1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
22 * http://www.chelsio.com *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
27 * Maintainers: maintainers@chelsio.com *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
38 ****************************************************************************/
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
52 #include <linux/tcp.h>
55 #include <linux/if_arp.h>
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_SM_BUF_SIZE 1536
75 #define SGE_TX_DESC_MAX_PLEN 16384
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80 * Period of the TX buffer reclaim timer. This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
83 #define TX_RECLAIM_PERIOD (HZ / 4)
85 #define M_CMD_LEN 0x7fffffff
86 #define V_CMD_LEN(v) (v)
87 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v) ((v) << 31)
89 #define V_CMD_GEN2(v) (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP (1 << 2)
92 #define V_CMD_EOP(v) ((v) << 3)
95 * Command queue, receive buffer list, and response queue descriptors.
97 #if defined(__BIG_ENDIAN_BITFIELD)
114 u32 Cmdq1CreditReturn : 5;
115 u32 Cmdq1DmaComplete : 5;
116 u32 Cmdq0CreditReturn : 5;
117 u32 Cmdq0DmaComplete : 5;
124 u32 GenerationBit : 1;
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
144 u32 GenerationBit : 1;
151 u32 Cmdq0DmaComplete : 5;
152 u32 Cmdq0CreditReturn : 5;
153 u32 Cmdq1DmaComplete : 5;
154 u32 Cmdq1CreditReturn : 5;
160 * SW Context Command and Freelist Queue Descriptors
164 DECLARE_PCI_UNMAP_ADDR(dma_addr);
165 DECLARE_PCI_UNMAP_LEN(dma_len);
170 DECLARE_PCI_UNMAP_ADDR(dma_addr);
171 DECLARE_PCI_UNMAP_LEN(dma_len);
175 * SW command, freelist and response rings
178 unsigned long status; /* HW DMA fetch status */
179 unsigned int in_use; /* # of in-use command descriptors */
180 unsigned int size; /* # of descriptors */
181 unsigned int processed; /* total # of descs HW has processed */
182 unsigned int cleaned; /* total # of descs SW has reclaimed */
183 unsigned int stop_thres; /* SW TX queue suspend threshold */
184 u16 pidx; /* producer index (SW) */
185 u16 cidx; /* consumer index (HW) */
186 u8 genbit; /* current generation (=valid) bit */
187 u8 sop; /* is next entry start of packet? */
188 struct cmdQ_e *entries; /* HW command descriptor Q */
189 struct cmdQ_ce *centries; /* SW command context descriptor Q */
190 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
191 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
195 unsigned int credits; /* # of available RX buffers */
196 unsigned int size; /* free list capacity */
197 u16 pidx; /* producer index (SW) */
198 u16 cidx; /* consumer index (HW) */
199 u16 rx_buffer_size; /* Buffer size on this free list */
200 u16 dma_offset; /* DMA offset to align IP headers */
201 u16 recycleq_idx; /* skb recycle q to use */
202 u8 genbit; /* current generation (=valid) bit */
203 struct freelQ_e *entries; /* HW freelist descriptor Q */
204 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
205 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
209 unsigned int credits; /* credits to be returned to SGE */
210 unsigned int size; /* # of response Q descriptors */
211 u16 cidx; /* consumer index (SW) */
212 u8 genbit; /* current generation(=valid) bit */
213 struct respQ_e *entries; /* HW response descriptor Q */
214 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
217 /* Bit flags for cmdQ.status */
219 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
220 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
223 /* T204 TX SW scheduler */
225 /* Per T204 TX port */
227 unsigned int avail; /* available bits - quota */
228 unsigned int drain_bits_per_1024ns; /* drain rate */
229 unsigned int speed; /* drain rate, mbps */
230 unsigned int mtu; /* mtu size */
231 struct sk_buff_head skbq; /* pending skbs */
234 /* Per T204 device */
236 ktime_t last_updated; /* last time quotas were computed */
237 unsigned int max_avail; /* max bits to be sent to any port */
238 unsigned int port; /* port index (round robin ports) */
239 unsigned int num; /* num skbs in per port queues */
240 struct sched_port p[MAX_NPORTS];
241 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
243 static void restart_sched(unsigned long);
247 * Main SGE data structure
249 * Interrupts are handled by a single CPU and it is likely that on a MP system
250 * the application is migrated to another CPU. In that scenario, we try to
251 * seperate the RX(in irq context) and TX state in order to decrease memory
255 struct adapter *adapter; /* adapter backpointer */
256 struct net_device *netdev; /* netdevice backpointer */
257 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
258 struct respQ respQ; /* response Q */
259 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
260 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
261 unsigned int jumbo_fl; /* jumbo freelist Q index */
262 unsigned int intrtimer_nres; /* no-resource interrupt timer */
263 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
264 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265 struct timer_list espibug_timer;
266 unsigned long espibug_timeout;
267 struct sk_buff *espibug_skb[MAX_NPORTS];
268 u32 sge_control; /* shadow value of sge control reg */
269 struct sge_intr_counts stats;
270 struct sge_port_stats *port_stats[MAX_NPORTS];
271 struct sched *tx_sched;
272 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
276 * stop tasklet and free all pending skb's
278 static void tx_sched_stop(struct sge *sge)
280 struct sched *s = sge->tx_sched;
283 tasklet_kill(&s->sched_tsk);
285 for (i = 0; i < MAX_NPORTS; i++)
286 __skb_queue_purge(&s->p[s->port].skbq);
290 * t1_sched_update_parms() is called when the MTU or link speed changes. It
291 * re-computes scheduler parameters to scope with the change.
293 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
294 unsigned int mtu, unsigned int speed)
296 struct sched *s = sge->tx_sched;
297 struct sched_port *p = &s->p[port];
298 unsigned int max_avail_segs;
300 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
307 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
308 do_div(drain, (p->mtu + 50) * 1000);
309 p->drain_bits_per_1024ns = (unsigned int) drain;
312 p->drain_bits_per_1024ns =
313 90 * p->drain_bits_per_1024ns / 100;
316 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
317 p->drain_bits_per_1024ns -= 16;
318 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
319 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
321 s->max_avail = 16384;
322 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
325 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
326 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
327 p->speed, s->max_avail, max_avail_segs,
328 p->drain_bits_per_1024ns);
330 return max_avail_segs * (p->mtu - 40);
336 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
337 * data that can be pushed per port.
339 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
341 struct sched *s = sge->tx_sched;
345 for (i = 0; i < MAX_NPORTS; i++)
346 t1_sched_update_parms(sge, i, 0, 0);
350 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
353 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
356 struct sched *s = sge->tx_sched;
357 struct sched_port *p = &s->p[port];
358 p->drain_bits_per_1024ns = val * 1024 / 1000;
359 t1_sched_update_parms(sge, port, 0, 0);
366 * get_clock() implements a ns clock (see ktime_get)
368 static inline ktime_t get_clock(void)
373 return timespec_to_ktime(ts);
377 * tx_sched_init() allocates resources and does basic initialization.
379 static int tx_sched_init(struct sge *sge)
384 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
388 pr_debug("tx_sched_init\n");
389 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
392 for (i = 0; i < MAX_NPORTS; i++) {
393 skb_queue_head_init(&s->p[i].skbq);
394 t1_sched_update_parms(sge, i, 1500, 1000);
401 * sched_update_avail() computes the delta since the last time it was called
402 * and updates the per port quota (number of bits that can be sent to the any
405 static inline int sched_update_avail(struct sge *sge)
407 struct sched *s = sge->tx_sched;
408 ktime_t now = get_clock();
410 long long delta_time_ns;
412 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
414 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
415 if (delta_time_ns < 15000)
418 for (i = 0; i < MAX_NPORTS; i++) {
419 struct sched_port *p = &s->p[i];
420 unsigned int delta_avail;
422 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
423 p->avail = min(p->avail + delta_avail, s->max_avail);
426 s->last_updated = now;
432 * sched_skb() is called from two different places. In the tx path, any
433 * packet generating load on an output port will call sched_skb()
434 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
435 * context (skb == NULL).
436 * The scheduler only returns a skb (which will then be sent) if the
437 * length of the skb is <= the current quota of the output port.
439 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
440 unsigned int credits)
442 struct sched *s = sge->tx_sched;
443 struct sk_buff_head *skbq;
444 unsigned int i, len, update = 1;
446 pr_debug("sched_skb %p\n", skb);
451 skbq = &s->p[skb->dev->if_port].skbq;
452 __skb_queue_tail(skbq, skb);
457 if (credits < MAX_SKB_FRAGS + 1)
461 for (i = 0; i < MAX_NPORTS; i++) {
462 s->port = ++s->port & (MAX_NPORTS - 1);
463 skbq = &s->p[s->port].skbq;
465 skb = skb_peek(skbq);
471 if (len <= s->p[s->port].avail) {
472 s->p[s->port].avail -= len;
474 __skb_unlink(skb, skbq);
480 if (update-- && sched_update_avail(sge))
484 /* If there are more pending skbs, we use the hardware to schedule us
487 if (s->num && !skb) {
488 struct cmdQ *q = &sge->cmdQ[0];
489 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
490 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
491 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
492 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
495 pr_debug("sched_skb ret %p\n", skb);
501 * PIO to indicate that memory mapped Q contains valid descriptor(s).
503 static inline void doorbell_pio(struct adapter *adapter, u32 val)
506 writel(val, adapter->regs + A_SG_DOORBELL);
510 * Frees all RX buffers on the freelist Q. The caller must make sure that
511 * the SGE is turned off before calling this function.
513 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
515 unsigned int cidx = q->cidx;
517 while (q->credits--) {
518 struct freelQ_ce *ce = &q->centries[cidx];
520 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
521 pci_unmap_len(ce, dma_len),
523 dev_kfree_skb(ce->skb);
525 if (++cidx == q->size)
531 * Free RX free list and response queue resources.
533 static void free_rx_resources(struct sge *sge)
535 struct pci_dev *pdev = sge->adapter->pdev;
536 unsigned int size, i;
538 if (sge->respQ.entries) {
539 size = sizeof(struct respQ_e) * sge->respQ.size;
540 pci_free_consistent(pdev, size, sge->respQ.entries,
541 sge->respQ.dma_addr);
544 for (i = 0; i < SGE_FREELQ_N; i++) {
545 struct freelQ *q = &sge->freelQ[i];
548 free_freelQ_buffers(pdev, q);
552 size = sizeof(struct freelQ_e) * q->size;
553 pci_free_consistent(pdev, size, q->entries,
560 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
563 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
565 struct pci_dev *pdev = sge->adapter->pdev;
566 unsigned int size, i;
568 for (i = 0; i < SGE_FREELQ_N; i++) {
569 struct freelQ *q = &sge->freelQ[i];
572 q->size = p->freelQ_size[i];
573 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
574 size = sizeof(struct freelQ_e) * q->size;
575 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
579 size = sizeof(struct freelQ_ce) * q->size;
580 q->centries = kzalloc(size, GFP_KERNEL);
586 * Calculate the buffer sizes for the two free lists. FL0 accommodates
587 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
588 * including all the sk_buff overhead.
590 * Note: For T2 FL0 and FL1 are reversed.
592 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
593 sizeof(struct cpl_rx_data) +
594 sge->freelQ[!sge->jumbo_fl].dma_offset;
597 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
599 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
602 * Setup which skb recycle Q should be used when recycling buffers from
605 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
606 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
608 sge->respQ.genbit = 1;
609 sge->respQ.size = SGE_RESPQ_E_N;
610 sge->respQ.credits = 0;
611 size = sizeof(struct respQ_e) * sge->respQ.size;
613 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
614 if (!sge->respQ.entries)
619 free_rx_resources(sge);
624 * Reclaims n TX descriptors and frees the buffers associated with them.
626 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
629 struct pci_dev *pdev = sge->adapter->pdev;
630 unsigned int cidx = q->cidx;
633 ce = &q->centries[cidx];
635 if (likely(pci_unmap_len(ce, dma_len))) {
636 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
637 pci_unmap_len(ce, dma_len),
643 dev_kfree_skb_any(ce->skb);
647 if (++cidx == q->size) {
658 * Assumes that SGE is stopped and all interrupts are disabled.
660 static void free_tx_resources(struct sge *sge)
662 struct pci_dev *pdev = sge->adapter->pdev;
663 unsigned int size, i;
665 for (i = 0; i < SGE_CMDQ_N; i++) {
666 struct cmdQ *q = &sge->cmdQ[i];
670 free_cmdQ_buffers(sge, q, q->in_use);
674 size = sizeof(struct cmdQ_e) * q->size;
675 pci_free_consistent(pdev, size, q->entries,
682 * Allocates basic TX resources, consisting of memory mapped command Qs.
684 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
686 struct pci_dev *pdev = sge->adapter->pdev;
687 unsigned int size, i;
689 for (i = 0; i < SGE_CMDQ_N; i++) {
690 struct cmdQ *q = &sge->cmdQ[i];
694 q->size = p->cmdQ_size[i];
697 q->processed = q->cleaned = 0;
699 spin_lock_init(&q->lock);
700 size = sizeof(struct cmdQ_e) * q->size;
701 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
705 size = sizeof(struct cmdQ_ce) * q->size;
706 q->centries = kzalloc(size, GFP_KERNEL);
712 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
713 * only. For queue 0 set the stop threshold so we can handle one more
714 * packet from each port, plus reserve an additional 24 entries for
715 * Ethernet packets only. Queue 1 never suspends nor do we reserve
716 * space for Ethernet packets.
718 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
723 free_tx_resources(sge);
727 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
728 u32 size, int base_reg_lo,
729 int base_reg_hi, int size_reg)
731 writel((u32)addr, adapter->regs + base_reg_lo);
732 writel(addr >> 32, adapter->regs + base_reg_hi);
733 writel(size, adapter->regs + size_reg);
737 * Enable/disable VLAN acceleration.
739 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
741 struct sge *sge = adapter->sge;
743 sge->sge_control &= ~F_VLAN_XTRACT;
745 sge->sge_control |= F_VLAN_XTRACT;
746 if (adapter->open_device_map) {
747 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
748 readl(adapter->regs + A_SG_CONTROL); /* flush */
753 * Programs the various SGE registers. However, the engine is not yet enabled,
754 * but sge->sge_control is setup and ready to go.
756 static void configure_sge(struct sge *sge, struct sge_params *p)
758 struct adapter *ap = sge->adapter;
760 writel(0, ap->regs + A_SG_CONTROL);
761 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
762 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
763 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
764 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
765 setup_ring_params(ap, sge->freelQ[0].dma_addr,
766 sge->freelQ[0].size, A_SG_FL0BASELWR,
767 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
768 setup_ring_params(ap, sge->freelQ[1].dma_addr,
769 sge->freelQ[1].size, A_SG_FL1BASELWR,
770 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
772 /* The threshold comparison uses <. */
773 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
775 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
776 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
777 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
779 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
780 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
781 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
782 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
784 #if defined(__BIG_ENDIAN_BITFIELD)
785 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
788 /* Initialize no-resource timer */
789 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
791 t1_sge_set_coalesce_params(sge, p);
795 * Return the payload capacity of the jumbo free-list buffers.
797 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
799 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
800 sge->freelQ[sge->jumbo_fl].dma_offset -
801 sizeof(struct cpl_rx_data);
805 * Frees all SGE related resources and the sge structure itself
807 void t1_sge_destroy(struct sge *sge)
811 for_each_port(sge->adapter, i)
812 free_percpu(sge->port_stats[i]);
814 kfree(sge->tx_sched);
815 free_tx_resources(sge);
816 free_rx_resources(sge);
821 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
822 * context Q) until the Q is full or alloc_skb fails.
824 * It is possible that the generation bits already match, indicating that the
825 * buffer is already valid and nothing needs to be done. This happens when we
826 * copied a received buffer into a new sk_buff during the interrupt processing.
828 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
829 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
832 static void refill_free_list(struct sge *sge, struct freelQ *q)
834 struct pci_dev *pdev = sge->adapter->pdev;
835 struct freelQ_ce *ce = &q->centries[q->pidx];
836 struct freelQ_e *e = &q->entries[q->pidx];
837 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
839 while (q->credits < q->size) {
843 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
847 skb_reserve(skb, q->dma_offset);
848 mapping = pci_map_single(pdev, skb->data, dma_len,
850 skb_reserve(skb, sge->rx_pkt_pad);
853 pci_unmap_addr_set(ce, dma_addr, mapping);
854 pci_unmap_len_set(ce, dma_len, dma_len);
855 e->addr_lo = (u32)mapping;
856 e->addr_hi = (u64)mapping >> 32;
857 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
859 e->gen2 = V_CMD_GEN2(q->genbit);
863 if (++q->pidx == q->size) {
874 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
875 * of both rings, we go into 'few interrupt mode' in order to give the system
876 * time to free up resources.
878 static void freelQs_empty(struct sge *sge)
880 struct adapter *adapter = sge->adapter;
881 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
884 refill_free_list(sge, &sge->freelQ[0]);
885 refill_free_list(sge, &sge->freelQ[1]);
887 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
888 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
889 irq_reg |= F_FL_EXHAUSTED;
890 irqholdoff_reg = sge->fixed_intrtimer;
892 /* Clear the F_FL_EXHAUSTED interrupts for now */
893 irq_reg &= ~F_FL_EXHAUSTED;
894 irqholdoff_reg = sge->intrtimer_nres;
896 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
897 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
899 /* We reenable the Qs to force a freelist GTS interrupt later */
900 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
903 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
904 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
905 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
906 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
909 * Disable SGE Interrupts
911 void t1_sge_intr_disable(struct sge *sge)
913 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
915 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
916 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
920 * Enable SGE interrupts.
922 void t1_sge_intr_enable(struct sge *sge)
924 u32 en = SGE_INT_ENABLE;
925 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
927 if (sge->adapter->flags & TSO_CAPABLE)
928 en &= ~F_PACKET_TOO_BIG;
929 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
930 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
934 * Clear SGE interrupts.
936 void t1_sge_intr_clear(struct sge *sge)
938 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
939 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
943 * SGE 'Error' interrupt handler
945 int t1_sge_intr_error_handler(struct sge *sge)
947 struct adapter *adapter = sge->adapter;
948 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
950 if (adapter->flags & TSO_CAPABLE)
951 cause &= ~F_PACKET_TOO_BIG;
952 if (cause & F_RESPQ_EXHAUSTED)
953 sge->stats.respQ_empty++;
954 if (cause & F_RESPQ_OVERFLOW) {
955 sge->stats.respQ_overflow++;
956 CH_ALERT("%s: SGE response queue overflow\n",
959 if (cause & F_FL_EXHAUSTED) {
960 sge->stats.freelistQ_empty++;
963 if (cause & F_PACKET_TOO_BIG) {
964 sge->stats.pkt_too_big++;
965 CH_ALERT("%s: SGE max packet size exceeded\n",
968 if (cause & F_PACKET_MISMATCH) {
969 sge->stats.pkt_mismatch++;
970 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
972 if (cause & SGE_INT_FATAL)
973 t1_fatal_err(adapter);
975 writel(cause, adapter->regs + A_SG_INT_CAUSE);
979 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
984 void t1_sge_get_port_stats(const struct sge *sge, int port,
985 struct sge_port_stats *ss)
989 memset(ss, 0, sizeof(*ss));
990 for_each_possible_cpu(cpu) {
991 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
993 ss->rx_cso_good += st->rx_cso_good;
994 ss->tx_cso += st->tx_cso;
995 ss->tx_tso += st->tx_tso;
996 ss->tx_need_hdrroom += st->tx_need_hdrroom;
997 ss->vlan_xtract += st->vlan_xtract;
998 ss->vlan_insert += st->vlan_insert;
1003 * recycle_fl_buf - recycle a free list buffer
1004 * @fl: the free list
1005 * @idx: index of buffer to recycle
1007 * Recycles the specified buffer on the given free list by adding it at
1008 * the next available slot on the list.
1010 static void recycle_fl_buf(struct freelQ *fl, int idx)
1012 struct freelQ_e *from = &fl->entries[idx];
1013 struct freelQ_e *to = &fl->entries[fl->pidx];
1015 fl->centries[fl->pidx] = fl->centries[idx];
1016 to->addr_lo = from->addr_lo;
1017 to->addr_hi = from->addr_hi;
1018 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1020 to->gen2 = V_CMD_GEN2(fl->genbit);
1023 if (++fl->pidx == fl->size) {
1029 static int copybreak __read_mostly = 256;
1030 module_param(copybreak, int, 0);
1031 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1034 * get_packet - return the next ingress packet buffer
1035 * @pdev: the PCI device that received the packet
1036 * @fl: the SGE free list holding the packet
1037 * @len: the actual packet length, excluding any SGE padding
1039 * Get the next packet from a free list and complete setup of the
1040 * sk_buff. If the packet is small we make a copy and recycle the
1041 * original buffer, otherwise we use the original buffer itself. If a
1042 * positive drop threshold is supplied packets are dropped and their
1043 * buffers recycled if (a) the number of remaining buffers is under the
1044 * threshold and the packet is too big to copy, or (b) the packet should
1045 * be copied but there is no memory for the copy.
1047 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1048 struct freelQ *fl, unsigned int len)
1050 struct sk_buff *skb;
1051 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1053 if (len < copybreak) {
1054 skb = alloc_skb(len + 2, GFP_ATOMIC);
1058 skb_reserve(skb, 2); /* align IP header */
1060 pci_dma_sync_single_for_cpu(pdev,
1061 pci_unmap_addr(ce, dma_addr),
1062 pci_unmap_len(ce, dma_len),
1063 PCI_DMA_FROMDEVICE);
1064 skb_copy_from_linear_data(ce->skb, skb->data, len);
1065 pci_dma_sync_single_for_device(pdev,
1066 pci_unmap_addr(ce, dma_addr),
1067 pci_unmap_len(ce, dma_len),
1068 PCI_DMA_FROMDEVICE);
1069 recycle_fl_buf(fl, fl->cidx);
1074 if (fl->credits < 2) {
1075 recycle_fl_buf(fl, fl->cidx);
1079 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1080 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1082 prefetch(skb->data);
1089 * unexpected_offload - handle an unexpected offload packet
1090 * @adapter: the adapter
1091 * @fl: the free list that received the packet
1093 * Called when we receive an unexpected offload packet (e.g., the TOE
1094 * function is disabled or the card is a NIC). Prints a message and
1095 * recycles the buffer.
1097 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1099 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1100 struct sk_buff *skb = ce->skb;
1102 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1103 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1104 CH_ERR("%s: unexpected offload packet, cmd %u\n",
1105 adapter->name, *skb->data);
1106 recycle_fl_buf(fl, fl->cidx);
1110 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1111 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1112 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1113 * Note that the *_large_page_tx_descs stuff will be optimized out when
1114 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1116 * compute_large_page_descs() computes how many additional descriptors are
1117 * required to break down the stack's request.
1119 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1121 unsigned int count = 0;
1123 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1124 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1125 unsigned int i, len = skb->len - skb->data_len;
1126 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 len -= SGE_TX_DESC_MAX_PLEN;
1130 for (i = 0; nfrags--; i++) {
1131 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 while (len > SGE_TX_DESC_MAX_PLEN) {
1135 len -= SGE_TX_DESC_MAX_PLEN;
1143 * Write a cmdQ entry.
1145 * Since this function writes the 'flags' field, it must not be used to
1146 * write the first cmdQ entry.
1148 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1149 unsigned int len, unsigned int gen,
1152 if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1154 e->addr_lo = (u32)mapping;
1155 e->addr_hi = (u64)mapping >> 32;
1156 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1157 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1161 * See comment for previous function.
1163 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1164 * *desc_len exceeds HW's capability.
1166 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168 struct cmdQ_ce **ce,
1170 dma_addr_t *desc_mapping,
1171 unsigned int *desc_len,
1172 unsigned int nfrags,
1175 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1176 struct cmdQ_e *e1 = *e;
1177 struct cmdQ_ce *ce1 = *ce;
1179 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1180 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1181 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1182 *gen, nfrags == 0 && *desc_len == 0);
1184 pci_unmap_len_set(ce1, dma_len, 0);
1185 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1189 if (++pidx == q->size) {
1204 * Write the command descriptors to transmit the given skb starting at
1205 * descriptor pidx with the given generation.
1207 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1208 unsigned int pidx, unsigned int gen,
1211 dma_addr_t mapping, desc_mapping;
1212 struct cmdQ_e *e, *e1;
1214 unsigned int i, flags, first_desc_len, desc_len,
1215 nfrags = skb_shinfo(skb)->nr_frags;
1217 e = e1 = &q->entries[pidx];
1218 ce = &q->centries[pidx];
1220 mapping = pci_map_single(adapter->pdev, skb->data,
1221 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1223 desc_mapping = mapping;
1224 desc_len = skb->len - skb->data_len;
1226 flags = F_CMD_DATAVALID | F_CMD_SOP |
1227 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1230 desc_len : SGE_TX_DESC_MAX_PLEN;
1231 e->addr_lo = (u32)desc_mapping;
1232 e->addr_hi = (u64)desc_mapping >> 32;
1233 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235 pci_unmap_len_set(ce, dma_len, 0);
1237 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1238 desc_len > SGE_TX_DESC_MAX_PLEN) {
1239 desc_mapping += first_desc_len;
1240 desc_len -= first_desc_len;
1243 if (++pidx == q->size) {
1249 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1250 &desc_mapping, &desc_len,
1253 if (likely(desc_len))
1254 write_tx_desc(e1, desc_mapping, desc_len, gen,
1259 pci_unmap_addr_set(ce, dma_addr, mapping);
1260 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1262 for (i = 0; nfrags--; i++) {
1263 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266 if (++pidx == q->size) {
1273 mapping = pci_map_page(adapter->pdev, frag->page,
1274 frag->page_offset, frag->size,
1276 desc_mapping = mapping;
1277 desc_len = frag->size;
1279 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1280 &desc_mapping, &desc_len,
1282 if (likely(desc_len))
1283 write_tx_desc(e1, desc_mapping, desc_len, gen,
1286 pci_unmap_addr_set(ce, dma_addr, mapping);
1287 pci_unmap_len_set(ce, dma_len, frag->size);
1295 * Clean up completed Tx buffers.
1297 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1299 unsigned int reclaim = q->processed - q->cleaned;
1302 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1303 q->processed, q->cleaned);
1304 free_cmdQ_buffers(sge, q, reclaim);
1305 q->cleaned += reclaim;
1310 * Called from tasklet. Checks the scheduler for any
1311 * pending skbs that can be sent.
1313 static void restart_sched(unsigned long arg)
1315 struct sge *sge = (struct sge *) arg;
1316 struct adapter *adapter = sge->adapter;
1317 struct cmdQ *q = &sge->cmdQ[0];
1318 struct sk_buff *skb;
1319 unsigned int credits, queued_skb = 0;
1321 spin_lock(&q->lock);
1322 reclaim_completed_tx(sge, q);
1324 credits = q->size - q->in_use;
1325 pr_debug("restart_sched credits=%d\n", credits);
1326 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1327 unsigned int genbit, pidx, count;
1328 count = 1 + skb_shinfo(skb)->nr_frags;
1329 count += compute_large_page_tx_descs(skb);
1334 if (q->pidx >= q->size) {
1338 write_tx_descs(adapter, skb, pidx, genbit, q);
1339 credits = q->size - q->in_use;
1344 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1345 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1346 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1347 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1350 spin_unlock(&q->lock);
1354 * sge_rx - process an ingress ethernet packet
1355 * @sge: the sge structure
1356 * @fl: the free list that contains the packet buffer
1357 * @len: the packet length
1359 * Process an ingress ethernet pakcet and deliver it to the stack.
1361 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1363 struct sk_buff *skb;
1364 const struct cpl_rx_pkt *p;
1365 struct adapter *adapter = sge->adapter;
1366 struct sge_port_stats *st;
1368 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1369 if (unlikely(!skb)) {
1370 sge->stats.rx_drops++;
1374 p = (const struct cpl_rx_pkt *) skb->data;
1375 if (p->iff >= adapter->params.nports) {
1379 __skb_pull(skb, sizeof(*p));
1381 st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1383 skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1384 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1385 skb->protocol == htons(ETH_P_IP) &&
1386 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1388 skb->ip_summed = CHECKSUM_UNNECESSARY;
1390 skb->ip_summed = CHECKSUM_NONE;
1392 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1394 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1397 netif_receive_skb(skb);
1401 * Returns true if a command queue has enough available descriptors that
1402 * we can resume Tx operation after temporarily disabling its packet queue.
1404 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1406 unsigned int r = q->processed - q->cleaned;
1408 return q->in_use - r < (q->size >> 1);
1412 * Called when sufficient space has become available in the SGE command queues
1413 * after the Tx packet schedulers have been suspended to restart the Tx path.
1415 static void restart_tx_queues(struct sge *sge)
1417 struct adapter *adap = sge->adapter;
1420 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1423 for_each_port(adap, i) {
1424 struct net_device *nd = adap->port[i].dev;
1426 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1427 netif_running(nd)) {
1428 sge->stats.cmdQ_restarted[2]++;
1429 netif_wake_queue(nd);
1435 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1438 static unsigned int update_tx_info(struct adapter *adapter,
1442 struct sge *sge = adapter->sge;
1443 struct cmdQ *cmdq = &sge->cmdQ[0];
1445 cmdq->processed += pr0;
1446 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1448 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1450 if (flags & F_CMDQ0_ENABLE) {
1451 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1453 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1454 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1455 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1456 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1459 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1461 flags &= ~F_CMDQ0_ENABLE;
1464 if (unlikely(sge->stopped_tx_queues != 0))
1465 restart_tx_queues(sge);
1471 * Process SGE responses, up to the supplied budget. Returns the number of
1472 * responses processed. A negative budget is effectively unlimited.
1474 static int process_responses(struct adapter *adapter, int budget)
1476 struct sge *sge = adapter->sge;
1477 struct respQ *q = &sge->respQ;
1478 struct respQ_e *e = &q->entries[q->cidx];
1480 unsigned int flags = 0;
1481 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1483 while (done < budget && e->GenerationBit == q->genbit) {
1484 flags |= e->Qsleeping;
1486 cmdq_processed[0] += e->Cmdq0CreditReturn;
1487 cmdq_processed[1] += e->Cmdq1CreditReturn;
1489 /* We batch updates to the TX side to avoid cacheline
1490 * ping-pong of TX state information on MP where the sender
1491 * might run on a different CPU than this function...
1493 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1494 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1495 cmdq_processed[0] = 0;
1498 if (unlikely(cmdq_processed[1] > 16)) {
1499 sge->cmdQ[1].processed += cmdq_processed[1];
1500 cmdq_processed[1] = 0;
1503 if (likely(e->DataValid)) {
1504 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1506 BUG_ON(!e->Sop || !e->Eop);
1507 if (unlikely(e->Offload))
1508 unexpected_offload(adapter, fl);
1510 sge_rx(sge, fl, e->BufferLength);
1515 * Note: this depends on each packet consuming a
1516 * single free-list buffer; cf. the BUG above.
1518 if (++fl->cidx == fl->size)
1520 prefetch(fl->centries[fl->cidx].skb);
1522 if (unlikely(--fl->credits <
1523 fl->size - SGE_FREEL_REFILL_THRESH))
1524 refill_free_list(sge, fl);
1526 sge->stats.pure_rsps++;
1529 if (unlikely(++q->cidx == q->size)) {
1536 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1537 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1542 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1543 sge->cmdQ[1].processed += cmdq_processed[1];
1548 static inline int responses_pending(const struct adapter *adapter)
1550 const struct respQ *Q = &adapter->sge->respQ;
1551 const struct respQ_e *e = &Q->entries[Q->cidx];
1553 return (e->GenerationBit == Q->genbit);
1557 * A simpler version of process_responses() that handles only pure (i.e.,
1558 * non data-carrying) responses. Such respones are too light-weight to justify
1559 * calling a softirq when using NAPI, so we handle them specially in hard
1560 * interrupt context. The function is called with a pointer to a response,
1561 * which the caller must ensure is a valid pure response. Returns 1 if it
1562 * encounters a valid data-carrying response, 0 otherwise.
1564 static int process_pure_responses(struct adapter *adapter)
1566 struct sge *sge = adapter->sge;
1567 struct respQ *q = &sge->respQ;
1568 struct respQ_e *e = &q->entries[q->cidx];
1569 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1570 unsigned int flags = 0;
1571 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1573 prefetch(fl->centries[fl->cidx].skb);
1578 flags |= e->Qsleeping;
1580 cmdq_processed[0] += e->Cmdq0CreditReturn;
1581 cmdq_processed[1] += e->Cmdq1CreditReturn;
1584 if (unlikely(++q->cidx == q->size)) {
1591 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1592 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1595 sge->stats.pure_rsps++;
1596 } while (e->GenerationBit == q->genbit && !e->DataValid);
1598 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1599 sge->cmdQ[1].processed += cmdq_processed[1];
1601 return e->GenerationBit == q->genbit;
1605 * Handler for new data events when using NAPI. This does not need any locking
1606 * or protection from interrupts as data interrupts are off at this point and
1607 * other adapter interrupts do not interfere.
1609 int t1_poll(struct napi_struct *napi, int budget)
1611 struct adapter *adapter = container_of(napi, struct adapter, napi);
1612 int work_done = process_responses(adapter, budget);
1614 if (likely(work_done < budget)) {
1615 napi_complete(napi);
1616 writel(adapter->sge->respQ.cidx,
1617 adapter->regs + A_SG_SLEEPING);
1622 irqreturn_t t1_interrupt(int irq, void *data)
1624 struct adapter *adapter = data;
1625 struct sge *sge = adapter->sge;
1628 if (likely(responses_pending(adapter))) {
1629 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1631 if (napi_schedule_prep(&adapter->napi)) {
1632 if (process_pure_responses(adapter))
1633 __napi_schedule(&adapter->napi);
1635 /* no data, no NAPI needed */
1636 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1637 /* undo schedule_prep */
1638 napi_enable(&adapter->napi);
1644 spin_lock(&adapter->async_lock);
1645 handled = t1_slow_intr_handler(adapter);
1646 spin_unlock(&adapter->async_lock);
1649 sge->stats.unhandled_irqs++;
1651 return IRQ_RETVAL(handled != 0);
1655 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1657 * The code figures out how many entries the sk_buff will require in the
1658 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1659 * has complete. Then, it doesn't access the global structure anymore, but
1660 * uses the corresponding fields on the stack. In conjuction with a spinlock
1661 * around that code, we can make the function reentrant without holding the
1662 * lock when we actually enqueue (which might be expensive, especially on
1663 * architectures with IO MMUs).
1665 * This runs with softirqs disabled.
1667 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1668 unsigned int qid, struct net_device *dev)
1670 struct sge *sge = adapter->sge;
1671 struct cmdQ *q = &sge->cmdQ[qid];
1672 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1674 if (!spin_trylock(&q->lock))
1675 return NETDEV_TX_LOCKED;
1677 reclaim_completed_tx(sge, q);
1680 credits = q->size - q->in_use;
1681 count = 1 + skb_shinfo(skb)->nr_frags;
1682 count += compute_large_page_tx_descs(skb);
1684 /* Ethernet packet */
1685 if (unlikely(credits < count)) {
1686 if (!netif_queue_stopped(dev)) {
1687 netif_stop_queue(dev);
1688 set_bit(dev->if_port, &sge->stopped_tx_queues);
1689 sge->stats.cmdQ_full[2]++;
1690 CH_ERR("%s: Tx ring full while queue awake!\n",
1693 spin_unlock(&q->lock);
1694 return NETDEV_TX_BUSY;
1697 if (unlikely(credits - count < q->stop_thres)) {
1698 netif_stop_queue(dev);
1699 set_bit(dev->if_port, &sge->stopped_tx_queues);
1700 sge->stats.cmdQ_full[2]++;
1703 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1704 * through the scheduler.
1706 if (sge->tx_sched && !qid && skb->dev) {
1709 /* Note that the scheduler might return a different skb than
1710 * the one passed in.
1712 skb = sched_skb(sge, skb, credits);
1714 spin_unlock(&q->lock);
1715 return NETDEV_TX_OK;
1718 count = 1 + skb_shinfo(skb)->nr_frags;
1719 count += compute_large_page_tx_descs(skb);
1726 if (q->pidx >= q->size) {
1730 spin_unlock(&q->lock);
1732 write_tx_descs(adapter, skb, pidx, genbit, q);
1735 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1736 * the doorbell if the Q is asleep. There is a natural race, where
1737 * the hardware is going to sleep just after we checked, however,
1738 * then the interrupt handler will detect the outstanding TX packet
1739 * and ring the doorbell for us.
1742 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1744 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1745 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1746 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1747 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1751 if (use_sched_skb) {
1752 if (spin_trylock(&q->lock)) {
1753 credits = q->size - q->in_use;
1758 return NETDEV_TX_OK;
1761 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1764 * eth_hdr_len - return the length of an Ethernet header
1765 * @data: pointer to the start of the Ethernet header
1767 * Returns the length of an Ethernet header, including optional VLAN tag.
1769 static inline int eth_hdr_len(const void *data)
1771 const struct ethhdr *e = data;
1773 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1777 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1779 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1781 struct adapter *adapter = dev->ml_priv;
1782 struct sge *sge = adapter->sge;
1783 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port],
1784 smp_processor_id());
1785 struct cpl_tx_pkt *cpl;
1786 struct sk_buff *orig_skb = skb;
1789 if (skb->protocol == htons(ETH_P_CPL5))
1793 * We are using a non-standard hard_header_len.
1794 * Allocate more header room in the rare cases it is not big enough.
1796 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1797 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1798 ++st->tx_need_hdrroom;
1799 dev_kfree_skb_any(orig_skb);
1801 return NETDEV_TX_OK;
1804 if (skb_shinfo(skb)->gso_size) {
1806 struct cpl_tx_pkt_lso *hdr;
1810 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1811 CPL_ETH_II : CPL_ETH_II_VLAN;
1813 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1814 hdr->opcode = CPL_TX_PKT_LSO;
1815 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1816 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1817 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1818 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1819 skb_shinfo(skb)->gso_size));
1820 hdr->len = htonl(skb->len - sizeof(*hdr));
1821 cpl = (struct cpl_tx_pkt *)hdr;
1824 * Packets shorter than ETH_HLEN can break the MAC, drop them
1825 * early. Also, we may get oversized packets because some
1826 * parts of the kernel don't handle our unusual hard_header_len
1827 * right, drop those too.
1829 if (unlikely(skb->len < ETH_HLEN ||
1830 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1831 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1832 skb->len, eth_hdr_len(skb->data), dev->mtu);
1833 dev_kfree_skb_any(skb);
1834 return NETDEV_TX_OK;
1837 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1838 skb->ip_summed == CHECKSUM_PARTIAL &&
1839 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1840 if (unlikely(skb_checksum_help(skb))) {
1841 pr_debug("%s: unable to do udp checksum\n", dev->name);
1842 dev_kfree_skb_any(skb);
1843 return NETDEV_TX_OK;
1847 /* Hmmm, assuming to catch the gratious arp... and we'll use
1848 * it to flush out stuck espi packets...
1850 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1851 if (skb->protocol == htons(ETH_P_ARP) &&
1852 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1853 adapter->sge->espibug_skb[dev->if_port] = skb;
1854 /* We want to re-use this skb later. We
1855 * simply bump the reference count and it
1856 * will not be freed...
1862 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1863 cpl->opcode = CPL_TX_PKT;
1864 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1865 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1866 /* the length field isn't used so don't bother setting it */
1868 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1870 cpl->iff = dev->if_port;
1872 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1873 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1874 cpl->vlan_valid = 1;
1875 cpl->vlan = htons(vlan_tx_tag_get(skb));
1879 cpl->vlan_valid = 0;
1882 dev->trans_start = jiffies;
1883 ret = t1_sge_tx(skb, adapter, 0, dev);
1885 /* If transmit busy, and we reallocated skb's due to headroom limit,
1886 * then silently discard to avoid leak.
1888 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1889 dev_kfree_skb_any(skb);
1896 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1898 static void sge_tx_reclaim_cb(unsigned long data)
1901 struct sge *sge = (struct sge *)data;
1903 for (i = 0; i < SGE_CMDQ_N; ++i) {
1904 struct cmdQ *q = &sge->cmdQ[i];
1906 if (!spin_trylock(&q->lock))
1909 reclaim_completed_tx(sge, q);
1910 if (i == 0 && q->in_use) { /* flush pending credits */
1911 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1913 spin_unlock(&q->lock);
1915 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1919 * Propagate changes of the SGE coalescing parameters to the HW.
1921 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1923 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1924 core_ticks_per_usec(sge->adapter);
1925 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1930 * Allocates both RX and TX resources and configures the SGE. However,
1931 * the hardware is not enabled yet.
1933 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1935 if (alloc_rx_resources(sge, p))
1937 if (alloc_tx_resources(sge, p)) {
1938 free_rx_resources(sge);
1941 configure_sge(sge, p);
1944 * Now that we have sized the free lists calculate the payload
1945 * capacity of the large buffers. Other parts of the driver use
1946 * this to set the max offload coalescing size so that RX packets
1947 * do not overflow our large buffers.
1949 p->large_buf_capacity = jumbo_payload_capacity(sge);
1954 * Disables the DMA engine.
1956 void t1_sge_stop(struct sge *sge)
1959 writel(0, sge->adapter->regs + A_SG_CONTROL);
1960 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1962 if (is_T2(sge->adapter))
1963 del_timer_sync(&sge->espibug_timer);
1965 del_timer_sync(&sge->tx_reclaim_timer);
1969 for (i = 0; i < MAX_NPORTS; i++)
1970 if (sge->espibug_skb[i])
1971 kfree_skb(sge->espibug_skb[i]);
1975 * Enables the DMA engine.
1977 void t1_sge_start(struct sge *sge)
1979 refill_free_list(sge, &sge->freelQ[0]);
1980 refill_free_list(sge, &sge->freelQ[1]);
1982 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1983 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1984 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1986 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1988 if (is_T2(sge->adapter))
1989 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1993 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1995 static void espibug_workaround_t204(unsigned long data)
1997 struct adapter *adapter = (struct adapter *)data;
1998 struct sge *sge = adapter->sge;
1999 unsigned int nports = adapter->params.nports;
2000 u32 seop[MAX_NPORTS];
2002 if (adapter->open_device_map & PORT_MASK) {
2005 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2008 for (i = 0; i < nports; i++) {
2009 struct sk_buff *skb = sge->espibug_skb[i];
2011 if (!netif_running(adapter->port[i].dev) ||
2012 netif_queue_stopped(adapter->port[i].dev) ||
2013 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2017 u8 ch_mac_addr[ETH_ALEN] = {
2018 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2021 skb_copy_to_linear_data_offset(skb,
2022 sizeof(struct cpl_tx_pkt),
2025 skb_copy_to_linear_data_offset(skb,
2032 /* bump the reference count to avoid freeing of
2033 * the skb once the DMA has completed.
2036 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2039 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2042 static void espibug_workaround(unsigned long data)
2044 struct adapter *adapter = (struct adapter *)data;
2045 struct sge *sge = adapter->sge;
2047 if (netif_running(adapter->port[0].dev)) {
2048 struct sk_buff *skb = sge->espibug_skb[0];
2049 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2051 if ((seop & 0xfff0fff) == 0xfff && skb) {
2053 u8 ch_mac_addr[ETH_ALEN] =
2054 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2055 skb_copy_to_linear_data_offset(skb,
2056 sizeof(struct cpl_tx_pkt),
2059 skb_copy_to_linear_data_offset(skb,
2066 /* bump the reference count to avoid freeing of the
2067 * skb once the DMA has completed.
2070 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2073 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2077 * Creates a t1_sge structure and returns suggested resource parameters.
2079 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2080 struct sge_params *p)
2082 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2088 sge->adapter = adapter;
2089 sge->netdev = adapter->port[0].dev;
2090 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2091 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2093 for_each_port(adapter, i) {
2094 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2095 if (!sge->port_stats[i])
2099 init_timer(&sge->tx_reclaim_timer);
2100 sge->tx_reclaim_timer.data = (unsigned long)sge;
2101 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2103 if (is_T2(sge->adapter)) {
2104 init_timer(&sge->espibug_timer);
2106 if (adapter->params.nports > 1) {
2108 sge->espibug_timer.function = espibug_workaround_t204;
2110 sge->espibug_timer.function = espibug_workaround;
2111 sge->espibug_timer.data = (unsigned long)sge->adapter;
2113 sge->espibug_timeout = 1;
2114 /* for T204, every 10ms */
2115 if (adapter->params.nports > 1)
2116 sge->espibug_timeout = HZ/100;
2120 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2121 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2122 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2123 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2124 if (sge->tx_sched) {
2125 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2126 p->rx_coalesce_usecs = 15;
2128 p->rx_coalesce_usecs = 50;
2130 p->rx_coalesce_usecs = 50;
2132 p->coalesce_enable = 0;
2133 p->sample_interval_usecs = 0;
2138 free_percpu(sge->port_stats[i]);