_index(addr);
401 if (!after_bootmem &&
402 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
403 set_pud(pud, __pud(0));
408 if (!pud_large(*pud))
409 last_map_addr = phys_pmd_update(pud, addr, end,
414 if (page_size_mask & (1<<PG_LEVEL_1G)) {
416 spin_lock(&init_mm.page_table_lock);
417 set_pte((pte_t *)pud,
418 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
419 spin_unlock(&init_mm.page_table_lock);
420 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
424 pmd = alloc_low_page(&pmd_phys);
425 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
428 spin_lock(&init_mm.page_table_lock);
429 pud_populate(&init_mm, pud, __va(pmd_phys));
430 spin_unlock(&init_mm.page_table_lock);
433 update_page_count(PG_LEVEL_1G, pages);
435 return last_map_addr;
438 static unsigned long __meminit
439 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
440 unsigned long page_size_mask)
444 pud = (pud_t *)pgd_page_vaddr(*pgd);
446 return phys_pud_init(pud, addr, end, page_size_mask);
449 static void __init find_early_table_space(unsigned long end)
451 unsigned long puds, pmds, ptes, tables, start;
453 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
454 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
455 if (direct_gbpages) {
457 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
458 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
460 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
461 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
465 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
466 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
468 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
472 * RED-PEN putting page tables only on node 0 could
473 * cause a hotspot and fill up ZONE_DMA. The page tables
474 * need roughly 0.5KB per GB.
477 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
478 if (table_start == -1UL)
479 panic("Cannot find space for the kernel page tables");
481 table_start >>= PAGE_SHIFT;
482 table_end = table_start;
483 table_top = table_start + (tables >> PAGE_SHIFT);
485 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
486 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
489 static void __init init_gbpages(void)
491 if (direct_gbpages && cpu_has_gbpages)
492 printk(KERN_INFO "Using GB pages for direct mapping\n");
497 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
499 unsigned long page_size_mask)
502 unsigned long next, last_map_addr = end;
504 start = (unsigned long)__va(start);
505 end = (unsigned long)__va(end);
507 for (; start < end; start = next) {
508 pgd_t *pgd = pgd_offset_k(start);
509 unsigned long pud_phys;
512 next = (start + PGDIR_SIZE) & PGDIR_MASK;
517 last_map_addr = phys_pud_update(pgd, __pa(start),
518 __pa(end), page_size_mask);
522 pud = alloc_low_page(&pud_phys);
523 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
527 spin_lock(&init_mm.page_table_lock);
528 pgd_populate(&init_mm, pgd, __va(pud_phys));
529 spin_unlock(&init_mm.page_table_lock);
532 return last_map_addr;
538 unsigned page_size_mask;
541 #define NR_RANGE_MR 5
543 static int save_mr(struct map_range *mr, int nr_range,
544 unsigned long start_pfn, unsigned long end_pfn,
545 unsigned long page_size_mask)
548 if (start_pfn < end_pfn) {
549 if (nr_range >= NR_RANGE_MR)
550 panic("run out of range for init_memory_mapping\n");
551 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
552 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
553 mr[nr_range].page_size_mask = page_size_mask;
561 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
562 * This runs before bootmem is initialized and gets pages directly from
563 * the physical memory. To access them they are temporarily mapped.
565 unsigned long __init_refok init_memory_mapping(unsigned long start,
568 unsigned long last_map_addr = 0;
569 unsigned long page_size_mask = 0;
570 unsigned long start_pfn, end_pfn;
572 struct map_range mr[NR_RANGE_MR];
575 printk(KERN_INFO "init_memory_mapping\n");
578 * Find space for the kernel direct mapping tables.
580 * Later we should allocate these tables in the local node of the
581 * memory mapped. Unfortunately this is done currently before the
582 * nodes are discovered.
588 page_size_mask |= 1 << PG_LEVEL_1G;
590 page_size_mask |= 1 << PG_LEVEL_2M;
592 memset(mr, 0, sizeof(mr));
595 /* head if not big page alignment ?*/
596 start_pfn = start >> PAGE_SHIFT;
597 end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
598 << (PMD_SHIFT - PAGE_SHIFT);
599 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
601 /* big page (2M) range*/
602 start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
603 << (PMD_SHIFT - PAGE_SHIFT);
604 end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
605 << (PUD_SHIFT - PAGE_SHIFT);
606 if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
607 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
608 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
609 page_size_mask & (1<<PG_LEVEL_2M));
611 /* big page (1G) range */
613 end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
614 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
616 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
618 /* tail is not big page (1G) alignment */
620 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
621 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
622 page_size_mask & (1<<PG_LEVEL_2M));
624 /* tail is not big page (2M) alignment */
626 end_pfn = end>>PAGE_SHIFT;
627 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
629 /* try to merge same page size and continuous */
630 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
631 unsigned long old_start;
632 if (mr[i].end != mr[i+1].start ||
633 mr[i].page_size_mask != mr[i+1].page_size_mask)
636 old_start = mr[i].start;
637 memmove(&mr[i], &mr[i+1],
638 (nr_range - 1 - i) * sizeof (struct map_range));
639 mr[i].start = old_start;
643 for (i = 0; i < nr_range; i++)
644 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
645 mr[i].start, mr[i].end,
646 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
647 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
650 find_early_table_space(end);
652 for (i = 0; i < nr_range; i++)
653 last_map_addr = kernel_physical_mapping_init(
654 mr[i].start, mr[i].end,
655 mr[i].page_size_mask);
658 mmu_cr4_features = read_cr4();
661 if (!after_bootmem && table_end > table_start)
662 reserve_early(table_start << PAGE_SHIFT,
663 table_end << PAGE_SHIFT, "PGTABLE");
665 printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
669 early_memtest(start, end);
671 return last_map_addr >> PAGE_SHIFT;
675 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
677 unsigned long bootmap_size, bootmap;
679 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
680 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
683 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
684 /* don't touch min_low_pfn */
685 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
687 e820_register_active_regions(0, start_pfn, end_pfn);
688 free_bootmem_with_active_regions(0, end_pfn);
689 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
690 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
693 void __init paging_init(void)
695 unsigned long max_zone_pfns[MAX_NR_ZONES];
697 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
698 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
699 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
700 max_zone_pfns[ZONE_NORMAL] = max_pfn;
702 memory_present(0, 0, max_pfn);
704 free_area_init_nodes(max_zone_pfns);
709 * Memory hotplug specific functions
711 #ifdef CONFIG_MEMORY_HOTPLUG
713 * Memory is added always to NORMAL zone. This means you will never get
714 * additional DMA/DMA32 memory.
716 int arch_add_memory(int nid, u64 start, u64 size)
718 struct pglist_data *pgdat = NODE_DATA(nid);
719 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
720 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
721 unsigned long nr_pages = size >> PAGE_SHIFT;
724 last_mapped_pfn = init_memory_mapping(start, start + size-1);
725 if (last_mapped_pfn > max_pfn_mapped)
726 max_pfn_mapped = last_mapped_pfn;
728 ret = __add_pages(zone, start_pfn, nr_pages);
733 EXPORT_SYMBOL_GPL(arch_add_memory);
735 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
736 int memory_add_physaddr_to_nid(u64 start)
740 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
743 #endif /* CONFIG_MEMORY_HOTPLUG */
746 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
747 * is valid. The argument is a physical page number.
750 * On x86, access has to be given to the first megabyte of ram because that area
751 * contains bios code and data regions used by X and dosemu and similar apps.
752 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
753 * mmio resources as well as potential bios/acpi data regions.
755 int devmem_is_allowed(unsigned long pagenr)
759 if (!page_is_ram(pagenr))
765 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
766 kcore_modules, kcore_vsyscall;
768 void __init mem_init(void)
770 long codesize, reservedpages, datasize, initsize;
774 /* clear_bss() already clear the empty_zero_page */
778 /* this will put all low memory onto the freelists */
780 totalram_pages = numa_free_all_bootmem();
782 totalram_pages = free_all_bootmem();
784 reservedpages = max_pfn - totalram_pages -
785 absent_pages_in_range(0, max_pfn);
788 codesize = (unsigned long) &_etext - (unsigned long) &_text;
789 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
790 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
792 /* Register memory areas for /proc/kcore */
793 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
794 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
795 VMALLOC_END-VMALLOC_START);
796 kclist_add(&kcore_kernel, &_stext, _end - _stext);
797 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
798 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
799 VSYSCALL_END - VSYSCALL_START);
801 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
802 "%ldk reserved, %ldk data, %ldk init)\n",
803 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
804 max_pfn << (PAGE_SHIFT-10),
806 reservedpages << (PAGE_SHIFT-10),
813 void free_init_pages(char *what, unsigned long begin, unsigned long end)
815 unsigned long addr = begin;
821 * If debugging page accesses then do not free this memory but
822 * mark them not present - any buggy init-section access will
823 * create a kernel page fault:
825 #ifdef CONFIG_DEBUG_PAGEALLOC
826 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
827 begin, PAGE_ALIGN(end));
828 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
830 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
832 for (; addr < end; addr += PAGE_SIZE) {
833 ClearPageReserved(virt_to_page(addr));
834 init_page_count(virt_to_page(addr));
835 memset((void *)(addr & ~(PAGE_SIZE-1)),
836 POISON_FREE_INITMEM, PAGE_SIZE);
843 void free_initmem(void)
845 free_init_pages("unused kernel memory",
846 (unsigned long)(&__init_begin),
847 (unsigned long)(&__init_end));
850 #ifdef CONFIG_DEBUG_RODATA
851 const int rodata_test_data = 0xC3;
852 EXPORT_SYMBOL_GPL(rodata_test_data);
854 void mark_rodata_ro(void)
856 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
857 unsigned long rodata_start =
858 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
860 #ifdef CONFIG_DYNAMIC_FTRACE
861 /* Dynamic tracing modifies the kernel text section */
862 start = rodata_start;
865 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
866 (end - start) >> 10);
867 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
870 * The rodata section (but not the kernel text!) should also be
873 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
877 #ifdef CONFIG_CPA_DEBUG
878 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
879 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
881 printk(KERN_INFO "Testing CPA: again\n");
882 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
888 #ifdef CONFIG_BLK_DEV_INITRD
889 void free_initrd_mem(unsigned long start, unsigned long end)
891 free_init_pages("initrd memory", start, end);
895 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
902 unsigned long pfn = phys >> PAGE_SHIFT;
904 if (pfn >= max_pfn) {
906 * This can happen with kdump kernels when accessing
909 if (pfn < max_pfn_mapped)
912 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
917 /* Should check here against the e820 map to avoid double free */
919 nid = phys_to_nid(phys);
920 next_nid = phys_to_nid(phys + len - 1);
922 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
924 ret = reserve_bootmem(phys, len, flags);
930 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
933 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
934 dma_reserve += len / PAGE_SIZE;
935 set_dma_reserve(dma_reserve);
941 int kern_addr_valid(unsigned long addr)
943 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
949 if (above != 0 && above != -1UL)
952 pgd = pgd_offset_k(addr);
956 pud = pud_offset(pgd, addr);
960 pmd = pmd_offset(pud, addr);
965 return pfn_valid(pmd_pfn(*pmd));
967 pte = pte_offset_kernel(pmd, addr);
971 return pfn_valid(pte_pfn(*pte));
975 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
976 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
977 * not need special handling anymore:
979 static struct vm_area_struct gate_vma = {
980 .vm_start = VSYSCALL_START,
981 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
982 .vm_page_prot = PAGE_READONLY_EXEC,
983 .vm_flags = VM_READ | VM_EXEC
986 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
988 #ifdef CONFIG_IA32_EMULATION
989 if (test_tsk_thread_flag(tsk, TIF_IA32))
995 int in_gate_area(struct task_struct *task, unsigned long addr)
997 struct vm_area_struct *vma = get_gate_vma(task);
1002 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1006 * Use this when you have no reliable task/vma, typically from interrupt
1007 * context. It is less reliable than using the task's vma and may give
1010 int in_gate_area_no_task(unsigned long addr)
1012 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1015 const char *arch_vma_name(struct vm_area_struct *vma)
1017 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1019 if (vma == &gate_vma)
1020 return "[vsyscall]";
1024 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1026 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1028 static long __meminitdata addr_start, addr_end;
1029 static void __meminitdata *p_start, *p_end;
1030 static int __meminitdata node_start;
1033 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1035 unsigned long addr = (unsigned long)start_page;
1036 unsigned long end = (unsigned long)(start_page + size);
1042 for (; addr < end; addr = next) {
1045 pgd = vmemmap_pgd_populate(addr, node);
1049 pud = vmemmap_pud_populate(pgd, addr, node);
1054 next = (addr + PAGE_SIZE) & PAGE_MASK;
1055 pmd = vmemmap_pmd_populate(pud, addr, node);
1060 p = vmemmap_pte_populate(pmd, addr, node);
1065 addr_end = addr + PAGE_SIZE;
1066 p_end = p + PAGE_SIZE;
1068 next = pmd_addr_end(addr, end);
1070 pmd = pmd_offset(pud, addr);
1071 if (pmd_none(*pmd)) {
1074 p = vmemmap_alloc_block(PMD_SIZE, node);
1078 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1080 set_pmd(pmd, __pmd(pte_val(entry)));
1082 /* check to see if we have contiguous blocks */
1083 if (p_end != p || node_start != node) {
1085 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1086 addr_start, addr_end-1, p_start, p_end-1, node_start);
1092 addr_end = addr + PMD_SIZE;
1093 p_end = p + PMD_SIZE;
1095 vmemmap_verify((pte_t *)pmd, node, addr, next);
1102 void __meminit vmemmap_populate_print_last(void)
1105 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1106 addr_start, addr_end-1, p_start, p_end-1, node_start);