2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/spinlock.h>
35 #include <linux/preempt.h>
36 #include <asm/cacheflush.h>
37 #include <asm/kdebug.h>
40 static struct kprobe *current_kprobe;
41 static unsigned long kprobe_status, kprobe_old_eflags, kprobe_saved_eflags;
42 static struct kprobe *kprobe_prev;
43 static unsigned long kprobe_status_prev, kprobe_old_eflags_prev, kprobe_saved_eflags_prev;
44 static struct pt_regs jprobe_saved_regs;
45 static long *jprobe_saved_esp;
46 /* copy of the kernel stack at the probe fire time */
47 static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
48 void jprobe_return_end(void);
51 * returns non-zero if opcode modifies the interrupt flag.
53 static inline int is_IF_modifier(kprobe_opcode_t opcode)
58 case 0xcf: /* iret/iretd */
59 case 0x9d: /* popf/popfd */
65 int arch_prepare_kprobe(struct kprobe *p)
70 void arch_copy_kprobe(struct kprobe *p)
72 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
76 void arch_arm_kprobe(struct kprobe *p)
78 *p->addr = BREAKPOINT_INSTRUCTION;
79 flush_icache_range((unsigned long) p->addr,
80 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
83 void arch_disarm_kprobe(struct kprobe *p)
86 flush_icache_range((unsigned long) p->addr,
87 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
90 void arch_remove_kprobe(struct kprobe *p)
94 static inline void save_previous_kprobe(void)
96 kprobe_prev = current_kprobe;
97 kprobe_status_prev = kprobe_status;
98 kprobe_old_eflags_prev = kprobe_old_eflags;
99 kprobe_saved_eflags_prev = kprobe_saved_eflags;
102 static inline void restore_previous_kprobe(void)
104 current_kprobe = kprobe_prev;
105 kprobe_status = kprobe_status_prev;
106 kprobe_old_eflags = kprobe_old_eflags_prev;
107 kprobe_saved_eflags = kprobe_saved_eflags_prev;
110 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
113 kprobe_saved_eflags = kprobe_old_eflags
114 = (regs->eflags & (TF_MASK | IF_MASK));
115 if (is_IF_modifier(p->opcode))
116 kprobe_saved_eflags &= ~IF_MASK;
119 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
121 regs->eflags |= TF_MASK;
122 regs->eflags &= ~IF_MASK;
123 /*single step inline if the instruction is an int3*/
124 if (p->opcode == BREAKPOINT_INSTRUCTION)
125 regs->eip = (unsigned long)p->addr;
127 regs->eip = (unsigned long)&p->ainsn.insn;
130 struct task_struct *arch_get_kprobe_task(void *ptr)
132 return ((struct thread_info *) (((unsigned long) ptr) &
133 (~(THREAD_SIZE -1))))->task;
136 void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
138 unsigned long *sara = (unsigned long *)®s->esp;
139 struct kretprobe_instance *ri;
140 static void *orig_ret_addr;
143 * Save the return address when the return probe hits
144 * the first time, and use it to populate the (krprobe
145 * instance)->ret_addr for subsequent return probes at
146 * the same addrress since stack address would have
147 * the kretprobe_trampoline by then.
149 if (((void*) *sara) != kretprobe_trampoline)
150 orig_ret_addr = (void*) *sara;
152 if ((ri = get_free_rp_inst(rp)) != NULL) {
154 ri->stack_addr = sara;
155 ri->ret_addr = orig_ret_addr;
157 /* Replace the return addr with trampoline addr */
158 *sara = (unsigned long) &kretprobe_trampoline;
164 void arch_kprobe_flush_task(struct task_struct *tk)
166 struct kretprobe_instance *ri;
167 while ((ri = get_rp_inst_tsk(tk)) != NULL) {
168 *((unsigned long *)(ri->stack_addr)) =
169 (unsigned long) ri->ret_addr;
175 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
176 * remain disabled thorough out this function.
178 static int kprobe_handler(struct pt_regs *regs)
182 kprobe_opcode_t *addr = NULL;
185 /* We're in an interrupt, but this is clear and BUG()-safe. */
187 /* Check if the application is using LDT entry for its code segment and
188 * calculate the address by reading the base address from the LDT entry.
190 if ((regs->xcs & 4) && (current->mm)) {
191 lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8)
192 + (char *) current->mm->context.ldt);
193 addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip -
194 sizeof(kprobe_opcode_t));
196 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
198 /* Check we're not actually recursing */
199 if (kprobe_running()) {
200 /* We *are* holding lock here, so this is safe.
201 Disarm the probe we just hit, and ignore it. */
202 p = get_kprobe(addr);
204 if (kprobe_status == KPROBE_HIT_SS) {
205 regs->eflags &= ~TF_MASK;
206 regs->eflags |= kprobe_saved_eflags;
210 /* We have reentered the kprobe_handler(), since
211 * another probe was hit while within the handler.
212 * We here save the original kprobes variables and
213 * just single step on the instruction of the new probe
214 * without calling any user handlers.
216 save_previous_kprobe();
217 set_current_kprobe(p, regs);
219 prepare_singlestep(p, regs);
220 kprobe_status = KPROBE_REENTER;
224 if (p->break_handler && p->break_handler(p, regs)) {
228 /* If it's not ours, can't be delete race, (we hold lock). */
233 p = get_kprobe(addr);
236 if (regs->eflags & VM_MASK) {
237 /* We are in virtual-8086 mode. Return 0 */
241 if (*addr != BREAKPOINT_INSTRUCTION) {
243 * The breakpoint instruction was removed right
244 * after we hit it. Another cpu has removed
245 * either a probepoint or a debugger breakpoint
246 * at this address. In either case, no further
247 * handling of this interrupt is appropriate.
251 /* Not one of ours: let kernel handle it */
255 kprobe_status = KPROBE_HIT_ACTIVE;
256 set_current_kprobe(p, regs);
258 if (p->pre_handler && p->pre_handler(p, regs))
259 /* handler has already set things up, so skip ss setup */
263 prepare_singlestep(p, regs);
264 kprobe_status = KPROBE_HIT_SS;
268 preempt_enable_no_resched();
273 * For function-return probes, init_kprobes() establishes a probepoint
274 * here. When a retprobed function returns, this probe is hit and
275 * trampoline_probe_handler() runs, calling the kretprobe's handler.
277 void kretprobe_trampoline_holder(void)
279 asm volatile ( ".global kretprobe_trampoline\n"
280 "kretprobe_trampoline: \n"
285 * Called when we hit the probe point at kretprobe_trampoline
287 int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
289 struct task_struct *tsk;
290 struct kretprobe_instance *ri;
291 struct hlist_head *head;
292 struct hlist_node *node;
293 unsigned long *sara = ((unsigned long *) ®s->esp) - 1;
295 tsk = arch_get_kprobe_task(sara);
296 head = kretprobe_inst_table_head(tsk);
298 hlist_for_each_entry(ri, node, head, hlist) {
299 if (ri->stack_addr == sara && ri->rp) {
301 ri->rp->handler(ri, regs);
307 void trampoline_post_handler(struct kprobe *p, struct pt_regs *regs,
310 struct kretprobe_instance *ri;
311 /* RA already popped */
312 unsigned long *sara = ((unsigned long *)®s->esp) - 1;
314 while ((ri = get_rp_inst(sara))) {
315 regs->eip = (unsigned long)ri->ret_addr;
318 regs->eflags &= ~TF_MASK;
322 * Called after single-stepping. p->addr is the address of the
323 * instruction whose first byte has been replaced by the "int 3"
324 * instruction. To avoid the SMP problems that can occur when we
325 * temporarily put back the original opcode to single-step, we
326 * single-stepped a copy of the instruction. The address of this
327 * copy is p->ainsn.insn.
329 * This function prepares to return from the post-single-step
330 * interrupt. We have to fix up the stack as follows:
332 * 0) Except in the case of absolute or indirect jump or call instructions,
333 * the new eip is relative to the copied instruction. We need to make
334 * it relative to the original instruction.
336 * 1) If the single-stepped instruction was pushfl, then the TF and IF
337 * flags are set in the just-pushed eflags, and may need to be cleared.
339 * 2) If the single-stepped instruction was a call, the return address
340 * that is atop the stack is the address following the copied instruction.
341 * We need to make it the address following the original instruction.
343 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345 unsigned long *tos = (unsigned long *)®s->esp;
346 unsigned long next_eip = 0;
347 unsigned long copy_eip = (unsigned long)&p->ainsn.insn;
348 unsigned long orig_eip = (unsigned long)p->addr;
350 switch (p->ainsn.insn[0]) {
351 case 0x9c: /* pushfl */
352 *tos &= ~(TF_MASK | IF_MASK);
353 *tos |= kprobe_old_eflags;
355 case 0xc3: /* ret/lret */
359 regs->eflags &= ~TF_MASK;
360 /* eip is already adjusted, no more changes required*/
362 case 0xe8: /* call relative - Fix return addr */
363 *tos = orig_eip + (*tos - copy_eip);
366 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
367 /* call absolute, indirect */
368 /* Fix return addr; eip is correct. */
369 next_eip = regs->eip;
370 *tos = orig_eip + (*tos - copy_eip);
371 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
372 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
373 /* eip is correct. */
374 next_eip = regs->eip;
377 case 0xea: /* jmp absolute -- eip is correct */
378 next_eip = regs->eip;
384 regs->eflags &= ~TF_MASK;
386 regs->eip = next_eip;
388 regs->eip = orig_eip + (regs->eip - copy_eip);
393 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
394 * remain disabled thoroughout this function. And we hold kprobe lock.
396 static inline int post_kprobe_handler(struct pt_regs *regs)
398 if (!kprobe_running())
401 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
402 kprobe_status = KPROBE_HIT_SSDONE;
403 current_kprobe->post_handler(current_kprobe, regs, 0);
406 if (current_kprobe->post_handler != trampoline_post_handler)
407 resume_execution(current_kprobe, regs);
408 regs->eflags |= kprobe_saved_eflags;
410 /*Restore back the original saved kprobes variables and continue. */
411 if (kprobe_status == KPROBE_REENTER) {
412 restore_previous_kprobe();
417 preempt_enable_no_resched();
420 * if somebody else is singlestepping across a probe point, eflags
421 * will have TF set, in which case, continue the remaining processing
422 * of do_debug, as if this is not a probe hit.
424 if (regs->eflags & TF_MASK)
430 /* Interrupts disabled, kprobe_lock held. */
431 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
433 if (current_kprobe->fault_handler
434 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
437 if (kprobe_status & KPROBE_HIT_SS) {
438 resume_execution(current_kprobe, regs);
439 regs->eflags |= kprobe_old_eflags;
442 preempt_enable_no_resched();
448 * Wrapper routine to for handling exceptions.
450 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
453 struct die_args *args = (struct die_args *)data;
456 if (kprobe_handler(args->regs))
460 if (post_kprobe_handler(args->regs))
464 if (kprobe_running() &&
465 kprobe_fault_handler(args->regs, args->trapnr))
469 if (kprobe_running() &&
470 kprobe_fault_handler(args->regs, args->trapnr))
479 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
481 struct jprobe *jp = container_of(p, struct jprobe, kp);
484 jprobe_saved_regs = *regs;
485 jprobe_saved_esp = ®s->esp;
486 addr = (unsigned long)jprobe_saved_esp;
489 * TBD: As Linus pointed out, gcc assumes that the callee
490 * owns the argument space and could overwrite it, e.g.
491 * tailcall optimization. So, to be absolutely safe
492 * we also save and restore enough stack bytes to cover
495 memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
496 regs->eflags &= ~IF_MASK;
497 regs->eip = (unsigned long)(jp->entry);
501 void jprobe_return(void)
503 preempt_enable_no_resched();
504 asm volatile (" xchgl %%ebx,%%esp \n"
506 " .globl jprobe_return_end \n"
507 " jprobe_return_end: \n"
509 (jprobe_saved_esp):"memory");
512 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
514 u8 *addr = (u8 *) (regs->eip - 1);
515 unsigned long stack_addr = (unsigned long)jprobe_saved_esp;
516 struct jprobe *jp = container_of(p, struct jprobe, kp);
518 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
519 if (®s->esp != jprobe_saved_esp) {
520 struct pt_regs *saved_regs =
521 container_of(jprobe_saved_esp, struct pt_regs, esp);
522 printk("current esp %p does not match saved esp %p\n",
523 ®s->esp, jprobe_saved_esp);
524 printk("Saved registers for jprobe %p\n", jp);
525 show_registers(saved_regs);
526 printk("Current registers\n");
527 show_registers(regs);
530 *regs = jprobe_saved_regs;
531 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
532 MIN_STACK_SIZE(stack_addr));