2  *      Adaptec AAC series RAID controller driver
 
   3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
 
   5  * based on the old aacraid driver that is..
 
   6  * Adaptec aacraid device driver for Linux.
 
   8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
 
  10  * This program is free software; you can redistribute it and/or modify
 
  11  * it under the terms of the GNU General Public License as published by
 
  12  * the Free Software Foundation; either version 2, or (at your option)
 
  15  * This program is distributed in the hope that it will be useful,
 
  16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  18  * GNU General Public License for more details.
 
  20  * You should have received a copy of the GNU General Public License
 
  21  * along with this program; see the file COPYING.  If not, write to
 
  22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 
  27  * Abstract: Contain all routines that are required for FSA host/adapter
 
  32 #include <linux/kernel.h>
 
  33 #include <linux/init.h>
 
  34 #include <linux/types.h>
 
  35 #include <linux/sched.h>
 
  36 #include <linux/pci.h>
 
  37 #include <linux/spinlock.h>
 
  38 #include <linux/slab.h>
 
  39 #include <linux/completion.h>
 
  40 #include <linux/blkdev.h>
 
  41 #include <linux/delay.h>
 
  42 #include <linux/kthread.h>
 
  43 #include <scsi/scsi_host.h>
 
  44 #include <scsi/scsi_device.h>
 
  45 #include <asm/semaphore.h>
 
  50  *      fib_map_alloc           -       allocate the fib objects
 
  51  *      @dev: Adapter to allocate for
 
  53  *      Allocate and map the shared PCI space for the FIB blocks used to
 
  54  *      talk to the Adaptec firmware.
 
  57 static int fib_map_alloc(struct aac_dev *dev)
 
  60           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
 
  61           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
 
  62           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
 
  63         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
 
  64           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
 
  65           &dev->hw_fib_pa))==NULL)
 
  71  *      aac_fib_map_free                -       free the fib objects
 
  72  *      @dev: Adapter to free
 
  74  *      Free the PCI mappings and the memory allocated for FIB blocks
 
  78 void aac_fib_map_free(struct aac_dev *dev)
 
  80         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
 
  84  *      aac_fib_setup   -       setup the fibs
 
  85  *      @dev: Adapter to set up
 
  87  *      Allocate the PCI space for the fibs, map it and then intialise the
 
  88  *      fib area, the unmapped fib data and also the free list
 
  91 int aac_fib_setup(struct aac_dev * dev)
 
  94         struct hw_fib *hw_fib_va;
 
  98         while (((i = fib_map_alloc(dev)) == -ENOMEM)
 
  99          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 
 100                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
 
 101                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
 
 106         hw_fib_va = dev->hw_fib_va;
 
 107         hw_fib_pa = dev->hw_fib_pa;
 
 108         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 
 110          *      Initialise the fibs
 
 112         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
 
 115                 fibptr->hw_fib = hw_fib_va;
 
 116                 fibptr->data = (void *) fibptr->hw_fib->data;
 
 117                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
 
 118                 init_MUTEX_LOCKED(&fibptr->event_wait);
 
 119                 spin_lock_init(&fibptr->event_lock);
 
 120                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
 
 121                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
 
 122                 fibptr->hw_fib_pa = hw_fib_pa;
 
 123                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
 
 124                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
 
 127          *      Add the fib chain to the free list
 
 129         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 
 131          *      Enable this to debug out of queue space
 
 133         dev->free_fib = &dev->fibs[0];
 
 138  *      aac_fib_alloc   -       allocate a fib
 
 139  *      @dev: Adapter to allocate the fib for
 
 141  *      Allocate a fib from the adapter fib pool. If the pool is empty we
 
 145 struct fib *aac_fib_alloc(struct aac_dev *dev)
 
 149         spin_lock_irqsave(&dev->fib_lock, flags);
 
 150         fibptr = dev->free_fib; 
 
 152                 spin_unlock_irqrestore(&dev->fib_lock, flags);
 
 155         dev->free_fib = fibptr->next;
 
 156         spin_unlock_irqrestore(&dev->fib_lock, flags);
 
 158          *      Set the proper node type code and node byte size
 
 160         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 
 161         fibptr->size = sizeof(struct fib);
 
 163          *      Null out fields that depend on being zero at the start of
 
 166         fibptr->hw_fib->header.XferState = 0;
 
 167         fibptr->callback = NULL;
 
 168         fibptr->callback_data = NULL;
 
 174  *      aac_fib_free    -       free a fib
 
 175  *      @fibptr: fib to free up
 
 177  *      Frees up a fib and places it on the appropriate queue
 
 178  *      (either free or timed out)
 
 181 void aac_fib_free(struct fib *fibptr)
 
 185         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 
 186         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
 
 187                 aac_config.fib_timeouts++;
 
 188                 fibptr->next = fibptr->dev->timeout_fib;
 
 189                 fibptr->dev->timeout_fib = fibptr;
 
 191                 if (fibptr->hw_fib->header.XferState != 0) {
 
 192                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 
 194                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
 
 196                 fibptr->next = fibptr->dev->free_fib;
 
 197                 fibptr->dev->free_fib = fibptr;
 
 199         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 
 203  *      aac_fib_init    -       initialise a fib
 
 204  *      @fibptr: The fib to initialize
 
 206  *      Set up the generic fib fields ready for use
 
 209 void aac_fib_init(struct fib *fibptr)
 
 211         struct hw_fib *hw_fib = fibptr->hw_fib;
 
 213         hw_fib->header.StructType = FIB_MAGIC;
 
 214         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 
 215         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 
 216         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
 
 217         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 
 218         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 
 222  *      fib_deallocate          -       deallocate a fib
 
 223  *      @fibptr: fib to deallocate
 
 225  *      Will deallocate and return to the free pool the FIB pointed to by the
 
 229 static void fib_dealloc(struct fib * fibptr)
 
 231         struct hw_fib *hw_fib = fibptr->hw_fib;
 
 232         if(hw_fib->header.StructType != FIB_MAGIC) 
 
 234         hw_fib->header.XferState = 0;        
 
 238  *      Commuication primitives define and support the queuing method we use to
 
 239  *      support host to adapter commuication. All queue accesses happen through
 
 240  *      these routines and are the only routines which have a knowledge of the
 
 241  *       how these queues are implemented.
 
 245  *      aac_get_entry           -       get a queue entry
 
 248  *      @entry: Entry return
 
 249  *      @index: Index return
 
 250  *      @nonotify: notification control
 
 252  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
 
 253  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 
 257 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 
 259         struct aac_queue * q;
 
 263          *      All of the queues wrap when they reach the end, so we check
 
 264          *      to see if they have reached the end and if they have we just
 
 265          *      set the index back to zero. This is a wrap. You could or off
 
 266          *      the high bits in all updates but this is a bit faster I think.
 
 269         q = &dev->queues->queue[qid];
 
 271         idx = *index = le32_to_cpu(*(q->headers.producer));
 
 272         /* Interrupt Moderation, only interrupt for first two entries */
 
 273         if (idx != le32_to_cpu(*(q->headers.consumer))) {
 
 275                         if (qid == AdapNormCmdQueue)
 
 276                                 idx = ADAP_NORM_CMD_ENTRIES;
 
 278                                 idx = ADAP_NORM_RESP_ENTRIES;
 
 280                 if (idx != le32_to_cpu(*(q->headers.consumer)))
 
 284         if (qid == AdapNormCmdQueue) {
 
 285                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
 
 286                         *index = 0; /* Wrap to front of the Producer Queue. */
 
 288                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
 
 289                         *index = 0; /* Wrap to front of the Producer Queue. */
 
 292         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
 
 293                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 
 297                 *entry = q->base + *index;
 
 303  *      aac_queue_get           -       get the next free QE
 
 305  *      @index: Returned index
 
 306  *      @priority: Priority of fib
 
 307  *      @fib: Fib to associate with the queue entry
 
 308  *      @wait: Wait if queue full
 
 309  *      @fibptr: Driver fib object to go with fib
 
 310  *      @nonotify: Don't notify the adapter
 
 312  *      Gets the next free QE off the requested priorty adapter command
 
 313  *      queue and associates the Fib with the QE. The QE represented by
 
 314  *      index is ready to insert on the queue when this routine returns
 
 318 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 
 320         struct aac_entry * entry = NULL;
 
 323         if (qid == AdapNormCmdQueue) {
 
 324                 /*  if no entries wait for some if caller wants to */
 
 325                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
 
 327                         printk(KERN_ERR "GetEntries failed\n");
 
 330                  *      Setup queue entry with a command, status and fib mapped
 
 332                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 
 335                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
 
 337                         /* if no entries wait for some if caller wants to */
 
 340                  *      Setup queue entry with command, status and fib mapped
 
 342                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 
 343                 entry->addr = hw_fib->header.SenderFibAddress;
 
 344                         /* Restore adapters pointer to the FIB */
 
 345                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
 
 349          *      If MapFib is true than we need to map the Fib and put pointers
 
 350          *      in the queue entry.
 
 353                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 
 358  *      Define the highest level of host to adapter communication routines. 
 
 359  *      These routines will support host to adapter FS commuication. These 
 
 360  *      routines have no knowledge of the commuication method used. This level
 
 361  *      sends and receives FIBs. This level has no knowledge of how these FIBs
 
 362  *      get passed back and forth.
 
 366  *      aac_fib_send    -       send a fib to the adapter
 
 367  *      @command: Command to send
 
 369  *      @size: Size of fib data area
 
 370  *      @priority: Priority of Fib
 
 371  *      @wait: Async/sync select
 
 372  *      @reply: True if a reply is wanted
 
 373  *      @callback: Called with reply
 
 374  *      @callback_data: Passed to callback
 
 376  *      Sends the requested FIB to the adapter and optionally will wait for a
 
 377  *      response FIB. If the caller does not wish to wait for a response than
 
 378  *      an event to wait on must be supplied. This event will be set when a
 
 379  *      response FIB is received from the adapter.
 
 382 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 
 383                 int priority, int wait, int reply, fib_callback callback,
 
 386         struct aac_dev * dev = fibptr->dev;
 
 387         struct hw_fib * hw_fib = fibptr->hw_fib;
 
 388         struct aac_queue * q;
 
 389         unsigned long flags = 0;
 
 390         unsigned long qflags;
 
 392         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 
 395          *      There are 5 cases with the wait and reponse requested flags. 
 
 396          *      The only invalid cases are if the caller requests to wait and
 
 397          *      does not request a response and if the caller does not want a
 
 398          *      response and the Fib is not allocated from pool. If a response
 
 399          *      is not requesed the Fib will just be deallocaed by the DPC
 
 400          *      routine when the response comes back from the adapter. No
 
 401          *      further processing will be done besides deleting the Fib. We 
 
 402          *      will have a debug mode where the adapter can notify the host
 
 403          *      it had a problem and the host can log that fact.
 
 405         if (wait && !reply) {
 
 407         } else if (!wait && reply) {
 
 408                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 
 409                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 
 410         } else if (!wait && !reply) {
 
 411                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 
 412                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 
 413         } else if (wait && reply) {
 
 414                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 
 415                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 
 418          *      Map the fib into 32bits by using the fib number
 
 421         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 
 422         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
 
 424          *      Set FIB state to indicate where it came from and if we want a
 
 425          *      response from the adapter. Also load the command from the
 
 428          *      Map the hw fib pointer as a 32bit value
 
 430         hw_fib->header.Command = cpu_to_le16(command);
 
 431         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 
 432         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
 
 434          *      Set the size of the Fib we want to send to the adapter
 
 436         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 
 437         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 
 441          *      Get a queue entry connect the FIB to it and send an notify
 
 442          *      the adapter a command is ready.
 
 444         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 
 447          *      Fill in the Callback and CallbackContext if we are not
 
 451                 fibptr->callback = callback;
 
 452                 fibptr->callback_data = callback_data;
 
 458         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 
 460         dprintk((KERN_DEBUG "Fib contents:.\n"));
 
 461         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 
 462         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 
 463         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 
 464         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
 
 465         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 
 466         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 
 468         q = &dev->queues->queue[AdapNormCmdQueue];
 
 471                 spin_lock_irqsave(&fibptr->event_lock, flags);
 
 472         spin_lock_irqsave(q->lock, qflags);
 
 473         if (dev->new_comm_interface) {
 
 474                 unsigned long count = 10000000L; /* 50 seconds */
 
 475                 list_add_tail(&fibptr->queue, &q->pendingq);
 
 477                 spin_unlock_irqrestore(q->lock, qflags);
 
 478                 while (aac_adapter_send(fibptr) != 0) {
 
 481                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 482                                 spin_lock_irqsave(q->lock, qflags);
 
 484                                 list_del(&fibptr->queue);
 
 485                                 spin_unlock_irqrestore(q->lock, qflags);
 
 492                 unsigned long nointr = 0;
 
 493                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
 
 495                 list_add_tail(&fibptr->queue, &q->pendingq);
 
 497                 *(q->headers.producer) = cpu_to_le32(index + 1);
 
 498                 spin_unlock_irqrestore(q->lock, qflags);
 
 499                 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
 
 500                 if (!(nointr & aac_config.irq_mod))
 
 501                         aac_adapter_notify(dev, AdapNormCmdQueue);
 
 505          *      If the caller wanted us to wait for response wait now. 
 
 509                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 510                 /* Only set for first known interruptable command */
 
 513                          * *VERY* Dangerous to time out a command, the
 
 514                          * assumption is made that we have no hope of
 
 515                          * functioning because an interrupt routing or other
 
 516                          * hardware failure has occurred.
 
 518                         unsigned long count = 36000000L; /* 3 minutes */
 
 519                         while (down_trylock(&fibptr->event_wait)) {
 
 521                                         spin_lock_irqsave(q->lock, qflags);
 
 523                                         list_del(&fibptr->queue);
 
 524                                         spin_unlock_irqrestore(q->lock, qflags);
 
 526                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 
 527                                                   "Usually a result of a PCI interrupt routing problem;\n"
 
 528                                                   "update mother board BIOS or consider utilizing one of\n"
 
 529                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
 
 536                         down(&fibptr->event_wait);
 
 537                 if(fibptr->done == 0)
 
 540                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
 
 547          *      If the user does not want a response than return success otherwise
 
 557  *      aac_consumer_get        -       get the top of the queue
 
 560  *      @entry: Return entry
 
 562  *      Will return a pointer to the entry on the top of the queue requested that
 
 563  *      we are a consumer of, and return the address of the queue entry. It does
 
 564  *      not change the state of the queue. 
 
 567 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 
 571         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 
 575                  *      The consumer index must be wrapped if we have reached
 
 576                  *      the end of the queue, else we just use the entry
 
 577                  *      pointed to by the header index
 
 579                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
 
 582                         index = le32_to_cpu(*q->headers.consumer);
 
 583                 *entry = q->base + index;
 
 590  *      aac_consumer_free       -       free consumer entry
 
 595  *      Frees up the current top of the queue we are a consumer of. If the
 
 596  *      queue was full notify the producer that the queue is no longer full.
 
 599 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 
 604         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 
 607         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 
 608                 *q->headers.consumer = cpu_to_le32(1);
 
 610                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
 
 615                 case HostNormCmdQueue:
 
 616                         notify = HostNormCmdNotFull;
 
 618                 case HostNormRespQueue:
 
 619                         notify = HostNormRespNotFull;
 
 625                 aac_adapter_notify(dev, notify);
 
 630  *      aac_fib_adapter_complete        -       complete adapter issued fib
 
 631  *      @fibptr: fib to complete
 
 634  *      Will do all necessary work to complete a FIB that was sent from
 
 638 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 
 640         struct hw_fib * hw_fib = fibptr->hw_fib;
 
 641         struct aac_dev * dev = fibptr->dev;
 
 642         struct aac_queue * q;
 
 643         unsigned long nointr = 0;
 
 644         unsigned long qflags;
 
 646         if (hw_fib->header.XferState == 0) {
 
 647                 if (dev->new_comm_interface)
 
 652          *      If we plan to do anything check the structure type first.
 
 654         if ( hw_fib->header.StructType != FIB_MAGIC ) {
 
 655                 if (dev->new_comm_interface)
 
 660          *      This block handles the case where the adapter had sent us a
 
 661          *      command and we have finished processing the command. We
 
 662          *      call completeFib when we are done processing the command 
 
 663          *      and want to send a response back to the adapter. This will 
 
 664          *      send the completed cdb to the adapter.
 
 666         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 
 667                 if (dev->new_comm_interface) {
 
 671                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 
 673                                 size += sizeof(struct aac_fibhdr);
 
 674                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
 
 676                                 hw_fib->header.Size = cpu_to_le16(size);
 
 678                         q = &dev->queues->queue[AdapNormRespQueue];
 
 679                         spin_lock_irqsave(q->lock, qflags);
 
 680                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 
 681                         *(q->headers.producer) = cpu_to_le32(index + 1);
 
 682                         spin_unlock_irqrestore(q->lock, qflags);
 
 683                         if (!(nointr & (int)aac_config.irq_mod))
 
 684                                 aac_adapter_notify(dev, AdapNormRespQueue);
 
 689                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
 
 696  *      aac_fib_complete        -       fib completion handler
 
 697  *      @fib: FIB to complete
 
 699  *      Will do all necessary work to complete a FIB.
 
 702 int aac_fib_complete(struct fib *fibptr)
 
 704         struct hw_fib * hw_fib = fibptr->hw_fib;
 
 707          *      Check for a fib which has already been completed
 
 710         if (hw_fib->header.XferState == 0)
 
 713          *      If we plan to do anything check the structure type first.
 
 716         if (hw_fib->header.StructType != FIB_MAGIC)
 
 719          *      This block completes a cdb which orginated on the host and we 
 
 720          *      just need to deallocate the cdb or reinit it. At this point the
 
 721          *      command is complete that we had sent to the adapter and this
 
 722          *      cdb could be reused.
 
 724         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 
 725                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 
 729         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 
 732                  *      This handles the case when the host has aborted the I/O
 
 733                  *      to the adapter because the adapter is not responding
 
 736         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 
 745  *      aac_printf      -       handle printf from firmware
 
 749  *      Print a message passed to us by the controller firmware on the
 
 753 void aac_printf(struct aac_dev *dev, u32 val)
 
 755         char *cp = dev->printfbuf;
 
 756         if (dev->printf_enabled)
 
 758                 int length = val & 0xffff;
 
 759                 int level = (val >> 16) & 0xffff;
 
 762                  *      The size of the printfbuf is set in port.c
 
 763                  *      There is no variable or define for it
 
 769                 if (level == LOG_AAC_HIGH_ERROR)
 
 770                         printk(KERN_WARNING "aacraid:%s", cp);
 
 772                         printk(KERN_INFO "aacraid:%s", cp);
 
 779  *      aac_handle_aif          -       Handle a message from the firmware
 
 780  *      @dev: Which adapter this fib is from
 
 781  *      @fibptr: Pointer to fibptr from adapter
 
 783  *      This routine handles a driver notify fib from the adapter and
 
 784  *      dispatches it to the appropriate routine for handling.
 
 787 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
 
 789         struct hw_fib * hw_fib = fibptr->hw_fib;
 
 790         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
 
 793         struct scsi_device *device;
 
 799         } device_config_needed;
 
 801         /* Sniff for container changes */
 
 808          *      We have set this up to try and minimize the number of
 
 809          * re-configures that take place. As a result of this when
 
 810          * certain AIF's come in we will set a flag waiting for another
 
 811          * type of AIF before setting the re-config flag.
 
 813         switch (le32_to_cpu(aifcmd->command)) {
 
 814         case AifCmdDriverNotify:
 
 815                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
 
 817                  *      Morph or Expand complete
 
 819                 case AifDenMorphComplete:
 
 820                 case AifDenVolumeExtendComplete:
 
 821                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 822                         if (container >= dev->maximum_num_containers)
 
 826                          *      Find the scsi_device associated with the SCSI
 
 827                          * address. Make sure we have the right array, and if
 
 828                          * so set the flag to initiate a new re-config once we
 
 829                          * see an AifEnConfigChange AIF come through.
 
 832                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
 
 833                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
 
 834                                         CONTAINER_TO_CHANNEL(container), 
 
 835                                         CONTAINER_TO_ID(container), 
 
 836                                         CONTAINER_TO_LUN(container));
 
 838                                         dev->fsa_dev[container].config_needed = CHANGE;
 
 839                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
 
 840                                         scsi_device_put(device);
 
 846                  *      If we are waiting on something and this happens to be
 
 847                  * that thing then set the re-configure flag.
 
 849                 if (container != (u32)-1) {
 
 850                         if (container >= dev->maximum_num_containers)
 
 852                         if (dev->fsa_dev[container].config_waiting_on ==
 
 853                             le32_to_cpu(*(u32 *)aifcmd->data))
 
 854                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 855                 } else for (container = 0;
 
 856                     container < dev->maximum_num_containers; ++container) {
 
 857                         if (dev->fsa_dev[container].config_waiting_on ==
 
 858                             le32_to_cpu(*(u32 *)aifcmd->data))
 
 859                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 863         case AifCmdEventNotify:
 
 864                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
 
 868                 case AifEnAddContainer:
 
 869                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 870                         if (container >= dev->maximum_num_containers)
 
 872                         dev->fsa_dev[container].config_needed = ADD;
 
 873                         dev->fsa_dev[container].config_waiting_on =
 
 880                 case AifEnDeleteContainer:
 
 881                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 882                         if (container >= dev->maximum_num_containers)
 
 884                         dev->fsa_dev[container].config_needed = DELETE;
 
 885                         dev->fsa_dev[container].config_waiting_on =
 
 890                  *      Container change detected. If we currently are not
 
 891                  * waiting on something else, setup to wait on a Config Change.
 
 893                 case AifEnContainerChange:
 
 894                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 895                         if (container >= dev->maximum_num_containers)
 
 897                         if (dev->fsa_dev[container].config_waiting_on)
 
 899                         dev->fsa_dev[container].config_needed = CHANGE;
 
 900                         dev->fsa_dev[container].config_waiting_on =
 
 904                 case AifEnConfigChange:
 
 910                  *      If we are waiting on something and this happens to be
 
 911                  * that thing then set the re-configure flag.
 
 913                 if (container != (u32)-1) {
 
 914                         if (container >= dev->maximum_num_containers)
 
 916                         if (dev->fsa_dev[container].config_waiting_on ==
 
 917                             le32_to_cpu(*(u32 *)aifcmd->data))
 
 918                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 919                 } else for (container = 0;
 
 920                     container < dev->maximum_num_containers; ++container) {
 
 921                         if (dev->fsa_dev[container].config_waiting_on ==
 
 922                             le32_to_cpu(*(u32 *)aifcmd->data))
 
 923                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 927         case AifCmdJobProgress:
 
 929                  *      These are job progress AIF's. When a Clear is being
 
 930                  * done on a container it is initially created then hidden from
 
 931                  * the OS. When the clear completes we don't get a config
 
 932                  * change so we monitor the job status complete on a clear then
 
 933                  * wait for a container change.
 
 936                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
 
 937                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
 
 938                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
 
 940                             container < dev->maximum_num_containers;
 
 943                                  * Stomp on all config sequencing for all
 
 946                                 dev->fsa_dev[container].config_waiting_on =
 
 947                                         AifEnContainerChange;
 
 948                                 dev->fsa_dev[container].config_needed = ADD;
 
 951                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
 
 952                  && (((u32 *)aifcmd->data)[6] == 0)
 
 953                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
 
 955                             container < dev->maximum_num_containers;
 
 958                                  * Stomp on all config sequencing for all
 
 961                                 dev->fsa_dev[container].config_waiting_on =
 
 962                                         AifEnContainerChange;
 
 963                                 dev->fsa_dev[container].config_needed = DELETE;
 
 969         device_config_needed = NOTHING;
 
 970         for (container = 0; container < dev->maximum_num_containers;
 
 972                 if ((dev->fsa_dev[container].config_waiting_on == 0)
 
 973                  && (dev->fsa_dev[container].config_needed != NOTHING)) {
 
 974                         device_config_needed =
 
 975                                 dev->fsa_dev[container].config_needed;
 
 976                         dev->fsa_dev[container].config_needed = NOTHING;
 
 980         if (device_config_needed == NOTHING)
 
 984          *      If we decided that a re-configuration needs to be done,
 
 985          * schedule it here on the way out the door, please close the door
 
 993          *      Find the scsi_device associated with the SCSI address,
 
 994          * and mark it as changed, invalidating the cache. This deals
 
 995          * with changes to existing device IDs.
 
 998         if (!dev || !dev->scsi_host_ptr)
 
1001          * force reload of disk info via aac_probe_container
 
1003         if ((device_config_needed == CHANGE)
 
1004          && (dev->fsa_dev[container].valid == 1))
 
1005                 dev->fsa_dev[container].valid = 2;
 
1006         if ((device_config_needed == CHANGE) ||
 
1007                         (device_config_needed == ADD))
 
1008                 aac_probe_container(dev, container);
 
1009         device = scsi_device_lookup(dev->scsi_host_ptr, 
 
1010                 CONTAINER_TO_CHANNEL(container), 
 
1011                 CONTAINER_TO_ID(container), 
 
1012                 CONTAINER_TO_LUN(container));
 
1014                 switch (device_config_needed) {
 
1016                         scsi_remove_device(device);
 
1019                         if (!dev->fsa_dev[container].valid) {
 
1020                                 scsi_remove_device(device);
 
1023                         scsi_rescan_device(&device->sdev_gendev);
 
1028                 scsi_device_put(device);
 
1030         if (device_config_needed == ADD) {
 
1031                 scsi_add_device(dev->scsi_host_ptr,
 
1032                   CONTAINER_TO_CHANNEL(container),
 
1033                   CONTAINER_TO_ID(container),
 
1034                   CONTAINER_TO_LUN(container));
 
1040  *      aac_command_thread      -       command processing thread
 
1041  *      @dev: Adapter to monitor
 
1043  *      Waits on the commandready event in it's queue. When the event gets set
 
1044  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
 
1045  *      until the queue is empty. When the queue is empty it will wait for
 
1049 int aac_command_thread(void *data)
 
1051         struct aac_dev *dev = data;
 
1052         struct hw_fib *hw_fib, *hw_newfib;
 
1053         struct fib *fib, *newfib;
 
1054         struct aac_fib_context *fibctx;
 
1055         unsigned long flags;
 
1056         DECLARE_WAITQUEUE(wait, current);
 
1059          *      We can only have one thread per adapter for AIF's.
 
1061         if (dev->aif_thread)
 
1065          *      Let the DPC know it has a place to send the AIF's to.
 
1067         dev->aif_thread = 1;
 
1068         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
 
1069         set_current_state(TASK_INTERRUPTIBLE);
 
1070         dprintk ((KERN_INFO "aac_command_thread start\n"));
 
1073                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1074                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
 
1075                         struct list_head *entry;
 
1076                         struct aac_aifcmd * aifcmd;
 
1078                         set_current_state(TASK_RUNNING);
 
1080                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
 
1083                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1084                         fib = list_entry(entry, struct fib, fiblink);
 
1086                          *      We will process the FIB here or pass it to a 
 
1087                          *      worker thread that is TBD. We Really can't 
 
1088                          *      do anything at this point since we don't have
 
1089                          *      anything defined for this thread to do.
 
1091                         hw_fib = fib->hw_fib;
 
1092                         memset(fib, 0, sizeof(struct fib));
 
1093                         fib->type = FSAFS_NTC_FIB_CONTEXT;
 
1094                         fib->size = sizeof( struct fib );
 
1095                         fib->hw_fib = hw_fib;
 
1096                         fib->data = hw_fib->data;
 
1099                          *      We only handle AifRequest fibs from the adapter.
 
1101                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
 
1102                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
 
1103                                 /* Handle Driver Notify Events */
 
1104                                 aac_handle_aif(dev, fib);
 
1105                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
 
1106                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
 
1108                                 struct list_head *entry;
 
1109                                 /* The u32 here is important and intended. We are using
 
1110                                    32bit wrapping time to fit the adapter field */
 
1112                                 u32 time_now, time_last;
 
1113                                 unsigned long flagv;
 
1115                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
 
1116                                 struct fib ** fib_pool, ** fib_p;
 
1119                                 if ((aifcmd->command == 
 
1120                                      cpu_to_le32(AifCmdEventNotify)) ||
 
1122                                      cpu_to_le32(AifCmdJobProgress))) {
 
1123                                         aac_handle_aif(dev, fib);
 
1126                                 time_now = jiffies/HZ;
 
1129                                  * Warning: no sleep allowed while
 
1130                                  * holding spinlock. We take the estimate
 
1131                                  * and pre-allocate a set of fibs outside the
 
1134                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
 
1135                                     / sizeof(struct hw_fib); /* some extra */
 
1136                                 spin_lock_irqsave(&dev->fib_lock, flagv);
 
1137                                 entry = dev->fib_list.next;
 
1138                                 while (entry != &dev->fib_list) {
 
1139                                         entry = entry->next;
 
1142                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
 
1146                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
 
1147                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
 
1148                                         hw_fib_p = hw_fib_pool;
 
1150                                         while (hw_fib_p < &hw_fib_pool[num]) {
 
1151                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
 
1155                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
 
1156                                                         kfree(*(--hw_fib_p));
 
1160                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
 
1170                                 spin_lock_irqsave(&dev->fib_lock, flagv);
 
1171                                 entry = dev->fib_list.next;
 
1173                                  * For each Context that is on the 
 
1174                                  * fibctxList, make a copy of the
 
1175                                  * fib, and then set the event to wake up the
 
1176                                  * thread that is waiting for it.
 
1178                                 hw_fib_p = hw_fib_pool;
 
1180                                 while (entry != &dev->fib_list) {
 
1182                                          * Extract the fibctx
 
1184                                         fibctx = list_entry(entry, struct aac_fib_context, next);
 
1186                                          * Check if the queue is getting
 
1189                                         if (fibctx->count > 20)
 
1192                                                  * It's *not* jiffies folks,
 
1193                                                  * but jiffies / HZ so do not
 
1196                                                 time_last = fibctx->jiffies;
 
1198                                                  * Has it been > 2 minutes 
 
1199                                                  * since the last read off
 
1202                                                 if ((time_now - time_last) > 120) {
 
1203                                                         entry = entry->next;
 
1204                                                         aac_close_fib_context(dev, fibctx);
 
1209                                          * Warning: no sleep allowed while
 
1212                                         if (hw_fib_p < &hw_fib_pool[num]) {
 
1213                                                 hw_newfib = *hw_fib_p;
 
1214                                                 *(hw_fib_p++) = NULL;
 
1218                                                  * Make the copy of the FIB
 
1220                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
 
1221                                                 memcpy(newfib, fib, sizeof(struct fib));
 
1222                                                 newfib->hw_fib = hw_newfib;
 
1224                                                  * Put the FIB onto the
 
1227                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
 
1230                                                  * Set the event to wake up the
 
1231                                                  * thread that is waiting.
 
1233                                                 up(&fibctx->wait_sem);
 
1235                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
 
1237                                         entry = entry->next;
 
1240                                  *      Set the status of this FIB
 
1242                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
 
1243                                 aac_fib_adapter_complete(fib, sizeof(u32));
 
1244                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
 
1245                                 /* Free up the remaining resources */
 
1246                                 hw_fib_p = hw_fib_pool;
 
1248                                 while (hw_fib_p < &hw_fib_pool[num]) {
 
1258                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1261                  *      There are no more AIF's
 
1263                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1266                 if (kthread_should_stop())
 
1268                 set_current_state(TASK_INTERRUPTIBLE);
 
1271                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
 
1272         dev->aif_thread = 0;