2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
41 int fw_compute_block_crc(u32 *block)
43 __be32 be32_block[256];
46 length = (*block >> 16) & 0xff;
47 for (i = 0; i < length; i++)
48 be32_block[i] = cpu_to_be32(block[i + 1]);
49 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
54 static DEFINE_MUTEX(card_mutex);
55 static LIST_HEAD(card_list);
57 static LIST_HEAD(descriptor_list);
58 static int descriptor_count;
60 #define BIB_CRC(v) ((v) << 0)
61 #define BIB_CRC_LENGTH(v) ((v) << 16)
62 #define BIB_INFO_LENGTH(v) ((v) << 24)
64 #define BIB_LINK_SPEED(v) ((v) << 0)
65 #define BIB_GENERATION(v) ((v) << 4)
66 #define BIB_MAX_ROM(v) ((v) << 8)
67 #define BIB_MAX_RECEIVE(v) ((v) << 12)
68 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
69 #define BIB_PMC ((1) << 27)
70 #define BIB_BMC ((1) << 28)
71 #define BIB_ISC ((1) << 29)
72 #define BIB_CMC ((1) << 30)
73 #define BIB_IMC ((1) << 31)
75 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
77 struct fw_descriptor *desc;
78 static u32 config_rom[256];
82 * Initialize contents of config rom buffer. On the OHCI
83 * controller, block reads to the config rom accesses the host
84 * memory, but quadlet read access the hardware bus info block
85 * registers. That's just crack, but it means we should make
86 * sure the contents of bus info block in host memory matches
87 * the version stored in the OHCI registers.
90 memset(config_rom, 0, sizeof(config_rom));
91 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
92 config_rom[1] = 0x31333934;
95 BIB_LINK_SPEED(card->link_speed) |
96 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
98 BIB_MAX_RECEIVE(card->max_receive) |
99 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
100 config_rom[3] = card->guid >> 32;
101 config_rom[4] = card->guid;
103 /* Generate root directory. */
106 config_rom[i++] = 0x0c0083c0; /* node capabilities */
107 j = i + descriptor_count;
109 /* Generate root directory entries for descriptors. */
110 list_for_each_entry (desc, &descriptor_list, link) {
111 if (desc->immediate > 0)
112 config_rom[i++] = desc->immediate;
113 config_rom[i] = desc->key | (j - i);
118 /* Update root directory length. */
119 config_rom[5] = (i - 5 - 1) << 16;
121 /* End of root directory, now copy in descriptors. */
122 list_for_each_entry (desc, &descriptor_list, link) {
123 memcpy(&config_rom[i], desc->data, desc->length * 4);
127 /* Calculate CRCs for all blocks in the config rom. This
128 * assumes that CRC length and info length are identical for
129 * the bus info block, which is always the case for this
131 for (i = 0; i < j; i += length + 1)
132 length = fw_compute_block_crc(config_rom + i);
134 *config_rom_length = j;
139 static void update_config_roms(void)
141 struct fw_card *card;
145 list_for_each_entry (card, &card_list, link) {
146 config_rom = generate_config_rom(card, &length);
147 card->driver->set_config_rom(card, config_rom, length);
151 int fw_core_add_descriptor(struct fw_descriptor *desc)
156 * Check descriptor is valid; the length of all blocks in the
157 * descriptor has to add up to exactly the length of the
161 while (i < desc->length)
162 i += (desc->data[i] >> 16) + 1;
164 if (i != desc->length)
167 mutex_lock(&card_mutex);
169 list_add_tail(&desc->link, &descriptor_list);
171 if (desc->immediate > 0)
173 update_config_roms();
175 mutex_unlock(&card_mutex);
180 void fw_core_remove_descriptor(struct fw_descriptor *desc)
182 mutex_lock(&card_mutex);
184 list_del(&desc->link);
186 if (desc->immediate > 0)
188 update_config_roms();
190 mutex_unlock(&card_mutex);
193 static int set_broadcast_channel(struct device *dev, void *data)
195 fw_device_set_broadcast_channel(fw_device(dev), (long)data);
199 static void allocate_broadcast_channel(struct fw_card *card, int generation)
201 int channel, bandwidth = 0;
203 fw_iso_resource_manage(card, generation, 1ULL << 31,
204 &channel, &bandwidth, true);
206 card->broadcast_channel_allocated = true;
207 device_for_each_child(card->device, (void *)(long)generation,
208 set_broadcast_channel);
212 static const char gap_count_table[] = {
213 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
216 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
221 scheduled = schedule_delayed_work(&card->work, delay);
226 static void fw_card_bm_work(struct work_struct *work)
228 struct fw_card *card = container_of(work, struct fw_card, work.work);
229 struct fw_device *root_device;
230 struct fw_node *root_node;
232 int root_id, new_root_id, irm_id, local_id;
233 int gap_count, generation, grace, rcode;
234 bool do_reset = false;
235 bool root_device_is_running;
236 bool root_device_is_cmc;
239 spin_lock_irqsave(&card->lock, flags);
241 if (card->local_node == NULL) {
242 spin_unlock_irqrestore(&card->lock, flags);
246 generation = card->generation;
247 root_node = card->root_node;
248 fw_node_get(root_node);
249 root_device = root_node->data;
250 root_device_is_running = root_device &&
251 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
252 root_device_is_cmc = root_device && root_device->cmc;
253 root_id = root_node->node_id;
254 irm_id = card->irm_node->node_id;
255 local_id = card->local_node->node_id;
257 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
259 if (is_next_generation(generation, card->bm_generation) ||
260 (card->bm_generation != generation && grace)) {
262 * This first step is to figure out who is IRM and
263 * then try to become bus manager. If the IRM is not
264 * well defined (e.g. does not have an active link
265 * layer or does not responds to our lock request, we
266 * will have to do a little vigilante bus management.
267 * In that case, we do a goto into the gap count logic
268 * so that when we do the reset, we still optimize the
269 * gap count. That could well save a reset in the
273 if (!card->irm_node->link_on) {
274 new_root_id = local_id;
275 fw_notify("IRM has link off, making local node (%02x) root.\n",
280 lock_data[0] = cpu_to_be32(0x3f);
281 lock_data[1] = cpu_to_be32(local_id);
283 spin_unlock_irqrestore(&card->lock, flags);
285 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
286 irm_id, generation, SCODE_100,
287 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
288 lock_data, sizeof(lock_data));
290 if (rcode == RCODE_GENERATION)
291 /* Another bus reset, BM work has been rescheduled. */
294 if (rcode == RCODE_COMPLETE &&
295 lock_data[0] != cpu_to_be32(0x3f)) {
297 /* Somebody else is BM. Only act as IRM. */
298 if (local_id == irm_id)
299 allocate_broadcast_channel(card, generation);
304 spin_lock_irqsave(&card->lock, flags);
306 if (rcode != RCODE_COMPLETE) {
308 * The lock request failed, maybe the IRM
309 * isn't really IRM capable after all. Let's
310 * do a bus reset and pick the local node as
311 * root, and thus, IRM.
313 new_root_id = local_id;
314 fw_notify("BM lock failed, making local node (%02x) root.\n",
318 } else if (card->bm_generation != generation) {
320 * We weren't BM in the last generation, and the last
321 * bus reset is less than 125ms ago. Reschedule this job.
323 spin_unlock_irqrestore(&card->lock, flags);
324 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
329 * We're bus manager for this generation, so next step is to
330 * make sure we have an active cycle master and do gap count
333 card->bm_generation = generation;
335 if (root_device == NULL) {
337 * Either link_on is false, or we failed to read the
338 * config rom. In either case, pick another root.
340 new_root_id = local_id;
341 } else if (!root_device_is_running) {
343 * If we haven't probed this device yet, bail out now
344 * and let's try again once that's done.
346 spin_unlock_irqrestore(&card->lock, flags);
348 } else if (root_device_is_cmc) {
350 * FIXME: I suppose we should set the cmstr bit in the
351 * STATE_CLEAR register of this node, as described in
352 * 1394-1995, 8.4.2.6. Also, send out a force root
353 * packet for this node.
355 new_root_id = root_id;
358 * Current root has an active link layer and we
359 * successfully read the config rom, but it's not
360 * cycle master capable.
362 new_root_id = local_id;
367 * Pick a gap count from 1394a table E-1. The table doesn't cover
368 * the typically much larger 1394b beta repeater delays though.
370 if (!card->beta_repeaters_present &&
371 root_node->max_hops < ARRAY_SIZE(gap_count_table))
372 gap_count = gap_count_table[root_node->max_hops];
377 * Finally, figure out if we should do a reset or not. If we have
378 * done less than 5 resets with the same physical topology and we
379 * have either a new root or a new gap count setting, let's do it.
382 if (card->bm_retries++ < 5 &&
383 (card->gap_count != gap_count || new_root_id != root_id))
386 spin_unlock_irqrestore(&card->lock, flags);
389 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
390 card->index, new_root_id, gap_count);
391 fw_send_phy_config(card, new_root_id, generation, gap_count);
392 fw_core_initiate_bus_reset(card, 1);
393 /* Will allocate broadcast channel after the reset. */
395 if (local_id == irm_id)
396 allocate_broadcast_channel(card, generation);
400 fw_node_put(root_node);
405 static void flush_timer_callback(unsigned long data)
407 struct fw_card *card = (struct fw_card *)data;
409 fw_flush_transactions(card);
412 void fw_card_initialize(struct fw_card *card,
413 const struct fw_card_driver *driver,
414 struct device *device)
416 static atomic_t index = ATOMIC_INIT(-1);
418 card->index = atomic_inc_return(&index);
419 card->driver = driver;
420 card->device = device;
421 card->current_tlabel = 0;
422 card->tlabel_mask = 0;
424 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
426 kref_init(&card->kref);
427 init_completion(&card->done);
428 INIT_LIST_HEAD(&card->transaction_list);
429 spin_lock_init(&card->lock);
430 setup_timer(&card->flush_timer,
431 flush_timer_callback, (unsigned long)card);
433 card->local_node = NULL;
435 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
437 EXPORT_SYMBOL(fw_card_initialize);
439 int fw_card_add(struct fw_card *card,
440 u32 max_receive, u32 link_speed, u64 guid)
446 card->max_receive = max_receive;
447 card->link_speed = link_speed;
450 mutex_lock(&card_mutex);
451 config_rom = generate_config_rom(card, &length);
452 list_add_tail(&card->link, &card_list);
453 mutex_unlock(&card_mutex);
455 ret = card->driver->enable(card, config_rom, length);
457 mutex_lock(&card_mutex);
458 list_del(&card->link);
459 mutex_unlock(&card_mutex);
464 EXPORT_SYMBOL(fw_card_add);
468 * The next few functions implements a dummy driver that use once a
469 * card driver shuts down an fw_card. This allows the driver to
470 * cleanly unload, as all IO to the card will be handled by the dummy
471 * driver instead of calling into the (possibly) unloaded module. The
472 * dummy driver just fails all IO.
475 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
481 static int dummy_update_phy_reg(struct fw_card *card, int address,
482 int clear_bits, int set_bits)
487 static int dummy_set_config_rom(struct fw_card *card,
488 u32 *config_rom, size_t length)
491 * We take the card out of card_list before setting the dummy
492 * driver, so this should never get called.
498 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
500 packet->callback(packet, card, -ENODEV);
503 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
505 packet->callback(packet, card, -ENODEV);
508 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
513 static int dummy_enable_phys_dma(struct fw_card *card,
514 int node_id, int generation)
519 static struct fw_card_driver dummy_driver = {
520 .enable = dummy_enable,
521 .update_phy_reg = dummy_update_phy_reg,
522 .set_config_rom = dummy_set_config_rom,
523 .send_request = dummy_send_request,
524 .cancel_packet = dummy_cancel_packet,
525 .send_response = dummy_send_response,
526 .enable_phys_dma = dummy_enable_phys_dma,
529 void fw_card_release(struct kref *kref)
531 struct fw_card *card = container_of(kref, struct fw_card, kref);
533 complete(&card->done);
536 void fw_core_remove_card(struct fw_card *card)
538 card->driver->update_phy_reg(card, 4,
539 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
540 fw_core_initiate_bus_reset(card, 1);
542 mutex_lock(&card_mutex);
543 list_del_init(&card->link);
544 mutex_unlock(&card_mutex);
546 /* Set up the dummy driver. */
547 card->driver = &dummy_driver;
549 fw_destroy_nodes(card);
551 /* Wait for all users, especially device workqueue jobs, to finish. */
553 wait_for_completion(&card->done);
555 WARN_ON(!list_empty(&card->transaction_list));
556 del_timer_sync(&card->flush_timer);
558 EXPORT_SYMBOL(fw_core_remove_card);
560 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
562 int reg = short_reset ? 5 : 1;
563 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
565 return card->driver->update_phy_reg(card, reg, 0, bit);
567 EXPORT_SYMBOL(fw_core_initiate_bus_reset);