2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
60 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
61 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
62 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
64 #ifndef PHYSICAL_PAGE_MASK
65 #define PHYSICAL_PAGE_MASK PAGE_MASK
68 /* global iommu list, set NULL for ignored DMAR units */
69 static struct intel_iommu **g_iommus;
71 static int rwbf_quirk;
76 * 12-63: Context Ptr (12 - (haw-1))
83 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
84 static inline bool root_present(struct root_entry *root)
86 return (root->val & 1);
88 static inline void set_root_present(struct root_entry *root)
92 static inline void set_root_value(struct root_entry *root, unsigned long value)
94 root->val |= value & VTD_PAGE_MASK;
97 static inline struct context_entry *
98 get_context_addr_from_root(struct root_entry *root)
100 return (struct context_entry *)
101 (root_present(root)?phys_to_virt(
102 root->val & VTD_PAGE_MASK) :
109 * 1: fault processing disable
110 * 2-3: translation type
111 * 12-63: address space root
117 struct context_entry {
122 static inline bool context_present(struct context_entry *context)
124 return (context->lo & 1);
126 static inline void context_set_present(struct context_entry *context)
131 static inline void context_set_fault_enable(struct context_entry *context)
133 context->lo &= (((u64)-1) << 2) | 1;
136 static inline void context_set_translation_type(struct context_entry *context,
139 context->lo &= (((u64)-1) << 4) | 3;
140 context->lo |= (value & 3) << 2;
143 static inline void context_set_address_root(struct context_entry *context,
146 context->lo |= value & VTD_PAGE_MASK;
149 static inline void context_set_address_width(struct context_entry *context,
152 context->hi |= value & 7;
155 static inline void context_set_domain_id(struct context_entry *context,
158 context->hi |= (value & ((1 << 16) - 1)) << 8;
161 static inline void context_clear_entry(struct context_entry *context)
174 * 12-63: Host physcial address
180 static inline void dma_clear_pte(struct dma_pte *pte)
185 static inline void dma_set_pte_readable(struct dma_pte *pte)
187 pte->val |= DMA_PTE_READ;
190 static inline void dma_set_pte_writable(struct dma_pte *pte)
192 pte->val |= DMA_PTE_WRITE;
195 static inline void dma_set_pte_snp(struct dma_pte *pte)
197 pte->val |= DMA_PTE_SNP;
200 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
202 pte->val = (pte->val & ~3) | (prot & 3);
205 static inline u64 dma_pte_addr(struct dma_pte *pte)
207 return (pte->val & VTD_PAGE_MASK);
210 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
212 pte->val |= (addr & VTD_PAGE_MASK);
215 static inline bool dma_pte_present(struct dma_pte *pte)
217 return (pte->val & 3) != 0;
221 * This domain is a statically identity mapping domain.
222 * 1. This domain creats a static 1:1 mapping to all usable memory.
223 * 2. It maps to each iommu if successful.
224 * 3. Each iommu mapps to this domain if successful.
226 struct dmar_domain *si_domain;
228 /* devices under the same p2p bridge are owned in one domain */
229 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
231 /* domain represents a virtual machine, more than one devices
232 * across iommus may be owned in one domain, e.g. kvm guest.
234 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
236 /* si_domain contains mulitple devices */
237 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
240 int id; /* domain id */
241 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
243 struct list_head devices; /* all devices' list */
244 struct iova_domain iovad; /* iova's that belong to this domain */
246 struct dma_pte *pgd; /* virtual address */
247 spinlock_t mapping_lock; /* page table lock */
248 int gaw; /* max guest address width */
250 /* adjusted guest address width, 0 is level 2 30-bit */
253 int flags; /* flags to find out type of domain */
255 int iommu_coherency;/* indicate coherency of iommu access */
256 int iommu_snooping; /* indicate snooping control feature*/
257 int iommu_count; /* reference count of iommu */
258 spinlock_t iommu_lock; /* protect iommu set in domain */
259 u64 max_addr; /* maximum mapped address */
262 /* PCI domain-device relationship */
263 struct device_domain_info {
264 struct list_head link; /* link to domain siblings */
265 struct list_head global; /* link to global list */
266 int segment; /* PCI domain */
267 u8 bus; /* PCI bus number */
268 u8 devfn; /* PCI devfn number */
269 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
270 struct intel_iommu *iommu; /* IOMMU used by this device */
271 struct dmar_domain *domain; /* pointer to domain */
274 static void flush_unmaps_timeout(unsigned long data);
276 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
278 #define HIGH_WATER_MARK 250
279 struct deferred_flush_tables {
281 struct iova *iova[HIGH_WATER_MARK];
282 struct dmar_domain *domain[HIGH_WATER_MARK];
285 static struct deferred_flush_tables *deferred_flush;
287 /* bitmap for indexing intel_iommus */
288 static int g_num_of_iommus;
290 static DEFINE_SPINLOCK(async_umap_flush_lock);
291 static LIST_HEAD(unmaps_to_do);
294 static long list_size;
296 static void domain_remove_dev_info(struct dmar_domain *domain);
298 #ifdef CONFIG_DMAR_DEFAULT_ON
299 int dmar_disabled = 0;
301 int dmar_disabled = 1;
302 #endif /*CONFIG_DMAR_DEFAULT_ON*/
304 static int __initdata dmar_map_gfx = 1;
305 static int dmar_forcedac;
306 static int intel_iommu_strict;
308 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
309 static DEFINE_SPINLOCK(device_domain_lock);
310 static LIST_HEAD(device_domain_list);
312 static struct iommu_ops intel_iommu_ops;
314 static int __init intel_iommu_setup(char *str)
319 if (!strncmp(str, "on", 2)) {
321 printk(KERN_INFO "Intel-IOMMU: enabled\n");
322 } else if (!strncmp(str, "off", 3)) {
324 printk(KERN_INFO "Intel-IOMMU: disabled\n");
325 } else if (!strncmp(str, "igfx_off", 8)) {
328 "Intel-IOMMU: disable GFX device mapping\n");
329 } else if (!strncmp(str, "forcedac", 8)) {
331 "Intel-IOMMU: Forcing DAC for PCI devices\n");
333 } else if (!strncmp(str, "strict", 6)) {
335 "Intel-IOMMU: disable batched IOTLB flush\n");
336 intel_iommu_strict = 1;
339 str += strcspn(str, ",");
345 __setup("intel_iommu=", intel_iommu_setup);
347 static struct kmem_cache *iommu_domain_cache;
348 static struct kmem_cache *iommu_devinfo_cache;
349 static struct kmem_cache *iommu_iova_cache;
351 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
356 /* trying to avoid low memory issues */
357 flags = current->flags & PF_MEMALLOC;
358 current->flags |= PF_MEMALLOC;
359 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
360 current->flags &= (~PF_MEMALLOC | flags);
365 static inline void *alloc_pgtable_page(void)
370 /* trying to avoid low memory issues */
371 flags = current->flags & PF_MEMALLOC;
372 current->flags |= PF_MEMALLOC;
373 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
374 current->flags &= (~PF_MEMALLOC | flags);
378 static inline void free_pgtable_page(void *vaddr)
380 free_page((unsigned long)vaddr);
383 static inline void *alloc_domain_mem(void)
385 return iommu_kmem_cache_alloc(iommu_domain_cache);
388 static void free_domain_mem(void *vaddr)
390 kmem_cache_free(iommu_domain_cache, vaddr);
393 static inline void * alloc_devinfo_mem(void)
395 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
398 static inline void free_devinfo_mem(void *vaddr)
400 kmem_cache_free(iommu_devinfo_cache, vaddr);
403 struct iova *alloc_iova_mem(void)
405 return iommu_kmem_cache_alloc(iommu_iova_cache);
408 void free_iova_mem(struct iova *iova)
410 kmem_cache_free(iommu_iova_cache, iova);
414 static inline int width_to_agaw(int width);
416 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
421 sagaw = cap_sagaw(iommu->cap);
422 for (agaw = width_to_agaw(max_gaw);
424 if (test_bit(agaw, &sagaw))
432 * Calculate max SAGAW for each iommu.
434 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
436 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
440 * calculate agaw for each iommu.
441 * "SAGAW" may be different across iommus, use a default agaw, and
442 * get a supported less agaw for iommus that don't support the default agaw.
444 int iommu_calculate_agaw(struct intel_iommu *iommu)
446 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
449 /* This functionin only returns single iommu in a domain */
450 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
454 /* si_domain and vm domain should not get here. */
455 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
456 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
458 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
459 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
462 return g_iommus[iommu_id];
465 static void domain_update_iommu_coherency(struct dmar_domain *domain)
469 domain->iommu_coherency = 1;
471 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
472 for (; i < g_num_of_iommus; ) {
473 if (!ecap_coherent(g_iommus[i]->ecap)) {
474 domain->iommu_coherency = 0;
477 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
481 static void domain_update_iommu_snooping(struct dmar_domain *domain)
485 domain->iommu_snooping = 1;
487 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
488 for (; i < g_num_of_iommus; ) {
489 if (!ecap_sc_support(g_iommus[i]->ecap)) {
490 domain->iommu_snooping = 0;
493 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
497 /* Some capabilities may be different across iommus */
498 static void domain_update_iommu_cap(struct dmar_domain *domain)
500 domain_update_iommu_coherency(domain);
501 domain_update_iommu_snooping(domain);
504 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
506 struct dmar_drhd_unit *drhd = NULL;
509 for_each_drhd_unit(drhd) {
512 if (segment != drhd->segment)
515 for (i = 0; i < drhd->devices_cnt; i++) {
516 if (drhd->devices[i] &&
517 drhd->devices[i]->bus->number == bus &&
518 drhd->devices[i]->devfn == devfn)
520 if (drhd->devices[i] &&
521 drhd->devices[i]->subordinate &&
522 drhd->devices[i]->subordinate->number <= bus &&
523 drhd->devices[i]->subordinate->subordinate >= bus)
527 if (drhd->include_all)
534 static void domain_flush_cache(struct dmar_domain *domain,
535 void *addr, int size)
537 if (!domain->iommu_coherency)
538 clflush_cache_range(addr, size);
541 /* Gets context entry for a given bus and devfn */
542 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
545 struct root_entry *root;
546 struct context_entry *context;
547 unsigned long phy_addr;
550 spin_lock_irqsave(&iommu->lock, flags);
551 root = &iommu->root_entry[bus];
552 context = get_context_addr_from_root(root);
554 context = (struct context_entry *)alloc_pgtable_page();
556 spin_unlock_irqrestore(&iommu->lock, flags);
559 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
560 phy_addr = virt_to_phys((void *)context);
561 set_root_value(root, phy_addr);
562 set_root_present(root);
563 __iommu_flush_cache(iommu, root, sizeof(*root));
565 spin_unlock_irqrestore(&iommu->lock, flags);
566 return &context[devfn];
569 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
571 struct root_entry *root;
572 struct context_entry *context;
576 spin_lock_irqsave(&iommu->lock, flags);
577 root = &iommu->root_entry[bus];
578 context = get_context_addr_from_root(root);
583 ret = context_present(&context[devfn]);
585 spin_unlock_irqrestore(&iommu->lock, flags);
589 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
591 struct root_entry *root;
592 struct context_entry *context;
595 spin_lock_irqsave(&iommu->lock, flags);
596 root = &iommu->root_entry[bus];
597 context = get_context_addr_from_root(root);
599 context_clear_entry(&context[devfn]);
600 __iommu_flush_cache(iommu, &context[devfn], \
603 spin_unlock_irqrestore(&iommu->lock, flags);
606 static void free_context_table(struct intel_iommu *iommu)
608 struct root_entry *root;
611 struct context_entry *context;
613 spin_lock_irqsave(&iommu->lock, flags);
614 if (!iommu->root_entry) {
617 for (i = 0; i < ROOT_ENTRY_NR; i++) {
618 root = &iommu->root_entry[i];
619 context = get_context_addr_from_root(root);
621 free_pgtable_page(context);
623 free_pgtable_page(iommu->root_entry);
624 iommu->root_entry = NULL;
626 spin_unlock_irqrestore(&iommu->lock, flags);
629 /* page table handling */
630 #define LEVEL_STRIDE (9)
631 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
633 static inline int agaw_to_level(int agaw)
638 static inline int agaw_to_width(int agaw)
640 return 30 + agaw * LEVEL_STRIDE;
644 static inline int width_to_agaw(int width)
646 return (width - 30) / LEVEL_STRIDE;
649 static inline unsigned int level_to_offset_bits(int level)
651 return (12 + (level - 1) * LEVEL_STRIDE);
654 static inline int address_level_offset(u64 addr, int level)
656 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
659 static inline u64 level_mask(int level)
661 return ((u64)-1 << level_to_offset_bits(level));
664 static inline u64 level_size(int level)
666 return ((u64)1 << level_to_offset_bits(level));
669 static inline u64 align_to_level(u64 addr, int level)
671 return ((addr + level_size(level) - 1) & level_mask(level));
674 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
676 int addr_width = agaw_to_width(domain->agaw);
677 struct dma_pte *parent, *pte = NULL;
678 int level = agaw_to_level(domain->agaw);
682 BUG_ON(!domain->pgd);
684 addr &= (((u64)1) << addr_width) - 1;
685 parent = domain->pgd;
687 spin_lock_irqsave(&domain->mapping_lock, flags);
691 offset = address_level_offset(addr, level);
692 pte = &parent[offset];
696 if (!dma_pte_present(pte)) {
697 tmp_page = alloc_pgtable_page();
700 spin_unlock_irqrestore(&domain->mapping_lock,
704 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
705 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
707 * high level table always sets r/w, last level page
708 * table control read/write
710 dma_set_pte_readable(pte);
711 dma_set_pte_writable(pte);
712 domain_flush_cache(domain, pte, sizeof(*pte));
714 parent = phys_to_virt(dma_pte_addr(pte));
718 spin_unlock_irqrestore(&domain->mapping_lock, flags);
722 /* return address's pte at specific level */
723 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
726 struct dma_pte *parent, *pte = NULL;
727 int total = agaw_to_level(domain->agaw);
730 parent = domain->pgd;
731 while (level <= total) {
732 offset = address_level_offset(addr, total);
733 pte = &parent[offset];
737 if (!dma_pte_present(pte))
739 parent = phys_to_virt(dma_pte_addr(pte));
745 /* clear one page's page table */
746 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
748 struct dma_pte *pte = NULL;
750 /* get last level pte */
751 pte = dma_addr_level_pte(domain, addr, 1);
755 domain_flush_cache(domain, pte, sizeof(*pte));
759 /* clear last level pte, a tlb flush should be followed */
760 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
762 int addr_width = agaw_to_width(domain->agaw);
765 start &= (((u64)1) << addr_width) - 1;
766 end &= (((u64)1) << addr_width) - 1;
767 /* in case it's partial page */
769 end = PAGE_ALIGN(end);
770 npages = (end - start) / VTD_PAGE_SIZE;
772 /* we don't need lock here, nobody else touches the iova range */
774 dma_pte_clear_one(domain, start);
775 start += VTD_PAGE_SIZE;
779 /* free page table pages. last level pte should already be cleared */
780 static void dma_pte_free_pagetable(struct dmar_domain *domain,
783 int addr_width = agaw_to_width(domain->agaw);
785 int total = agaw_to_level(domain->agaw);
789 start &= (((u64)1) << addr_width) - 1;
790 end &= (((u64)1) << addr_width) - 1;
792 /* we don't need lock here, nobody else touches the iova range */
794 while (level <= total) {
795 tmp = align_to_level(start, level);
796 if (tmp >= end || (tmp + level_size(level) > end))
800 pte = dma_addr_level_pte(domain, tmp, level);
803 phys_to_virt(dma_pte_addr(pte)));
805 domain_flush_cache(domain, pte, sizeof(*pte));
807 tmp += level_size(level);
812 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
813 free_pgtable_page(domain->pgd);
819 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
821 struct root_entry *root;
824 root = (struct root_entry *)alloc_pgtable_page();
828 __iommu_flush_cache(iommu, root, ROOT_SIZE);
830 spin_lock_irqsave(&iommu->lock, flags);
831 iommu->root_entry = root;
832 spin_unlock_irqrestore(&iommu->lock, flags);
837 static void iommu_set_root_entry(struct intel_iommu *iommu)
843 addr = iommu->root_entry;
845 spin_lock_irqsave(&iommu->register_lock, flag);
846 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
848 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
850 /* Make sure hardware complete it */
851 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
852 readl, (sts & DMA_GSTS_RTPS), sts);
854 spin_unlock_irqrestore(&iommu->register_lock, flag);
857 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
862 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
865 spin_lock_irqsave(&iommu->register_lock, flag);
866 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
868 /* Make sure hardware complete it */
869 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
870 readl, (!(val & DMA_GSTS_WBFS)), val);
872 spin_unlock_irqrestore(&iommu->register_lock, flag);
875 /* return value determine if we need a write buffer flush */
876 static void __iommu_flush_context(struct intel_iommu *iommu,
877 u16 did, u16 source_id, u8 function_mask,
884 case DMA_CCMD_GLOBAL_INVL:
885 val = DMA_CCMD_GLOBAL_INVL;
887 case DMA_CCMD_DOMAIN_INVL:
888 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
890 case DMA_CCMD_DEVICE_INVL:
891 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
892 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
899 spin_lock_irqsave(&iommu->register_lock, flag);
900 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
902 /* Make sure hardware complete it */
903 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
904 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
906 spin_unlock_irqrestore(&iommu->register_lock, flag);
909 /* return value determine if we need a write buffer flush */
910 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
911 u64 addr, unsigned int size_order, u64 type)
913 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
914 u64 val = 0, val_iva = 0;
918 case DMA_TLB_GLOBAL_FLUSH:
919 /* global flush doesn't need set IVA_REG */
920 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
922 case DMA_TLB_DSI_FLUSH:
923 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
925 case DMA_TLB_PSI_FLUSH:
926 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
927 /* Note: always flush non-leaf currently */
928 val_iva = size_order | addr;
933 /* Note: set drain read/write */
936 * This is probably to be super secure.. Looks like we can
937 * ignore it without any impact.
939 if (cap_read_drain(iommu->cap))
940 val |= DMA_TLB_READ_DRAIN;
942 if (cap_write_drain(iommu->cap))
943 val |= DMA_TLB_WRITE_DRAIN;
945 spin_lock_irqsave(&iommu->register_lock, flag);
946 /* Note: Only uses first TLB reg currently */
948 dmar_writeq(iommu->reg + tlb_offset, val_iva);
949 dmar_writeq(iommu->reg + tlb_offset + 8, val);
951 /* Make sure hardware complete it */
952 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
953 dmar_readq, (!(val & DMA_TLB_IVT)), val);
955 spin_unlock_irqrestore(&iommu->register_lock, flag);
957 /* check IOTLB invalidation granularity */
958 if (DMA_TLB_IAIG(val) == 0)
959 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
960 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
961 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
962 (unsigned long long)DMA_TLB_IIRG(type),
963 (unsigned long long)DMA_TLB_IAIG(val));
966 static struct device_domain_info *iommu_support_dev_iotlb(
967 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
971 struct device_domain_info *info;
972 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
974 if (!ecap_dev_iotlb_support(iommu->ecap))
980 spin_lock_irqsave(&device_domain_lock, flags);
981 list_for_each_entry(info, &domain->devices, link)
982 if (info->bus == bus && info->devfn == devfn) {
986 spin_unlock_irqrestore(&device_domain_lock, flags);
988 if (!found || !info->dev)
991 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
994 if (!dmar_find_matched_atsr_unit(info->dev))
1002 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1007 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1010 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1012 if (!info->dev || !pci_ats_enabled(info->dev))
1015 pci_disable_ats(info->dev);
1018 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1019 u64 addr, unsigned mask)
1022 unsigned long flags;
1023 struct device_domain_info *info;
1025 spin_lock_irqsave(&device_domain_lock, flags);
1026 list_for_each_entry(info, &domain->devices, link) {
1027 if (!info->dev || !pci_ats_enabled(info->dev))
1030 sid = info->bus << 8 | info->devfn;
1031 qdep = pci_ats_queue_depth(info->dev);
1032 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1034 spin_unlock_irqrestore(&device_domain_lock, flags);
1037 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1038 u64 addr, unsigned int pages)
1040 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1042 BUG_ON(addr & (~VTD_PAGE_MASK));
1046 * Fallback to domain selective flush if no PSI support or the size is
1048 * PSI requires page size to be 2 ^ x, and the base address is naturally
1049 * aligned to the size
1051 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1052 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1055 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1058 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1061 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1064 unsigned long flags;
1066 spin_lock_irqsave(&iommu->register_lock, flags);
1067 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1068 pmen &= ~DMA_PMEN_EPM;
1069 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1071 /* wait for the protected region status bit to clear */
1072 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1073 readl, !(pmen & DMA_PMEN_PRS), pmen);
1075 spin_unlock_irqrestore(&iommu->register_lock, flags);
1078 static int iommu_enable_translation(struct intel_iommu *iommu)
1081 unsigned long flags;
1083 spin_lock_irqsave(&iommu->register_lock, flags);
1084 iommu->gcmd |= DMA_GCMD_TE;
1085 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1087 /* Make sure hardware complete it */
1088 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1089 readl, (sts & DMA_GSTS_TES), sts);
1091 spin_unlock_irqrestore(&iommu->register_lock, flags);
1095 static int iommu_disable_translation(struct intel_iommu *iommu)
1100 spin_lock_irqsave(&iommu->register_lock, flag);
1101 iommu->gcmd &= ~DMA_GCMD_TE;
1102 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1104 /* Make sure hardware complete it */
1105 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1106 readl, (!(sts & DMA_GSTS_TES)), sts);
1108 spin_unlock_irqrestore(&iommu->register_lock, flag);
1113 static int iommu_init_domains(struct intel_iommu *iommu)
1115 unsigned long ndomains;
1116 unsigned long nlongs;
1118 ndomains = cap_ndoms(iommu->cap);
1119 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1120 nlongs = BITS_TO_LONGS(ndomains);
1122 /* TBD: there might be 64K domains,
1123 * consider other allocation for future chip
1125 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1126 if (!iommu->domain_ids) {
1127 printk(KERN_ERR "Allocating domain id array failed\n");
1130 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1132 if (!iommu->domains) {
1133 printk(KERN_ERR "Allocating domain array failed\n");
1134 kfree(iommu->domain_ids);
1138 spin_lock_init(&iommu->lock);
1141 * if Caching mode is set, then invalid translations are tagged
1142 * with domainid 0. Hence we need to pre-allocate it.
1144 if (cap_caching_mode(iommu->cap))
1145 set_bit(0, iommu->domain_ids);
1150 static void domain_exit(struct dmar_domain *domain);
1151 static void vm_domain_exit(struct dmar_domain *domain);
1153 void free_dmar_iommu(struct intel_iommu *iommu)
1155 struct dmar_domain *domain;
1157 unsigned long flags;
1159 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1160 for (; i < cap_ndoms(iommu->cap); ) {
1161 domain = iommu->domains[i];
1162 clear_bit(i, iommu->domain_ids);
1164 spin_lock_irqsave(&domain->iommu_lock, flags);
1165 if (--domain->iommu_count == 0) {
1166 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1167 vm_domain_exit(domain);
1169 domain_exit(domain);
1171 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1173 i = find_next_bit(iommu->domain_ids,
1174 cap_ndoms(iommu->cap), i+1);
1177 if (iommu->gcmd & DMA_GCMD_TE)
1178 iommu_disable_translation(iommu);
1181 set_irq_data(iommu->irq, NULL);
1182 /* This will mask the irq */
1183 free_irq(iommu->irq, iommu);
1184 destroy_irq(iommu->irq);
1187 kfree(iommu->domains);
1188 kfree(iommu->domain_ids);
1190 g_iommus[iommu->seq_id] = NULL;
1192 /* if all iommus are freed, free g_iommus */
1193 for (i = 0; i < g_num_of_iommus; i++) {
1198 if (i == g_num_of_iommus)
1201 /* free context mapping */
1202 free_context_table(iommu);
1205 static struct dmar_domain *alloc_domain(void)
1207 struct dmar_domain *domain;
1209 domain = alloc_domain_mem();
1213 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1219 static int iommu_attach_domain(struct dmar_domain *domain,
1220 struct intel_iommu *iommu)
1223 unsigned long ndomains;
1224 unsigned long flags;
1226 ndomains = cap_ndoms(iommu->cap);
1228 spin_lock_irqsave(&iommu->lock, flags);
1230 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1231 if (num >= ndomains) {
1232 spin_unlock_irqrestore(&iommu->lock, flags);
1233 printk(KERN_ERR "IOMMU: no free domain ids\n");
1238 set_bit(num, iommu->domain_ids);
1239 set_bit(iommu->seq_id, &domain->iommu_bmp);
1240 iommu->domains[num] = domain;
1241 spin_unlock_irqrestore(&iommu->lock, flags);
1246 static void iommu_detach_domain(struct dmar_domain *domain,
1247 struct intel_iommu *iommu)
1249 unsigned long flags;
1253 spin_lock_irqsave(&iommu->lock, flags);
1254 ndomains = cap_ndoms(iommu->cap);
1255 num = find_first_bit(iommu->domain_ids, ndomains);
1256 for (; num < ndomains; ) {
1257 if (iommu->domains[num] == domain) {
1261 num = find_next_bit(iommu->domain_ids,
1262 cap_ndoms(iommu->cap), num+1);
1266 clear_bit(num, iommu->domain_ids);
1267 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1268 iommu->domains[num] = NULL;
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1273 static struct iova_domain reserved_iova_list;
1274 static struct lock_class_key reserved_alloc_key;
1275 static struct lock_class_key reserved_rbtree_key;
1277 static void dmar_init_reserved_ranges(void)
1279 struct pci_dev *pdev = NULL;
1284 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1286 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1287 &reserved_alloc_key);
1288 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1289 &reserved_rbtree_key);
1291 /* IOAPIC ranges shouldn't be accessed by DMA */
1292 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1293 IOVA_PFN(IOAPIC_RANGE_END));
1295 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1297 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1298 for_each_pci_dev(pdev) {
1301 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1302 r = &pdev->resource[i];
1303 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1306 addr &= PHYSICAL_PAGE_MASK;
1307 size = r->end - addr;
1308 size = PAGE_ALIGN(size);
1309 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1310 IOVA_PFN(size + addr) - 1);
1312 printk(KERN_ERR "Reserve iova failed\n");
1318 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1320 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1323 static inline int guestwidth_to_adjustwidth(int gaw)
1326 int r = (gaw - 12) % 9;
1337 static int domain_init(struct dmar_domain *domain, int guest_width)
1339 struct intel_iommu *iommu;
1340 int adjust_width, agaw;
1341 unsigned long sagaw;
1343 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1344 spin_lock_init(&domain->mapping_lock);
1345 spin_lock_init(&domain->iommu_lock);
1347 domain_reserve_special_ranges(domain);
1349 /* calculate AGAW */
1350 iommu = domain_get_iommu(domain);
1351 if (guest_width > cap_mgaw(iommu->cap))
1352 guest_width = cap_mgaw(iommu->cap);
1353 domain->gaw = guest_width;
1354 adjust_width = guestwidth_to_adjustwidth(guest_width);
1355 agaw = width_to_agaw(adjust_width);
1356 sagaw = cap_sagaw(iommu->cap);
1357 if (!test_bit(agaw, &sagaw)) {
1358 /* hardware doesn't support it, choose a bigger one */
1359 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1360 agaw = find_next_bit(&sagaw, 5, agaw);
1364 domain->agaw = agaw;
1365 INIT_LIST_HEAD(&domain->devices);
1367 if (ecap_coherent(iommu->ecap))
1368 domain->iommu_coherency = 1;
1370 domain->iommu_coherency = 0;
1372 if (ecap_sc_support(iommu->ecap))
1373 domain->iommu_snooping = 1;
1375 domain->iommu_snooping = 0;
1377 domain->iommu_count = 1;
1379 /* always allocate the top pgd */
1380 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1383 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1387 static void domain_exit(struct dmar_domain *domain)
1389 struct dmar_drhd_unit *drhd;
1390 struct intel_iommu *iommu;
1393 /* Domain 0 is reserved, so dont process it */
1397 domain_remove_dev_info(domain);
1399 put_iova_domain(&domain->iovad);
1400 end = DOMAIN_MAX_ADDR(domain->gaw);
1401 end = end & (~PAGE_MASK);
1404 dma_pte_clear_range(domain, 0, end);
1406 /* free page tables */
1407 dma_pte_free_pagetable(domain, 0, end);
1409 for_each_active_iommu(iommu, drhd)
1410 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1411 iommu_detach_domain(domain, iommu);
1413 free_domain_mem(domain);
1416 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1417 u8 bus, u8 devfn, int translation)
1419 struct context_entry *context;
1420 unsigned long flags;
1421 struct intel_iommu *iommu;
1422 struct dma_pte *pgd;
1424 unsigned long ndomains;
1427 struct device_domain_info *info = NULL;
1429 pr_debug("Set context mapping for %02x:%02x.%d\n",
1430 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1432 BUG_ON(!domain->pgd);
1433 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1434 translation != CONTEXT_TT_MULTI_LEVEL);
1436 iommu = device_to_iommu(segment, bus, devfn);
1440 context = device_to_context_entry(iommu, bus, devfn);
1443 spin_lock_irqsave(&iommu->lock, flags);
1444 if (context_present(context)) {
1445 spin_unlock_irqrestore(&iommu->lock, flags);
1452 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1453 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1456 /* find an available domain id for this device in iommu */
1457 ndomains = cap_ndoms(iommu->cap);
1458 num = find_first_bit(iommu->domain_ids, ndomains);
1459 for (; num < ndomains; ) {
1460 if (iommu->domains[num] == domain) {
1465 num = find_next_bit(iommu->domain_ids,
1466 cap_ndoms(iommu->cap), num+1);
1470 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1471 if (num >= ndomains) {
1472 spin_unlock_irqrestore(&iommu->lock, flags);
1473 printk(KERN_ERR "IOMMU: no free domain ids\n");
1477 set_bit(num, iommu->domain_ids);
1478 set_bit(iommu->seq_id, &domain->iommu_bmp);
1479 iommu->domains[num] = domain;
1483 /* Skip top levels of page tables for
1484 * iommu which has less agaw than default.
1486 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1487 pgd = phys_to_virt(dma_pte_addr(pgd));
1488 if (!dma_pte_present(pgd)) {
1489 spin_unlock_irqrestore(&iommu->lock, flags);
1495 context_set_domain_id(context, id);
1497 if (translation != CONTEXT_TT_PASS_THROUGH) {
1498 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1499 translation = info ? CONTEXT_TT_DEV_IOTLB :
1500 CONTEXT_TT_MULTI_LEVEL;
1503 * In pass through mode, AW must be programmed to indicate the largest
1504 * AGAW value supported by hardware. And ASR is ignored by hardware.
1506 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1507 context_set_address_width(context, iommu->msagaw);
1509 context_set_address_root(context, virt_to_phys(pgd));
1510 context_set_address_width(context, iommu->agaw);
1513 context_set_translation_type(context, translation);
1514 context_set_fault_enable(context);
1515 context_set_present(context);
1516 domain_flush_cache(domain, context, sizeof(*context));
1519 * It's a non-present to present mapping. If hardware doesn't cache
1520 * non-present entry we only need to flush the write-buffer. If the
1521 * _does_ cache non-present entries, then it does so in the special
1522 * domain #0, which we have to flush:
1524 if (cap_caching_mode(iommu->cap)) {
1525 iommu->flush.flush_context(iommu, 0,
1526 (((u16)bus) << 8) | devfn,
1527 DMA_CCMD_MASK_NOBIT,
1528 DMA_CCMD_DEVICE_INVL);
1529 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1531 iommu_flush_write_buffer(iommu);
1533 iommu_enable_dev_iotlb(info);
1534 spin_unlock_irqrestore(&iommu->lock, flags);
1536 spin_lock_irqsave(&domain->iommu_lock, flags);
1537 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1538 domain->iommu_count++;
1539 domain_update_iommu_cap(domain);
1541 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1546 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1550 struct pci_dev *tmp, *parent;
1552 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1553 pdev->bus->number, pdev->devfn,
1558 /* dependent device mapping */
1559 tmp = pci_find_upstream_pcie_bridge(pdev);
1562 /* Secondary interface's bus number and devfn 0 */
1563 parent = pdev->bus->self;
1564 while (parent != tmp) {
1565 ret = domain_context_mapping_one(domain,
1566 pci_domain_nr(parent->bus),
1567 parent->bus->number,
1568 parent->devfn, translation);
1571 parent = parent->bus->self;
1573 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1574 return domain_context_mapping_one(domain,
1575 pci_domain_nr(tmp->subordinate),
1576 tmp->subordinate->number, 0,
1578 else /* this is a legacy PCI bridge */
1579 return domain_context_mapping_one(domain,
1580 pci_domain_nr(tmp->bus),
1586 static int domain_context_mapped(struct pci_dev *pdev)
1589 struct pci_dev *tmp, *parent;
1590 struct intel_iommu *iommu;
1592 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1597 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1600 /* dependent device mapping */
1601 tmp = pci_find_upstream_pcie_bridge(pdev);
1604 /* Secondary interface's bus number and devfn 0 */
1605 parent = pdev->bus->self;
1606 while (parent != tmp) {
1607 ret = device_context_mapped(iommu, parent->bus->number,
1611 parent = parent->bus->self;
1614 return device_context_mapped(iommu, tmp->subordinate->number,
1617 return device_context_mapped(iommu, tmp->bus->number,
1622 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1623 u64 hpa, size_t size, int prot)
1625 u64 start_pfn, end_pfn;
1626 struct dma_pte *pte;
1628 int addr_width = agaw_to_width(domain->agaw);
1630 hpa &= (((u64)1) << addr_width) - 1;
1632 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1635 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1636 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1638 while (start_pfn < end_pfn) {
1639 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1642 /* We don't need lock here, nobody else
1643 * touches the iova range
1645 BUG_ON(dma_pte_addr(pte));
1646 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1647 dma_set_pte_prot(pte, prot);
1648 if (prot & DMA_PTE_SNP)
1649 dma_set_pte_snp(pte);
1650 domain_flush_cache(domain, pte, sizeof(*pte));
1657 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1662 clear_context_table(iommu, bus, devfn);
1663 iommu->flush.flush_context(iommu, 0, 0, 0,
1664 DMA_CCMD_GLOBAL_INVL);
1665 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1668 static void domain_remove_dev_info(struct dmar_domain *domain)
1670 struct device_domain_info *info;
1671 unsigned long flags;
1672 struct intel_iommu *iommu;
1674 spin_lock_irqsave(&device_domain_lock, flags);
1675 while (!list_empty(&domain->devices)) {
1676 info = list_entry(domain->devices.next,
1677 struct device_domain_info, link);
1678 list_del(&info->link);
1679 list_del(&info->global);
1681 info->dev->dev.archdata.iommu = NULL;
1682 spin_unlock_irqrestore(&device_domain_lock, flags);
1684 iommu_disable_dev_iotlb(info);
1685 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1686 iommu_detach_dev(iommu, info->bus, info->devfn);
1687 free_devinfo_mem(info);
1689 spin_lock_irqsave(&device_domain_lock, flags);
1691 spin_unlock_irqrestore(&device_domain_lock, flags);
1696 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1698 static struct dmar_domain *
1699 find_domain(struct pci_dev *pdev)
1701 struct device_domain_info *info;
1703 /* No lock here, assumes no domain exit in normal case */
1704 info = pdev->dev.archdata.iommu;
1706 return info->domain;
1710 /* domain is initialized */
1711 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1713 struct dmar_domain *domain, *found = NULL;
1714 struct intel_iommu *iommu;
1715 struct dmar_drhd_unit *drhd;
1716 struct device_domain_info *info, *tmp;
1717 struct pci_dev *dev_tmp;
1718 unsigned long flags;
1719 int bus = 0, devfn = 0;
1723 domain = find_domain(pdev);
1727 segment = pci_domain_nr(pdev->bus);
1729 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1731 if (dev_tmp->is_pcie) {
1732 bus = dev_tmp->subordinate->number;
1735 bus = dev_tmp->bus->number;
1736 devfn = dev_tmp->devfn;
1738 spin_lock_irqsave(&device_domain_lock, flags);
1739 list_for_each_entry(info, &device_domain_list, global) {
1740 if (info->segment == segment &&
1741 info->bus == bus && info->devfn == devfn) {
1742 found = info->domain;
1746 spin_unlock_irqrestore(&device_domain_lock, flags);
1747 /* pcie-pci bridge already has a domain, uses it */
1754 domain = alloc_domain();
1758 /* Allocate new domain for the device */
1759 drhd = dmar_find_matched_drhd_unit(pdev);
1761 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1765 iommu = drhd->iommu;
1767 ret = iommu_attach_domain(domain, iommu);
1769 domain_exit(domain);
1773 if (domain_init(domain, gaw)) {
1774 domain_exit(domain);
1778 /* register pcie-to-pci device */
1780 info = alloc_devinfo_mem();
1782 domain_exit(domain);
1785 info->segment = segment;
1787 info->devfn = devfn;
1789 info->domain = domain;
1790 /* This domain is shared by devices under p2p bridge */
1791 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1793 /* pcie-to-pci bridge already has a domain, uses it */
1795 spin_lock_irqsave(&device_domain_lock, flags);
1796 list_for_each_entry(tmp, &device_domain_list, global) {
1797 if (tmp->segment == segment &&
1798 tmp->bus == bus && tmp->devfn == devfn) {
1799 found = tmp->domain;
1804 free_devinfo_mem(info);
1805 domain_exit(domain);
1808 list_add(&info->link, &domain->devices);
1809 list_add(&info->global, &device_domain_list);
1811 spin_unlock_irqrestore(&device_domain_lock, flags);
1815 info = alloc_devinfo_mem();
1818 info->segment = segment;
1819 info->bus = pdev->bus->number;
1820 info->devfn = pdev->devfn;
1822 info->domain = domain;
1823 spin_lock_irqsave(&device_domain_lock, flags);
1824 /* somebody is fast */
1825 found = find_domain(pdev);
1826 if (found != NULL) {
1827 spin_unlock_irqrestore(&device_domain_lock, flags);
1828 if (found != domain) {
1829 domain_exit(domain);
1832 free_devinfo_mem(info);
1835 list_add(&info->link, &domain->devices);
1836 list_add(&info->global, &device_domain_list);
1837 pdev->dev.archdata.iommu = info;
1838 spin_unlock_irqrestore(&device_domain_lock, flags);
1841 /* recheck it here, maybe others set it */
1842 return find_domain(pdev);
1845 static int iommu_identity_mapping;
1847 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1848 unsigned long long start,
1849 unsigned long long end)
1851 struct dmar_domain *domain;
1853 unsigned long long base;
1857 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1858 pci_name(pdev), start, end);
1859 if (iommu_identity_mapping)
1862 /* page table init */
1863 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1867 /* The address might not be aligned */
1868 base = start & PAGE_MASK;
1870 size = PAGE_ALIGN(size);
1871 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1872 IOVA_PFN(base + size) - 1)) {
1873 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1878 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1879 size, base, pci_name(pdev));
1881 * RMRR range might have overlap with physical memory range,
1884 dma_pte_clear_range(domain, base, base + size);
1886 ret = domain_page_mapping(domain, base, base, size,
1887 DMA_PTE_READ|DMA_PTE_WRITE);
1891 /* context entry init */
1892 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1896 domain_exit(domain);
1901 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1902 struct pci_dev *pdev)
1904 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1906 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1907 rmrr->end_address + 1);
1910 struct iommu_prepare_data {
1911 struct pci_dev *pdev;
1915 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1916 unsigned long end_pfn, void *datax)
1918 struct iommu_prepare_data *data;
1920 data = (struct iommu_prepare_data *)datax;
1922 data->ret = iommu_prepare_identity_map(data->pdev,
1923 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1928 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1931 struct iommu_prepare_data data;
1936 for_each_online_node(nid) {
1937 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1944 #ifdef CONFIG_DMAR_GFX_WA
1945 static void __init iommu_prepare_gfx_mapping(void)
1947 struct pci_dev *pdev = NULL;
1950 for_each_pci_dev(pdev) {
1951 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1952 !IS_GFX_DEVICE(pdev))
1954 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1956 ret = iommu_prepare_with_active_regions(pdev);
1958 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1961 #else /* !CONFIG_DMAR_GFX_WA */
1962 static inline void iommu_prepare_gfx_mapping(void)
1968 #ifdef CONFIG_DMAR_FLOPPY_WA
1969 static inline void iommu_prepare_isa(void)
1971 struct pci_dev *pdev;
1974 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1978 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1979 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1982 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1983 "floppy might not work\n");
1987 static inline void iommu_prepare_isa(void)
1991 #endif /* !CONFIG_DMAR_FLPY_WA */
1993 /* Initialize each context entry as pass through.*/
1994 static int __init init_context_pass_through(void)
1996 struct pci_dev *pdev = NULL;
1997 struct dmar_domain *domain;
2000 for_each_pci_dev(pdev) {
2001 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2002 ret = domain_context_mapping(domain, pdev,
2003 CONTEXT_TT_PASS_THROUGH);
2010 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2011 static int si_domain_init(void)
2013 struct dmar_drhd_unit *drhd;
2014 struct intel_iommu *iommu;
2017 si_domain = alloc_domain();
2022 for_each_active_iommu(iommu, drhd) {
2023 ret = iommu_attach_domain(si_domain, iommu);
2025 domain_exit(si_domain);
2030 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2031 domain_exit(si_domain);
2035 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2040 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2041 struct pci_dev *pdev);
2042 static int identity_mapping(struct pci_dev *pdev)
2044 struct device_domain_info *info;
2046 if (likely(!iommu_identity_mapping))
2050 list_for_each_entry(info, &si_domain->devices, link)
2051 if (info->dev == pdev)
2056 static int domain_add_dev_info(struct dmar_domain *domain,
2057 struct pci_dev *pdev)
2059 struct device_domain_info *info;
2060 unsigned long flags;
2062 info = alloc_devinfo_mem();
2066 info->segment = pci_domain_nr(pdev->bus);
2067 info->bus = pdev->bus->number;
2068 info->devfn = pdev->devfn;
2070 info->domain = domain;
2072 spin_lock_irqsave(&device_domain_lock, flags);
2073 list_add(&info->link, &domain->devices);
2074 list_add(&info->global, &device_domain_list);
2075 pdev->dev.archdata.iommu = info;
2076 spin_unlock_irqrestore(&device_domain_lock, flags);
2081 static int iommu_prepare_static_identity_mapping(void)
2083 struct pci_dev *pdev = NULL;
2086 ret = si_domain_init();
2090 printk(KERN_INFO "IOMMU: Setting identity map:\n");
2091 for_each_pci_dev(pdev) {
2092 ret = iommu_prepare_with_active_regions(pdev);
2094 printk(KERN_INFO "1:1 mapping to one domain failed.\n");
2097 ret = domain_add_dev_info(si_domain, pdev);
2105 int __init init_dmars(void)
2107 struct dmar_drhd_unit *drhd;
2108 struct dmar_rmrr_unit *rmrr;
2109 struct pci_dev *pdev;
2110 struct intel_iommu *iommu;
2112 int pass_through = 1;
2115 * In case pass through can not be enabled, iommu tries to use identity
2118 if (iommu_pass_through)
2119 iommu_identity_mapping = 1;
2124 * initialize and program root entry to not present
2127 for_each_drhd_unit(drhd) {
2130 * lock not needed as this is only incremented in the single
2131 * threaded kernel __init code path all other access are read
2136 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2139 printk(KERN_ERR "Allocating global iommu array failed\n");
2144 deferred_flush = kzalloc(g_num_of_iommus *
2145 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2146 if (!deferred_flush) {
2152 for_each_drhd_unit(drhd) {
2156 iommu = drhd->iommu;
2157 g_iommus[iommu->seq_id] = iommu;
2159 ret = iommu_init_domains(iommu);
2165 * we could share the same root & context tables
2166 * amoung all IOMMU's. Need to Split it later.
2168 ret = iommu_alloc_root_entry(iommu);
2170 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2173 if (!ecap_pass_through(iommu->ecap))
2176 if (iommu_pass_through)
2177 if (!pass_through) {
2179 "Pass Through is not supported by hardware.\n");
2180 iommu_pass_through = 0;
2184 * Start from the sane iommu hardware state.
2186 for_each_drhd_unit(drhd) {
2190 iommu = drhd->iommu;
2193 * If the queued invalidation is already initialized by us
2194 * (for example, while enabling interrupt-remapping) then
2195 * we got the things already rolling from a sane state.
2201 * Clear any previous faults.
2203 dmar_fault(-1, iommu);
2205 * Disable queued invalidation if supported and already enabled
2206 * before OS handover.
2208 dmar_disable_qi(iommu);
2211 for_each_drhd_unit(drhd) {
2215 iommu = drhd->iommu;
2217 if (dmar_enable_qi(iommu)) {
2219 * Queued Invalidate not enabled, use Register Based
2222 iommu->flush.flush_context = __iommu_flush_context;
2223 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2224 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2226 (unsigned long long)drhd->reg_base_addr);
2228 iommu->flush.flush_context = qi_flush_context;
2229 iommu->flush.flush_iotlb = qi_flush_iotlb;
2230 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2232 (unsigned long long)drhd->reg_base_addr);
2237 * If pass through is set and enabled, context entries of all pci
2238 * devices are intialized by pass through translation type.
2240 if (iommu_pass_through) {
2241 ret = init_context_pass_through();
2243 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2244 iommu_pass_through = 0;
2249 * If pass through is not set or not enabled, setup context entries for
2250 * identity mappings for rmrr, gfx, and isa and may fall back to static
2251 * identity mapping if iommu_identity_mapping is set.
2253 if (!iommu_pass_through) {
2254 if (iommu_identity_mapping)
2255 iommu_prepare_static_identity_mapping();
2258 * for each dev attached to rmrr
2260 * locate drhd for dev, alloc domain for dev
2261 * allocate free domain
2262 * allocate page table entries for rmrr
2263 * if context not allocated for bus
2264 * allocate and init context
2265 * set present in root table for this bus
2266 * init context with domain, translation etc
2270 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2271 for_each_rmrr_units(rmrr) {
2272 for (i = 0; i < rmrr->devices_cnt; i++) {
2273 pdev = rmrr->devices[i];
2275 * some BIOS lists non-exist devices in DMAR
2280 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2283 "IOMMU: mapping reserved region failed\n");
2287 iommu_prepare_gfx_mapping();
2289 iommu_prepare_isa();
2295 * global invalidate context cache
2296 * global invalidate iotlb
2297 * enable translation
2299 for_each_drhd_unit(drhd) {
2302 iommu = drhd->iommu;
2304 iommu_flush_write_buffer(iommu);
2306 ret = dmar_set_interrupt(iommu);
2310 iommu_set_root_entry(iommu);
2312 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2313 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2314 iommu_disable_protect_mem_regions(iommu);
2316 ret = iommu_enable_translation(iommu);
2323 for_each_drhd_unit(drhd) {
2326 iommu = drhd->iommu;
2333 static inline u64 aligned_size(u64 host_addr, size_t size)
2336 addr = (host_addr & (~PAGE_MASK)) + size;
2337 return PAGE_ALIGN(addr);
2341 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2345 /* Make sure it's in range */
2346 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2347 if (!size || (IOVA_START_ADDR + size > end))
2350 piova = alloc_iova(&domain->iovad,
2351 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2355 static struct iova *
2356 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2357 size_t size, u64 dma_mask)
2359 struct pci_dev *pdev = to_pci_dev(dev);
2360 struct iova *iova = NULL;
2362 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2363 iova = iommu_alloc_iova(domain, size, dma_mask);
2366 * First try to allocate an io virtual address in
2367 * DMA_BIT_MASK(32) and if that fails then try allocating
2370 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2372 iova = iommu_alloc_iova(domain, size, dma_mask);
2376 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2383 static struct dmar_domain *
2384 get_valid_domain_for_dev(struct pci_dev *pdev)
2386 struct dmar_domain *domain;
2389 domain = get_domain_for_dev(pdev,
2390 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2393 "Allocating domain for %s failed", pci_name(pdev));
2397 /* make sure context mapping is ok */
2398 if (unlikely(!domain_context_mapped(pdev))) {
2399 ret = domain_context_mapping(domain, pdev,
2400 CONTEXT_TT_MULTI_LEVEL);
2403 "Domain context map for %s failed",
2412 static int iommu_dummy(struct pci_dev *pdev)
2414 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2417 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2418 static int iommu_no_mapping(struct pci_dev *pdev)
2422 if (!iommu_identity_mapping)
2423 return iommu_dummy(pdev);
2425 found = identity_mapping(pdev);
2427 if (pdev->dma_mask > DMA_BIT_MASK(32))
2431 * 32 bit DMA is removed from si_domain and fall back
2432 * to non-identity mapping.
2434 domain_remove_one_dev_info(si_domain, pdev);
2435 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2441 * In case of a detached 64 bit DMA device from vm, the device
2442 * is put into si_domain for identity mapping.
2444 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2446 ret = domain_add_dev_info(si_domain, pdev);
2448 printk(KERN_INFO "64bit %s uses identity mapping\n",
2455 return iommu_dummy(pdev);
2458 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2459 size_t size, int dir, u64 dma_mask)
2461 struct pci_dev *pdev = to_pci_dev(hwdev);
2462 struct dmar_domain *domain;
2463 phys_addr_t start_paddr;
2467 struct intel_iommu *iommu;
2469 BUG_ON(dir == DMA_NONE);
2471 if (iommu_no_mapping(pdev))
2474 domain = get_valid_domain_for_dev(pdev);
2478 iommu = domain_get_iommu(domain);
2479 size = aligned_size((u64)paddr, size);
2481 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2485 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2488 * Check if DMAR supports zero-length reads on write only
2491 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2492 !cap_zlr(iommu->cap))
2493 prot |= DMA_PTE_READ;
2494 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2495 prot |= DMA_PTE_WRITE;
2497 * paddr - (paddr + size) might be partial page, we should map the whole
2498 * page. Note: if two part of one page are separately mapped, we
2499 * might have two guest_addr mapping to the same host paddr, but this
2500 * is not a big problem
2502 ret = domain_page_mapping(domain, start_paddr,
2503 ((u64)paddr) & PHYSICAL_PAGE_MASK,
2508 /* it's a non-present to present mapping. Only flush if caching mode */
2509 if (cap_caching_mode(iommu->cap))
2510 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2511 size >> VTD_PAGE_SHIFT);
2513 iommu_flush_write_buffer(iommu);
2515 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2519 __free_iova(&domain->iovad, iova);
2520 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2521 pci_name(pdev), size, (unsigned long long)paddr, dir);
2525 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2526 unsigned long offset, size_t size,
2527 enum dma_data_direction dir,
2528 struct dma_attrs *attrs)
2530 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2531 dir, to_pci_dev(dev)->dma_mask);
2534 static void flush_unmaps(void)
2540 /* just flush them all */
2541 for (i = 0; i < g_num_of_iommus; i++) {
2542 struct intel_iommu *iommu = g_iommus[i];
2546 if (!deferred_flush[i].next)
2549 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2550 DMA_TLB_GLOBAL_FLUSH);
2551 for (j = 0; j < deferred_flush[i].next; j++) {
2553 struct iova *iova = deferred_flush[i].iova[j];
2555 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2556 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2557 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2558 iova->pfn_lo << PAGE_SHIFT, mask);
2559 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2561 deferred_flush[i].next = 0;
2567 static void flush_unmaps_timeout(unsigned long data)
2569 unsigned long flags;
2571 spin_lock_irqsave(&async_umap_flush_lock, flags);
2573 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2576 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2578 unsigned long flags;
2580 struct intel_iommu *iommu;
2582 spin_lock_irqsave(&async_umap_flush_lock, flags);
2583 if (list_size == HIGH_WATER_MARK)
2586 iommu = domain_get_iommu(dom);
2587 iommu_id = iommu->seq_id;
2589 next = deferred_flush[iommu_id].next;
2590 deferred_flush[iommu_id].domain[next] = dom;
2591 deferred_flush[iommu_id].iova[next] = iova;
2592 deferred_flush[iommu_id].next++;
2595 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2599 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2602 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2603 size_t size, enum dma_data_direction dir,
2604 struct dma_attrs *attrs)
2606 struct pci_dev *pdev = to_pci_dev(dev);
2607 struct dmar_domain *domain;
2608 unsigned long start_addr;
2610 struct intel_iommu *iommu;
2612 if (iommu_no_mapping(pdev))
2615 domain = find_domain(pdev);
2618 iommu = domain_get_iommu(domain);
2620 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2624 start_addr = iova->pfn_lo << PAGE_SHIFT;
2625 size = aligned_size((u64)dev_addr, size);
2627 pr_debug("Device %s unmapping: %zx@%llx\n",
2628 pci_name(pdev), size, (unsigned long long)start_addr);
2630 /* clear the whole page */
2631 dma_pte_clear_range(domain, start_addr, start_addr + size);
2632 /* free page tables */
2633 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2634 if (intel_iommu_strict) {
2635 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2636 size >> VTD_PAGE_SHIFT);
2638 __free_iova(&domain->iovad, iova);
2640 add_unmap(domain, iova);
2642 * queue up the release of the unmap to save the 1/6th of the
2643 * cpu used up by the iotlb flush operation...
2648 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2651 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2654 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2655 dma_addr_t *dma_handle, gfp_t flags)
2660 size = PAGE_ALIGN(size);
2661 order = get_order(size);
2662 flags &= ~(GFP_DMA | GFP_DMA32);
2664 vaddr = (void *)__get_free_pages(flags, order);
2667 memset(vaddr, 0, size);
2669 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2671 hwdev->coherent_dma_mask);
2674 free_pages((unsigned long)vaddr, order);
2678 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2679 dma_addr_t dma_handle)
2683 size = PAGE_ALIGN(size);
2684 order = get_order(size);
2686 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2687 free_pages((unsigned long)vaddr, order);
2690 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2691 int nelems, enum dma_data_direction dir,
2692 struct dma_attrs *attrs)
2695 struct pci_dev *pdev = to_pci_dev(hwdev);
2696 struct dmar_domain *domain;
2697 unsigned long start_addr;
2701 struct scatterlist *sg;
2702 struct intel_iommu *iommu;
2704 if (iommu_no_mapping(pdev))
2707 domain = find_domain(pdev);
2710 iommu = domain_get_iommu(domain);
2712 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2715 for_each_sg(sglist, sg, nelems, i) {
2716 addr = page_to_phys(sg_page(sg)) + sg->offset;
2717 size += aligned_size((u64)addr, sg->length);
2720 start_addr = iova->pfn_lo << PAGE_SHIFT;
2722 /* clear the whole page */
2723 dma_pte_clear_range(domain, start_addr, start_addr + size);
2724 /* free page tables */
2725 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2727 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2728 size >> VTD_PAGE_SHIFT);
2731 __free_iova(&domain->iovad, iova);
2734 static int intel_nontranslate_map_sg(struct device *hddev,
2735 struct scatterlist *sglist, int nelems, int dir)
2738 struct scatterlist *sg;
2740 for_each_sg(sglist, sg, nelems, i) {
2741 BUG_ON(!sg_page(sg));
2742 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2743 sg->dma_length = sg->length;
2748 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2749 enum dma_data_direction dir, struct dma_attrs *attrs)
2753 struct pci_dev *pdev = to_pci_dev(hwdev);
2754 struct dmar_domain *domain;
2758 struct iova *iova = NULL;
2760 struct scatterlist *sg;
2761 unsigned long start_addr;
2762 struct intel_iommu *iommu;
2764 BUG_ON(dir == DMA_NONE);
2765 if (iommu_no_mapping(pdev))
2766 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2768 domain = get_valid_domain_for_dev(pdev);
2772 iommu = domain_get_iommu(domain);
2774 for_each_sg(sglist, sg, nelems, i) {
2775 addr = page_to_phys(sg_page(sg)) + sg->offset;
2776 size += aligned_size((u64)addr, sg->length);
2779 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2781 sglist->dma_length = 0;
2786 * Check if DMAR supports zero-length reads on write only
2789 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2790 !cap_zlr(iommu->cap))
2791 prot |= DMA_PTE_READ;
2792 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2793 prot |= DMA_PTE_WRITE;
2795 start_addr = iova->pfn_lo << PAGE_SHIFT;
2797 for_each_sg(sglist, sg, nelems, i) {
2798 addr = page_to_phys(sg_page(sg)) + sg->offset;
2799 size = aligned_size((u64)addr, sg->length);
2800 ret = domain_page_mapping(domain, start_addr + offset,
2801 ((u64)addr) & PHYSICAL_PAGE_MASK,
2804 /* clear the page */
2805 dma_pte_clear_range(domain, start_addr,
2806 start_addr + offset);
2807 /* free page tables */
2808 dma_pte_free_pagetable(domain, start_addr,
2809 start_addr + offset);
2811 __free_iova(&domain->iovad, iova);
2814 sg->dma_address = start_addr + offset +
2815 ((u64)addr & (~PAGE_MASK));
2816 sg->dma_length = sg->length;
2820 /* it's a non-present to present mapping. Only flush if caching mode */
2821 if (cap_caching_mode(iommu->cap))
2822 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2823 offset >> VTD_PAGE_SHIFT);
2825 iommu_flush_write_buffer(iommu);
2830 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2835 struct dma_map_ops intel_dma_ops = {
2836 .alloc_coherent = intel_alloc_coherent,
2837 .free_coherent = intel_free_coherent,
2838 .map_sg = intel_map_sg,
2839 .unmap_sg = intel_unmap_sg,
2840 .map_page = intel_map_page,
2841 .unmap_page = intel_unmap_page,
2842 .mapping_error = intel_mapping_error,
2845 static inline int iommu_domain_cache_init(void)
2849 iommu_domain_cache = kmem_cache_create("iommu_domain",
2850 sizeof(struct dmar_domain),
2855 if (!iommu_domain_cache) {
2856 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2863 static inline int iommu_devinfo_cache_init(void)
2867 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2868 sizeof(struct device_domain_info),
2872 if (!iommu_devinfo_cache) {
2873 printk(KERN_ERR "Couldn't create devinfo cache\n");
2880 static inline int iommu_iova_cache_init(void)
2884 iommu_iova_cache = kmem_cache_create("iommu_iova",
2885 sizeof(struct iova),
2889 if (!iommu_iova_cache) {
2890 printk(KERN_ERR "Couldn't create iova cache\n");
2897 static int __init iommu_init_mempool(void)
2900 ret = iommu_iova_cache_init();
2904 ret = iommu_domain_cache_init();
2908 ret = iommu_devinfo_cache_init();
2912 kmem_cache_destroy(iommu_domain_cache);
2914 kmem_cache_destroy(iommu_iova_cache);
2919 static void __init iommu_exit_mempool(void)
2921 kmem_cache_destroy(iommu_devinfo_cache);
2922 kmem_cache_destroy(iommu_domain_cache);
2923 kmem_cache_destroy(iommu_iova_cache);
2927 static void __init init_no_remapping_devices(void)
2929 struct dmar_drhd_unit *drhd;
2931 for_each_drhd_unit(drhd) {
2932 if (!drhd->include_all) {
2934 for (i = 0; i < drhd->devices_cnt; i++)
2935 if (drhd->devices[i] != NULL)
2937 /* ignore DMAR unit if no pci devices exist */
2938 if (i == drhd->devices_cnt)
2946 for_each_drhd_unit(drhd) {
2948 if (drhd->ignored || drhd->include_all)
2951 for (i = 0; i < drhd->devices_cnt; i++)
2952 if (drhd->devices[i] &&
2953 !IS_GFX_DEVICE(drhd->devices[i]))
2956 if (i < drhd->devices_cnt)
2959 /* bypass IOMMU if it is just for gfx devices */
2961 for (i = 0; i < drhd->devices_cnt; i++) {
2962 if (!drhd->devices[i])
2964 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2969 #ifdef CONFIG_SUSPEND
2970 static int init_iommu_hw(void)
2972 struct dmar_drhd_unit *drhd;
2973 struct intel_iommu *iommu = NULL;
2975 for_each_active_iommu(iommu, drhd)
2977 dmar_reenable_qi(iommu);
2979 for_each_active_iommu(iommu, drhd) {
2980 iommu_flush_write_buffer(iommu);
2982 iommu_set_root_entry(iommu);
2984 iommu->flush.flush_context(iommu, 0, 0, 0,
2985 DMA_CCMD_GLOBAL_INVL);
2986 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2987 DMA_TLB_GLOBAL_FLUSH);
2988 iommu_disable_protect_mem_regions(iommu);
2989 iommu_enable_translation(iommu);
2995 static void iommu_flush_all(void)
2997 struct dmar_drhd_unit *drhd;
2998 struct intel_iommu *iommu;
3000 for_each_active_iommu(iommu, drhd) {
3001 iommu->flush.flush_context(iommu, 0, 0, 0,
3002 DMA_CCMD_GLOBAL_INVL);
3003 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3004 DMA_TLB_GLOBAL_FLUSH);
3008 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3010 struct dmar_drhd_unit *drhd;
3011 struct intel_iommu *iommu = NULL;
3014 for_each_active_iommu(iommu, drhd) {
3015 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3017 if (!iommu->iommu_state)
3023 for_each_active_iommu(iommu, drhd) {
3024 iommu_disable_translation(iommu);
3026 spin_lock_irqsave(&iommu->register_lock, flag);
3028 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3029 readl(iommu->reg + DMAR_FECTL_REG);
3030 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3031 readl(iommu->reg + DMAR_FEDATA_REG);
3032 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3033 readl(iommu->reg + DMAR_FEADDR_REG);
3034 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3035 readl(iommu->reg + DMAR_FEUADDR_REG);
3037 spin_unlock_irqrestore(&iommu->register_lock, flag);
3042 for_each_active_iommu(iommu, drhd)
3043 kfree(iommu->iommu_state);
3048 static int iommu_resume(struct sys_device *dev)
3050 struct dmar_drhd_unit *drhd;
3051 struct intel_iommu *iommu = NULL;
3054 if (init_iommu_hw()) {
3055 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3059 for_each_active_iommu(iommu, drhd) {
3061 spin_lock_irqsave(&iommu->register_lock, flag);
3063 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3064 iommu->reg + DMAR_FECTL_REG);
3065 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3066 iommu->reg + DMAR_FEDATA_REG);
3067 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3068 iommu->reg + DMAR_FEADDR_REG);
3069 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3070 iommu->reg + DMAR_FEUADDR_REG);
3072 spin_unlock_irqrestore(&iommu->register_lock, flag);
3075 for_each_active_iommu(iommu, drhd)
3076 kfree(iommu->iommu_state);
3081 static struct sysdev_class iommu_sysclass = {
3083 .resume = iommu_resume,
3084 .suspend = iommu_suspend,
3087 static struct sys_device device_iommu = {
3088 .cls = &iommu_sysclass,
3091 static int __init init_iommu_sysfs(void)
3095 error = sysdev_class_register(&iommu_sysclass);
3099 error = sysdev_register(&device_iommu);
3101 sysdev_class_unregister(&iommu_sysclass);
3107 static int __init init_iommu_sysfs(void)
3111 #endif /* CONFIG_PM */
3113 int __init intel_iommu_init(void)
3117 if (dmar_table_init())
3120 if (dmar_dev_scope_init())
3124 * Check the need for DMA-remapping initialization now.
3125 * Above initialization will also be used by Interrupt-remapping.
3127 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3130 iommu_init_mempool();
3131 dmar_init_reserved_ranges();
3133 init_no_remapping_devices();
3137 printk(KERN_ERR "IOMMU: dmar init failed\n");
3138 put_iova_domain(&reserved_iova_list);
3139 iommu_exit_mempool();
3143 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3145 init_timer(&unmap_timer);
3148 if (!iommu_pass_through) {
3150 "Multi-level page-table translation for DMAR.\n");
3151 dma_ops = &intel_dma_ops;
3154 "DMAR: Pass through translation for DMAR.\n");
3158 register_iommu(&intel_iommu_ops);
3163 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3164 struct pci_dev *pdev)
3166 struct pci_dev *tmp, *parent;
3168 if (!iommu || !pdev)
3171 /* dependent device detach */
3172 tmp = pci_find_upstream_pcie_bridge(pdev);
3173 /* Secondary interface's bus number and devfn 0 */
3175 parent = pdev->bus->self;
3176 while (parent != tmp) {
3177 iommu_detach_dev(iommu, parent->bus->number,
3179 parent = parent->bus->self;
3181 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3182 iommu_detach_dev(iommu,
3183 tmp->subordinate->number, 0);
3184 else /* this is a legacy PCI bridge */
3185 iommu_detach_dev(iommu, tmp->bus->number,
3190 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3191 struct pci_dev *pdev)
3193 struct device_domain_info *info;
3194 struct intel_iommu *iommu;
3195 unsigned long flags;
3197 struct list_head *entry, *tmp;
3199 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3204 spin_lock_irqsave(&device_domain_lock, flags);
3205 list_for_each_safe(entry, tmp, &domain->devices) {
3206 info = list_entry(entry, struct device_domain_info, link);
3207 /* No need to compare PCI domain; it has to be the same */
3208 if (info->bus == pdev->bus->number &&
3209 info->devfn == pdev->devfn) {
3210 list_del(&info->link);
3211 list_del(&info->global);
3213 info->dev->dev.archdata.iommu = NULL;
3214 spin_unlock_irqrestore(&device_domain_lock, flags);
3216 iommu_disable_dev_iotlb(info);
3217 iommu_detach_dev(iommu, info->bus, info->devfn);
3218 iommu_detach_dependent_devices(iommu, pdev);
3219 free_devinfo_mem(info);
3221 spin_lock_irqsave(&device_domain_lock, flags);
3229 /* if there is no other devices under the same iommu
3230 * owned by this domain, clear this iommu in iommu_bmp
3231 * update iommu count and coherency
3233 if (iommu == device_to_iommu(info->segment, info->bus,
3239 unsigned long tmp_flags;
3240 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3241 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3242 domain->iommu_count--;
3243 domain_update_iommu_cap(domain);
3244 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3247 spin_unlock_irqrestore(&device_domain_lock, flags);
3250 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3252 struct device_domain_info *info;
3253 struct intel_iommu *iommu;
3254 unsigned long flags1, flags2;
3256 spin_lock_irqsave(&device_domain_lock, flags1);
3257 while (!list_empty(&domain->devices)) {
3258 info = list_entry(domain->devices.next,
3259 struct device_domain_info, link);
3260 list_del(&info->link);
3261 list_del(&info->global);
3263 info->dev->dev.archdata.iommu = NULL;
3265 spin_unlock_irqrestore(&device_domain_lock, flags1);
3267 iommu_disable_dev_iotlb(info);
3268 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3269 iommu_detach_dev(iommu, info->bus, info->devfn);
3270 iommu_detach_dependent_devices(iommu, info->dev);
3272 /* clear this iommu in iommu_bmp, update iommu count
3275 spin_lock_irqsave(&domain->iommu_lock, flags2);
3276 if (test_and_clear_bit(iommu->seq_id,
3277 &domain->iommu_bmp)) {
3278 domain->iommu_count--;
3279 domain_update_iommu_cap(domain);
3281 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3283 free_devinfo_mem(info);
3284 spin_lock_irqsave(&device_domain_lock, flags1);
3286 spin_unlock_irqrestore(&device_domain_lock, flags1);
3289 /* domain id for virtual machine, it won't be set in context */
3290 static unsigned long vm_domid;
3292 static int vm_domain_min_agaw(struct dmar_domain *domain)
3295 int min_agaw = domain->agaw;
3297 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3298 for (; i < g_num_of_iommus; ) {
3299 if (min_agaw > g_iommus[i]->agaw)
3300 min_agaw = g_iommus[i]->agaw;
3302 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3308 static struct dmar_domain *iommu_alloc_vm_domain(void)
3310 struct dmar_domain *domain;
3312 domain = alloc_domain_mem();
3316 domain->id = vm_domid++;
3317 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3318 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3323 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3327 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3328 spin_lock_init(&domain->mapping_lock);
3329 spin_lock_init(&domain->iommu_lock);
3331 domain_reserve_special_ranges(domain);
3333 /* calculate AGAW */
3334 domain->gaw = guest_width;
3335 adjust_width = guestwidth_to_adjustwidth(guest_width);
3336 domain->agaw = width_to_agaw(adjust_width);
3338 INIT_LIST_HEAD(&domain->devices);
3340 domain->iommu_count = 0;
3341 domain->iommu_coherency = 0;
3342 domain->max_addr = 0;
3344 /* always allocate the top pgd */
3345 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3348 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3352 static void iommu_free_vm_domain(struct dmar_domain *domain)
3354 unsigned long flags;
3355 struct dmar_drhd_unit *drhd;
3356 struct intel_iommu *iommu;
3358 unsigned long ndomains;
3360 for_each_drhd_unit(drhd) {
3363 iommu = drhd->iommu;
3365 ndomains = cap_ndoms(iommu->cap);
3366 i = find_first_bit(iommu->domain_ids, ndomains);
3367 for (; i < ndomains; ) {
3368 if (iommu->domains[i] == domain) {
3369 spin_lock_irqsave(&iommu->lock, flags);
3370 clear_bit(i, iommu->domain_ids);
3371 iommu->domains[i] = NULL;
3372 spin_unlock_irqrestore(&iommu->lock, flags);
3375 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3380 static void vm_domain_exit(struct dmar_domain *domain)
3384 /* Domain 0 is reserved, so dont process it */
3388 vm_domain_remove_all_dev_info(domain);
3390 put_iova_domain(&domain->iovad);
3391 end = DOMAIN_MAX_ADDR(domain->gaw);
3392 end = end & (~VTD_PAGE_MASK);
3395 dma_pte_clear_range(domain, 0, end);
3397 /* free page tables */
3398 dma_pte_free_pagetable(domain, 0, end);
3400 iommu_free_vm_domain(domain);
3401 free_domain_mem(domain);
3404 static int intel_iommu_domain_init(struct iommu_domain *domain)
3406 struct dmar_domain *dmar_domain;
3408 dmar_domain = iommu_alloc_vm_domain();
3411 "intel_iommu_domain_init: dmar_domain == NULL\n");
3414 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3416 "intel_iommu_domain_init() failed\n");
3417 vm_domain_exit(dmar_domain);
3420 domain->priv = dmar_domain;
3425 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3427 struct dmar_domain *dmar_domain = domain->priv;
3429 domain->priv = NULL;
3430 vm_domain_exit(dmar_domain);
3433 static int intel_iommu_attach_device(struct iommu_domain *domain,
3436 struct dmar_domain *dmar_domain = domain->priv;
3437 struct pci_dev *pdev = to_pci_dev(dev);
3438 struct intel_iommu *iommu;
3443 /* normally pdev is not mapped */
3444 if (unlikely(domain_context_mapped(pdev))) {
3445 struct dmar_domain *old_domain;
3447 old_domain = find_domain(pdev);
3449 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3450 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3451 domain_remove_one_dev_info(old_domain, pdev);
3453 domain_remove_dev_info(old_domain);
3457 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3462 /* check if this iommu agaw is sufficient for max mapped address */
3463 addr_width = agaw_to_width(iommu->agaw);
3464 end = DOMAIN_MAX_ADDR(addr_width);
3465 end = end & VTD_PAGE_MASK;
3466 if (end < dmar_domain->max_addr) {
3467 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3468 "sufficient for the mapped address (%llx)\n",
3469 __func__, iommu->agaw, dmar_domain->max_addr);
3473 ret = domain_add_dev_info(dmar_domain, pdev);
3477 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3481 static void intel_iommu_detach_device(struct iommu_domain *domain,
3484 struct dmar_domain *dmar_domain = domain->priv;
3485 struct pci_dev *pdev = to_pci_dev(dev);
3487 domain_remove_one_dev_info(dmar_domain, pdev);
3490 static int intel_iommu_map_range(struct iommu_domain *domain,
3491 unsigned long iova, phys_addr_t hpa,
3492 size_t size, int iommu_prot)
3494 struct dmar_domain *dmar_domain = domain->priv;
3500 if (iommu_prot & IOMMU_READ)
3501 prot |= DMA_PTE_READ;
3502 if (iommu_prot & IOMMU_WRITE)
3503 prot |= DMA_PTE_WRITE;
3504 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3505 prot |= DMA_PTE_SNP;
3507 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3508 if (dmar_domain->max_addr < max_addr) {
3512 /* check if minimum agaw is sufficient for mapped address */
3513 min_agaw = vm_domain_min_agaw(dmar_domain);
3514 addr_width = agaw_to_width(min_agaw);
3515 end = DOMAIN_MAX_ADDR(addr_width);
3516 end = end & VTD_PAGE_MASK;
3517 if (end < max_addr) {
3518 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3519 "sufficient for the mapped address (%llx)\n",
3520 __func__, min_agaw, max_addr);
3523 dmar_domain->max_addr = max_addr;
3526 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3530 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3531 unsigned long iova, size_t size)
3533 struct dmar_domain *dmar_domain = domain->priv;
3536 /* The address might not be aligned */
3537 base = iova & VTD_PAGE_MASK;
3538 size = VTD_PAGE_ALIGN(size);
3539 dma_pte_clear_range(dmar_domain, base, base + size);
3541 if (dmar_domain->max_addr == base + size)
3542 dmar_domain->max_addr = base;
3545 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3548 struct dmar_domain *dmar_domain = domain->priv;
3549 struct dma_pte *pte;
3552 pte = addr_to_dma_pte(dmar_domain, iova);
3554 phys = dma_pte_addr(pte);
3559 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3562 struct dmar_domain *dmar_domain = domain->priv;
3564 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3565 return dmar_domain->iommu_snooping;
3570 static struct iommu_ops intel_iommu_ops = {
3571 .domain_init = intel_iommu_domain_init,
3572 .domain_destroy = intel_iommu_domain_destroy,
3573 .attach_dev = intel_iommu_attach_device,
3574 .detach_dev = intel_iommu_detach_device,
3575 .map = intel_iommu_map_range,
3576 .unmap = intel_iommu_unmap_range,
3577 .iova_to_phys = intel_iommu_iova_to_phys,
3578 .domain_has_cap = intel_iommu_domain_has_cap,
3581 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3584 * Mobile 4 Series Chipset neglects to set RWBF capability,
3587 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3591 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);