4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
229 if (hrtimer_active(&rt_b->rt_period_timer))
232 spin_lock(&rt_b->rt_runtime_lock);
237 if (hrtimer_active(&rt_b->rt_period_timer))
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
249 spin_unlock(&rt_b->rt_runtime_lock);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255 hrtimer_cancel(&rt_b->rt_period_timer);
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
271 static LIST_HEAD(task_groups);
273 /* task group related information */
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
279 #ifdef CONFIG_USER_SCHED
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
295 struct rt_bandwidth rt_bandwidth;
299 struct list_head list;
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
311 user->tg->uid = user->uid;
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock);
342 static int root_task_group_empty(void)
344 return list_empty(&root_task_group.children);
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
364 #define MAX_SHARES (1UL << 18)
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
372 struct task_group init_task_group;
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
377 struct task_group *tg;
379 #ifdef CONFIG_USER_SCHED
381 tg = __task_cred(p)->user->tg;
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
387 tg = &init_task_group;
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
409 static int root_task_group_empty(void)
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
421 #endif /* CONFIG_GROUP_SCHED */
423 /* CFS-related fields in a runqueue */
425 struct load_weight load;
426 unsigned long nr_running;
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
434 struct list_head tasks;
435 struct list_head *balance_iterator;
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
441 struct sched_entity *curr, *next, *last;
443 unsigned int nr_spread_over;
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
461 * the part of load.weight contributed by tasks
463 unsigned long task_weight;
466 * h_load = weight * f(tg)
468 * Where f(tg) is the recursive weight fraction assigned to
471 unsigned long h_load;
474 * this cpu's part of tg->shares
476 unsigned long shares;
479 * load.weight at the time we set shares
481 unsigned long rq_weight;
486 /* Real-Time classes' related field in a runqueue: */
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
492 int curr; /* highest queued rt task prio */
494 int next; /* next highest */
499 unsigned long rt_nr_migratory;
501 struct plist_head pushable_tasks;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
532 cpumask_var_t online;
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
538 cpumask_var_t rto_mask;
541 struct cpupri cpupri;
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 unsigned int sched_mc_preferred_wakeup_cpu;
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
557 static struct root_domain def_root_domain;
562 * This is the main, per-CPU runqueue data structure.
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
605 unsigned long nr_uninterruptible;
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
616 struct root_domain *rd;
617 struct sched_domain *sd;
619 unsigned char idle_at_tick;
620 /* For active balancing */
623 /* cpu of this runqueue: */
627 unsigned long avg_load_per_task;
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
633 /* calc_load related fields */
634 unsigned long calc_load_update;
635 long calc_load_active;
637 #ifdef CONFIG_SCHED_HRTICK
639 int hrtick_csd_pending;
640 struct call_single_data hrtick_csd;
642 struct hrtimer hrtick_timer;
645 #ifdef CONFIG_SCHEDSTATS
647 struct sched_info rq_sched_info;
648 unsigned long long rq_cpu_time;
649 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
651 /* sys_sched_yield() stats */
652 unsigned int yld_count;
654 /* schedule() stats */
655 unsigned int sched_switch;
656 unsigned int sched_count;
657 unsigned int sched_goidle;
659 /* try_to_wake_up() stats */
660 unsigned int ttwu_count;
661 unsigned int ttwu_local;
664 unsigned int bkl_count;
668 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
670 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
672 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
675 static inline int cpu_of(struct rq *rq)
685 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
686 * See detach_destroy_domains: synchronize_sched for details.
688 * The domain tree of any CPU may only be accessed from within
689 * preempt-disabled sections.
691 #define for_each_domain(cpu, __sd) \
692 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
694 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
695 #define this_rq() (&__get_cpu_var(runqueues))
696 #define task_rq(p) cpu_rq(task_cpu(p))
697 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
699 static inline void update_rq_clock(struct rq *rq)
701 rq->clock = sched_clock_cpu(cpu_of(rq));
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
707 #ifdef CONFIG_SCHED_DEBUG
708 # define const_debug __read_mostly
710 # define const_debug static const
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
720 int runqueue_is_locked(void)
723 struct rq *rq = cpu_rq(cpu);
726 ret = spin_is_locked(&rq->lock);
732 * Debugging: various feature bits
735 #define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
739 #include "sched_features.h"
744 #define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
747 const_debug unsigned int sysctl_sched_features =
748 #include "sched_features.h"
753 #ifdef CONFIG_SCHED_DEBUG
754 #define SCHED_FEAT(name, enabled) \
757 static __read_mostly char *sched_feat_names[] = {
758 #include "sched_features.h"
764 static int sched_feat_show(struct seq_file *m, void *v)
768 for (i = 0; sched_feat_names[i]; i++) {
769 if (!(sysctl_sched_features & (1UL << i)))
771 seq_printf(m, "%s ", sched_feat_names[i]);
779 sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
790 if (copy_from_user(&buf, ubuf, cnt))
795 if (strncmp(buf, "NO_", 3) == 0) {
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
805 sysctl_sched_features &= ~(1UL << i);
807 sysctl_sched_features |= (1UL << i);
812 if (!sched_feat_names[i])
820 static int sched_feat_open(struct inode *inode, struct file *filp)
822 return single_open(filp, sched_feat_show, NULL);
825 static struct file_operations sched_feat_fops = {
826 .open = sched_feat_open,
827 .write = sched_feat_write,
830 .release = single_release,
833 static __init int sched_init_debug(void)
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
840 late_initcall(sched_init_debug);
844 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
850 const_debug unsigned int sysctl_sched_nr_migrate = 32;
853 * ratelimit for updating the group shares.
856 unsigned int sysctl_sched_shares_ratelimit = 250000;
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
863 unsigned int sysctl_sched_shares_thresh = 4;
866 * period over which we measure -rt task cpu usage in us.
869 unsigned int sysctl_sched_rt_period = 1000000;
871 static __read_mostly int scheduler_running;
874 * part of the period that we allow rt tasks to run in us.
877 int sysctl_sched_rt_runtime = 950000;
879 static inline u64 global_rt_period(void)
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
884 static inline u64 global_rt_runtime(void)
886 if (sysctl_sched_rt_runtime < 0)
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
892 #ifndef prepare_arch_switch
893 # define prepare_arch_switch(next) do { } while (0)
895 #ifndef finish_arch_switch
896 # define finish_arch_switch(prev) do { } while (0)
899 static inline int task_current(struct rq *rq, struct task_struct *p)
901 return rq->curr == p;
904 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
905 static inline int task_running(struct rq *rq, struct task_struct *p)
907 return task_current(rq, p);
910 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
916 #ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
927 spin_unlock_irq(&rq->lock);
930 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
931 static inline int task_running(struct rq *rq, struct task_struct *p)
936 return task_current(rq, p);
940 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
950 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
953 spin_unlock(&rq->lock);
957 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
968 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
972 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
978 static inline struct rq *__task_rq_lock(struct task_struct *p)
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
986 spin_unlock(&rq->lock);
991 * task_rq_lock - lock the runqueue a given task resides on and disable
992 * interrupts. Note the ordering: we can safely lookup the task_rq without
993 * explicitly disabling preemption.
995 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1001 local_irq_save(*flags);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1006 spin_unlock_irqrestore(&rq->lock, *flags);
1010 void task_rq_unlock_wait(struct task_struct *p)
1012 struct rq *rq = task_rq(p);
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1018 static void __task_rq_unlock(struct rq *rq)
1019 __releases(rq->lock)
1021 spin_unlock(&rq->lock);
1024 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1025 __releases(rq->lock)
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1031 * this_rq_lock - lock this runqueue and disable interrupts.
1033 static struct rq *this_rq_lock(void)
1034 __acquires(rq->lock)
1038 local_irq_disable();
1040 spin_lock(&rq->lock);
1045 #ifdef CONFIG_SCHED_HRTICK
1047 * Use HR-timers to deliver accurate preemption points.
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1059 * - enabled by features
1060 * - hrtimer is actually high res
1062 static inline int hrtick_enabled(struct rq *rq)
1064 if (!sched_feat(HRTICK))
1066 if (!cpu_active(cpu_of(rq)))
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1071 static void hrtick_clear(struct rq *rq)
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1081 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1087 spin_lock(&rq->lock);
1088 update_rq_clock(rq);
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1092 return HRTIMER_NORESTART;
1097 * called from hardirq (IPI) context
1099 static void __hrtick_start(void *arg)
1101 struct rq *rq = arg;
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
1110 * Called to set the hrtick timer state.
1112 * called with rq->lock held and irqs disabled
1114 static void hrtick_start(struct rq *rq, u64 delay)
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1119 hrtimer_set_expires(timer, time);
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 rq->hrtick_csd_pending = 1;
1130 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1132 int cpu = (int)(long)hcpu;
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1140 case CPU_DEAD_FROZEN:
1141 hrtick_clear(cpu_rq(cpu));
1148 static __init void init_hrtick(void)
1150 hotcpu_notifier(hotplug_hrtick, 0);
1154 * Called to set the hrtick timer state.
1156 * called with rq->lock held and irqs disabled
1158 static void hrtick_start(struct rq *rq, u64 delay)
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL, 0);
1164 static inline void init_hrtick(void)
1167 #endif /* CONFIG_SMP */
1169 static void init_rq_hrtick(struct rq *rq)
1172 rq->hrtick_csd_pending = 0;
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
1182 #else /* CONFIG_SCHED_HRTICK */
1183 static inline void hrtick_clear(struct rq *rq)
1187 static inline void init_rq_hrtick(struct rq *rq)
1191 static inline void init_hrtick(void)
1194 #endif /* CONFIG_SCHED_HRTICK */
1197 * resched_task - mark a task 'to be rescheduled now'.
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1205 #ifndef tsk_is_polling
1206 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1209 static void resched_task(struct task_struct *p)
1213 assert_spin_locked(&task_rq(p)->lock);
1215 if (test_tsk_need_resched(p))
1218 set_tsk_need_resched(p);
1221 if (cpu == smp_processor_id())
1224 /* NEED_RESCHED must be visible before we test polling */
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1230 static void resched_cpu(int cpu)
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1252 void wake_up_idle_cpu(int cpu)
1254 struct rq *rq = cpu_rq(cpu);
1256 if (cpu == smp_processor_id())
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1266 if (rq->curr != rq->idle)
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1274 set_tsk_need_resched(rq->idle);
1276 /* NEED_RESCHED must be visible before we test polling */
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1281 #endif /* CONFIG_NO_HZ */
1283 #else /* !CONFIG_SMP */
1284 static void resched_task(struct task_struct *p)
1286 assert_spin_locked(&task_rq(p)->lock);
1287 set_tsk_need_resched(p);
1289 #endif /* CONFIG_SMP */
1291 #if BITS_PER_LONG == 32
1292 # define WMULT_CONST (~0UL)
1294 # define WMULT_CONST (1UL << 32)
1297 #define WMULT_SHIFT 32
1300 * Shift right and round:
1302 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1305 * delta *= weight / lw
1307 static unsigned long
1308 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 tmp = (u64)delta_exec * weight;
1323 * Check whether we'd overflow the 64-bit multiplication:
1325 if (unlikely(tmp > WMULT_CONST))
1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1340 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 * scaled version of the new time slice allocation that they receive on time
1355 #define WEIGHT_IDLEPRIO 3
1356 #define WMULT_IDLEPRIO 1431655765
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
1370 static const int prio_to_weight[40] = {
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1388 static const u32 prio_to_wmult[40] = {
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1399 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1406 struct rq_iterator {
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1413 static unsigned long
1414 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1420 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1430 CPUACCT_STAT_NSTATS,
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1445 update_load_add(&rq->load, load);
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1450 update_load_sub(&rq->load, load);
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1462 struct task_group *parent, *child;
1466 parent = &root_task_group;
1468 ret = (*down)(parent, data);
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1478 ret = (*up)(parent, data);
1483 parent = parent->parent;
1492 static int tg_nop(struct task_group *tg, void *data)
1499 static unsigned long source_load(int cpu, int type);
1500 static unsigned long target_load(int cpu, int type);
1501 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1503 static unsigned long cpu_avg_load_per_task(int cpu)
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
1511 rq->avg_load_per_task = 0;
1513 return rq->avg_load_per_task;
1516 #ifdef CONFIG_FAIR_GROUP_SCHED
1518 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1521 * Calculate and set the cpu's group shares.
1524 update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
1527 unsigned long shares;
1528 unsigned long rq_weight;
1533 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1536 * \Sum shares * rq_weight
1537 * shares = -----------------------
1541 shares = (sd_shares * rq_weight) / sd_rq_weight;
1542 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1544 if (abs(shares - tg->se[cpu]->load.weight) >
1545 sysctl_sched_shares_thresh) {
1546 struct rq *rq = cpu_rq(cpu);
1547 unsigned long flags;
1549 spin_lock_irqsave(&rq->lock, flags);
1550 tg->cfs_rq[cpu]->shares = shares;
1552 __set_se_shares(tg->se[cpu], shares);
1553 spin_unlock_irqrestore(&rq->lock, flags);
1558 * Re-compute the task group their per cpu shares over the given domain.
1559 * This needs to be done in a bottom-up fashion because the rq weight of a
1560 * parent group depends on the shares of its child groups.
1562 static int tg_shares_up(struct task_group *tg, void *data)
1564 unsigned long weight, rq_weight = 0;
1565 unsigned long shares = 0;
1566 struct sched_domain *sd = data;
1569 for_each_cpu(i, sched_domain_span(sd)) {
1571 * If there are currently no tasks on the cpu pretend there
1572 * is one of average load so that when a new task gets to
1573 * run here it will not get delayed by group starvation.
1575 weight = tg->cfs_rq[i]->load.weight;
1577 weight = NICE_0_LOAD;
1579 tg->cfs_rq[i]->rq_weight = weight;
1580 rq_weight += weight;
1581 shares += tg->cfs_rq[i]->shares;
1584 if ((!shares && rq_weight) || shares > tg->shares)
1585 shares = tg->shares;
1587 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1588 shares = tg->shares;
1590 for_each_cpu(i, sched_domain_span(sd))
1591 update_group_shares_cpu(tg, i, shares, rq_weight);
1597 * Compute the cpu's hierarchical load factor for each task group.
1598 * This needs to be done in a top-down fashion because the load of a child
1599 * group is a fraction of its parents load.
1601 static int tg_load_down(struct task_group *tg, void *data)
1604 long cpu = (long)data;
1607 load = cpu_rq(cpu)->load.weight;
1609 load = tg->parent->cfs_rq[cpu]->h_load;
1610 load *= tg->cfs_rq[cpu]->shares;
1611 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1614 tg->cfs_rq[cpu]->h_load = load;
1619 static void update_shares(struct sched_domain *sd)
1621 u64 now = cpu_clock(raw_smp_processor_id());
1622 s64 elapsed = now - sd->last_update;
1624 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1625 sd->last_update = now;
1626 walk_tg_tree(tg_nop, tg_shares_up, sd);
1630 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1632 spin_unlock(&rq->lock);
1634 spin_lock(&rq->lock);
1637 static void update_h_load(long cpu)
1639 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1644 static inline void update_shares(struct sched_domain *sd)
1648 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1654 #ifdef CONFIG_PREEMPT
1657 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1658 * way at the expense of forcing extra atomic operations in all
1659 * invocations. This assures that the double_lock is acquired using the
1660 * same underlying policy as the spinlock_t on this architecture, which
1661 * reduces latency compared to the unfair variant below. However, it
1662 * also adds more overhead and therefore may reduce throughput.
1664 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1665 __releases(this_rq->lock)
1666 __acquires(busiest->lock)
1667 __acquires(this_rq->lock)
1669 spin_unlock(&this_rq->lock);
1670 double_rq_lock(this_rq, busiest);
1677 * Unfair double_lock_balance: Optimizes throughput at the expense of
1678 * latency by eliminating extra atomic operations when the locks are
1679 * already in proper order on entry. This favors lower cpu-ids and will
1680 * grant the double lock to lower cpus over higher ids under contention,
1681 * regardless of entry order into the function.
1683 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684 __releases(this_rq->lock)
1685 __acquires(busiest->lock)
1686 __acquires(this_rq->lock)
1690 if (unlikely(!spin_trylock(&busiest->lock))) {
1691 if (busiest < this_rq) {
1692 spin_unlock(&this_rq->lock);
1693 spin_lock(&busiest->lock);
1694 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1697 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1702 #endif /* CONFIG_PREEMPT */
1705 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1707 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709 if (unlikely(!irqs_disabled())) {
1710 /* printk() doesn't work good under rq->lock */
1711 spin_unlock(&this_rq->lock);
1715 return _double_lock_balance(this_rq, busiest);
1718 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(busiest->lock)
1721 spin_unlock(&busiest->lock);
1722 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1726 #ifdef CONFIG_FAIR_GROUP_SCHED
1727 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1730 cfs_rq->shares = shares;
1735 static void calc_load_account_active(struct rq *this_rq);
1737 #include "sched_stats.h"
1738 #include "sched_idletask.c"
1739 #include "sched_fair.c"
1740 #include "sched_rt.c"
1741 #ifdef CONFIG_SCHED_DEBUG
1742 # include "sched_debug.c"
1745 #define sched_class_highest (&rt_sched_class)
1746 #define for_each_class(class) \
1747 for (class = sched_class_highest; class; class = class->next)
1749 static void inc_nr_running(struct rq *rq)
1754 static void dec_nr_running(struct rq *rq)
1759 static void set_load_weight(struct task_struct *p)
1761 if (task_has_rt_policy(p)) {
1762 p->se.load.weight = prio_to_weight[0] * 2;
1763 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1768 * SCHED_IDLE tasks get minimal weight:
1770 if (p->policy == SCHED_IDLE) {
1771 p->se.load.weight = WEIGHT_IDLEPRIO;
1772 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1777 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1780 static void update_avg(u64 *avg, u64 sample)
1782 s64 diff = sample - *avg;
1786 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1789 p->se.start_runtime = p->se.sum_exec_runtime;
1791 sched_info_queued(p);
1792 p->sched_class->enqueue_task(rq, p, wakeup);
1796 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1799 if (p->se.last_wakeup) {
1800 update_avg(&p->se.avg_overlap,
1801 p->se.sum_exec_runtime - p->se.last_wakeup);
1802 p->se.last_wakeup = 0;
1804 update_avg(&p->se.avg_wakeup,
1805 sysctl_sched_wakeup_granularity);
1809 sched_info_dequeued(p);
1810 p->sched_class->dequeue_task(rq, p, sleep);
1815 * __normal_prio - return the priority that is based on the static prio
1817 static inline int __normal_prio(struct task_struct *p)
1819 return p->static_prio;
1823 * Calculate the expected normal priority: i.e. priority
1824 * without taking RT-inheritance into account. Might be
1825 * boosted by interactivity modifiers. Changes upon fork,
1826 * setprio syscalls, and whenever the interactivity
1827 * estimator recalculates.
1829 static inline int normal_prio(struct task_struct *p)
1833 if (task_has_rt_policy(p))
1834 prio = MAX_RT_PRIO-1 - p->rt_priority;
1836 prio = __normal_prio(p);
1841 * Calculate the current priority, i.e. the priority
1842 * taken into account by the scheduler. This value might
1843 * be boosted by RT tasks, or might be boosted by
1844 * interactivity modifiers. Will be RT if the task got
1845 * RT-boosted. If not then it returns p->normal_prio.
1847 static int effective_prio(struct task_struct *p)
1849 p->normal_prio = normal_prio(p);
1851 * If we are RT tasks or we were boosted to RT priority,
1852 * keep the priority unchanged. Otherwise, update priority
1853 * to the normal priority:
1855 if (!rt_prio(p->prio))
1856 return p->normal_prio;
1861 * activate_task - move a task to the runqueue.
1863 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1865 if (task_contributes_to_load(p))
1866 rq->nr_uninterruptible--;
1868 enqueue_task(rq, p, wakeup);
1873 * deactivate_task - remove a task from the runqueue.
1875 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1877 if (task_contributes_to_load(p))
1878 rq->nr_uninterruptible++;
1880 dequeue_task(rq, p, sleep);
1885 * task_curr - is this task currently executing on a CPU?
1886 * @p: the task in question.
1888 inline int task_curr(const struct task_struct *p)
1890 return cpu_curr(task_cpu(p)) == p;
1893 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1895 set_task_rq(p, cpu);
1898 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1899 * successfuly executed on another CPU. We must ensure that updates of
1900 * per-task data have been completed by this moment.
1903 task_thread_info(p)->cpu = cpu;
1907 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1908 const struct sched_class *prev_class,
1909 int oldprio, int running)
1911 if (prev_class != p->sched_class) {
1912 if (prev_class->switched_from)
1913 prev_class->switched_from(rq, p, running);
1914 p->sched_class->switched_to(rq, p, running);
1916 p->sched_class->prio_changed(rq, p, oldprio, running);
1921 /* Used instead of source_load when we know the type == 0 */
1922 static unsigned long weighted_cpuload(const int cpu)
1924 return cpu_rq(cpu)->load.weight;
1928 * Is this task likely cache-hot:
1931 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1936 * Buddy candidates are cache hot:
1938 if (sched_feat(CACHE_HOT_BUDDY) &&
1939 (&p->se == cfs_rq_of(&p->se)->next ||
1940 &p->se == cfs_rq_of(&p->se)->last))
1943 if (p->sched_class != &fair_sched_class)
1946 if (sysctl_sched_migration_cost == -1)
1948 if (sysctl_sched_migration_cost == 0)
1951 delta = now - p->se.exec_start;
1953 return delta < (s64)sysctl_sched_migration_cost;
1957 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959 int old_cpu = task_cpu(p);
1960 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1961 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1962 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1965 clock_offset = old_rq->clock - new_rq->clock;
1967 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1969 #ifdef CONFIG_SCHEDSTATS
1970 if (p->se.wait_start)
1971 p->se.wait_start -= clock_offset;
1972 if (p->se.sleep_start)
1973 p->se.sleep_start -= clock_offset;
1974 if (p->se.block_start)
1975 p->se.block_start -= clock_offset;
1976 if (old_cpu != new_cpu) {
1977 schedstat_inc(p, se.nr_migrations);
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1982 p->se.vruntime -= old_cfsrq->min_vruntime -
1983 new_cfsrq->min_vruntime;
1985 __set_task_cpu(p, new_cpu);
1988 struct migration_req {
1989 struct list_head list;
1991 struct task_struct *task;
1994 struct completion done;
1998 * The task's runqueue lock must be held.
1999 * Returns true if you have to wait for migration thread.
2002 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2004 struct rq *rq = task_rq(p);
2007 * If the task is not on a runqueue (and not running), then
2008 * it is sufficient to simply update the task's cpu field.
2010 if (!p->se.on_rq && !task_running(rq, p)) {
2011 set_task_cpu(p, dest_cpu);
2015 init_completion(&req->done);
2017 req->dest_cpu = dest_cpu;
2018 list_add(&req->list, &rq->migration_queue);
2024 * wait_task_inactive - wait for a thread to unschedule.
2026 * If @match_state is nonzero, it's the @p->state value just checked and
2027 * not expected to change. If it changes, i.e. @p might have woken up,
2028 * then return zero. When we succeed in waiting for @p to be off its CPU,
2029 * we return a positive number (its total switch count). If a second call
2030 * a short while later returns the same number, the caller can be sure that
2031 * @p has remained unscheduled the whole time.
2033 * The caller must ensure that the task *will* unschedule sometime soon,
2034 * else this function might spin for a *long* time. This function can't
2035 * be called with interrupts off, or it may introduce deadlock with
2036 * smp_call_function() if an IPI is sent by the same process we are
2037 * waiting to become inactive.
2039 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2041 unsigned long flags;
2048 * We do the initial early heuristics without holding
2049 * any task-queue locks at all. We'll only try to get
2050 * the runqueue lock when things look like they will
2056 * If the task is actively running on another CPU
2057 * still, just relax and busy-wait without holding
2060 * NOTE! Since we don't hold any locks, it's not
2061 * even sure that "rq" stays as the right runqueue!
2062 * But we don't care, since "task_running()" will
2063 * return false if the runqueue has changed and p
2064 * is actually now running somewhere else!
2066 while (task_running(rq, p)) {
2067 if (match_state && unlikely(p->state != match_state))
2073 * Ok, time to look more closely! We need the rq
2074 * lock now, to be *sure*. If we're wrong, we'll
2075 * just go back and repeat.
2077 rq = task_rq_lock(p, &flags);
2078 trace_sched_wait_task(rq, p);
2079 running = task_running(rq, p);
2080 on_rq = p->se.on_rq;
2082 if (!match_state || p->state == match_state)
2083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2084 task_rq_unlock(rq, &flags);
2087 * If it changed from the expected state, bail out now.
2089 if (unlikely(!ncsw))
2093 * Was it really running after all now that we
2094 * checked with the proper locks actually held?
2096 * Oops. Go back and try again..
2098 if (unlikely(running)) {
2104 * It's not enough that it's not actively running,
2105 * it must be off the runqueue _entirely_, and not
2108 * So if it was still runnable (but just not actively
2109 * running right now), it's preempted, and we should
2110 * yield - it could be a while.
2112 if (unlikely(on_rq)) {
2113 schedule_timeout_uninterruptible(1);
2118 * Ahh, all good. It wasn't running, and it wasn't
2119 * runnable, which means that it will never become
2120 * running in the future either. We're all done!
2129 * kick_process - kick a running thread to enter/exit the kernel
2130 * @p: the to-be-kicked thread
2132 * Cause a process which is running on another CPU to enter
2133 * kernel-mode, without any delay. (to get signals handled.)
2135 * NOTE: this function doesnt have to take the runqueue lock,
2136 * because all it wants to ensure is that the remote task enters
2137 * the kernel. If the IPI races and the task has been migrated
2138 * to another CPU then no harm is done and the purpose has been
2141 void kick_process(struct task_struct *p)
2147 if ((cpu != smp_processor_id()) && task_curr(p))
2148 smp_send_reschedule(cpu);
2153 * Return a low guess at the load of a migration-source cpu weighted
2154 * according to the scheduling class and "nice" value.
2156 * We want to under-estimate the load of migration sources, to
2157 * balance conservatively.
2159 static unsigned long source_load(int cpu, int type)
2161 struct rq *rq = cpu_rq(cpu);
2162 unsigned long total = weighted_cpuload(cpu);
2164 if (type == 0 || !sched_feat(LB_BIAS))
2167 return min(rq->cpu_load[type-1], total);
2171 * Return a high guess at the load of a migration-target cpu weighted
2172 * according to the scheduling class and "nice" value.
2174 static unsigned long target_load(int cpu, int type)
2176 struct rq *rq = cpu_rq(cpu);
2177 unsigned long total = weighted_cpuload(cpu);
2179 if (type == 0 || !sched_feat(LB_BIAS))
2182 return max(rq->cpu_load[type-1], total);
2186 * find_idlest_group finds and returns the least busy CPU group within the
2189 static struct sched_group *
2190 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2192 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long min_load = ULONG_MAX, this_load = 0;
2194 int load_idx = sd->forkexec_idx;
2195 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2198 unsigned long load, avg_load;
2202 /* Skip over this group if it has no CPUs allowed */
2203 if (!cpumask_intersects(sched_group_cpus(group),
2207 local_group = cpumask_test_cpu(this_cpu,
2208 sched_group_cpus(group));
2210 /* Tally up the load of all CPUs in the group */
2213 for_each_cpu(i, sched_group_cpus(group)) {
2214 /* Bias balancing toward cpus of our domain */
2216 load = source_load(i, load_idx);
2218 load = target_load(i, load_idx);
2223 /* Adjust by relative CPU power of the group */
2224 avg_load = sg_div_cpu_power(group,
2225 avg_load * SCHED_LOAD_SCALE);
2228 this_load = avg_load;
2230 } else if (avg_load < min_load) {
2231 min_load = avg_load;
2234 } while (group = group->next, group != sd->groups);
2236 if (!idlest || 100*this_load < imbalance*min_load)
2242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2245 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2247 unsigned long load, min_load = ULONG_MAX;
2251 /* Traverse only the allowed CPUs */
2252 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2253 load = weighted_cpuload(i);
2255 if (load < min_load || (load == min_load && i == this_cpu)) {
2265 * sched_balance_self: balance the current task (running on cpu) in domains
2266 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2269 * Balance, ie. select the least loaded group.
2271 * Returns the target CPU number, or the same CPU if no balancing is needed.
2273 * preempt must be disabled.
2275 static int sched_balance_self(int cpu, int flag)
2277 struct task_struct *t = current;
2278 struct sched_domain *tmp, *sd = NULL;
2280 for_each_domain(cpu, tmp) {
2282 * If power savings logic is enabled for a domain, stop there.
2284 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2286 if (tmp->flags & flag)
2294 struct sched_group *group;
2295 int new_cpu, weight;
2297 if (!(sd->flags & flag)) {
2302 group = find_idlest_group(sd, t, cpu);
2308 new_cpu = find_idlest_cpu(group, t, cpu);
2309 if (new_cpu == -1 || new_cpu == cpu) {
2310 /* Now try balancing at a lower domain level of cpu */
2315 /* Now try balancing at a lower domain level of new_cpu */
2317 weight = cpumask_weight(sched_domain_span(sd));
2319 for_each_domain(cpu, tmp) {
2320 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2322 if (tmp->flags & flag)
2325 /* while loop will break here if sd == NULL */
2331 #endif /* CONFIG_SMP */
2334 * try_to_wake_up - wake up a thread
2335 * @p: the to-be-woken-up thread
2336 * @state: the mask of task states that can be woken
2337 * @sync: do a synchronous wakeup?
2339 * Put it on the run-queue if it's not already there. The "current"
2340 * thread is always on the run-queue (except when the actual
2341 * re-schedule is in progress), and as such you're allowed to do
2342 * the simpler "current->state = TASK_RUNNING" to mark yourself
2343 * runnable without the overhead of this.
2345 * returns failure only if the task is already active.
2347 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2349 int cpu, orig_cpu, this_cpu, success = 0;
2350 unsigned long flags;
2354 if (!sched_feat(SYNC_WAKEUPS))
2358 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2359 struct sched_domain *sd;
2361 this_cpu = raw_smp_processor_id();
2364 for_each_domain(this_cpu, sd) {
2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2374 rq = task_rq_lock(p, &flags);
2375 update_rq_clock(rq);
2376 old_state = p->state;
2377 if (!(old_state & state))
2385 this_cpu = smp_processor_id();
2388 if (unlikely(task_running(rq, p)))
2391 cpu = p->sched_class->select_task_rq(p, sync);
2392 if (cpu != orig_cpu) {
2393 set_task_cpu(p, cpu);
2394 task_rq_unlock(rq, &flags);
2395 /* might preempt at this point */
2396 rq = task_rq_lock(p, &flags);
2397 old_state = p->state;
2398 if (!(old_state & state))
2403 this_cpu = smp_processor_id();
2407 #ifdef CONFIG_SCHEDSTATS
2408 schedstat_inc(rq, ttwu_count);
2409 if (cpu == this_cpu)
2410 schedstat_inc(rq, ttwu_local);
2412 struct sched_domain *sd;
2413 for_each_domain(this_cpu, sd) {
2414 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2415 schedstat_inc(sd, ttwu_wake_remote);
2420 #endif /* CONFIG_SCHEDSTATS */
2423 #endif /* CONFIG_SMP */
2424 schedstat_inc(p, se.nr_wakeups);
2426 schedstat_inc(p, se.nr_wakeups_sync);
2427 if (orig_cpu != cpu)
2428 schedstat_inc(p, se.nr_wakeups_migrate);
2429 if (cpu == this_cpu)
2430 schedstat_inc(p, se.nr_wakeups_local);
2432 schedstat_inc(p, se.nr_wakeups_remote);
2433 activate_task(rq, p, 1);
2437 * Only attribute actual wakeups done by this task.
2439 if (!in_interrupt()) {
2440 struct sched_entity *se = ¤t->se;
2441 u64 sample = se->sum_exec_runtime;
2443 if (se->last_wakeup)
2444 sample -= se->last_wakeup;
2446 sample -= se->start_runtime;
2447 update_avg(&se->avg_wakeup, sample);
2449 se->last_wakeup = se->sum_exec_runtime;
2453 trace_sched_wakeup(rq, p, success);
2454 check_preempt_curr(rq, p, sync);
2456 p->state = TASK_RUNNING;
2458 if (p->sched_class->task_wake_up)
2459 p->sched_class->task_wake_up(rq, p);
2462 task_rq_unlock(rq, &flags);
2468 * wake_up_process - Wake up a specific process
2469 * @p: The process to be woken up.
2471 * Attempt to wake up the nominated process and move it to the set of runnable
2472 * processes. Returns 1 if the process was woken up, 0 if it was already
2475 * It may be assumed that this function implies a write memory barrier before
2476 * changing the task state if and only if any tasks are woken up.
2478 int wake_up_process(struct task_struct *p)
2480 return try_to_wake_up(p, TASK_ALL, 0);
2482 EXPORT_SYMBOL(wake_up_process);
2484 int wake_up_state(struct task_struct *p, unsigned int state)
2486 return try_to_wake_up(p, state, 0);
2490 * Perform scheduler related setup for a newly forked process p.
2491 * p is forked by current.
2493 * __sched_fork() is basic setup used by init_idle() too:
2495 static void __sched_fork(struct task_struct *p)
2497 p->se.exec_start = 0;
2498 p->se.sum_exec_runtime = 0;
2499 p->se.prev_sum_exec_runtime = 0;
2500 p->se.last_wakeup = 0;
2501 p->se.avg_overlap = 0;
2502 p->se.start_runtime = 0;
2503 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2505 #ifdef CONFIG_SCHEDSTATS
2506 p->se.wait_start = 0;
2507 p->se.sum_sleep_runtime = 0;
2508 p->se.sleep_start = 0;
2509 p->se.block_start = 0;
2510 p->se.sleep_max = 0;
2511 p->se.block_max = 0;
2513 p->se.slice_max = 0;
2517 INIT_LIST_HEAD(&p->rt.run_list);
2519 INIT_LIST_HEAD(&p->se.group_node);
2521 #ifdef CONFIG_PREEMPT_NOTIFIERS
2522 INIT_HLIST_HEAD(&p->preempt_notifiers);
2526 * We mark the process as running here, but have not actually
2527 * inserted it onto the runqueue yet. This guarantees that
2528 * nobody will actually run it, and a signal or other external
2529 * event cannot wake it up and insert it on the runqueue either.
2531 p->state = TASK_RUNNING;
2535 * fork()/clone()-time setup:
2537 void sched_fork(struct task_struct *p, int clone_flags)
2539 int cpu = get_cpu();
2544 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2546 set_task_cpu(p, cpu);
2549 * Make sure we do not leak PI boosting priority to the child:
2551 p->prio = current->normal_prio;
2552 if (!rt_prio(p->prio))
2553 p->sched_class = &fair_sched_class;
2555 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2556 if (likely(sched_info_on()))
2557 memset(&p->sched_info, 0, sizeof(p->sched_info));
2559 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2562 #ifdef CONFIG_PREEMPT
2563 /* Want to start with kernel preemption disabled. */
2564 task_thread_info(p)->preempt_count = 1;
2566 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2572 * wake_up_new_task - wake up a newly created task for the first time.
2574 * This function will do some initial scheduler statistics housekeeping
2575 * that must be done for every newly created context, then puts the task
2576 * on the runqueue and wakes it.
2578 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2580 unsigned long flags;
2583 rq = task_rq_lock(p, &flags);
2584 BUG_ON(p->state != TASK_RUNNING);
2585 update_rq_clock(rq);
2587 p->prio = effective_prio(p);
2589 if (!p->sched_class->task_new || !current->se.on_rq) {
2590 activate_task(rq, p, 0);
2593 * Let the scheduling class do new task startup
2594 * management (if any):
2596 p->sched_class->task_new(rq, p);
2599 trace_sched_wakeup_new(rq, p, 1);
2600 check_preempt_curr(rq, p, 0);
2602 if (p->sched_class->task_wake_up)
2603 p->sched_class->task_wake_up(rq, p);
2605 task_rq_unlock(rq, &flags);
2608 #ifdef CONFIG_PREEMPT_NOTIFIERS
2611 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2612 * @notifier: notifier struct to register
2614 void preempt_notifier_register(struct preempt_notifier *notifier)
2616 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2618 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
2622 * @notifier: notifier struct to unregister
2624 * This is safe to call from within a preemption notifier.
2626 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2628 hlist_del(¬ifier->link);
2630 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2632 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_out(notifier, next);
2652 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2654 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2659 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2664 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2667 * prepare_task_switch - prepare to switch tasks
2668 * @rq: the runqueue preparing to switch
2669 * @prev: the current task that is being switched out
2670 * @next: the task we are going to switch to.
2672 * This is called with the rq lock held and interrupts off. It must
2673 * be paired with a subsequent finish_task_switch after the context
2676 * prepare_task_switch sets up locking and calls architecture specific
2680 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2681 struct task_struct *next)
2683 fire_sched_out_preempt_notifiers(prev, next);
2684 prepare_lock_switch(rq, next);
2685 prepare_arch_switch(next);
2689 * finish_task_switch - clean up after a task-switch
2690 * @rq: runqueue associated with task-switch
2691 * @prev: the thread we just switched away from.
2693 * finish_task_switch must be called after the context switch, paired
2694 * with a prepare_task_switch call before the context switch.
2695 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2696 * and do any other architecture-specific cleanup actions.
2698 * Note that we may have delayed dropping an mm in context_switch(). If
2699 * so, we finish that here outside of the runqueue lock. (Doing it
2700 * with the lock held can cause deadlocks; see schedule() for
2703 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2704 __releases(rq->lock)
2706 struct mm_struct *mm = rq->prev_mm;
2709 int post_schedule = 0;
2711 if (current->sched_class->needs_post_schedule)
2712 post_schedule = current->sched_class->needs_post_schedule(rq);
2718 * A task struct has one reference for the use as "current".
2719 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2720 * schedule one last time. The schedule call will never return, and
2721 * the scheduled task must drop that reference.
2722 * The test for TASK_DEAD must occur while the runqueue locks are
2723 * still held, otherwise prev could be scheduled on another cpu, die
2724 * there before we look at prev->state, and then the reference would
2726 * Manfred Spraul <manfred@colorfullife.com>
2728 prev_state = prev->state;
2729 finish_arch_switch(prev);
2730 finish_lock_switch(rq, prev);
2733 current->sched_class->post_schedule(rq);
2736 fire_sched_in_preempt_notifiers(current);
2739 if (unlikely(prev_state == TASK_DEAD)) {
2741 * Remove function-return probe instances associated with this
2742 * task and put them back on the free list.
2744 kprobe_flush_task(prev);
2745 put_task_struct(prev);
2750 * schedule_tail - first thing a freshly forked thread must call.
2751 * @prev: the thread we just switched away from.
2753 asmlinkage void schedule_tail(struct task_struct *prev)
2754 __releases(rq->lock)
2756 struct rq *rq = this_rq();
2758 finish_task_switch(rq, prev);
2759 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2760 /* In this case, finish_task_switch does not reenable preemption */
2763 if (current->set_child_tid)
2764 put_user(task_pid_vnr(current), current->set_child_tid);
2768 * context_switch - switch to the new MM and the new
2769 * thread's register state.
2772 context_switch(struct rq *rq, struct task_struct *prev,
2773 struct task_struct *next)
2775 struct mm_struct *mm, *oldmm;
2777 prepare_task_switch(rq, prev, next);
2778 trace_sched_switch(rq, prev, next);
2780 oldmm = prev->active_mm;
2782 * For paravirt, this is coupled with an exit in switch_to to
2783 * combine the page table reload and the switch backend into
2786 arch_start_context_switch(prev);
2788 if (unlikely(!mm)) {
2789 next->active_mm = oldmm;
2790 atomic_inc(&oldmm->mm_count);
2791 enter_lazy_tlb(oldmm, next);
2793 switch_mm(oldmm, mm, next);
2795 if (unlikely(!prev->mm)) {
2796 prev->active_mm = NULL;
2797 rq->prev_mm = oldmm;
2800 * Since the runqueue lock will be released by the next
2801 * task (which is an invalid locking op but in the case
2802 * of the scheduler it's an obvious special-case), so we
2803 * do an early lockdep release here:
2805 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2809 /* Here we just switch the register state and the stack. */
2810 switch_to(prev, next, prev);
2814 * this_rq must be evaluated again because prev may have moved
2815 * CPUs since it called schedule(), thus the 'rq' on its stack
2816 * frame will be invalid.
2818 finish_task_switch(this_rq(), prev);
2822 * nr_running, nr_uninterruptible and nr_context_switches:
2824 * externally visible scheduler statistics: current number of runnable
2825 * threads, current number of uninterruptible-sleeping threads, total
2826 * number of context switches performed since bootup.
2828 unsigned long nr_running(void)
2830 unsigned long i, sum = 0;
2832 for_each_online_cpu(i)
2833 sum += cpu_rq(i)->nr_running;
2838 unsigned long nr_uninterruptible(void)
2840 unsigned long i, sum = 0;
2842 for_each_possible_cpu(i)
2843 sum += cpu_rq(i)->nr_uninterruptible;
2846 * Since we read the counters lockless, it might be slightly
2847 * inaccurate. Do not allow it to go below zero though:
2849 if (unlikely((long)sum < 0))
2855 unsigned long long nr_context_switches(void)
2858 unsigned long long sum = 0;
2860 for_each_possible_cpu(i)
2861 sum += cpu_rq(i)->nr_switches;
2866 unsigned long nr_iowait(void)
2868 unsigned long i, sum = 0;
2870 for_each_possible_cpu(i)
2871 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2876 /* Variables and functions for calc_load */
2877 static atomic_long_t calc_load_tasks;
2878 static unsigned long calc_load_update;
2879 unsigned long avenrun[3];
2880 EXPORT_SYMBOL(avenrun);
2883 * get_avenrun - get the load average array
2884 * @loads: pointer to dest load array
2885 * @offset: offset to add
2886 * @shift: shift count to shift the result left
2888 * These values are estimates at best, so no need for locking.
2890 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2892 loads[0] = (avenrun[0] + offset) << shift;
2893 loads[1] = (avenrun[1] + offset) << shift;
2894 loads[2] = (avenrun[2] + offset) << shift;
2897 static unsigned long
2898 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2901 load += active * (FIXED_1 - exp);
2902 return load >> FSHIFT;
2906 * calc_load - update the avenrun load estimates 10 ticks after the
2907 * CPUs have updated calc_load_tasks.
2909 void calc_global_load(void)
2911 unsigned long upd = calc_load_update + 10;
2914 if (time_before(jiffies, upd))
2917 active = atomic_long_read(&calc_load_tasks);
2918 active = active > 0 ? active * FIXED_1 : 0;
2920 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2921 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2922 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2924 calc_load_update += LOAD_FREQ;
2928 * Either called from update_cpu_load() or from a cpu going idle
2930 static void calc_load_account_active(struct rq *this_rq)
2932 long nr_active, delta;
2934 nr_active = this_rq->nr_running;
2935 nr_active += (long) this_rq->nr_uninterruptible;
2937 if (nr_active != this_rq->calc_load_active) {
2938 delta = nr_active - this_rq->calc_load_active;
2939 this_rq->calc_load_active = nr_active;
2940 atomic_long_add(delta, &calc_load_tasks);
2945 * Update rq->cpu_load[] statistics. This function is usually called every
2946 * scheduler tick (TICK_NSEC).
2948 static void update_cpu_load(struct rq *this_rq)
2950 unsigned long this_load = this_rq->load.weight;
2953 this_rq->nr_load_updates++;
2955 /* Update our load: */
2956 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2957 unsigned long old_load, new_load;
2959 /* scale is effectively 1 << i now, and >> i divides by scale */
2961 old_load = this_rq->cpu_load[i];
2962 new_load = this_load;
2964 * Round up the averaging division if load is increasing. This
2965 * prevents us from getting stuck on 9 if the load is 10, for
2968 if (new_load > old_load)
2969 new_load += scale-1;
2970 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2973 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
2974 this_rq->calc_load_update += LOAD_FREQ;
2975 calc_load_account_active(this_rq);
2982 * double_rq_lock - safely lock two runqueues
2984 * Note this does not disable interrupts like task_rq_lock,
2985 * you need to do so manually before calling.
2987 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2988 __acquires(rq1->lock)
2989 __acquires(rq2->lock)
2991 BUG_ON(!irqs_disabled());
2993 spin_lock(&rq1->lock);
2994 __acquire(rq2->lock); /* Fake it out ;) */
2997 spin_lock(&rq1->lock);
2998 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3000 spin_lock(&rq2->lock);
3001 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3004 update_rq_clock(rq1);
3005 update_rq_clock(rq2);
3009 * double_rq_unlock - safely unlock two runqueues
3011 * Note this does not restore interrupts like task_rq_unlock,
3012 * you need to do so manually after calling.
3014 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3015 __releases(rq1->lock)
3016 __releases(rq2->lock)
3018 spin_unlock(&rq1->lock);
3020 spin_unlock(&rq2->lock);
3022 __release(rq2->lock);
3026 * If dest_cpu is allowed for this process, migrate the task to it.
3027 * This is accomplished by forcing the cpu_allowed mask to only
3028 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3029 * the cpu_allowed mask is restored.
3031 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3033 struct migration_req req;
3034 unsigned long flags;
3037 rq = task_rq_lock(p, &flags);
3038 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3039 || unlikely(!cpu_active(dest_cpu)))
3042 /* force the process onto the specified CPU */
3043 if (migrate_task(p, dest_cpu, &req)) {
3044 /* Need to wait for migration thread (might exit: take ref). */
3045 struct task_struct *mt = rq->migration_thread;
3047 get_task_struct(mt);
3048 task_rq_unlock(rq, &flags);
3049 wake_up_process(mt);
3050 put_task_struct(mt);
3051 wait_for_completion(&req.done);
3056 task_rq_unlock(rq, &flags);
3060 * sched_exec - execve() is a valuable balancing opportunity, because at
3061 * this point the task has the smallest effective memory and cache footprint.
3063 void sched_exec(void)
3065 int new_cpu, this_cpu = get_cpu();
3066 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3068 if (new_cpu != this_cpu)
3069 sched_migrate_task(current, new_cpu);
3073 * pull_task - move a task from a remote runqueue to the local runqueue.
3074 * Both runqueues must be locked.
3076 static void pull_task(struct rq *src_rq, struct task_struct *p,
3077 struct rq *this_rq, int this_cpu)
3079 deactivate_task(src_rq, p, 0);
3080 set_task_cpu(p, this_cpu);
3081 activate_task(this_rq, p, 0);
3083 * Note that idle threads have a prio of MAX_PRIO, for this test
3084 * to be always true for them.
3086 check_preempt_curr(this_rq, p, 0);
3090 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3093 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3094 struct sched_domain *sd, enum cpu_idle_type idle,
3097 int tsk_cache_hot = 0;
3099 * We do not migrate tasks that are:
3100 * 1) running (obviously), or
3101 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3102 * 3) are cache-hot on their current CPU.
3104 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3105 schedstat_inc(p, se.nr_failed_migrations_affine);
3110 if (task_running(rq, p)) {
3111 schedstat_inc(p, se.nr_failed_migrations_running);
3116 * Aggressive migration if:
3117 * 1) task is cache cold, or
3118 * 2) too many balance attempts have failed.
3121 tsk_cache_hot = task_hot(p, rq->clock, sd);
3122 if (!tsk_cache_hot ||
3123 sd->nr_balance_failed > sd->cache_nice_tries) {
3124 #ifdef CONFIG_SCHEDSTATS
3125 if (tsk_cache_hot) {
3126 schedstat_inc(sd, lb_hot_gained[idle]);
3127 schedstat_inc(p, se.nr_forced_migrations);
3133 if (tsk_cache_hot) {
3134 schedstat_inc(p, se.nr_failed_migrations_hot);
3140 static unsigned long
3141 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3142 unsigned long max_load_move, struct sched_domain *sd,
3143 enum cpu_idle_type idle, int *all_pinned,
3144 int *this_best_prio, struct rq_iterator *iterator)
3146 int loops = 0, pulled = 0, pinned = 0;
3147 struct task_struct *p;
3148 long rem_load_move = max_load_move;
3150 if (max_load_move == 0)
3156 * Start the load-balancing iterator:
3158 p = iterator->start(iterator->arg);
3160 if (!p || loops++ > sysctl_sched_nr_migrate)
3163 if ((p->se.load.weight >> 1) > rem_load_move ||
3164 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3165 p = iterator->next(iterator->arg);
3169 pull_task(busiest, p, this_rq, this_cpu);
3171 rem_load_move -= p->se.load.weight;
3173 #ifdef CONFIG_PREEMPT
3175 * NEWIDLE balancing is a source of latency, so preemptible kernels
3176 * will stop after the first task is pulled to minimize the critical
3179 if (idle == CPU_NEWLY_IDLE)
3184 * We only want to steal up to the prescribed amount of weighted load.
3186 if (rem_load_move > 0) {
3187 if (p->prio < *this_best_prio)
3188 *this_best_prio = p->prio;
3189 p = iterator->next(iterator->arg);
3194 * Right now, this is one of only two places pull_task() is called,
3195 * so we can safely collect pull_task() stats here rather than
3196 * inside pull_task().
3198 schedstat_add(sd, lb_gained[idle], pulled);
3201 *all_pinned = pinned;
3203 return max_load_move - rem_load_move;
3207 * move_tasks tries to move up to max_load_move weighted load from busiest to
3208 * this_rq, as part of a balancing operation within domain "sd".
3209 * Returns 1 if successful and 0 otherwise.
3211 * Called with both runqueues locked.
3213 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3214 unsigned long max_load_move,
3215 struct sched_domain *sd, enum cpu_idle_type idle,
3218 const struct sched_class *class = sched_class_highest;
3219 unsigned long total_load_moved = 0;
3220 int this_best_prio = this_rq->curr->prio;
3224 class->load_balance(this_rq, this_cpu, busiest,
3225 max_load_move - total_load_moved,
3226 sd, idle, all_pinned, &this_best_prio);
3227 class = class->next;
3229 #ifdef CONFIG_PREEMPT
3231 * NEWIDLE balancing is a source of latency, so preemptible
3232 * kernels will stop after the first task is pulled to minimize
3233 * the critical section.
3235 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3238 } while (class && max_load_move > total_load_moved);
3240 return total_load_moved > 0;
3244 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3245 struct sched_domain *sd, enum cpu_idle_type idle,
3246 struct rq_iterator *iterator)
3248 struct task_struct *p = iterator->start(iterator->arg);
3252 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3253 pull_task(busiest, p, this_rq, this_cpu);
3255 * Right now, this is only the second place pull_task()
3256 * is called, so we can safely collect pull_task()
3257 * stats here rather than inside pull_task().
3259 schedstat_inc(sd, lb_gained[idle]);
3263 p = iterator->next(iterator->arg);
3270 * move_one_task tries to move exactly one task from busiest to this_rq, as
3271 * part of active balancing operations within "domain".
3272 * Returns 1 if successful and 0 otherwise.
3274 * Called with both runqueues locked.
3276 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3277 struct sched_domain *sd, enum cpu_idle_type idle)
3279 const struct sched_class *class;
3281 for (class = sched_class_highest; class; class = class->next)
3282 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3287 /********** Helpers for find_busiest_group ************************/
3289 * sd_lb_stats - Structure to store the statistics of a sched_domain
3290 * during load balancing.
3292 struct sd_lb_stats {
3293 struct sched_group *busiest; /* Busiest group in this sd */
3294 struct sched_group *this; /* Local group in this sd */
3295 unsigned long total_load; /* Total load of all groups in sd */
3296 unsigned long total_pwr; /* Total power of all groups in sd */
3297 unsigned long avg_load; /* Average load across all groups in sd */
3299 /** Statistics of this group */
3300 unsigned long this_load;
3301 unsigned long this_load_per_task;
3302 unsigned long this_nr_running;
3304 /* Statistics of the busiest group */
3305 unsigned long max_load;
3306 unsigned long busiest_load_per_task;
3307 unsigned long busiest_nr_running;
3309 int group_imb; /* Is there imbalance in this sd */
3310 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3311 int power_savings_balance; /* Is powersave balance needed for this sd */
3312 struct sched_group *group_min; /* Least loaded group in sd */
3313 struct sched_group *group_leader; /* Group which relieves group_min */
3314 unsigned long min_load_per_task; /* load_per_task in group_min */
3315 unsigned long leader_nr_running; /* Nr running of group_leader */
3316 unsigned long min_nr_running; /* Nr running of group_min */
3321 * sg_lb_stats - stats of a sched_group required for load_balancing
3323 struct sg_lb_stats {
3324 unsigned long avg_load; /*Avg load across the CPUs of the group */
3325 unsigned long group_load; /* Total load over the CPUs of the group */
3326 unsigned long sum_nr_running; /* Nr tasks running in the group */
3327 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3328 unsigned long group_capacity;
3329 int group_imb; /* Is there an imbalance in the group ? */
3333 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3334 * @group: The group whose first cpu is to be returned.
3336 static inline unsigned int group_first_cpu(struct sched_group *group)
3338 return cpumask_first(sched_group_cpus(group));
3342 * get_sd_load_idx - Obtain the load index for a given sched domain.
3343 * @sd: The sched_domain whose load_idx is to be obtained.
3344 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3346 static inline int get_sd_load_idx(struct sched_domain *sd,
3347 enum cpu_idle_type idle)
3353 load_idx = sd->busy_idx;
3356 case CPU_NEWLY_IDLE:
3357 load_idx = sd->newidle_idx;
3360 load_idx = sd->idle_idx;
3368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3370 * init_sd_power_savings_stats - Initialize power savings statistics for
3371 * the given sched_domain, during load balancing.
3373 * @sd: Sched domain whose power-savings statistics are to be initialized.
3374 * @sds: Variable containing the statistics for sd.
3375 * @idle: Idle status of the CPU at which we're performing load-balancing.
3377 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3378 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3381 * Busy processors will not participate in power savings
3384 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3385 sds->power_savings_balance = 0;
3387 sds->power_savings_balance = 1;
3388 sds->min_nr_running = ULONG_MAX;
3389 sds->leader_nr_running = 0;
3394 * update_sd_power_savings_stats - Update the power saving stats for a
3395 * sched_domain while performing load balancing.
3397 * @group: sched_group belonging to the sched_domain under consideration.
3398 * @sds: Variable containing the statistics of the sched_domain
3399 * @local_group: Does group contain the CPU for which we're performing
3401 * @sgs: Variable containing the statistics of the group.
3403 static inline void update_sd_power_savings_stats(struct sched_group *group,
3404 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3407 if (!sds->power_savings_balance)
3411 * If the local group is idle or completely loaded
3412 * no need to do power savings balance at this domain
3414 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3415 !sds->this_nr_running))
3416 sds->power_savings_balance = 0;
3419 * If a group is already running at full capacity or idle,
3420 * don't include that group in power savings calculations
3422 if (!sds->power_savings_balance ||
3423 sgs->sum_nr_running >= sgs->group_capacity ||
3424 !sgs->sum_nr_running)
3428 * Calculate the group which has the least non-idle load.
3429 * This is the group from where we need to pick up the load
3432 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3433 (sgs->sum_nr_running == sds->min_nr_running &&
3434 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3435 sds->group_min = group;
3436 sds->min_nr_running = sgs->sum_nr_running;
3437 sds->min_load_per_task = sgs->sum_weighted_load /
3438 sgs->sum_nr_running;
3442 * Calculate the group which is almost near its
3443 * capacity but still has some space to pick up some load
3444 * from other group and save more power
3446 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3449 if (sgs->sum_nr_running > sds->leader_nr_running ||
3450 (sgs->sum_nr_running == sds->leader_nr_running &&
3451 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3452 sds->group_leader = group;
3453 sds->leader_nr_running = sgs->sum_nr_running;
3458 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3459 * @sds: Variable containing the statistics of the sched_domain
3460 * under consideration.
3461 * @this_cpu: Cpu at which we're currently performing load-balancing.
3462 * @imbalance: Variable to store the imbalance.
3465 * Check if we have potential to perform some power-savings balance.
3466 * If yes, set the busiest group to be the least loaded group in the
3467 * sched_domain, so that it's CPUs can be put to idle.
3469 * Returns 1 if there is potential to perform power-savings balance.
3472 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3473 int this_cpu, unsigned long *imbalance)
3475 if (!sds->power_savings_balance)
3478 if (sds->this != sds->group_leader ||
3479 sds->group_leader == sds->group_min)
3482 *imbalance = sds->min_load_per_task;
3483 sds->busiest = sds->group_min;
3485 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3486 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3487 group_first_cpu(sds->group_leader);
3493 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3494 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3495 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3500 static inline void update_sd_power_savings_stats(struct sched_group *group,
3501 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3506 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3507 int this_cpu, unsigned long *imbalance)
3511 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3515 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3516 * @group: sched_group whose statistics are to be updated.
3517 * @this_cpu: Cpu for which load balance is currently performed.
3518 * @idle: Idle status of this_cpu
3519 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3520 * @sd_idle: Idle status of the sched_domain containing group.
3521 * @local_group: Does group contain this_cpu.
3522 * @cpus: Set of cpus considered for load balancing.
3523 * @balance: Should we balance.
3524 * @sgs: variable to hold the statistics for this group.
3526 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3527 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3528 int local_group, const struct cpumask *cpus,
3529 int *balance, struct sg_lb_stats *sgs)
3531 unsigned long load, max_cpu_load, min_cpu_load;
3533 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3534 unsigned long sum_avg_load_per_task;
3535 unsigned long avg_load_per_task;
3538 balance_cpu = group_first_cpu(group);
3540 /* Tally up the load of all CPUs in the group */
3541 sum_avg_load_per_task = avg_load_per_task = 0;
3543 min_cpu_load = ~0UL;
3545 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3546 struct rq *rq = cpu_rq(i);
3548 if (*sd_idle && rq->nr_running)
3551 /* Bias balancing toward cpus of our domain */
3553 if (idle_cpu(i) && !first_idle_cpu) {
3558 load = target_load(i, load_idx);
3560 load = source_load(i, load_idx);
3561 if (load > max_cpu_load)
3562 max_cpu_load = load;
3563 if (min_cpu_load > load)
3564 min_cpu_load = load;
3567 sgs->group_load += load;
3568 sgs->sum_nr_running += rq->nr_running;
3569 sgs->sum_weighted_load += weighted_cpuload(i);
3571 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3575 * First idle cpu or the first cpu(busiest) in this sched group
3576 * is eligible for doing load balancing at this and above
3577 * domains. In the newly idle case, we will allow all the cpu's
3578 * to do the newly idle load balance.
3580 if (idle != CPU_NEWLY_IDLE && local_group &&
3581 balance_cpu != this_cpu && balance) {
3586 /* Adjust by relative CPU power of the group */
3587 sgs->avg_load = sg_div_cpu_power(group,
3588 sgs->group_load * SCHED_LOAD_SCALE);
3592 * Consider the group unbalanced when the imbalance is larger
3593 * than the average weight of two tasks.
3595 * APZ: with cgroup the avg task weight can vary wildly and
3596 * might not be a suitable number - should we keep a
3597 * normalized nr_running number somewhere that negates
3600 avg_load_per_task = sg_div_cpu_power(group,
3601 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3603 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3606 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3611 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3612 * @sd: sched_domain whose statistics are to be updated.
3613 * @this_cpu: Cpu for which load balance is currently performed.
3614 * @idle: Idle status of this_cpu
3615 * @sd_idle: Idle status of the sched_domain containing group.
3616 * @cpus: Set of cpus considered for load balancing.
3617 * @balance: Should we balance.
3618 * @sds: variable to hold the statistics for this sched_domain.
3620 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3621 enum cpu_idle_type idle, int *sd_idle,
3622 const struct cpumask *cpus, int *balance,
3623 struct sd_lb_stats *sds)
3625 struct sched_group *group = sd->groups;
3626 struct sg_lb_stats sgs;
3629 init_sd_power_savings_stats(sd, sds, idle);
3630 load_idx = get_sd_load_idx(sd, idle);
3635 local_group = cpumask_test_cpu(this_cpu,
3636 sched_group_cpus(group));
3637 memset(&sgs, 0, sizeof(sgs));
3638 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3639 local_group, cpus, balance, &sgs);
3641 if (local_group && balance && !(*balance))
3644 sds->total_load += sgs.group_load;
3645 sds->total_pwr += group->__cpu_power;
3648 sds->this_load = sgs.avg_load;
3650 sds->this_nr_running = sgs.sum_nr_running;
3651 sds->this_load_per_task = sgs.sum_weighted_load;
3652 } else if (sgs.avg_load > sds->max_load &&
3653 (sgs.sum_nr_running > sgs.group_capacity ||
3655 sds->max_load = sgs.avg_load;
3656 sds->busiest = group;
3657 sds->busiest_nr_running = sgs.sum_nr_running;
3658 sds->busiest_load_per_task = sgs.sum_weighted_load;
3659 sds->group_imb = sgs.group_imb;
3662 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3663 group = group->next;
3664 } while (group != sd->groups);
3669 * fix_small_imbalance - Calculate the minor imbalance that exists
3670 * amongst the groups of a sched_domain, during
3672 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3673 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3674 * @imbalance: Variable to store the imbalance.
3676 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3677 int this_cpu, unsigned long *imbalance)
3679 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3680 unsigned int imbn = 2;
3682 if (sds->this_nr_running) {
3683 sds->this_load_per_task /= sds->this_nr_running;
3684 if (sds->busiest_load_per_task >
3685 sds->this_load_per_task)
3688 sds->this_load_per_task =
3689 cpu_avg_load_per_task(this_cpu);
3691 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3692 sds->busiest_load_per_task * imbn) {
3693 *imbalance = sds->busiest_load_per_task;
3698 * OK, we don't have enough imbalance to justify moving tasks,
3699 * however we may be able to increase total CPU power used by
3703 pwr_now += sds->busiest->__cpu_power *
3704 min(sds->busiest_load_per_task, sds->max_load);
3705 pwr_now += sds->this->__cpu_power *
3706 min(sds->this_load_per_task, sds->this_load);
3707 pwr_now /= SCHED_LOAD_SCALE;
3709 /* Amount of load we'd subtract */
3710 tmp = sg_div_cpu_power(sds->busiest,
3711 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3712 if (sds->max_load > tmp)
3713 pwr_move += sds->busiest->__cpu_power *
3714 min(sds->busiest_load_per_task, sds->max_load - tmp);
3716 /* Amount of load we'd add */
3717 if (sds->max_load * sds->busiest->__cpu_power <
3718 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3719 tmp = sg_div_cpu_power(sds->this,
3720 sds->max_load * sds->busiest->__cpu_power);
3722 tmp = sg_div_cpu_power(sds->this,
3723 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3724 pwr_move += sds->this->__cpu_power *
3725 min(sds->this_load_per_task, sds->this_load + tmp);
3726 pwr_move /= SCHED_LOAD_SCALE;
3728 /* Move if we gain throughput */
3729 if (pwr_move > pwr_now)
3730 *imbalance = sds->busiest_load_per_task;
3734 * calculate_imbalance - Calculate the amount of imbalance present within the
3735 * groups of a given sched_domain during load balance.
3736 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3737 * @this_cpu: Cpu for which currently load balance is being performed.
3738 * @imbalance: The variable to store the imbalance.
3740 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3741 unsigned long *imbalance)
3743 unsigned long max_pull;
3745 * In the presence of smp nice balancing, certain scenarios can have
3746 * max load less than avg load(as we skip the groups at or below
3747 * its cpu_power, while calculating max_load..)
3749 if (sds->max_load < sds->avg_load) {
3751 return fix_small_imbalance(sds, this_cpu, imbalance);
3754 /* Don't want to pull so many tasks that a group would go idle */
3755 max_pull = min(sds->max_load - sds->avg_load,
3756 sds->max_load - sds->busiest_load_per_task);
3758 /* How much load to actually move to equalise the imbalance */
3759 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3760 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3764 * if *imbalance is less than the average load per runnable task
3765 * there is no gaurantee that any tasks will be moved so we'll have
3766 * a think about bumping its value to force at least one task to be
3769 if (*imbalance < sds->busiest_load_per_task)
3770 return fix_small_imbalance(sds, this_cpu, imbalance);
3773 /******* find_busiest_group() helpers end here *********************/
3776 * find_busiest_group - Returns the busiest group within the sched_domain
3777 * if there is an imbalance. If there isn't an imbalance, and
3778 * the user has opted for power-savings, it returns a group whose
3779 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3780 * such a group exists.
3782 * Also calculates the amount of weighted load which should be moved
3783 * to restore balance.
3785 * @sd: The sched_domain whose busiest group is to be returned.
3786 * @this_cpu: The cpu for which load balancing is currently being performed.
3787 * @imbalance: Variable which stores amount of weighted load which should
3788 * be moved to restore balance/put a group to idle.
3789 * @idle: The idle status of this_cpu.
3790 * @sd_idle: The idleness of sd
3791 * @cpus: The set of CPUs under consideration for load-balancing.
3792 * @balance: Pointer to a variable indicating if this_cpu
3793 * is the appropriate cpu to perform load balancing at this_level.
3795 * Returns: - the busiest group if imbalance exists.
3796 * - If no imbalance and user has opted for power-savings balance,
3797 * return the least loaded group whose CPUs can be
3798 * put to idle by rebalancing its tasks onto our group.
3800 static struct sched_group *
3801 find_busiest_group(struct sched_domain *sd, int this_cpu,
3802 unsigned long *imbalance, enum cpu_idle_type idle,
3803 int *sd_idle, const struct cpumask *cpus, int *balance)
3805 struct sd_lb_stats sds;
3807 memset(&sds, 0, sizeof(sds));
3810 * Compute the various statistics relavent for load balancing at
3813 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3816 /* Cases where imbalance does not exist from POV of this_cpu */
3817 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3819 * 2) There is no busy sibling group to pull from.
3820 * 3) This group is the busiest group.
3821 * 4) This group is more busy than the avg busieness at this
3823 * 5) The imbalance is within the specified limit.
3824 * 6) Any rebalance would lead to ping-pong
3826 if (balance && !(*balance))
3829 if (!sds.busiest || sds.busiest_nr_running == 0)
3832 if (sds.this_load >= sds.max_load)
3835 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3837 if (sds.this_load >= sds.avg_load)
3840 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3843 sds.busiest_load_per_task /= sds.busiest_nr_running;
3845 sds.busiest_load_per_task =
3846 min(sds.busiest_load_per_task, sds.avg_load);
3849 * We're trying to get all the cpus to the average_load, so we don't
3850 * want to push ourselves above the average load, nor do we wish to
3851 * reduce the max loaded cpu below the average load, as either of these
3852 * actions would just result in more rebalancing later, and ping-pong
3853 * tasks around. Thus we look for the minimum possible imbalance.
3854 * Negative imbalances (*we* are more loaded than anyone else) will
3855 * be counted as no imbalance for these purposes -- we can't fix that
3856 * by pulling tasks to us. Be careful of negative numbers as they'll
3857 * appear as very large values with unsigned longs.
3859 if (sds.max_load <= sds.busiest_load_per_task)
3862 /* Looks like there is an imbalance. Compute it */
3863 calculate_imbalance(&sds, this_cpu, imbalance);
3868 * There is no obvious imbalance. But check if we can do some balancing
3871 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3879 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3882 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3883 unsigned long imbalance, const struct cpumask *cpus)
3885 struct rq *busiest = NULL, *rq;
3886 unsigned long max_load = 0;
3889 for_each_cpu(i, sched_group_cpus(group)) {
3892 if (!cpumask_test_cpu(i, cpus))
3896 wl = weighted_cpuload(i);
3898 if (rq->nr_running == 1 && wl > imbalance)
3901 if (wl > max_load) {
3911 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3912 * so long as it is large enough.
3914 #define MAX_PINNED_INTERVAL 512
3916 /* Working cpumask for load_balance and load_balance_newidle. */
3917 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3920 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3921 * tasks if there is an imbalance.
3923 static int load_balance(int this_cpu, struct rq *this_rq,
3924 struct sched_domain *sd, enum cpu_idle_type idle,
3927 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3928 struct sched_group *group;
3929 unsigned long imbalance;
3931 unsigned long flags;
3932 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3934 cpumask_setall(cpus);
3937 * When power savings policy is enabled for the parent domain, idle
3938 * sibling can pick up load irrespective of busy siblings. In this case,
3939 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3940 * portraying it as CPU_NOT_IDLE.
3942 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3943 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3946 schedstat_inc(sd, lb_count[idle]);
3950 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3957 schedstat_inc(sd, lb_nobusyg[idle]);
3961 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3963 schedstat_inc(sd, lb_nobusyq[idle]);
3967 BUG_ON(busiest == this_rq);
3969 schedstat_add(sd, lb_imbalance[idle], imbalance);
3972 if (busiest->nr_running > 1) {
3974 * Attempt to move tasks. If find_busiest_group has found
3975 * an imbalance but busiest->nr_running <= 1, the group is
3976 * still unbalanced. ld_moved simply stays zero, so it is
3977 * correctly treated as an imbalance.
3979 local_irq_save(flags);
3980 double_rq_lock(this_rq, busiest);
3981 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3982 imbalance, sd, idle, &all_pinned);
3983 double_rq_unlock(this_rq, busiest);
3984 local_irq_restore(flags);
3987 * some other cpu did the load balance for us.
3989 if (ld_moved && this_cpu != smp_processor_id())
3990 resched_cpu(this_cpu);
3992 /* All tasks on this runqueue were pinned by CPU affinity */
3993 if (unlikely(all_pinned)) {
3994 cpumask_clear_cpu(cpu_of(busiest), cpus);
3995 if (!cpumask_empty(cpus))
4002 schedstat_inc(sd, lb_failed[idle]);
4003 sd->nr_balance_failed++;
4005 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4007 spin_lock_irqsave(&busiest->lock, flags);
4009 /* don't kick the migration_thread, if the curr
4010 * task on busiest cpu can't be moved to this_cpu
4012 if (!cpumask_test_cpu(this_cpu,
4013 &busiest->curr->cpus_allowed)) {
4014 spin_unlock_irqrestore(&busiest->lock, flags);
4016 goto out_one_pinned;
4019 if (!busiest->active_balance) {
4020 busiest->active_balance = 1;
4021 busiest->push_cpu = this_cpu;
4024 spin_unlock_irqrestore(&busiest->lock, flags);
4026 wake_up_process(busiest->migration_thread);
4029 * We've kicked active balancing, reset the failure
4032 sd->nr_balance_failed = sd->cache_nice_tries+1;
4035 sd->nr_balance_failed = 0;
4037 if (likely(!active_balance)) {
4038 /* We were unbalanced, so reset the balancing interval */
4039 sd->balance_interval = sd->min_interval;
4042 * If we've begun active balancing, start to back off. This
4043 * case may not be covered by the all_pinned logic if there
4044 * is only 1 task on the busy runqueue (because we don't call
4047 if (sd->balance_interval < sd->max_interval)
4048 sd->balance_interval *= 2;
4051 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4052 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4058 schedstat_inc(sd, lb_balanced[idle]);
4060 sd->nr_balance_failed = 0;
4063 /* tune up the balancing interval */
4064 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4065 (sd->balance_interval < sd->max_interval))
4066 sd->balance_interval *= 2;
4068 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4069 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4080 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4081 * tasks if there is an imbalance.
4083 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4084 * this_rq is locked.
4087 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4089 struct sched_group *group;
4090 struct rq *busiest = NULL;
4091 unsigned long imbalance;
4095 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4097 cpumask_setall(cpus);
4100 * When power savings policy is enabled for the parent domain, idle
4101 * sibling can pick up load irrespective of busy siblings. In this case,
4102 * let the state of idle sibling percolate up as IDLE, instead of
4103 * portraying it as CPU_NOT_IDLE.
4105 if (sd->flags & SD_SHARE_CPUPOWER &&
4106 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4109 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4111 update_shares_locked(this_rq, sd);
4112 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4113 &sd_idle, cpus, NULL);
4115 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4119 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4121 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4125 BUG_ON(busiest == this_rq);
4127 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4130 if (busiest->nr_running > 1) {
4131 /* Attempt to move tasks */
4132 double_lock_balance(this_rq, busiest);
4133 /* this_rq->clock is already updated */
4134 update_rq_clock(busiest);
4135 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4136 imbalance, sd, CPU_NEWLY_IDLE,
4138 double_unlock_balance(this_rq, busiest);
4140 if (unlikely(all_pinned)) {
4141 cpumask_clear_cpu(cpu_of(busiest), cpus);
4142 if (!cpumask_empty(cpus))
4148 int active_balance = 0;
4150 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4151 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4152 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4155 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4158 if (sd->nr_balance_failed++ < 2)
4162 * The only task running in a non-idle cpu can be moved to this
4163 * cpu in an attempt to completely freeup the other CPU
4164 * package. The same method used to move task in load_balance()
4165 * have been extended for load_balance_newidle() to speedup
4166 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4168 * The package power saving logic comes from
4169 * find_busiest_group(). If there are no imbalance, then
4170 * f_b_g() will return NULL. However when sched_mc={1,2} then
4171 * f_b_g() will select a group from which a running task may be
4172 * pulled to this cpu in order to make the other package idle.
4173 * If there is no opportunity to make a package idle and if
4174 * there are no imbalance, then f_b_g() will return NULL and no
4175 * action will be taken in load_balance_newidle().
4177 * Under normal task pull operation due to imbalance, there
4178 * will be more than one task in the source run queue and
4179 * move_tasks() will succeed. ld_moved will be true and this
4180 * active balance code will not be triggered.
4183 /* Lock busiest in correct order while this_rq is held */
4184 double_lock_balance(this_rq, busiest);
4187 * don't kick the migration_thread, if the curr
4188 * task on busiest cpu can't be moved to this_cpu
4190 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4191 double_unlock_balance(this_rq, busiest);
4196 if (!busiest->active_balance) {
4197 busiest->active_balance = 1;
4198 busiest->push_cpu = this_cpu;
4202 double_unlock_balance(this_rq, busiest);
4204 * Should not call ttwu while holding a rq->lock
4206 spin_unlock(&this_rq->lock);
4208 wake_up_process(busiest->migration_thread);
4209 spin_lock(&this_rq->lock);
4212 sd->nr_balance_failed = 0;
4214 update_shares_locked(this_rq, sd);
4218 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4219 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4220 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4222 sd->nr_balance_failed = 0;
4228 * idle_balance is called by schedule() if this_cpu is about to become
4229 * idle. Attempts to pull tasks from other CPUs.
4231 static void idle_balance(int this_cpu, struct rq *this_rq)
4233 struct sched_domain *sd;
4234 int pulled_task = 0;
4235 unsigned long next_balance = jiffies + HZ;
4237 for_each_domain(this_cpu, sd) {
4238 unsigned long interval;
4240 if (!(sd->flags & SD_LOAD_BALANCE))
4243 if (sd->flags & SD_BALANCE_NEWIDLE)
4244 /* If we've pulled tasks over stop searching: */
4245 pulled_task = load_balance_newidle(this_cpu, this_rq,
4248 interval = msecs_to_jiffies(sd->balance_interval);
4249 if (time_after(next_balance, sd->last_balance + interval))
4250 next_balance = sd->last_balance + interval;
4254 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4256 * We are going idle. next_balance may be set based on
4257 * a busy processor. So reset next_balance.
4259 this_rq->next_balance = next_balance;
4264 * active_load_balance is run by migration threads. It pushes running tasks
4265 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4266 * running on each physical CPU where possible, and avoids physical /
4267 * logical imbalances.
4269 * Called with busiest_rq locked.
4271 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4273 int target_cpu = busiest_rq->push_cpu;
4274 struct sched_domain *sd;
4275 struct rq *target_rq;
4277 /* Is there any task to move? */
4278 if (busiest_rq->nr_running <= 1)
4281 target_rq = cpu_rq(target_cpu);
4284 * This condition is "impossible", if it occurs
4285 * we need to fix it. Originally reported by
4286 * Bjorn Helgaas on a 128-cpu setup.
4288 BUG_ON(busiest_rq == target_rq);
4290 /* move a task from busiest_rq to target_rq */
4291 double_lock_balance(busiest_rq, target_rq);
4292 update_rq_clock(busiest_rq);
4293 update_rq_clock(target_rq);
4295 /* Search for an sd spanning us and the target CPU. */
4296 for_each_domain(target_cpu, sd) {
4297 if ((sd->flags & SD_LOAD_BALANCE) &&
4298 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4303 schedstat_inc(sd, alb_count);
4305 if (move_one_task(target_rq, target_cpu, busiest_rq,
4307 schedstat_inc(sd, alb_pushed);
4309 schedstat_inc(sd, alb_failed);
4311 double_unlock_balance(busiest_rq, target_rq);
4316 atomic_t load_balancer;
4317 cpumask_var_t cpu_mask;
4318 cpumask_var_t ilb_grp_nohz_mask;
4319 } nohz ____cacheline_aligned = {
4320 .load_balancer = ATOMIC_INIT(-1),
4323 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4325 * lowest_flag_domain - Return lowest sched_domain containing flag.
4326 * @cpu: The cpu whose lowest level of sched domain is to
4328 * @flag: The flag to check for the lowest sched_domain
4329 * for the given cpu.
4331 * Returns the lowest sched_domain of a cpu which contains the given flag.
4333 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4335 struct sched_domain *sd;
4337 for_each_domain(cpu, sd)
4338 if (sd && (sd->flags & flag))
4345 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4346 * @cpu: The cpu whose domains we're iterating over.
4347 * @sd: variable holding the value of the power_savings_sd
4349 * @flag: The flag to filter the sched_domains to be iterated.
4351 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4352 * set, starting from the lowest sched_domain to the highest.
4354 #define for_each_flag_domain(cpu, sd, flag) \
4355 for (sd = lowest_flag_domain(cpu, flag); \
4356 (sd && (sd->flags & flag)); sd = sd->parent)
4359 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4360 * @ilb_group: group to be checked for semi-idleness
4362 * Returns: 1 if the group is semi-idle. 0 otherwise.
4364 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4365 * and atleast one non-idle CPU. This helper function checks if the given
4366 * sched_group is semi-idle or not.
4368 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4370 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4371 sched_group_cpus(ilb_group));
4374 * A sched_group is semi-idle when it has atleast one busy cpu
4375 * and atleast one idle cpu.
4377 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4380 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4386 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4387 * @cpu: The cpu which is nominating a new idle_load_balancer.
4389 * Returns: Returns the id of the idle load balancer if it exists,
4390 * Else, returns >= nr_cpu_ids.
4392 * This algorithm picks the idle load balancer such that it belongs to a
4393 * semi-idle powersavings sched_domain. The idea is to try and avoid
4394 * completely idle packages/cores just for the purpose of idle load balancing
4395 * when there are other idle cpu's which are better suited for that job.
4397 static int find_new_ilb(int cpu)
4399 struct sched_domain *sd;
4400 struct sched_group *ilb_group;
4403 * Have idle load balancer selection from semi-idle packages only
4404 * when power-aware load balancing is enabled
4406 if (!(sched_smt_power_savings || sched_mc_power_savings))
4410 * Optimize for the case when we have no idle CPUs or only one
4411 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4413 if (cpumask_weight(nohz.cpu_mask) < 2)
4416 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4417 ilb_group = sd->groups;
4420 if (is_semi_idle_group(ilb_group))
4421 return cpumask_first(nohz.ilb_grp_nohz_mask);
4423 ilb_group = ilb_group->next;
4425 } while (ilb_group != sd->groups);
4429 return cpumask_first(nohz.cpu_mask);
4431 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4432 static inline int find_new_ilb(int call_cpu)
4434 return cpumask_first(nohz.cpu_mask);
4439 * This routine will try to nominate the ilb (idle load balancing)
4440 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4441 * load balancing on behalf of all those cpus. If all the cpus in the system
4442 * go into this tickless mode, then there will be no ilb owner (as there is
4443 * no need for one) and all the cpus will sleep till the next wakeup event
4446 * For the ilb owner, tick is not stopped. And this tick will be used
4447 * for idle load balancing. ilb owner will still be part of
4450 * While stopping the tick, this cpu will become the ilb owner if there
4451 * is no other owner. And will be the owner till that cpu becomes busy
4452 * or if all cpus in the system stop their ticks at which point
4453 * there is no need for ilb owner.
4455 * When the ilb owner becomes busy, it nominates another owner, during the
4456 * next busy scheduler_tick()
4458 int select_nohz_load_balancer(int stop_tick)
4460 int cpu = smp_processor_id();
4463 cpu_rq(cpu)->in_nohz_recently = 1;
4465 if (!cpu_active(cpu)) {
4466 if (atomic_read(&nohz.load_balancer) != cpu)
4470 * If we are going offline and still the leader,
4473 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4479 cpumask_set_cpu(cpu, nohz.cpu_mask);
4481 /* time for ilb owner also to sleep */
4482 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4483 if (atomic_read(&nohz.load_balancer) == cpu)
4484 atomic_set(&nohz.load_balancer, -1);
4488 if (atomic_read(&nohz.load_balancer) == -1) {
4489 /* make me the ilb owner */
4490 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4492 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4495 if (!(sched_smt_power_savings ||
4496 sched_mc_power_savings))
4499 * Check to see if there is a more power-efficient
4502 new_ilb = find_new_ilb(cpu);
4503 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4504 atomic_set(&nohz.load_balancer, -1);
4505 resched_cpu(new_ilb);
4511 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4514 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4516 if (atomic_read(&nohz.load_balancer) == cpu)
4517 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4524 static DEFINE_SPINLOCK(balancing);
4527 * It checks each scheduling domain to see if it is due to be balanced,
4528 * and initiates a balancing operation if so.
4530 * Balancing parameters are set up in arch_init_sched_domains.
4532 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4535 struct rq *rq = cpu_rq(cpu);
4536 unsigned long interval;
4537 struct sched_domain *sd;
4538 /* Earliest time when we have to do rebalance again */
4539 unsigned long next_balance = jiffies + 60*HZ;
4540 int update_next_balance = 0;
4543 for_each_domain(cpu, sd) {
4544 if (!(sd->flags & SD_LOAD_BALANCE))
4547 interval = sd->balance_interval;
4548 if (idle != CPU_IDLE)
4549 interval *= sd->busy_factor;
4551 /* scale ms to jiffies */
4552 interval = msecs_to_jiffies(interval);
4553 if (unlikely(!interval))
4555 if (interval > HZ*NR_CPUS/10)
4556 interval = HZ*NR_CPUS/10;
4558 need_serialize = sd->flags & SD_SERIALIZE;
4560 if (need_serialize) {
4561 if (!spin_trylock(&balancing))
4565 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4566 if (load_balance(cpu, rq, sd, idle, &balance)) {
4568 * We've pulled tasks over so either we're no
4569 * longer idle, or one of our SMT siblings is
4572 idle = CPU_NOT_IDLE;
4574 sd->last_balance = jiffies;
4577 spin_unlock(&balancing);
4579 if (time_after(next_balance, sd->last_balance + interval)) {
4580 next_balance = sd->last_balance + interval;
4581 update_next_balance = 1;
4585 * Stop the load balance at this level. There is another
4586 * CPU in our sched group which is doing load balancing more
4594 * next_balance will be updated only when there is a need.
4595 * When the cpu is attached to null domain for ex, it will not be
4598 if (likely(update_next_balance))
4599 rq->next_balance = next_balance;
4603 * run_rebalance_domains is triggered when needed from the scheduler tick.
4604 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4605 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4607 static void run_rebalance_domains(struct softirq_action *h)
4609 int this_cpu = smp_processor_id();
4610 struct rq *this_rq = cpu_rq(this_cpu);
4611 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4612 CPU_IDLE : CPU_NOT_IDLE;
4614 rebalance_domains(this_cpu, idle);
4618 * If this cpu is the owner for idle load balancing, then do the
4619 * balancing on behalf of the other idle cpus whose ticks are
4622 if (this_rq->idle_at_tick &&
4623 atomic_read(&nohz.load_balancer) == this_cpu) {
4627 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4628 if (balance_cpu == this_cpu)
4632 * If this cpu gets work to do, stop the load balancing
4633 * work being done for other cpus. Next load
4634 * balancing owner will pick it up.
4639 rebalance_domains(balance_cpu, CPU_IDLE);
4641 rq = cpu_rq(balance_cpu);
4642 if (time_after(this_rq->next_balance, rq->next_balance))
4643 this_rq->next_balance = rq->next_balance;
4649 static inline int on_null_domain(int cpu)
4651 return !rcu_dereference(cpu_rq(cpu)->sd);
4655 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4657 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4658 * idle load balancing owner or decide to stop the periodic load balancing,
4659 * if the whole system is idle.
4661 static inline void trigger_load_balance(struct rq *rq, int cpu)
4665 * If we were in the nohz mode recently and busy at the current
4666 * scheduler tick, then check if we need to nominate new idle
4669 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4670 rq->in_nohz_recently = 0;
4672 if (atomic_read(&nohz.load_balancer) == cpu) {
4673 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4674 atomic_set(&nohz.load_balancer, -1);
4677 if (atomic_read(&nohz.load_balancer) == -1) {
4678 int ilb = find_new_ilb(cpu);
4680 if (ilb < nr_cpu_ids)
4686 * If this cpu is idle and doing idle load balancing for all the
4687 * cpus with ticks stopped, is it time for that to stop?
4689 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4690 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4696 * If this cpu is idle and the idle load balancing is done by
4697 * someone else, then no need raise the SCHED_SOFTIRQ
4699 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4700 cpumask_test_cpu(cpu, nohz.cpu_mask))
4703 /* Don't need to rebalance while attached to NULL domain */
4704 if (time_after_eq(jiffies, rq->next_balance) &&
4705 likely(!on_null_domain(cpu)))
4706 raise_softirq(SCHED_SOFTIRQ);
4709 #else /* CONFIG_SMP */
4712 * on UP we do not need to balance between CPUs:
4714 static inline void idle_balance(int cpu, struct rq *rq)
4720 DEFINE_PER_CPU(struct kernel_stat, kstat);
4722 EXPORT_PER_CPU_SYMBOL(kstat);
4725 * Return any ns on the sched_clock that have not yet been accounted in
4726 * @p in case that task is currently running.
4728 * Called with task_rq_lock() held on @rq.
4730 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4734 if (task_current(rq, p)) {
4735 update_rq_clock(rq);
4736 ns = rq->clock - p->se.exec_start;
4744 unsigned long long task_delta_exec(struct task_struct *p)
4746 unsigned long flags;
4750 rq = task_rq_lock(p, &flags);
4751 ns = do_task_delta_exec(p, rq);
4752 task_rq_unlock(rq, &flags);
4758 * Return accounted runtime for the task.
4759 * In case the task is currently running, return the runtime plus current's
4760 * pending runtime that have not been accounted yet.
4762 unsigned long long task_sched_runtime(struct task_struct *p)
4764 unsigned long flags;
4768 rq = task_rq_lock(p, &flags);
4769 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4770 task_rq_unlock(rq, &flags);
4776 * Return sum_exec_runtime for the thread group.
4777 * In case the task is currently running, return the sum plus current's
4778 * pending runtime that have not been accounted yet.
4780 * Note that the thread group might have other running tasks as well,
4781 * so the return value not includes other pending runtime that other
4782 * running tasks might have.
4784 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4786 struct task_cputime totals;
4787 unsigned long flags;
4791 rq = task_rq_lock(p, &flags);
4792 thread_group_cputime(p, &totals);
4793 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4794 task_rq_unlock(rq, &flags);
4800 * Account user cpu time to a process.
4801 * @p: the process that the cpu time gets accounted to
4802 * @cputime: the cpu time spent in user space since the last update
4803 * @cputime_scaled: cputime scaled by cpu frequency
4805 void account_user_time(struct task_struct *p, cputime_t cputime,
4806 cputime_t cputime_scaled)
4808 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4811 /* Add user time to process. */
4812 p->utime = cputime_add(p->utime, cputime);
4813 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4814 account_group_user_time(p, cputime);
4816 /* Add user time to cpustat. */
4817 tmp = cputime_to_cputime64(cputime);
4818 if (TASK_NICE(p) > 0)
4819 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4821 cpustat->user = cputime64_add(cpustat->user, tmp);
4823 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4824 /* Account for user time used */
4825 acct_update_integrals(p);
4829 * Account guest cpu time to a process.
4830 * @p: the process that the cpu time gets accounted to
4831 * @cputime: the cpu time spent in virtual machine since the last update
4832 * @cputime_scaled: cputime scaled by cpu frequency
4834 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4835 cputime_t cputime_scaled)
4838 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4840 tmp = cputime_to_cputime64(cputime);
4842 /* Add guest time to process. */
4843 p->utime = cputime_add(p->utime, cputime);
4844 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4845 account_group_user_time(p, cputime);
4846 p->gtime = cputime_add(p->gtime, cputime);
4848 /* Add guest time to cpustat. */
4849 cpustat->user = cputime64_add(cpustat->user, tmp);
4850 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4854 * Account system cpu time to a process.
4855 * @p: the process that the cpu time gets accounted to
4856 * @hardirq_offset: the offset to subtract from hardirq_count()
4857 * @cputime: the cpu time spent in kernel space since the last update
4858 * @cputime_scaled: cputime scaled by cpu frequency
4860 void account_system_time(struct task_struct *p, int hardirq_offset,
4861 cputime_t cputime, cputime_t cputime_scaled)
4863 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4866 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4867 account_guest_time(p, cputime, cputime_scaled);
4871 /* Add system time to process. */
4872 p->stime = cputime_add(p->stime, cputime);
4873 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4874 account_group_system_time(p, cputime);
4876 /* Add system time to cpustat. */
4877 tmp = cputime_to_cputime64(cputime);
4878 if (hardirq_count() - hardirq_offset)
4879 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4880 else if (softirq_count())
4881 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4883 cpustat->system = cputime64_add(cpustat->system, tmp);
4885 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4887 /* Account for system time used */
4888 acct_update_integrals(p);
4892 * Account for involuntary wait time.
4893 * @steal: the cpu time spent in involuntary wait
4895 void account_steal_time(cputime_t cputime)
4897 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4898 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4900 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4904 * Account for idle time.
4905 * @cputime: the cpu time spent in idle wait
4907 void account_idle_time(cputime_t cputime)
4909 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4910 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4911 struct rq *rq = this_rq();
4913 if (atomic_read(&rq->nr_iowait) > 0)
4914 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4916 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4919 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4922 * Account a single tick of cpu time.
4923 * @p: the process that the cpu time gets accounted to
4924 * @user_tick: indicates if the tick is a user or a system tick
4926 void account_process_tick(struct task_struct *p, int user_tick)
4928 cputime_t one_jiffy = jiffies_to_cputime(1);
4929 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4930 struct rq *rq = this_rq();
4933 account_user_time(p, one_jiffy, one_jiffy_scaled);
4934 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4935 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4938 account_idle_time(one_jiffy);
4942 * Account multiple ticks of steal time.
4943 * @p: the process from which the cpu time has been stolen
4944 * @ticks: number of stolen ticks
4946 void account_steal_ticks(unsigned long ticks)
4948 account_steal_time(jiffies_to_cputime(ticks));
4952 * Account multiple ticks of idle time.
4953 * @ticks: number of stolen ticks
4955 void account_idle_ticks(unsigned long ticks)
4957 account_idle_time(jiffies_to_cputime(ticks));
4963 * Use precise platform statistics if available:
4965 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4966 cputime_t task_utime(struct task_struct *p)
4971 cputime_t task_stime(struct task_struct *p)
4976 cputime_t task_utime(struct task_struct *p)
4978 clock_t utime = cputime_to_clock_t(p->utime),
4979 total = utime + cputime_to_clock_t(p->stime);
4983 * Use CFS's precise accounting:
4985 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4989 do_div(temp, total);
4991 utime = (clock_t)temp;
4993 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4994 return p->prev_utime;
4997 cputime_t task_stime(struct task_struct *p)
5002 * Use CFS's precise accounting. (we subtract utime from
5003 * the total, to make sure the total observed by userspace
5004 * grows monotonically - apps rely on that):
5006 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5007 cputime_to_clock_t(task_utime(p));
5010 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5012 return p->prev_stime;
5016 inline cputime_t task_gtime(struct task_struct *p)
5022 * This function gets called by the timer code, with HZ frequency.
5023 * We call it with interrupts disabled.
5025 * It also gets called by the fork code, when changing the parent's
5028 void scheduler_tick(void)
5030 int cpu = smp_processor_id();
5031 struct rq *rq = cpu_rq(cpu);
5032 struct task_struct *curr = rq->curr;
5036 spin_lock(&rq->lock);
5037 update_rq_clock(rq);
5038 update_cpu_load(rq);
5039 curr->sched_class->task_tick(rq, curr, 0);
5040 spin_unlock(&rq->lock);
5043 rq->idle_at_tick = idle_cpu(cpu);
5044 trigger_load_balance(rq, cpu);
5048 notrace unsigned long get_parent_ip(unsigned long addr)
5050 if (in_lock_functions(addr)) {
5051 addr = CALLER_ADDR2;
5052 if (in_lock_functions(addr))
5053 addr = CALLER_ADDR3;
5058 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5059 defined(CONFIG_PREEMPT_TRACER))
5061 void __kprobes add_preempt_count(int val)
5063 #ifdef CONFIG_DEBUG_PREEMPT
5067 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5070 preempt_count() += val;
5071 #ifdef CONFIG_DEBUG_PREEMPT
5073 * Spinlock count overflowing soon?
5075 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5078 if (preempt_count() == val)
5079 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5081 EXPORT_SYMBOL(add_preempt_count);
5083 void __kprobes sub_preempt_count(int val)
5085 #ifdef CONFIG_DEBUG_PREEMPT
5089 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5092 * Is the spinlock portion underflowing?
5094 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5095 !(preempt_count() & PREEMPT_MASK)))
5099 if (preempt_count() == val)
5100 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5101 preempt_count() -= val;
5103 EXPORT_SYMBOL(sub_preempt_count);
5108 * Print scheduling while atomic bug:
5110 static noinline void __schedule_bug(struct task_struct *prev)
5112 struct pt_regs *regs = get_irq_regs();
5114 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5115 prev->comm, prev->pid, preempt_count());
5117 debug_show_held_locks(prev);
5119 if (irqs_disabled())
5120 print_irqtrace_events(prev);
5129 * Various schedule()-time debugging checks and statistics:
5131 static inline void schedule_debug(struct task_struct *prev)
5134 * Test if we are atomic. Since do_exit() needs to call into
5135 * schedule() atomically, we ignore that path for now.
5136 * Otherwise, whine if we are scheduling when we should not be.
5138 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5139 __schedule_bug(prev);
5141 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5143 schedstat_inc(this_rq(), sched_count);
5144 #ifdef CONFIG_SCHEDSTATS
5145 if (unlikely(prev->lock_depth >= 0)) {
5146 schedstat_inc(this_rq(), bkl_count);
5147 schedstat_inc(prev, sched_info.bkl_count);
5152 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5154 if (prev->state == TASK_RUNNING) {
5155 u64 runtime = prev->se.sum_exec_runtime;
5157 runtime -= prev->se.prev_sum_exec_runtime;
5158 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5161 * In order to avoid avg_overlap growing stale when we are
5162 * indeed overlapping and hence not getting put to sleep, grow
5163 * the avg_overlap on preemption.
5165 * We use the average preemption runtime because that
5166 * correlates to the amount of cache footprint a task can
5169 update_avg(&prev->se.avg_overlap, runtime);
5171 prev->sched_class->put_prev_task(rq, prev);
5175 * Pick up the highest-prio task:
5177 static inline struct task_struct *
5178 pick_next_task(struct rq *rq)
5180 const struct sched_class *class;
5181 struct task_struct *p;
5184 * Optimization: we know that if all tasks are in
5185 * the fair class we can call that function directly:
5187 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5188 p = fair_sched_class.pick_next_task(rq);
5193 class = sched_class_highest;
5195 p = class->pick_next_task(rq);
5199 * Will never be NULL as the idle class always
5200 * returns a non-NULL p:
5202 class = class->next;
5207 * schedule() is the main scheduler function.
5209 asmlinkage void __sched schedule(void)
5211 struct task_struct *prev, *next;
5212 unsigned long *switch_count;
5218 cpu = smp_processor_id();
5222 switch_count = &prev->nivcsw;
5224 release_kernel_lock(prev);
5225 need_resched_nonpreemptible:
5227 schedule_debug(prev);
5229 if (sched_feat(HRTICK))
5232 spin_lock_irq(&rq->lock);
5233 update_rq_clock(rq);
5234 clear_tsk_need_resched(prev);
5236 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5237 if (unlikely(signal_pending_state(prev->state, prev)))
5238 prev->state = TASK_RUNNING;
5240 deactivate_task(rq, prev, 1);
5241 switch_count = &prev->nvcsw;
5245 if (prev->sched_class->pre_schedule)
5246 prev->sched_class->pre_schedule(rq, prev);
5249 if (unlikely(!rq->nr_running))
5250 idle_balance(cpu, rq);
5252 put_prev_task(rq, prev);
5253 next = pick_next_task(rq);
5255 if (likely(prev != next)) {
5256 sched_info_switch(prev, next);
5262 context_switch(rq, prev, next); /* unlocks the rq */
5264 * the context switch might have flipped the stack from under
5265 * us, hence refresh the local variables.
5267 cpu = smp_processor_id();
5270 spin_unlock_irq(&rq->lock);
5272 if (unlikely(reacquire_kernel_lock(current) < 0))
5273 goto need_resched_nonpreemptible;
5275 preempt_enable_no_resched();
5279 EXPORT_SYMBOL(schedule);
5283 * Look out! "owner" is an entirely speculative pointer
5284 * access and not reliable.
5286 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5291 if (!sched_feat(OWNER_SPIN))
5294 #ifdef CONFIG_DEBUG_PAGEALLOC
5296 * Need to access the cpu field knowing that
5297 * DEBUG_PAGEALLOC could have unmapped it if
5298 * the mutex owner just released it and exited.
5300 if (probe_kernel_address(&owner->cpu, cpu))
5307 * Even if the access succeeded (likely case),
5308 * the cpu field may no longer be valid.
5310 if (cpu >= nr_cpumask_bits)
5314 * We need to validate that we can do a
5315 * get_cpu() and that we have the percpu area.
5317 if (!cpu_online(cpu))
5324 * Owner changed, break to re-assess state.
5326 if (lock->owner != owner)
5330 * Is that owner really running on that cpu?
5332 if (task_thread_info(rq->curr) != owner || need_resched())
5342 #ifdef CONFIG_PREEMPT
5344 * this is the entry point to schedule() from in-kernel preemption
5345 * off of preempt_enable. Kernel preemptions off return from interrupt
5346 * occur there and call schedule directly.
5348 asmlinkage void __sched preempt_schedule(void)
5350 struct thread_info *ti = current_thread_info();
5353 * If there is a non-zero preempt_count or interrupts are disabled,
5354 * we do not want to preempt the current task. Just return..
5356 if (likely(ti->preempt_count || irqs_disabled()))
5360 add_preempt_count(PREEMPT_ACTIVE);
5362 sub_preempt_count(PREEMPT_ACTIVE);
5365 * Check again in case we missed a preemption opportunity
5366 * between schedule and now.
5369 } while (need_resched());
5371 EXPORT_SYMBOL(preempt_schedule);
5374 * this is the entry point to schedule() from kernel preemption
5375 * off of irq context.
5376 * Note, that this is called and return with irqs disabled. This will
5377 * protect us against recursive calling from irq.
5379 asmlinkage void __sched preempt_schedule_irq(void)
5381 struct thread_info *ti = current_thread_info();
5383 /* Catch callers which need to be fixed */
5384 BUG_ON(ti->preempt_count || !irqs_disabled());
5387 add_preempt_count(PREEMPT_ACTIVE);
5390 local_irq_disable();
5391 sub_preempt_count(PREEMPT_ACTIVE);
5394 * Check again in case we missed a preemption opportunity
5395 * between schedule and now.
5398 } while (need_resched());
5401 #endif /* CONFIG_PREEMPT */
5403 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5406 return try_to_wake_up(curr->private, mode, sync);
5408 EXPORT_SYMBOL(default_wake_function);
5411 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5412 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5413 * number) then we wake all the non-exclusive tasks and one exclusive task.
5415 * There are circumstances in which we can try to wake a task which has already
5416 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5417 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5419 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5420 int nr_exclusive, int sync, void *key)
5422 wait_queue_t *curr, *next;
5424 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5425 unsigned flags = curr->flags;
5427 if (curr->func(curr, mode, sync, key) &&
5428 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5434 * __wake_up - wake up threads blocked on a waitqueue.
5436 * @mode: which threads
5437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5438 * @key: is directly passed to the wakeup function
5440 * It may be assumed that this function implies a write memory barrier before
5441 * changing the task state if and only if any tasks are woken up.
5443 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5444 int nr_exclusive, void *key)
5446 unsigned long flags;
5448 spin_lock_irqsave(&q->lock, flags);
5449 __wake_up_common(q, mode, nr_exclusive, 0, key);
5450 spin_unlock_irqrestore(&q->lock, flags);
5452 EXPORT_SYMBOL(__wake_up);
5455 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5457 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5459 __wake_up_common(q, mode, 1, 0, NULL);
5462 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5464 __wake_up_common(q, mode, 1, 0, key);
5468 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5470 * @mode: which threads
5471 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5472 * @key: opaque value to be passed to wakeup targets
5474 * The sync wakeup differs that the waker knows that it will schedule
5475 * away soon, so while the target thread will be woken up, it will not
5476 * be migrated to another CPU - ie. the two threads are 'synchronized'
5477 * with each other. This can prevent needless bouncing between CPUs.
5479 * On UP it can prevent extra preemption.
5481 * It may be assumed that this function implies a write memory barrier before
5482 * changing the task state if and only if any tasks are woken up.
5484 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5485 int nr_exclusive, void *key)
5487 unsigned long flags;
5493 if (unlikely(!nr_exclusive))
5496 spin_lock_irqsave(&q->lock, flags);
5497 __wake_up_common(q, mode, nr_exclusive, sync, key);
5498 spin_unlock_irqrestore(&q->lock, flags);
5500 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5503 * __wake_up_sync - see __wake_up_sync_key()
5505 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5507 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5509 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5512 * complete: - signals a single thread waiting on this completion
5513 * @x: holds the state of this particular completion
5515 * This will wake up a single thread waiting on this completion. Threads will be
5516 * awakened in the same order in which they were queued.
5518 * See also complete_all(), wait_for_completion() and related routines.
5520 * It may be assumed that this function implies a write memory barrier before
5521 * changing the task state if and only if any tasks are woken up.
5523 void complete(struct completion *x)
5525 unsigned long flags;
5527 spin_lock_irqsave(&x->wait.lock, flags);
5529 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5530 spin_unlock_irqrestore(&x->wait.lock, flags);
5532 EXPORT_SYMBOL(complete);
5535 * complete_all: - signals all threads waiting on this completion
5536 * @x: holds the state of this particular completion
5538 * This will wake up all threads waiting on this particular completion event.
5540 * It may be assumed that this function implies a write memory barrier before
5541 * changing the task state if and only if any tasks are woken up.
5543 void complete_all(struct completion *x)
5545 unsigned long flags;
5547 spin_lock_irqsave(&x->wait.lock, flags);
5548 x->done += UINT_MAX/2;
5549 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5550 spin_unlock_irqrestore(&x->wait.lock, flags);
5552 EXPORT_SYMBOL(complete_all);
5554 static inline long __sched
5555 do_wait_for_common(struct completion *x, long timeout, int state)
5558 DECLARE_WAITQUEUE(wait, current);
5560 wait.flags |= WQ_FLAG_EXCLUSIVE;
5561 __add_wait_queue_tail(&x->wait, &wait);
5563 if (signal_pending_state(state, current)) {
5564 timeout = -ERESTARTSYS;
5567 __set_current_state(state);
5568 spin_unlock_irq(&x->wait.lock);
5569 timeout = schedule_timeout(timeout);
5570 spin_lock_irq(&x->wait.lock);
5571 } while (!x->done && timeout);
5572 __remove_wait_queue(&x->wait, &wait);
5577 return timeout ?: 1;
5581 wait_for_common(struct completion *x, long timeout, int state)
5585 spin_lock_irq(&x->wait.lock);
5586 timeout = do_wait_for_common(x, timeout, state);
5587 spin_unlock_irq(&x->wait.lock);
5592 * wait_for_completion: - waits for completion of a task
5593 * @x: holds the state of this particular completion
5595 * This waits to be signaled for completion of a specific task. It is NOT
5596 * interruptible and there is no timeout.
5598 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5599 * and interrupt capability. Also see complete().
5601 void __sched wait_for_completion(struct completion *x)
5603 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5605 EXPORT_SYMBOL(wait_for_completion);
5608 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5609 * @x: holds the state of this particular completion
5610 * @timeout: timeout value in jiffies
5612 * This waits for either a completion of a specific task to be signaled or for a
5613 * specified timeout to expire. The timeout is in jiffies. It is not
5616 unsigned long __sched
5617 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5619 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5621 EXPORT_SYMBOL(wait_for_completion_timeout);
5624 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5625 * @x: holds the state of this particular completion
5627 * This waits for completion of a specific task to be signaled. It is
5630 int __sched wait_for_completion_interruptible(struct completion *x)
5632 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5633 if (t == -ERESTARTSYS)
5637 EXPORT_SYMBOL(wait_for_completion_interruptible);
5640 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5641 * @x: holds the state of this particular completion
5642 * @timeout: timeout value in jiffies
5644 * This waits for either a completion of a specific task to be signaled or for a
5645 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5647 unsigned long __sched
5648 wait_for_completion_interruptible_timeout(struct completion *x,
5649 unsigned long timeout)
5651 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5653 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5656 * wait_for_completion_killable: - waits for completion of a task (killable)
5657 * @x: holds the state of this particular completion
5659 * This waits to be signaled for completion of a specific task. It can be
5660 * interrupted by a kill signal.
5662 int __sched wait_for_completion_killable(struct completion *x)
5664 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5665 if (t == -ERESTARTSYS)
5669 EXPORT_SYMBOL(wait_for_completion_killable);
5672 * try_wait_for_completion - try to decrement a completion without blocking
5673 * @x: completion structure
5675 * Returns: 0 if a decrement cannot be done without blocking
5676 * 1 if a decrement succeeded.
5678 * If a completion is being used as a counting completion,
5679 * attempt to decrement the counter without blocking. This
5680 * enables us to avoid waiting if the resource the completion
5681 * is protecting is not available.
5683 bool try_wait_for_completion(struct completion *x)
5687 spin_lock_irq(&x->wait.lock);
5692 spin_unlock_irq(&x->wait.lock);
5695 EXPORT_SYMBOL(try_wait_for_completion);
5698 * completion_done - Test to see if a completion has any waiters
5699 * @x: completion structure
5701 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5702 * 1 if there are no waiters.
5705 bool completion_done(struct completion *x)
5709 spin_lock_irq(&x->wait.lock);
5712 spin_unlock_irq(&x->wait.lock);
5715 EXPORT_SYMBOL(completion_done);
5718 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5720 unsigned long flags;
5723 init_waitqueue_entry(&wait, current);
5725 __set_current_state(state);
5727 spin_lock_irqsave(&q->lock, flags);
5728 __add_wait_queue(q, &wait);
5729 spin_unlock(&q->lock);
5730 timeout = schedule_timeout(timeout);
5731 spin_lock_irq(&q->lock);
5732 __remove_wait_queue(q, &wait);
5733 spin_unlock_irqrestore(&q->lock, flags);
5738 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5740 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5742 EXPORT_SYMBOL(interruptible_sleep_on);
5745 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5747 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5749 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5751 void __sched sleep_on(wait_queue_head_t *q)
5753 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5755 EXPORT_SYMBOL(sleep_on);
5757 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5759 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5761 EXPORT_SYMBOL(sleep_on_timeout);
5763 #ifdef CONFIG_RT_MUTEXES
5766 * rt_mutex_setprio - set the current priority of a task
5768 * @prio: prio value (kernel-internal form)
5770 * This function changes the 'effective' priority of a task. It does
5771 * not touch ->normal_prio like __setscheduler().
5773 * Used by the rt_mutex code to implement priority inheritance logic.
5775 void rt_mutex_setprio(struct task_struct *p, int prio)
5777 unsigned long flags;
5778 int oldprio, on_rq, running;
5780 const struct sched_class *prev_class = p->sched_class;
5782 BUG_ON(prio < 0 || prio > MAX_PRIO);
5784 rq = task_rq_lock(p, &flags);
5785 update_rq_clock(rq);
5788 on_rq = p->se.on_rq;
5789 running = task_current(rq, p);
5791 dequeue_task(rq, p, 0);
5793 p->sched_class->put_prev_task(rq, p);
5796 p->sched_class = &rt_sched_class;
5798 p->sched_class = &fair_sched_class;
5803 p->sched_class->set_curr_task(rq);
5805 enqueue_task(rq, p, 0);
5807 check_class_changed(rq, p, prev_class, oldprio, running);
5809 task_rq_unlock(rq, &flags);
5814 void set_user_nice(struct task_struct *p, long nice)
5816 int old_prio, delta, on_rq;
5817 unsigned long flags;
5820 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5823 * We have to be careful, if called from sys_setpriority(),
5824 * the task might be in the middle of scheduling on another CPU.
5826 rq = task_rq_lock(p, &flags);
5827 update_rq_clock(rq);
5829 * The RT priorities are set via sched_setscheduler(), but we still
5830 * allow the 'normal' nice value to be set - but as expected
5831 * it wont have any effect on scheduling until the task is
5832 * SCHED_FIFO/SCHED_RR:
5834 if (task_has_rt_policy(p)) {
5835 p->static_prio = NICE_TO_PRIO(nice);
5838 on_rq = p->se.on_rq;
5840 dequeue_task(rq, p, 0);
5842 p->static_prio = NICE_TO_PRIO(nice);
5845 p->prio = effective_prio(p);
5846 delta = p->prio - old_prio;
5849 enqueue_task(rq, p, 0);
5851 * If the task increased its priority or is running and
5852 * lowered its priority, then reschedule its CPU:
5854 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5855 resched_task(rq->curr);
5858 task_rq_unlock(rq, &flags);
5860 EXPORT_SYMBOL(set_user_nice);
5863 * can_nice - check if a task can reduce its nice value
5867 int can_nice(const struct task_struct *p, const int nice)
5869 /* convert nice value [19,-20] to rlimit style value [1,40] */
5870 int nice_rlim = 20 - nice;
5872 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5873 capable(CAP_SYS_NICE));
5876 #ifdef __ARCH_WANT_SYS_NICE
5879 * sys_nice - change the priority of the current process.
5880 * @increment: priority increment
5882 * sys_setpriority is a more generic, but much slower function that
5883 * does similar things.
5885 SYSCALL_DEFINE1(nice, int, increment)
5890 * Setpriority might change our priority at the same moment.
5891 * We don't have to worry. Conceptually one call occurs first
5892 * and we have a single winner.
5894 if (increment < -40)
5899 nice = TASK_NICE(current) + increment;
5905 if (increment < 0 && !can_nice(current, nice))
5908 retval = security_task_setnice(current, nice);
5912 set_user_nice(current, nice);
5919 * task_prio - return the priority value of a given task.
5920 * @p: the task in question.
5922 * This is the priority value as seen by users in /proc.
5923 * RT tasks are offset by -200. Normal tasks are centered
5924 * around 0, value goes from -16 to +15.
5926 int task_prio(const struct task_struct *p)
5928 return p->prio - MAX_RT_PRIO;
5932 * task_nice - return the nice value of a given task.
5933 * @p: the task in question.
5935 int task_nice(const struct task_struct *p)
5937 return TASK_NICE(p);
5939 EXPORT_SYMBOL(task_nice);
5942 * idle_cpu - is a given cpu idle currently?
5943 * @cpu: the processor in question.
5945 int idle_cpu(int cpu)
5947 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5951 * idle_task - return the idle task for a given cpu.
5952 * @cpu: the processor in question.
5954 struct task_struct *idle_task(int cpu)
5956 return cpu_rq(cpu)->idle;
5960 * find_process_by_pid - find a process with a matching PID value.
5961 * @pid: the pid in question.
5963 static struct task_struct *find_process_by_pid(pid_t pid)
5965 return pid ? find_task_by_vpid(pid) : current;
5968 /* Actually do priority change: must hold rq lock. */
5970 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5972 BUG_ON(p->se.on_rq);
5975 switch (p->policy) {
5979 p->sched_class = &fair_sched_class;
5983 p->sched_class = &rt_sched_class;
5987 p->rt_priority = prio;
5988 p->normal_prio = normal_prio(p);
5989 /* we are holding p->pi_lock already */
5990 p->prio = rt_mutex_getprio(p);
5995 * check the target process has a UID that matches the current process's
5997 static bool check_same_owner(struct task_struct *p)
5999 const struct cred *cred = current_cred(), *pcred;
6003 pcred = __task_cred(p);
6004 match = (cred->euid == pcred->euid ||
6005 cred->euid == pcred->uid);
6010 static int __sched_setscheduler(struct task_struct *p, int policy,
6011 struct sched_param *param, bool user)
6013 int retval, oldprio, oldpolicy = -1, on_rq, running;
6014 unsigned long flags;
6015 const struct sched_class *prev_class = p->sched_class;
6018 /* may grab non-irq protected spin_locks */
6019 BUG_ON(in_interrupt());
6021 /* double check policy once rq lock held */
6023 policy = oldpolicy = p->policy;
6024 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6025 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6026 policy != SCHED_IDLE)
6029 * Valid priorities for SCHED_FIFO and SCHED_RR are
6030 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6031 * SCHED_BATCH and SCHED_IDLE is 0.
6033 if (param->sched_priority < 0 ||
6034 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6035 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6037 if (rt_policy(policy) != (param->sched_priority != 0))
6041 * Allow unprivileged RT tasks to decrease priority:
6043 if (user && !capable(CAP_SYS_NICE)) {
6044 if (rt_policy(policy)) {
6045 unsigned long rlim_rtprio;
6047 if (!lock_task_sighand(p, &flags))
6049 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6050 unlock_task_sighand(p, &flags);
6052 /* can't set/change the rt policy */
6053 if (policy != p->policy && !rlim_rtprio)
6056 /* can't increase priority */
6057 if (param->sched_priority > p->rt_priority &&
6058 param->sched_priority > rlim_rtprio)
6062 * Like positive nice levels, dont allow tasks to
6063 * move out of SCHED_IDLE either:
6065 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6068 /* can't change other user's priorities */
6069 if (!check_same_owner(p))
6074 #ifdef CONFIG_RT_GROUP_SCHED
6076 * Do not allow realtime tasks into groups that have no runtime
6079 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6080 task_group(p)->rt_bandwidth.rt_runtime == 0)
6084 retval = security_task_setscheduler(p, policy, param);
6090 * make sure no PI-waiters arrive (or leave) while we are
6091 * changing the priority of the task:
6093 spin_lock_irqsave(&p->pi_lock, flags);
6095 * To be able to change p->policy safely, the apropriate
6096 * runqueue lock must be held.
6098 rq = __task_rq_lock(p);
6099 /* recheck policy now with rq lock held */
6100 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6101 policy = oldpolicy = -1;
6102 __task_rq_unlock(rq);
6103 spin_unlock_irqrestore(&p->pi_lock, flags);
6106 update_rq_clock(rq);
6107 on_rq = p->se.on_rq;
6108 running = task_current(rq, p);
6110 deactivate_task(rq, p, 0);
6112 p->sched_class->put_prev_task(rq, p);
6115 __setscheduler(rq, p, policy, param->sched_priority);
6118 p->sched_class->set_curr_task(rq);
6120 activate_task(rq, p, 0);
6122 check_class_changed(rq, p, prev_class, oldprio, running);
6124 __task_rq_unlock(rq);
6125 spin_unlock_irqrestore(&p->pi_lock, flags);
6127 rt_mutex_adjust_pi(p);
6133 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6134 * @p: the task in question.
6135 * @policy: new policy.
6136 * @param: structure containing the new RT priority.
6138 * NOTE that the task may be already dead.
6140 int sched_setscheduler(struct task_struct *p, int policy,
6141 struct sched_param *param)
6143 return __sched_setscheduler(p, policy, param, true);
6145 EXPORT_SYMBOL_GPL(sched_setscheduler);
6148 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6149 * @p: the task in question.
6150 * @policy: new policy.
6151 * @param: structure containing the new RT priority.
6153 * Just like sched_setscheduler, only don't bother checking if the
6154 * current context has permission. For example, this is needed in
6155 * stop_machine(): we create temporary high priority worker threads,
6156 * but our caller might not have that capability.
6158 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6159 struct sched_param *param)
6161 return __sched_setscheduler(p, policy, param, false);
6165 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6167 struct sched_param lparam;
6168 struct task_struct *p;
6171 if (!param || pid < 0)
6173 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6178 p = find_process_by_pid(pid);
6180 retval = sched_setscheduler(p, policy, &lparam);
6187 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6188 * @pid: the pid in question.
6189 * @policy: new policy.
6190 * @param: structure containing the new RT priority.
6192 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6193 struct sched_param __user *, param)
6195 /* negative values for policy are not valid */
6199 return do_sched_setscheduler(pid, policy, param);
6203 * sys_sched_setparam - set/change the RT priority of a thread
6204 * @pid: the pid in question.
6205 * @param: structure containing the new RT priority.
6207 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6209 return do_sched_setscheduler(pid, -1, param);
6213 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6214 * @pid: the pid in question.
6216 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6218 struct task_struct *p;
6225 read_lock(&tasklist_lock);
6226 p = find_process_by_pid(pid);
6228 retval = security_task_getscheduler(p);
6232 read_unlock(&tasklist_lock);
6237 * sys_sched_getscheduler - get the RT priority of a thread
6238 * @pid: the pid in question.
6239 * @param: structure containing the RT priority.
6241 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6243 struct sched_param lp;
6244 struct task_struct *p;
6247 if (!param || pid < 0)
6250 read_lock(&tasklist_lock);
6251 p = find_process_by_pid(pid);
6256 retval = security_task_getscheduler(p);
6260 lp.sched_priority = p->rt_priority;
6261 read_unlock(&tasklist_lock);
6264 * This one might sleep, we cannot do it with a spinlock held ...
6266 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6271 read_unlock(&tasklist_lock);
6275 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6277 cpumask_var_t cpus_allowed, new_mask;
6278 struct task_struct *p;
6282 read_lock(&tasklist_lock);
6284 p = find_process_by_pid(pid);
6286 read_unlock(&tasklist_lock);
6292 * It is not safe to call set_cpus_allowed with the
6293 * tasklist_lock held. We will bump the task_struct's
6294 * usage count and then drop tasklist_lock.
6297 read_unlock(&tasklist_lock);
6299 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6303 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6305 goto out_free_cpus_allowed;
6308 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6311 retval = security_task_setscheduler(p, 0, NULL);
6315 cpuset_cpus_allowed(p, cpus_allowed);
6316 cpumask_and(new_mask, in_mask, cpus_allowed);
6318 retval = set_cpus_allowed_ptr(p, new_mask);
6321 cpuset_cpus_allowed(p, cpus_allowed);
6322 if (!cpumask_subset(new_mask, cpus_allowed)) {
6324 * We must have raced with a concurrent cpuset
6325 * update. Just reset the cpus_allowed to the
6326 * cpuset's cpus_allowed
6328 cpumask_copy(new_mask, cpus_allowed);
6333 free_cpumask_var(new_mask);
6334 out_free_cpus_allowed:
6335 free_cpumask_var(cpus_allowed);
6342 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6343 struct cpumask *new_mask)
6345 if (len < cpumask_size())
6346 cpumask_clear(new_mask);
6347 else if (len > cpumask_size())
6348 len = cpumask_size();
6350 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6354 * sys_sched_setaffinity - set the cpu affinity of a process
6355 * @pid: pid of the process
6356 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6357 * @user_mask_ptr: user-space pointer to the new cpu mask
6359 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6360 unsigned long __user *, user_mask_ptr)
6362 cpumask_var_t new_mask;
6365 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6368 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6370 retval = sched_setaffinity(pid, new_mask);
6371 free_cpumask_var(new_mask);
6375 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6377 struct task_struct *p;
6381 read_lock(&tasklist_lock);
6384 p = find_process_by_pid(pid);
6388 retval = security_task_getscheduler(p);
6392 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6395 read_unlock(&tasklist_lock);
6402 * sys_sched_getaffinity - get the cpu affinity of a process
6403 * @pid: pid of the process
6404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6405 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6407 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6408 unsigned long __user *, user_mask_ptr)
6413 if (len < cpumask_size())
6416 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6419 ret = sched_getaffinity(pid, mask);
6421 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6424 ret = cpumask_size();
6426 free_cpumask_var(mask);
6432 * sys_sched_yield - yield the current processor to other threads.
6434 * This function yields the current CPU to other tasks. If there are no
6435 * other threads running on this CPU then this function will return.
6437 SYSCALL_DEFINE0(sched_yield)
6439 struct rq *rq = this_rq_lock();
6441 schedstat_inc(rq, yld_count);
6442 current->sched_class->yield_task(rq);
6445 * Since we are going to call schedule() anyway, there's
6446 * no need to preempt or enable interrupts:
6448 __release(rq->lock);
6449 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6450 _raw_spin_unlock(&rq->lock);
6451 preempt_enable_no_resched();
6458 static void __cond_resched(void)
6460 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6461 __might_sleep(__FILE__, __LINE__);
6464 * The BKS might be reacquired before we have dropped
6465 * PREEMPT_ACTIVE, which could trigger a second
6466 * cond_resched() call.
6469 add_preempt_count(PREEMPT_ACTIVE);
6471 sub_preempt_count(PREEMPT_ACTIVE);
6472 } while (need_resched());
6475 int __sched _cond_resched(void)
6477 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6478 system_state == SYSTEM_RUNNING) {
6484 EXPORT_SYMBOL(_cond_resched);
6487 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6488 * call schedule, and on return reacquire the lock.
6490 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6491 * operations here to prevent schedule() from being called twice (once via
6492 * spin_unlock(), once by hand).
6494 int cond_resched_lock(spinlock_t *lock)
6496 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6499 if (spin_needbreak(lock) || resched) {
6501 if (resched && need_resched())
6510 EXPORT_SYMBOL(cond_resched_lock);
6512 int __sched cond_resched_softirq(void)
6514 BUG_ON(!in_softirq());
6516 if (need_resched() && system_state == SYSTEM_RUNNING) {
6524 EXPORT_SYMBOL(cond_resched_softirq);
6527 * yield - yield the current processor to other threads.
6529 * This is a shortcut for kernel-space yielding - it marks the
6530 * thread runnable and calls sys_sched_yield().
6532 void __sched yield(void)
6534 set_current_state(TASK_RUNNING);
6537 EXPORT_SYMBOL(yield);
6540 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6541 * that process accounting knows that this is a task in IO wait state.
6543 * But don't do that if it is a deliberate, throttling IO wait (this task
6544 * has set its backing_dev_info: the queue against which it should throttle)
6546 void __sched io_schedule(void)
6548 struct rq *rq = &__raw_get_cpu_var(runqueues);
6550 delayacct_blkio_start();
6551 atomic_inc(&rq->nr_iowait);
6553 atomic_dec(&rq->nr_iowait);
6554 delayacct_blkio_end();
6556 EXPORT_SYMBOL(io_schedule);
6558 long __sched io_schedule_timeout(long timeout)
6560 struct rq *rq = &__raw_get_cpu_var(runqueues);
6563 delayacct_blkio_start();
6564 atomic_inc(&rq->nr_iowait);
6565 ret = schedule_timeout(timeout);
6566 atomic_dec(&rq->nr_iowait);
6567 delayacct_blkio_end();
6572 * sys_sched_get_priority_max - return maximum RT priority.
6573 * @policy: scheduling class.
6575 * this syscall returns the maximum rt_priority that can be used
6576 * by a given scheduling class.
6578 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6585 ret = MAX_USER_RT_PRIO-1;
6597 * sys_sched_get_priority_min - return minimum RT priority.
6598 * @policy: scheduling class.
6600 * this syscall returns the minimum rt_priority that can be used
6601 * by a given scheduling class.
6603 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6621 * sys_sched_rr_get_interval - return the default timeslice of a process.
6622 * @pid: pid of the process.
6623 * @interval: userspace pointer to the timeslice value.
6625 * this syscall writes the default timeslice value of a given process
6626 * into the user-space timespec buffer. A value of '0' means infinity.
6628 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6629 struct timespec __user *, interval)
6631 struct task_struct *p;
6632 unsigned int time_slice;
6640 read_lock(&tasklist_lock);
6641 p = find_process_by_pid(pid);
6645 retval = security_task_getscheduler(p);
6650 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6651 * tasks that are on an otherwise idle runqueue:
6654 if (p->policy == SCHED_RR) {
6655 time_slice = DEF_TIMESLICE;
6656 } else if (p->policy != SCHED_FIFO) {
6657 struct sched_entity *se = &p->se;
6658 unsigned long flags;
6661 rq = task_rq_lock(p, &flags);
6662 if (rq->cfs.load.weight)
6663 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6664 task_rq_unlock(rq, &flags);
6666 read_unlock(&tasklist_lock);
6667 jiffies_to_timespec(time_slice, &t);
6668 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6672 read_unlock(&tasklist_lock);
6676 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6678 void sched_show_task(struct task_struct *p)
6680 unsigned long free = 0;
6683 state = p->state ? __ffs(p->state) + 1 : 0;
6684 printk(KERN_INFO "%-13.13s %c", p->comm,
6685 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6686 #if BITS_PER_LONG == 32
6687 if (state == TASK_RUNNING)
6688 printk(KERN_CONT " running ");
6690 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6692 if (state == TASK_RUNNING)
6693 printk(KERN_CONT " running task ");
6695 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6697 #ifdef CONFIG_DEBUG_STACK_USAGE
6698 free = stack_not_used(p);
6700 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6701 task_pid_nr(p), task_pid_nr(p->real_parent),
6702 (unsigned long)task_thread_info(p)->flags);
6704 show_stack(p, NULL);
6707 void show_state_filter(unsigned long state_filter)
6709 struct task_struct *g, *p;
6711 #if BITS_PER_LONG == 32
6713 " task PC stack pid father\n");
6716 " task PC stack pid father\n");
6718 read_lock(&tasklist_lock);
6719 do_each_thread(g, p) {
6721 * reset the NMI-timeout, listing all files on a slow
6722 * console might take alot of time:
6724 touch_nmi_watchdog();
6725 if (!state_filter || (p->state & state_filter))
6727 } while_each_thread(g, p);
6729 touch_all_softlockup_watchdogs();
6731 #ifdef CONFIG_SCHED_DEBUG
6732 sysrq_sched_debug_show();
6734 read_unlock(&tasklist_lock);
6736 * Only show locks if all tasks are dumped:
6738 if (state_filter == -1)
6739 debug_show_all_locks();
6742 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6744 idle->sched_class = &idle_sched_class;
6748 * init_idle - set up an idle thread for a given CPU
6749 * @idle: task in question
6750 * @cpu: cpu the idle task belongs to
6752 * NOTE: this function does not set the idle thread's NEED_RESCHED
6753 * flag, to make booting more robust.
6755 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6757 struct rq *rq = cpu_rq(cpu);
6758 unsigned long flags;
6760 spin_lock_irqsave(&rq->lock, flags);
6763 idle->se.exec_start = sched_clock();
6765 idle->prio = idle->normal_prio = MAX_PRIO;
6766 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6767 __set_task_cpu(idle, cpu);
6769 rq->curr = rq->idle = idle;
6770 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6773 spin_unlock_irqrestore(&rq->lock, flags);
6775 /* Set the preempt count _outside_ the spinlocks! */
6776 #if defined(CONFIG_PREEMPT)
6777 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6779 task_thread_info(idle)->preempt_count = 0;
6782 * The idle tasks have their own, simple scheduling class:
6784 idle->sched_class = &idle_sched_class;
6785 ftrace_graph_init_task(idle);
6789 * In a system that switches off the HZ timer nohz_cpu_mask
6790 * indicates which cpus entered this state. This is used
6791 * in the rcu update to wait only for active cpus. For system
6792 * which do not switch off the HZ timer nohz_cpu_mask should
6793 * always be CPU_BITS_NONE.
6795 cpumask_var_t nohz_cpu_mask;
6798 * Increase the granularity value when there are more CPUs,
6799 * because with more CPUs the 'effective latency' as visible
6800 * to users decreases. But the relationship is not linear,
6801 * so pick a second-best guess by going with the log2 of the
6804 * This idea comes from the SD scheduler of Con Kolivas:
6806 static inline void sched_init_granularity(void)
6808 unsigned int factor = 1 + ilog2(num_online_cpus());
6809 const unsigned long limit = 200000000;
6811 sysctl_sched_min_granularity *= factor;
6812 if (sysctl_sched_min_granularity > limit)
6813 sysctl_sched_min_granularity = limit;
6815 sysctl_sched_latency *= factor;
6816 if (sysctl_sched_latency > limit)
6817 sysctl_sched_latency = limit;
6819 sysctl_sched_wakeup_granularity *= factor;
6821 sysctl_sched_shares_ratelimit *= factor;
6826 * This is how migration works:
6828 * 1) we queue a struct migration_req structure in the source CPU's
6829 * runqueue and wake up that CPU's migration thread.
6830 * 2) we down() the locked semaphore => thread blocks.
6831 * 3) migration thread wakes up (implicitly it forces the migrated
6832 * thread off the CPU)
6833 * 4) it gets the migration request and checks whether the migrated
6834 * task is still in the wrong runqueue.
6835 * 5) if it's in the wrong runqueue then the migration thread removes
6836 * it and puts it into the right queue.
6837 * 6) migration thread up()s the semaphore.
6838 * 7) we wake up and the migration is done.
6842 * Change a given task's CPU affinity. Migrate the thread to a
6843 * proper CPU and schedule it away if the CPU it's executing on
6844 * is removed from the allowed bitmask.
6846 * NOTE: the caller must have a valid reference to the task, the
6847 * task must not exit() & deallocate itself prematurely. The
6848 * call is not atomic; no spinlocks may be held.
6850 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6852 struct migration_req req;
6853 unsigned long flags;
6857 rq = task_rq_lock(p, &flags);
6858 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6863 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6864 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6869 if (p->sched_class->set_cpus_allowed)
6870 p->sched_class->set_cpus_allowed(p, new_mask);
6872 cpumask_copy(&p->cpus_allowed, new_mask);
6873 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6876 /* Can the task run on the task's current CPU? If so, we're done */
6877 if (cpumask_test_cpu(task_cpu(p), new_mask))
6880 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6881 /* Need help from migration thread: drop lock and wait. */
6882 task_rq_unlock(rq, &flags);
6883 wake_up_process(rq->migration_thread);
6884 wait_for_completion(&req.done);
6885 tlb_migrate_finish(p->mm);
6889 task_rq_unlock(rq, &flags);
6893 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6896 * Move (not current) task off this cpu, onto dest cpu. We're doing
6897 * this because either it can't run here any more (set_cpus_allowed()
6898 * away from this CPU, or CPU going down), or because we're
6899 * attempting to rebalance this task on exec (sched_exec).
6901 * So we race with normal scheduler movements, but that's OK, as long
6902 * as the task is no longer on this CPU.
6904 * Returns non-zero if task was successfully migrated.
6906 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6908 struct rq *rq_dest, *rq_src;
6911 if (unlikely(!cpu_active(dest_cpu)))
6914 rq_src = cpu_rq(src_cpu);
6915 rq_dest = cpu_rq(dest_cpu);
6917 double_rq_lock(rq_src, rq_dest);
6918 /* Already moved. */
6919 if (task_cpu(p) != src_cpu)
6921 /* Affinity changed (again). */
6922 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6925 on_rq = p->se.on_rq;
6927 deactivate_task(rq_src, p, 0);
6929 set_task_cpu(p, dest_cpu);
6931 activate_task(rq_dest, p, 0);
6932 check_preempt_curr(rq_dest, p, 0);
6937 double_rq_unlock(rq_src, rq_dest);
6942 * migration_thread - this is a highprio system thread that performs
6943 * thread migration by bumping thread off CPU then 'pushing' onto
6946 static int migration_thread(void *data)
6948 int cpu = (long)data;
6952 BUG_ON(rq->migration_thread != current);
6954 set_current_state(TASK_INTERRUPTIBLE);
6955 while (!kthread_should_stop()) {
6956 struct migration_req *req;
6957 struct list_head *head;
6959 spin_lock_irq(&rq->lock);
6961 if (cpu_is_offline(cpu)) {
6962 spin_unlock_irq(&rq->lock);
6966 if (rq->active_balance) {
6967 active_load_balance(rq, cpu);
6968 rq->active_balance = 0;
6971 head = &rq->migration_queue;
6973 if (list_empty(head)) {
6974 spin_unlock_irq(&rq->lock);
6976 set_current_state(TASK_INTERRUPTIBLE);
6979 req = list_entry(head->next, struct migration_req, list);
6980 list_del_init(head->next);
6982 spin_unlock(&rq->lock);
6983 __migrate_task(req->task, cpu, req->dest_cpu);
6986 complete(&req->done);
6988 __set_current_state(TASK_RUNNING);
6992 /* Wait for kthread_stop */
6993 set_current_state(TASK_INTERRUPTIBLE);
6994 while (!kthread_should_stop()) {
6996 set_current_state(TASK_INTERRUPTIBLE);
6998 __set_current_state(TASK_RUNNING);
7002 #ifdef CONFIG_HOTPLUG_CPU
7004 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7008 local_irq_disable();
7009 ret = __migrate_task(p, src_cpu, dest_cpu);
7015 * Figure out where task on dead CPU should go, use force if necessary.
7017 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7020 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7023 /* Look for allowed, online CPU in same node. */
7024 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7025 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7028 /* Any allowed, online CPU? */
7029 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7030 if (dest_cpu < nr_cpu_ids)
7033 /* No more Mr. Nice Guy. */
7034 if (dest_cpu >= nr_cpu_ids) {
7035 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7036 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7039 * Don't tell them about moving exiting tasks or
7040 * kernel threads (both mm NULL), since they never
7043 if (p->mm && printk_ratelimit()) {
7044 printk(KERN_INFO "process %d (%s) no "
7045 "longer affine to cpu%d\n",
7046 task_pid_nr(p), p->comm, dead_cpu);
7051 /* It can have affinity changed while we were choosing. */
7052 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7057 * While a dead CPU has no uninterruptible tasks queued at this point,
7058 * it might still have a nonzero ->nr_uninterruptible counter, because
7059 * for performance reasons the counter is not stricly tracking tasks to
7060 * their home CPUs. So we just add the counter to another CPU's counter,
7061 * to keep the global sum constant after CPU-down:
7063 static void migrate_nr_uninterruptible(struct rq *rq_src)
7065 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7066 unsigned long flags;
7068 local_irq_save(flags);
7069 double_rq_lock(rq_src, rq_dest);
7070 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7071 rq_src->nr_uninterruptible = 0;
7072 double_rq_unlock(rq_src, rq_dest);
7073 local_irq_restore(flags);
7076 /* Run through task list and migrate tasks from the dead cpu. */
7077 static void migrate_live_tasks(int src_cpu)
7079 struct task_struct *p, *t;
7081 read_lock(&tasklist_lock);
7083 do_each_thread(t, p) {
7087 if (task_cpu(p) == src_cpu)
7088 move_task_off_dead_cpu(src_cpu, p);
7089 } while_each_thread(t, p);
7091 read_unlock(&tasklist_lock);
7095 * Schedules idle task to be the next runnable task on current CPU.
7096 * It does so by boosting its priority to highest possible.
7097 * Used by CPU offline code.
7099 void sched_idle_next(void)
7101 int this_cpu = smp_processor_id();
7102 struct rq *rq = cpu_rq(this_cpu);
7103 struct task_struct *p = rq->idle;
7104 unsigned long flags;
7106 /* cpu has to be offline */
7107 BUG_ON(cpu_online(this_cpu));
7110 * Strictly not necessary since rest of the CPUs are stopped by now
7111 * and interrupts disabled on the current cpu.
7113 spin_lock_irqsave(&rq->lock, flags);
7115 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7117 update_rq_clock(rq);
7118 activate_task(rq, p, 0);
7120 spin_unlock_irqrestore(&rq->lock, flags);
7124 * Ensures that the idle task is using init_mm right before its cpu goes
7127 void idle_task_exit(void)
7129 struct mm_struct *mm = current->active_mm;
7131 BUG_ON(cpu_online(smp_processor_id()));
7134 switch_mm(mm, &init_mm, current);
7138 /* called under rq->lock with disabled interrupts */
7139 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7141 struct rq *rq = cpu_rq(dead_cpu);
7143 /* Must be exiting, otherwise would be on tasklist. */
7144 BUG_ON(!p->exit_state);
7146 /* Cannot have done final schedule yet: would have vanished. */
7147 BUG_ON(p->state == TASK_DEAD);
7152 * Drop lock around migration; if someone else moves it,
7153 * that's OK. No task can be added to this CPU, so iteration is
7156 spin_unlock_irq(&rq->lock);
7157 move_task_off_dead_cpu(dead_cpu, p);
7158 spin_lock_irq(&rq->lock);
7163 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7164 static void migrate_dead_tasks(unsigned int dead_cpu)
7166 struct rq *rq = cpu_rq(dead_cpu);
7167 struct task_struct *next;
7170 if (!rq->nr_running)
7172 update_rq_clock(rq);
7173 next = pick_next_task(rq);
7176 next->sched_class->put_prev_task(rq, next);
7177 migrate_dead(dead_cpu, next);
7183 * remove the tasks which were accounted by rq from calc_load_tasks.
7185 static void calc_global_load_remove(struct rq *rq)
7187 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7189 #endif /* CONFIG_HOTPLUG_CPU */
7191 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7193 static struct ctl_table sd_ctl_dir[] = {
7195 .procname = "sched_domain",
7201 static struct ctl_table sd_ctl_root[] = {
7203 .ctl_name = CTL_KERN,
7204 .procname = "kernel",
7206 .child = sd_ctl_dir,
7211 static struct ctl_table *sd_alloc_ctl_entry(int n)
7213 struct ctl_table *entry =
7214 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7219 static void sd_free_ctl_entry(struct ctl_table **tablep)
7221 struct ctl_table *entry;
7224 * In the intermediate directories, both the child directory and
7225 * procname are dynamically allocated and could fail but the mode
7226 * will always be set. In the lowest directory the names are
7227 * static strings and all have proc handlers.
7229 for (entry = *tablep; entry->mode; entry++) {
7231 sd_free_ctl_entry(&entry->child);
7232 if (entry->proc_handler == NULL)
7233 kfree(entry->procname);
7241 set_table_entry(struct ctl_table *entry,
7242 const char *procname, void *data, int maxlen,
7243 mode_t mode, proc_handler *proc_handler)
7245 entry->procname = procname;
7247 entry->maxlen = maxlen;
7249 entry->proc_handler = proc_handler;
7252 static struct ctl_table *
7253 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7255 struct ctl_table *table = sd_alloc_ctl_entry(13);
7260 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7261 sizeof(long), 0644, proc_doulongvec_minmax);
7262 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7263 sizeof(long), 0644, proc_doulongvec_minmax);
7264 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7265 sizeof(int), 0644, proc_dointvec_minmax);
7266 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7267 sizeof(int), 0644, proc_dointvec_minmax);
7268 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7269 sizeof(int), 0644, proc_dointvec_minmax);
7270 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7271 sizeof(int), 0644, proc_dointvec_minmax);
7272 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7273 sizeof(int), 0644, proc_dointvec_minmax);
7274 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7275 sizeof(int), 0644, proc_dointvec_minmax);
7276 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7277 sizeof(int), 0644, proc_dointvec_minmax);
7278 set_table_entry(&table[9], "cache_nice_tries",
7279 &sd->cache_nice_tries,
7280 sizeof(int), 0644, proc_dointvec_minmax);
7281 set_table_entry(&table[10], "flags", &sd->flags,
7282 sizeof(int), 0644, proc_dointvec_minmax);
7283 set_table_entry(&table[11], "name", sd->name,
7284 CORENAME_MAX_SIZE, 0444, proc_dostring);
7285 /* &table[12] is terminator */
7290 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7292 struct ctl_table *entry, *table;
7293 struct sched_domain *sd;
7294 int domain_num = 0, i;
7297 for_each_domain(cpu, sd)
7299 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7304 for_each_domain(cpu, sd) {
7305 snprintf(buf, 32, "domain%d", i);
7306 entry->procname = kstrdup(buf, GFP_KERNEL);
7308 entry->child = sd_alloc_ctl_domain_table(sd);
7315 static struct ctl_table_header *sd_sysctl_header;
7316 static void register_sched_domain_sysctl(void)
7318 int i, cpu_num = num_online_cpus();
7319 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7322 WARN_ON(sd_ctl_dir[0].child);
7323 sd_ctl_dir[0].child = entry;
7328 for_each_online_cpu(i) {
7329 snprintf(buf, 32, "cpu%d", i);
7330 entry->procname = kstrdup(buf, GFP_KERNEL);
7332 entry->child = sd_alloc_ctl_cpu_table(i);
7336 WARN_ON(sd_sysctl_header);
7337 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7340 /* may be called multiple times per register */
7341 static void unregister_sched_domain_sysctl(void)
7343 if (sd_sysctl_header)
7344 unregister_sysctl_table(sd_sysctl_header);
7345 sd_sysctl_header = NULL;
7346 if (sd_ctl_dir[0].child)
7347 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7350 static void register_sched_domain_sysctl(void)
7353 static void unregister_sched_domain_sysctl(void)
7358 static void set_rq_online(struct rq *rq)
7361 const struct sched_class *class;
7363 cpumask_set_cpu(rq->cpu, rq->rd->online);
7366 for_each_class(class) {
7367 if (class->rq_online)
7368 class->rq_online(rq);
7373 static void set_rq_offline(struct rq *rq)
7376 const struct sched_class *class;
7378 for_each_class(class) {
7379 if (class->rq_offline)
7380 class->rq_offline(rq);
7383 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7389 * migration_call - callback that gets triggered when a CPU is added.
7390 * Here we can start up the necessary migration thread for the new CPU.
7392 static int __cpuinit
7393 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7395 struct task_struct *p;
7396 int cpu = (long)hcpu;
7397 unsigned long flags;
7402 case CPU_UP_PREPARE:
7403 case CPU_UP_PREPARE_FROZEN:
7404 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7407 kthread_bind(p, cpu);
7408 /* Must be high prio: stop_machine expects to yield to it. */
7409 rq = task_rq_lock(p, &flags);
7410 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7411 task_rq_unlock(rq, &flags);
7412 cpu_rq(cpu)->migration_thread = p;
7416 case CPU_ONLINE_FROZEN:
7417 /* Strictly unnecessary, as first user will wake it. */
7418 wake_up_process(cpu_rq(cpu)->migration_thread);
7420 /* Update our root-domain */
7422 spin_lock_irqsave(&rq->lock, flags);
7423 rq->calc_load_update = calc_load_update;
7424 rq->calc_load_active = 0;
7426 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7430 spin_unlock_irqrestore(&rq->lock, flags);
7433 #ifdef CONFIG_HOTPLUG_CPU
7434 case CPU_UP_CANCELED:
7435 case CPU_UP_CANCELED_FROZEN:
7436 if (!cpu_rq(cpu)->migration_thread)
7438 /* Unbind it from offline cpu so it can run. Fall thru. */
7439 kthread_bind(cpu_rq(cpu)->migration_thread,
7440 cpumask_any(cpu_online_mask));
7441 kthread_stop(cpu_rq(cpu)->migration_thread);
7442 cpu_rq(cpu)->migration_thread = NULL;
7446 case CPU_DEAD_FROZEN:
7447 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7448 migrate_live_tasks(cpu);
7450 kthread_stop(rq->migration_thread);
7451 rq->migration_thread = NULL;
7452 /* Idle task back to normal (off runqueue, low prio) */
7453 spin_lock_irq(&rq->lock);
7454 update_rq_clock(rq);
7455 deactivate_task(rq, rq->idle, 0);
7456 rq->idle->static_prio = MAX_PRIO;
7457 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7458 rq->idle->sched_class = &idle_sched_class;
7459 migrate_dead_tasks(cpu);
7460 spin_unlock_irq(&rq->lock);
7462 migrate_nr_uninterruptible(rq);
7463 BUG_ON(rq->nr_running != 0);
7464 calc_global_load_remove(rq);
7466 * No need to migrate the tasks: it was best-effort if
7467 * they didn't take sched_hotcpu_mutex. Just wake up
7470 spin_lock_irq(&rq->lock);
7471 while (!list_empty(&rq->migration_queue)) {
7472 struct migration_req *req;
7474 req = list_entry(rq->migration_queue.next,
7475 struct migration_req, list);
7476 list_del_init(&req->list);
7477 spin_unlock_irq(&rq->lock);
7478 complete(&req->done);
7479 spin_lock_irq(&rq->lock);
7481 spin_unlock_irq(&rq->lock);
7485 case CPU_DYING_FROZEN:
7486 /* Update our root-domain */
7488 spin_lock_irqsave(&rq->lock, flags);
7490 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7493 spin_unlock_irqrestore(&rq->lock, flags);
7500 /* Register at highest priority so that task migration (migrate_all_tasks)
7501 * happens before everything else.
7503 static struct notifier_block __cpuinitdata migration_notifier = {
7504 .notifier_call = migration_call,
7508 static int __init migration_init(void)
7510 void *cpu = (void *)(long)smp_processor_id();
7513 /* Start one for the boot CPU: */
7514 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7515 BUG_ON(err == NOTIFY_BAD);
7516 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7517 register_cpu_notifier(&migration_notifier);
7521 early_initcall(migration_init);
7526 #ifdef CONFIG_SCHED_DEBUG
7528 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7529 struct cpumask *groupmask)
7531 struct sched_group *group = sd->groups;
7534 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7535 cpumask_clear(groupmask);
7537 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7539 if (!(sd->flags & SD_LOAD_BALANCE)) {
7540 printk("does not load-balance\n");
7542 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7547 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7549 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7550 printk(KERN_ERR "ERROR: domain->span does not contain "
7553 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7554 printk(KERN_ERR "ERROR: domain->groups does not contain"
7558 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7562 printk(KERN_ERR "ERROR: group is NULL\n");
7566 if (!group->__cpu_power) {
7567 printk(KERN_CONT "\n");
7568 printk(KERN_ERR "ERROR: domain->cpu_power not "
7573 if (!cpumask_weight(sched_group_cpus(group))) {
7574 printk(KERN_CONT "\n");
7575 printk(KERN_ERR "ERROR: empty group\n");
7579 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7580 printk(KERN_CONT "\n");
7581 printk(KERN_ERR "ERROR: repeated CPUs\n");
7585 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7587 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7589 printk(KERN_CONT " %s", str);
7590 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7591 printk(KERN_CONT " (__cpu_power = %d)",
7592 group->__cpu_power);
7595 group = group->next;
7596 } while (group != sd->groups);
7597 printk(KERN_CONT "\n");
7599 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7600 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7603 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7604 printk(KERN_ERR "ERROR: parent span is not a superset "
7605 "of domain->span\n");
7609 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7611 cpumask_var_t groupmask;
7615 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7619 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7621 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7622 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7627 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7634 free_cpumask_var(groupmask);
7636 #else /* !CONFIG_SCHED_DEBUG */
7637 # define sched_domain_debug(sd, cpu) do { } while (0)
7638 #endif /* CONFIG_SCHED_DEBUG */
7640 static int sd_degenerate(struct sched_domain *sd)
7642 if (cpumask_weight(sched_domain_span(sd)) == 1)
7645 /* Following flags need at least 2 groups */
7646 if (sd->flags & (SD_LOAD_BALANCE |
7647 SD_BALANCE_NEWIDLE |
7651 SD_SHARE_PKG_RESOURCES)) {
7652 if (sd->groups != sd->groups->next)
7656 /* Following flags don't use groups */
7657 if (sd->flags & (SD_WAKE_IDLE |
7666 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7668 unsigned long cflags = sd->flags, pflags = parent->flags;
7670 if (sd_degenerate(parent))
7673 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7676 /* Does parent contain flags not in child? */
7677 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7678 if (cflags & SD_WAKE_AFFINE)
7679 pflags &= ~SD_WAKE_BALANCE;
7680 /* Flags needing groups don't count if only 1 group in parent */
7681 if (parent->groups == parent->groups->next) {
7682 pflags &= ~(SD_LOAD_BALANCE |
7683 SD_BALANCE_NEWIDLE |
7687 SD_SHARE_PKG_RESOURCES);
7688 if (nr_node_ids == 1)
7689 pflags &= ~SD_SERIALIZE;
7691 if (~cflags & pflags)
7697 static void free_rootdomain(struct root_domain *rd)
7699 cpupri_cleanup(&rd->cpupri);
7701 free_cpumask_var(rd->rto_mask);
7702 free_cpumask_var(rd->online);
7703 free_cpumask_var(rd->span);
7707 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7709 struct root_domain *old_rd = NULL;
7710 unsigned long flags;
7712 spin_lock_irqsave(&rq->lock, flags);
7717 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7720 cpumask_clear_cpu(rq->cpu, old_rd->span);
7723 * If we dont want to free the old_rt yet then
7724 * set old_rd to NULL to skip the freeing later
7727 if (!atomic_dec_and_test(&old_rd->refcount))
7731 atomic_inc(&rd->refcount);
7734 cpumask_set_cpu(rq->cpu, rd->span);
7735 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7738 spin_unlock_irqrestore(&rq->lock, flags);
7741 free_rootdomain(old_rd);
7744 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7746 memset(rd, 0, sizeof(*rd));
7749 alloc_bootmem_cpumask_var(&def_root_domain.span);
7750 alloc_bootmem_cpumask_var(&def_root_domain.online);
7751 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7752 cpupri_init(&rd->cpupri, true);
7756 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7758 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7760 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7763 if (cpupri_init(&rd->cpupri, false) != 0)
7768 free_cpumask_var(rd->rto_mask);
7770 free_cpumask_var(rd->online);
7772 free_cpumask_var(rd->span);
7777 static void init_defrootdomain(void)
7779 init_rootdomain(&def_root_domain, true);
7781 atomic_set(&def_root_domain.refcount, 1);
7784 static struct root_domain *alloc_rootdomain(void)
7786 struct root_domain *rd;
7788 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7792 if (init_rootdomain(rd, false) != 0) {
7801 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7802 * hold the hotplug lock.
7805 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7807 struct rq *rq = cpu_rq(cpu);
7808 struct sched_domain *tmp;
7810 /* Remove the sched domains which do not contribute to scheduling. */
7811 for (tmp = sd; tmp; ) {
7812 struct sched_domain *parent = tmp->parent;
7816 if (sd_parent_degenerate(tmp, parent)) {
7817 tmp->parent = parent->parent;
7819 parent->parent->child = tmp;
7824 if (sd && sd_degenerate(sd)) {
7830 sched_domain_debug(sd, cpu);
7832 rq_attach_root(rq, rd);
7833 rcu_assign_pointer(rq->sd, sd);
7836 /* cpus with isolated domains */
7837 static cpumask_var_t cpu_isolated_map;
7839 /* Setup the mask of cpus configured for isolated domains */
7840 static int __init isolated_cpu_setup(char *str)
7842 cpulist_parse(str, cpu_isolated_map);
7846 __setup("isolcpus=", isolated_cpu_setup);
7849 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7850 * to a function which identifies what group(along with sched group) a CPU
7851 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7852 * (due to the fact that we keep track of groups covered with a struct cpumask).
7854 * init_sched_build_groups will build a circular linked list of the groups
7855 * covered by the given span, and will set each group's ->cpumask correctly,
7856 * and ->cpu_power to 0.
7859 init_sched_build_groups(const struct cpumask *span,
7860 const struct cpumask *cpu_map,
7861 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7862 struct sched_group **sg,
7863 struct cpumask *tmpmask),
7864 struct cpumask *covered, struct cpumask *tmpmask)
7866 struct sched_group *first = NULL, *last = NULL;
7869 cpumask_clear(covered);
7871 for_each_cpu(i, span) {
7872 struct sched_group *sg;
7873 int group = group_fn(i, cpu_map, &sg, tmpmask);
7876 if (cpumask_test_cpu(i, covered))
7879 cpumask_clear(sched_group_cpus(sg));
7880 sg->__cpu_power = 0;
7882 for_each_cpu(j, span) {
7883 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7886 cpumask_set_cpu(j, covered);
7887 cpumask_set_cpu(j, sched_group_cpus(sg));
7898 #define SD_NODES_PER_DOMAIN 16
7903 * find_next_best_node - find the next node to include in a sched_domain
7904 * @node: node whose sched_domain we're building
7905 * @used_nodes: nodes already in the sched_domain
7907 * Find the next node to include in a given scheduling domain. Simply
7908 * finds the closest node not already in the @used_nodes map.
7910 * Should use nodemask_t.
7912 static int find_next_best_node(int node, nodemask_t *used_nodes)
7914 int i, n, val, min_val, best_node = 0;
7918 for (i = 0; i < nr_node_ids; i++) {
7919 /* Start at @node */
7920 n = (node + i) % nr_node_ids;
7922 if (!nr_cpus_node(n))
7925 /* Skip already used nodes */
7926 if (node_isset(n, *used_nodes))
7929 /* Simple min distance search */
7930 val = node_distance(node, n);
7932 if (val < min_val) {
7938 node_set(best_node, *used_nodes);
7943 * sched_domain_node_span - get a cpumask for a node's sched_domain
7944 * @node: node whose cpumask we're constructing
7945 * @span: resulting cpumask
7947 * Given a node, construct a good cpumask for its sched_domain to span. It
7948 * should be one that prevents unnecessary balancing, but also spreads tasks
7951 static void sched_domain_node_span(int node, struct cpumask *span)
7953 nodemask_t used_nodes;
7956 cpumask_clear(span);
7957 nodes_clear(used_nodes);
7959 cpumask_or(span, span, cpumask_of_node(node));
7960 node_set(node, used_nodes);
7962 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7963 int next_node = find_next_best_node(node, &used_nodes);
7965 cpumask_or(span, span, cpumask_of_node(next_node));
7968 #endif /* CONFIG_NUMA */
7970 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7973 * The cpus mask in sched_group and sched_domain hangs off the end.
7975 * ( See the the comments in include/linux/sched.h:struct sched_group
7976 * and struct sched_domain. )
7978 struct static_sched_group {
7979 struct sched_group sg;
7980 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7983 struct static_sched_domain {
7984 struct sched_domain sd;
7985 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7989 * SMT sched-domains:
7991 #ifdef CONFIG_SCHED_SMT
7992 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7993 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7996 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7997 struct sched_group **sg, struct cpumask *unused)
8000 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8003 #endif /* CONFIG_SCHED_SMT */
8006 * multi-core sched-domains:
8008 #ifdef CONFIG_SCHED_MC
8009 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8010 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8011 #endif /* CONFIG_SCHED_MC */
8013 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8015 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8016 struct sched_group **sg, struct cpumask *mask)
8020 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8021 group = cpumask_first(mask);
8023 *sg = &per_cpu(sched_group_core, group).sg;
8026 #elif defined(CONFIG_SCHED_MC)
8028 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8029 struct sched_group **sg, struct cpumask *unused)
8032 *sg = &per_cpu(sched_group_core, cpu).sg;
8037 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8038 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8041 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8042 struct sched_group **sg, struct cpumask *mask)
8045 #ifdef CONFIG_SCHED_MC
8046 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8047 group = cpumask_first(mask);
8048 #elif defined(CONFIG_SCHED_SMT)
8049 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8050 group = cpumask_first(mask);
8055 *sg = &per_cpu(sched_group_phys, group).sg;
8061 * The init_sched_build_groups can't handle what we want to do with node
8062 * groups, so roll our own. Now each node has its own list of groups which
8063 * gets dynamically allocated.
8065 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8066 static struct sched_group ***sched_group_nodes_bycpu;
8068 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8069 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8071 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8072 struct sched_group **sg,
8073 struct cpumask *nodemask)
8077 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8078 group = cpumask_first(nodemask);
8081 *sg = &per_cpu(sched_group_allnodes, group).sg;
8085 static void init_numa_sched_groups_power(struct sched_group *group_head)
8087 struct sched_group *sg = group_head;
8093 for_each_cpu(j, sched_group_cpus(sg)) {
8094 struct sched_domain *sd;
8096 sd = &per_cpu(phys_domains, j).sd;
8097 if (j != group_first_cpu(sd->groups)) {
8099 * Only add "power" once for each
8105 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8108 } while (sg != group_head);
8110 #endif /* CONFIG_NUMA */
8113 /* Free memory allocated for various sched_group structures */
8114 static void free_sched_groups(const struct cpumask *cpu_map,
8115 struct cpumask *nodemask)
8119 for_each_cpu(cpu, cpu_map) {
8120 struct sched_group **sched_group_nodes
8121 = sched_group_nodes_bycpu[cpu];
8123 if (!sched_group_nodes)
8126 for (i = 0; i < nr_node_ids; i++) {
8127 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8129 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8130 if (cpumask_empty(nodemask))
8140 if (oldsg != sched_group_nodes[i])
8143 kfree(sched_group_nodes);
8144 sched_group_nodes_bycpu[cpu] = NULL;
8147 #else /* !CONFIG_NUMA */
8148 static void free_sched_groups(const struct cpumask *cpu_map,
8149 struct cpumask *nodemask)
8152 #endif /* CONFIG_NUMA */
8155 * Initialize sched groups cpu_power.
8157 * cpu_power indicates the capacity of sched group, which is used while
8158 * distributing the load between different sched groups in a sched domain.
8159 * Typically cpu_power for all the groups in a sched domain will be same unless
8160 * there are asymmetries in the topology. If there are asymmetries, group
8161 * having more cpu_power will pickup more load compared to the group having
8164 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8165 * the maximum number of tasks a group can handle in the presence of other idle
8166 * or lightly loaded groups in the same sched domain.
8168 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8170 struct sched_domain *child;
8171 struct sched_group *group;
8173 WARN_ON(!sd || !sd->groups);
8175 if (cpu != group_first_cpu(sd->groups))
8180 sd->groups->__cpu_power = 0;
8183 * For perf policy, if the groups in child domain share resources
8184 * (for example cores sharing some portions of the cache hierarchy
8185 * or SMT), then set this domain groups cpu_power such that each group
8186 * can handle only one task, when there are other idle groups in the
8187 * same sched domain.
8189 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8191 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8192 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8197 * add cpu_power of each child group to this groups cpu_power
8199 group = child->groups;
8201 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8202 group = group->next;
8203 } while (group != child->groups);
8207 * Initializers for schedule domains
8208 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8211 #ifdef CONFIG_SCHED_DEBUG
8212 # define SD_INIT_NAME(sd, type) sd->name = #type
8214 # define SD_INIT_NAME(sd, type) do { } while (0)
8217 #define SD_INIT(sd, type) sd_init_##type(sd)
8219 #define SD_INIT_FUNC(type) \
8220 static noinline void sd_init_##type(struct sched_domain *sd) \
8222 memset(sd, 0, sizeof(*sd)); \
8223 *sd = SD_##type##_INIT; \
8224 sd->level = SD_LV_##type; \
8225 SD_INIT_NAME(sd, type); \
8230 SD_INIT_FUNC(ALLNODES)
8233 #ifdef CONFIG_SCHED_SMT
8234 SD_INIT_FUNC(SIBLING)
8236 #ifdef CONFIG_SCHED_MC
8240 static int default_relax_domain_level = -1;
8242 static int __init setup_relax_domain_level(char *str)
8246 val = simple_strtoul(str, NULL, 0);
8247 if (val < SD_LV_MAX)
8248 default_relax_domain_level = val;
8252 __setup("relax_domain_level=", setup_relax_domain_level);
8254 static void set_domain_attribute(struct sched_domain *sd,
8255 struct sched_domain_attr *attr)
8259 if (!attr || attr->relax_domain_level < 0) {
8260 if (default_relax_domain_level < 0)
8263 request = default_relax_domain_level;
8265 request = attr->relax_domain_level;
8266 if (request < sd->level) {
8267 /* turn off idle balance on this domain */
8268 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8270 /* turn on idle balance on this domain */
8271 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8276 * Build sched domains for a given set of cpus and attach the sched domains
8277 * to the individual cpus
8279 static int __build_sched_domains(const struct cpumask *cpu_map,
8280 struct sched_domain_attr *attr)
8282 int i, err = -ENOMEM;
8283 struct root_domain *rd;
8284 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8287 cpumask_var_t domainspan, covered, notcovered;
8288 struct sched_group **sched_group_nodes = NULL;
8289 int sd_allnodes = 0;
8291 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8293 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8294 goto free_domainspan;
8295 if (!alloc_cpumask_var(¬covered, GFP_KERNEL))
8299 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8300 goto free_notcovered;
8301 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8303 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8304 goto free_this_sibling_map;
8305 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8306 goto free_this_core_map;
8307 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8308 goto free_send_covered;
8312 * Allocate the per-node list of sched groups
8314 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8316 if (!sched_group_nodes) {
8317 printk(KERN_WARNING "Can not alloc sched group node list\n");
8322 rd = alloc_rootdomain();
8324 printk(KERN_WARNING "Cannot alloc root domain\n");
8325 goto free_sched_groups;
8329 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8333 * Set up domains for cpus specified by the cpu_map.
8335 for_each_cpu(i, cpu_map) {
8336 struct sched_domain *sd = NULL, *p;
8338 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8341 if (cpumask_weight(cpu_map) >
8342 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8343 sd = &per_cpu(allnodes_domains, i).sd;
8344 SD_INIT(sd, ALLNODES);
8345 set_domain_attribute(sd, attr);
8346 cpumask_copy(sched_domain_span(sd), cpu_map);
8347 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8353 sd = &per_cpu(node_domains, i).sd;
8355 set_domain_attribute(sd, attr);
8356 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8360 cpumask_and(sched_domain_span(sd),
8361 sched_domain_span(sd), cpu_map);
8365 sd = &per_cpu(phys_domains, i).sd;
8367 set_domain_attribute(sd, attr);
8368 cpumask_copy(sched_domain_span(sd), nodemask);
8372 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8374 #ifdef CONFIG_SCHED_MC
8376 sd = &per_cpu(core_domains, i).sd;
8378 set_domain_attribute(sd, attr);
8379 cpumask_and(sched_domain_span(sd), cpu_map,
8380 cpu_coregroup_mask(i));
8383 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8386 #ifdef CONFIG_SCHED_SMT
8388 sd = &per_cpu(cpu_domains, i).sd;
8389 SD_INIT(sd, SIBLING);
8390 set_domain_attribute(sd, attr);
8391 cpumask_and(sched_domain_span(sd),
8392 topology_thread_cpumask(i), cpu_map);
8395 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8399 #ifdef CONFIG_SCHED_SMT
8400 /* Set up CPU (sibling) groups */
8401 for_each_cpu(i, cpu_map) {
8402 cpumask_and(this_sibling_map,
8403 topology_thread_cpumask(i), cpu_map);
8404 if (i != cpumask_first(this_sibling_map))
8407 init_sched_build_groups(this_sibling_map, cpu_map,
8409 send_covered, tmpmask);
8413 #ifdef CONFIG_SCHED_MC
8414 /* Set up multi-core groups */
8415 for_each_cpu(i, cpu_map) {
8416 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8417 if (i != cpumask_first(this_core_map))
8420 init_sched_build_groups(this_core_map, cpu_map,
8422 send_covered, tmpmask);
8426 /* Set up physical groups */
8427 for (i = 0; i < nr_node_ids; i++) {
8428 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8429 if (cpumask_empty(nodemask))
8432 init_sched_build_groups(nodemask, cpu_map,
8434 send_covered, tmpmask);
8438 /* Set up node groups */
8440 init_sched_build_groups(cpu_map, cpu_map,
8441 &cpu_to_allnodes_group,
8442 send_covered, tmpmask);
8445 for (i = 0; i < nr_node_ids; i++) {
8446 /* Set up node groups */
8447 struct sched_group *sg, *prev;
8450 cpumask_clear(covered);
8451 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8452 if (cpumask_empty(nodemask)) {
8453 sched_group_nodes[i] = NULL;
8457 sched_domain_node_span(i, domainspan);
8458 cpumask_and(domainspan, domainspan, cpu_map);
8460 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8463 printk(KERN_WARNING "Can not alloc domain group for "
8467 sched_group_nodes[i] = sg;
8468 for_each_cpu(j, nodemask) {
8469 struct sched_domain *sd;
8471 sd = &per_cpu(node_domains, j).sd;
8474 sg->__cpu_power = 0;
8475 cpumask_copy(sched_group_cpus(sg), nodemask);
8477 cpumask_or(covered, covered, nodemask);
8480 for (j = 0; j < nr_node_ids; j++) {
8481 int n = (i + j) % nr_node_ids;
8483 cpumask_complement(notcovered, covered);
8484 cpumask_and(tmpmask, notcovered, cpu_map);
8485 cpumask_and(tmpmask, tmpmask, domainspan);
8486 if (cpumask_empty(tmpmask))
8489 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8490 if (cpumask_empty(tmpmask))
8493 sg = kmalloc_node(sizeof(struct sched_group) +
8498 "Can not alloc domain group for node %d\n", j);
8501 sg->__cpu_power = 0;
8502 cpumask_copy(sched_group_cpus(sg), tmpmask);
8503 sg->next = prev->next;
8504 cpumask_or(covered, covered, tmpmask);
8511 /* Calculate CPU power for physical packages and nodes */
8512 #ifdef CONFIG_SCHED_SMT
8513 for_each_cpu(i, cpu_map) {
8514 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8516 init_sched_groups_power(i, sd);
8519 #ifdef CONFIG_SCHED_MC
8520 for_each_cpu(i, cpu_map) {
8521 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8523 init_sched_groups_power(i, sd);
8527 for_each_cpu(i, cpu_map) {
8528 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8530 init_sched_groups_power(i, sd);
8534 for (i = 0; i < nr_node_ids; i++)
8535 init_numa_sched_groups_power(sched_group_nodes[i]);
8538 struct sched_group *sg;
8540 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8542 init_numa_sched_groups_power(sg);
8546 /* Attach the domains */
8547 for_each_cpu(i, cpu_map) {
8548 struct sched_domain *sd;
8549 #ifdef CONFIG_SCHED_SMT
8550 sd = &per_cpu(cpu_domains, i).sd;
8551 #elif defined(CONFIG_SCHED_MC)
8552 sd = &per_cpu(core_domains, i).sd;
8554 sd = &per_cpu(phys_domains, i).sd;
8556 cpu_attach_domain(sd, rd, i);
8562 free_cpumask_var(tmpmask);
8564 free_cpumask_var(send_covered);
8566 free_cpumask_var(this_core_map);
8567 free_this_sibling_map:
8568 free_cpumask_var(this_sibling_map);
8570 free_cpumask_var(nodemask);
8573 free_cpumask_var(notcovered);
8575 free_cpumask_var(covered);
8577 free_cpumask_var(domainspan);
8584 kfree(sched_group_nodes);
8590 free_sched_groups(cpu_map, tmpmask);
8591 free_rootdomain(rd);
8596 static int build_sched_domains(const struct cpumask *cpu_map)
8598 return __build_sched_domains(cpu_map, NULL);
8601 static struct cpumask *doms_cur; /* current sched domains */
8602 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8603 static struct sched_domain_attr *dattr_cur;
8604 /* attribues of custom domains in 'doms_cur' */
8607 * Special case: If a kmalloc of a doms_cur partition (array of
8608 * cpumask) fails, then fallback to a single sched domain,
8609 * as determined by the single cpumask fallback_doms.
8611 static cpumask_var_t fallback_doms;
8614 * arch_update_cpu_topology lets virtualized architectures update the
8615 * cpu core maps. It is supposed to return 1 if the topology changed
8616 * or 0 if it stayed the same.
8618 int __attribute__((weak)) arch_update_cpu_topology(void)
8624 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8625 * For now this just excludes isolated cpus, but could be used to
8626 * exclude other special cases in the future.
8628 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8632 arch_update_cpu_topology();
8634 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8636 doms_cur = fallback_doms;
8637 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8639 err = build_sched_domains(doms_cur);
8640 register_sched_domain_sysctl();
8645 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8646 struct cpumask *tmpmask)
8648 free_sched_groups(cpu_map, tmpmask);
8652 * Detach sched domains from a group of cpus specified in cpu_map
8653 * These cpus will now be attached to the NULL domain
8655 static void detach_destroy_domains(const struct cpumask *cpu_map)
8657 /* Save because hotplug lock held. */
8658 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8661 for_each_cpu(i, cpu_map)
8662 cpu_attach_domain(NULL, &def_root_domain, i);
8663 synchronize_sched();
8664 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8667 /* handle null as "default" */
8668 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8669 struct sched_domain_attr *new, int idx_new)
8671 struct sched_domain_attr tmp;
8678 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8679 new ? (new + idx_new) : &tmp,
8680 sizeof(struct sched_domain_attr));
8684 * Partition sched domains as specified by the 'ndoms_new'
8685 * cpumasks in the array doms_new[] of cpumasks. This compares
8686 * doms_new[] to the current sched domain partitioning, doms_cur[].
8687 * It destroys each deleted domain and builds each new domain.
8689 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8690 * The masks don't intersect (don't overlap.) We should setup one
8691 * sched domain for each mask. CPUs not in any of the cpumasks will
8692 * not be load balanced. If the same cpumask appears both in the
8693 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8696 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8697 * ownership of it and will kfree it when done with it. If the caller
8698 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8699 * ndoms_new == 1, and partition_sched_domains() will fallback to
8700 * the single partition 'fallback_doms', it also forces the domains
8703 * If doms_new == NULL it will be replaced with cpu_online_mask.
8704 * ndoms_new == 0 is a special case for destroying existing domains,
8705 * and it will not create the default domain.
8707 * Call with hotplug lock held
8709 /* FIXME: Change to struct cpumask *doms_new[] */
8710 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8711 struct sched_domain_attr *dattr_new)
8716 mutex_lock(&sched_domains_mutex);
8718 /* always unregister in case we don't destroy any domains */
8719 unregister_sched_domain_sysctl();
8721 /* Let architecture update cpu core mappings. */
8722 new_topology = arch_update_cpu_topology();
8724 n = doms_new ? ndoms_new : 0;
8726 /* Destroy deleted domains */
8727 for (i = 0; i < ndoms_cur; i++) {
8728 for (j = 0; j < n && !new_topology; j++) {
8729 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8730 && dattrs_equal(dattr_cur, i, dattr_new, j))
8733 /* no match - a current sched domain not in new doms_new[] */
8734 detach_destroy_domains(doms_cur + i);
8739 if (doms_new == NULL) {
8741 doms_new = fallback_doms;
8742 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8743 WARN_ON_ONCE(dattr_new);
8746 /* Build new domains */
8747 for (i = 0; i < ndoms_new; i++) {
8748 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8749 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8750 && dattrs_equal(dattr_new, i, dattr_cur, j))
8753 /* no match - add a new doms_new */
8754 __build_sched_domains(doms_new + i,
8755 dattr_new ? dattr_new + i : NULL);
8760 /* Remember the new sched domains */
8761 if (doms_cur != fallback_doms)
8763 kfree(dattr_cur); /* kfree(NULL) is safe */
8764 doms_cur = doms_new;
8765 dattr_cur = dattr_new;
8766 ndoms_cur = ndoms_new;
8768 register_sched_domain_sysctl();
8770 mutex_unlock(&sched_domains_mutex);
8773 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8774 static void arch_reinit_sched_domains(void)
8778 /* Destroy domains first to force the rebuild */
8779 partition_sched_domains(0, NULL, NULL);
8781 rebuild_sched_domains();
8785 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8787 unsigned int level = 0;
8789 if (sscanf(buf, "%u", &level) != 1)
8793 * level is always be positive so don't check for
8794 * level < POWERSAVINGS_BALANCE_NONE which is 0
8795 * What happens on 0 or 1 byte write,
8796 * need to check for count as well?
8799 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8803 sched_smt_power_savings = level;
8805 sched_mc_power_savings = level;
8807 arch_reinit_sched_domains();
8812 #ifdef CONFIG_SCHED_MC
8813 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8816 return sprintf(page, "%u\n", sched_mc_power_savings);
8818 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8819 const char *buf, size_t count)
8821 return sched_power_savings_store(buf, count, 0);
8823 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8824 sched_mc_power_savings_show,
8825 sched_mc_power_savings_store);
8828 #ifdef CONFIG_SCHED_SMT
8829 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8832 return sprintf(page, "%u\n", sched_smt_power_savings);
8834 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8835 const char *buf, size_t count)
8837 return sched_power_savings_store(buf, count, 1);
8839 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8840 sched_smt_power_savings_show,
8841 sched_smt_power_savings_store);
8844 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8848 #ifdef CONFIG_SCHED_SMT
8850 err = sysfs_create_file(&cls->kset.kobj,
8851 &attr_sched_smt_power_savings.attr);
8853 #ifdef CONFIG_SCHED_MC
8854 if (!err && mc_capable())
8855 err = sysfs_create_file(&cls->kset.kobj,
8856 &attr_sched_mc_power_savings.attr);
8860 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8862 #ifndef CONFIG_CPUSETS
8864 * Add online and remove offline CPUs from the scheduler domains.
8865 * When cpusets are enabled they take over this function.
8867 static int update_sched_domains(struct notifier_block *nfb,
8868 unsigned long action, void *hcpu)
8872 case CPU_ONLINE_FROZEN:
8874 case CPU_DEAD_FROZEN:
8875 partition_sched_domains(1, NULL, NULL);
8884 static int update_runtime(struct notifier_block *nfb,
8885 unsigned long action, void *hcpu)
8887 int cpu = (int)(long)hcpu;
8890 case CPU_DOWN_PREPARE:
8891 case CPU_DOWN_PREPARE_FROZEN:
8892 disable_runtime(cpu_rq(cpu));
8895 case CPU_DOWN_FAILED:
8896 case CPU_DOWN_FAILED_FROZEN:
8898 case CPU_ONLINE_FROZEN:
8899 enable_runtime(cpu_rq(cpu));
8907 void __init sched_init_smp(void)
8909 cpumask_var_t non_isolated_cpus;
8911 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8913 #if defined(CONFIG_NUMA)
8914 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8916 BUG_ON(sched_group_nodes_bycpu == NULL);
8919 mutex_lock(&sched_domains_mutex);
8920 arch_init_sched_domains(cpu_online_mask);
8921 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8922 if (cpumask_empty(non_isolated_cpus))
8923 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8924 mutex_unlock(&sched_domains_mutex);
8927 #ifndef CONFIG_CPUSETS
8928 /* XXX: Theoretical race here - CPU may be hotplugged now */
8929 hotcpu_notifier(update_sched_domains, 0);
8932 /* RT runtime code needs to handle some hotplug events */
8933 hotcpu_notifier(update_runtime, 0);
8937 /* Move init over to a non-isolated CPU */
8938 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8940 sched_init_granularity();
8941 free_cpumask_var(non_isolated_cpus);
8943 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8944 init_sched_rt_class();
8947 void __init sched_init_smp(void)
8949 sched_init_granularity();
8951 #endif /* CONFIG_SMP */
8953 int in_sched_functions(unsigned long addr)
8955 return in_lock_functions(addr) ||
8956 (addr >= (unsigned long)__sched_text_start
8957 && addr < (unsigned long)__sched_text_end);
8960 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8962 cfs_rq->tasks_timeline = RB_ROOT;
8963 INIT_LIST_HEAD(&cfs_rq->tasks);
8964 #ifdef CONFIG_FAIR_GROUP_SCHED
8967 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8970 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8972 struct rt_prio_array *array;
8975 array = &rt_rq->active;
8976 for (i = 0; i < MAX_RT_PRIO; i++) {
8977 INIT_LIST_HEAD(array->queue + i);
8978 __clear_bit(i, array->bitmap);
8980 /* delimiter for bitsearch: */
8981 __set_bit(MAX_RT_PRIO, array->bitmap);
8983 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8984 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8986 rt_rq->highest_prio.next = MAX_RT_PRIO;
8990 rt_rq->rt_nr_migratory = 0;
8991 rt_rq->overloaded = 0;
8992 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8996 rt_rq->rt_throttled = 0;
8997 rt_rq->rt_runtime = 0;
8998 spin_lock_init(&rt_rq->rt_runtime_lock);
9000 #ifdef CONFIG_RT_GROUP_SCHED
9001 rt_rq->rt_nr_boosted = 0;
9006 #ifdef CONFIG_FAIR_GROUP_SCHED
9007 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9008 struct sched_entity *se, int cpu, int add,
9009 struct sched_entity *parent)
9011 struct rq *rq = cpu_rq(cpu);
9012 tg->cfs_rq[cpu] = cfs_rq;
9013 init_cfs_rq(cfs_rq, rq);
9016 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9019 /* se could be NULL for init_task_group */
9024 se->cfs_rq = &rq->cfs;
9026 se->cfs_rq = parent->my_q;
9029 se->load.weight = tg->shares;
9030 se->load.inv_weight = 0;
9031 se->parent = parent;
9035 #ifdef CONFIG_RT_GROUP_SCHED
9036 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9037 struct sched_rt_entity *rt_se, int cpu, int add,
9038 struct sched_rt_entity *parent)
9040 struct rq *rq = cpu_rq(cpu);
9042 tg->rt_rq[cpu] = rt_rq;
9043 init_rt_rq(rt_rq, rq);
9045 rt_rq->rt_se = rt_se;
9046 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9048 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9050 tg->rt_se[cpu] = rt_se;
9055 rt_se->rt_rq = &rq->rt;
9057 rt_se->rt_rq = parent->my_q;
9059 rt_se->my_q = rt_rq;
9060 rt_se->parent = parent;
9061 INIT_LIST_HEAD(&rt_se->run_list);
9065 void __init sched_init(void)
9068 unsigned long alloc_size = 0, ptr;
9070 #ifdef CONFIG_FAIR_GROUP_SCHED
9071 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9073 #ifdef CONFIG_RT_GROUP_SCHED
9074 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9076 #ifdef CONFIG_USER_SCHED
9079 #ifdef CONFIG_CPUMASK_OFFSTACK
9080 alloc_size += num_possible_cpus() * cpumask_size();
9083 * As sched_init() is called before page_alloc is setup,
9084 * we use alloc_bootmem().
9087 ptr = (unsigned long)alloc_bootmem(alloc_size);
9089 #ifdef CONFIG_FAIR_GROUP_SCHED
9090 init_task_group.se = (struct sched_entity **)ptr;
9091 ptr += nr_cpu_ids * sizeof(void **);
9093 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9094 ptr += nr_cpu_ids * sizeof(void **);
9096 #ifdef CONFIG_USER_SCHED
9097 root_task_group.se = (struct sched_entity **)ptr;
9098 ptr += nr_cpu_ids * sizeof(void **);
9100 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9101 ptr += nr_cpu_ids * sizeof(void **);
9102 #endif /* CONFIG_USER_SCHED */
9103 #endif /* CONFIG_FAIR_GROUP_SCHED */
9104 #ifdef CONFIG_RT_GROUP_SCHED
9105 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9106 ptr += nr_cpu_ids * sizeof(void **);
9108 init_task_group.rt_rq = (struct rt_rq **)ptr;
9109 ptr += nr_cpu_ids * sizeof(void **);
9111 #ifdef CONFIG_USER_SCHED
9112 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9113 ptr += nr_cpu_ids * sizeof(void **);
9115 root_task_group.rt_rq = (struct rt_rq **)ptr;
9116 ptr += nr_cpu_ids * sizeof(void **);
9117 #endif /* CONFIG_USER_SCHED */
9118 #endif /* CONFIG_RT_GROUP_SCHED */
9119 #ifdef CONFIG_CPUMASK_OFFSTACK
9120 for_each_possible_cpu(i) {
9121 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9122 ptr += cpumask_size();
9124 #endif /* CONFIG_CPUMASK_OFFSTACK */
9128 init_defrootdomain();
9131 init_rt_bandwidth(&def_rt_bandwidth,
9132 global_rt_period(), global_rt_runtime());
9134 #ifdef CONFIG_RT_GROUP_SCHED
9135 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9136 global_rt_period(), global_rt_runtime());
9137 #ifdef CONFIG_USER_SCHED
9138 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9139 global_rt_period(), RUNTIME_INF);
9140 #endif /* CONFIG_USER_SCHED */
9141 #endif /* CONFIG_RT_GROUP_SCHED */
9143 #ifdef CONFIG_GROUP_SCHED
9144 list_add(&init_task_group.list, &task_groups);
9145 INIT_LIST_HEAD(&init_task_group.children);
9147 #ifdef CONFIG_USER_SCHED
9148 INIT_LIST_HEAD(&root_task_group.children);
9149 init_task_group.parent = &root_task_group;
9150 list_add(&init_task_group.siblings, &root_task_group.children);
9151 #endif /* CONFIG_USER_SCHED */
9152 #endif /* CONFIG_GROUP_SCHED */
9154 for_each_possible_cpu(i) {
9158 spin_lock_init(&rq->lock);
9160 rq->calc_load_active = 0;
9161 rq->calc_load_update = jiffies + LOAD_FREQ;
9162 init_cfs_rq(&rq->cfs, rq);
9163 init_rt_rq(&rq->rt, rq);
9164 #ifdef CONFIG_FAIR_GROUP_SCHED
9165 init_task_group.shares = init_task_group_load;
9166 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9167 #ifdef CONFIG_CGROUP_SCHED
9169 * How much cpu bandwidth does init_task_group get?
9171 * In case of task-groups formed thr' the cgroup filesystem, it
9172 * gets 100% of the cpu resources in the system. This overall
9173 * system cpu resource is divided among the tasks of
9174 * init_task_group and its child task-groups in a fair manner,
9175 * based on each entity's (task or task-group's) weight
9176 * (se->load.weight).
9178 * In other words, if init_task_group has 10 tasks of weight
9179 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9180 * then A0's share of the cpu resource is:
9182 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9184 * We achieve this by letting init_task_group's tasks sit
9185 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9187 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9188 #elif defined CONFIG_USER_SCHED
9189 root_task_group.shares = NICE_0_LOAD;
9190 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9192 * In case of task-groups formed thr' the user id of tasks,
9193 * init_task_group represents tasks belonging to root user.
9194 * Hence it forms a sibling of all subsequent groups formed.
9195 * In this case, init_task_group gets only a fraction of overall
9196 * system cpu resource, based on the weight assigned to root
9197 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9198 * by letting tasks of init_task_group sit in a separate cfs_rq
9199 * (init_cfs_rq) and having one entity represent this group of
9200 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9202 init_tg_cfs_entry(&init_task_group,
9203 &per_cpu(init_cfs_rq, i),
9204 &per_cpu(init_sched_entity, i), i, 1,
9205 root_task_group.se[i]);
9208 #endif /* CONFIG_FAIR_GROUP_SCHED */
9210 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9211 #ifdef CONFIG_RT_GROUP_SCHED
9212 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9213 #ifdef CONFIG_CGROUP_SCHED
9214 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9215 #elif defined CONFIG_USER_SCHED
9216 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9217 init_tg_rt_entry(&init_task_group,
9218 &per_cpu(init_rt_rq, i),
9219 &per_cpu(init_sched_rt_entity, i), i, 1,
9220 root_task_group.rt_se[i]);
9224 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9225 rq->cpu_load[j] = 0;
9229 rq->active_balance = 0;
9230 rq->next_balance = jiffies;
9234 rq->migration_thread = NULL;
9235 INIT_LIST_HEAD(&rq->migration_queue);
9236 rq_attach_root(rq, &def_root_domain);
9239 atomic_set(&rq->nr_iowait, 0);
9242 set_load_weight(&init_task);
9244 #ifdef CONFIG_PREEMPT_NOTIFIERS
9245 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9249 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9252 #ifdef CONFIG_RT_MUTEXES
9253 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9257 * The boot idle thread does lazy MMU switching as well:
9259 atomic_inc(&init_mm.mm_count);
9260 enter_lazy_tlb(&init_mm, current);
9263 * Make us the idle thread. Technically, schedule() should not be
9264 * called from this thread, however somewhere below it might be,
9265 * but because we are the idle thread, we just pick up running again
9266 * when this runqueue becomes "idle".
9268 init_idle(current, smp_processor_id());
9270 calc_load_update = jiffies + LOAD_FREQ;
9273 * During early bootup we pretend to be a normal task:
9275 current->sched_class = &fair_sched_class;
9277 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9278 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9281 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9282 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
9284 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9287 scheduler_running = 1;
9290 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9291 void __might_sleep(char *file, int line)
9294 static unsigned long prev_jiffy; /* ratelimiting */
9296 if ((!in_atomic() && !irqs_disabled()) ||
9297 system_state != SYSTEM_RUNNING || oops_in_progress)
9299 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9301 prev_jiffy = jiffies;
9304 "BUG: sleeping function called from invalid context at %s:%d\n",
9307 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9308 in_atomic(), irqs_disabled(),
9309 current->pid, current->comm);
9311 debug_show_held_locks(current);
9312 if (irqs_disabled())
9313 print_irqtrace_events(current);
9317 EXPORT_SYMBOL(__might_sleep);
9320 #ifdef CONFIG_MAGIC_SYSRQ
9321 static void normalize_task(struct rq *rq, struct task_struct *p)
9325 update_rq_clock(rq);
9326 on_rq = p->se.on_rq;
9328 deactivate_task(rq, p, 0);
9329 __setscheduler(rq, p, SCHED_NORMAL, 0);
9331 activate_task(rq, p, 0);
9332 resched_task(rq->curr);
9336 void normalize_rt_tasks(void)
9338 struct task_struct *g, *p;
9339 unsigned long flags;
9342 read_lock_irqsave(&tasklist_lock, flags);
9343 do_each_thread(g, p) {
9345 * Only normalize user tasks:
9350 p->se.exec_start = 0;
9351 #ifdef CONFIG_SCHEDSTATS
9352 p->se.wait_start = 0;
9353 p->se.sleep_start = 0;
9354 p->se.block_start = 0;
9359 * Renice negative nice level userspace
9362 if (TASK_NICE(p) < 0 && p->mm)
9363 set_user_nice(p, 0);
9367 spin_lock(&p->pi_lock);
9368 rq = __task_rq_lock(p);
9370 normalize_task(rq, p);
9372 __task_rq_unlock(rq);
9373 spin_unlock(&p->pi_lock);
9374 } while_each_thread(g, p);
9376 read_unlock_irqrestore(&tasklist_lock, flags);
9379 #endif /* CONFIG_MAGIC_SYSRQ */
9383 * These functions are only useful for the IA64 MCA handling.
9385 * They can only be called when the whole system has been
9386 * stopped - every CPU needs to be quiescent, and no scheduling
9387 * activity can take place. Using them for anything else would
9388 * be a serious bug, and as a result, they aren't even visible
9389 * under any other configuration.
9393 * curr_task - return the current task for a given cpu.
9394 * @cpu: the processor in question.
9396 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9398 struct task_struct *curr_task(int cpu)
9400 return cpu_curr(cpu);
9404 * set_curr_task - set the current task for a given cpu.
9405 * @cpu: the processor in question.
9406 * @p: the task pointer to set.
9408 * Description: This function must only be used when non-maskable interrupts
9409 * are serviced on a separate stack. It allows the architecture to switch the
9410 * notion of the current task on a cpu in a non-blocking manner. This function
9411 * must be called with all CPU's synchronized, and interrupts disabled, the
9412 * and caller must save the original value of the current task (see
9413 * curr_task() above) and restore that value before reenabling interrupts and
9414 * re-starting the system.
9416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9418 void set_curr_task(int cpu, struct task_struct *p)
9425 #ifdef CONFIG_FAIR_GROUP_SCHED
9426 static void free_fair_sched_group(struct task_group *tg)
9430 for_each_possible_cpu(i) {
9432 kfree(tg->cfs_rq[i]);
9442 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9444 struct cfs_rq *cfs_rq;
9445 struct sched_entity *se;
9449 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9452 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9456 tg->shares = NICE_0_LOAD;
9458 for_each_possible_cpu(i) {
9461 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9462 GFP_KERNEL, cpu_to_node(i));
9466 se = kzalloc_node(sizeof(struct sched_entity),
9467 GFP_KERNEL, cpu_to_node(i));
9471 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9480 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9482 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9483 &cpu_rq(cpu)->leaf_cfs_rq_list);
9486 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9488 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9490 #else /* !CONFG_FAIR_GROUP_SCHED */
9491 static inline void free_fair_sched_group(struct task_group *tg)
9496 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9501 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9505 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9508 #endif /* CONFIG_FAIR_GROUP_SCHED */
9510 #ifdef CONFIG_RT_GROUP_SCHED
9511 static void free_rt_sched_group(struct task_group *tg)
9515 destroy_rt_bandwidth(&tg->rt_bandwidth);
9517 for_each_possible_cpu(i) {
9519 kfree(tg->rt_rq[i]);
9521 kfree(tg->rt_se[i]);
9529 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9531 struct rt_rq *rt_rq;
9532 struct sched_rt_entity *rt_se;
9536 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9539 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9543 init_rt_bandwidth(&tg->rt_bandwidth,
9544 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9546 for_each_possible_cpu(i) {
9549 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9550 GFP_KERNEL, cpu_to_node(i));
9554 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9555 GFP_KERNEL, cpu_to_node(i));
9559 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9568 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9570 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9571 &cpu_rq(cpu)->leaf_rt_rq_list);
9574 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9576 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9578 #else /* !CONFIG_RT_GROUP_SCHED */
9579 static inline void free_rt_sched_group(struct task_group *tg)
9584 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9589 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9593 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9596 #endif /* CONFIG_RT_GROUP_SCHED */
9598 #ifdef CONFIG_GROUP_SCHED
9599 static void free_sched_group(struct task_group *tg)
9601 free_fair_sched_group(tg);
9602 free_rt_sched_group(tg);
9606 /* allocate runqueue etc for a new task group */
9607 struct task_group *sched_create_group(struct task_group *parent)
9609 struct task_group *tg;
9610 unsigned long flags;
9613 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9615 return ERR_PTR(-ENOMEM);
9617 if (!alloc_fair_sched_group(tg, parent))
9620 if (!alloc_rt_sched_group(tg, parent))
9623 spin_lock_irqsave(&task_group_lock, flags);
9624 for_each_possible_cpu(i) {
9625 register_fair_sched_group(tg, i);
9626 register_rt_sched_group(tg, i);
9628 list_add_rcu(&tg->list, &task_groups);
9630 WARN_ON(!parent); /* root should already exist */
9632 tg->parent = parent;
9633 INIT_LIST_HEAD(&tg->children);
9634 list_add_rcu(&tg->siblings, &parent->children);
9635 spin_unlock_irqrestore(&task_group_lock, flags);
9640 free_sched_group(tg);
9641 return ERR_PTR(-ENOMEM);
9644 /* rcu callback to free various structures associated with a task group */
9645 static void free_sched_group_rcu(struct rcu_head *rhp)
9647 /* now it should be safe to free those cfs_rqs */
9648 free_sched_group(container_of(rhp, struct task_group, rcu));
9651 /* Destroy runqueue etc associated with a task group */
9652 void sched_destroy_group(struct task_group *tg)
9654 unsigned long flags;
9657 spin_lock_irqsave(&task_group_lock, flags);
9658 for_each_possible_cpu(i) {
9659 unregister_fair_sched_group(tg, i);
9660 unregister_rt_sched_group(tg, i);
9662 list_del_rcu(&tg->list);
9663 list_del_rcu(&tg->siblings);
9664 spin_unlock_irqrestore(&task_group_lock, flags);
9666 /* wait for possible concurrent references to cfs_rqs complete */
9667 call_rcu(&tg->rcu, free_sched_group_rcu);
9670 /* change task's runqueue when it moves between groups.
9671 * The caller of this function should have put the task in its new group
9672 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9673 * reflect its new group.
9675 void sched_move_task(struct task_struct *tsk)
9678 unsigned long flags;
9681 rq = task_rq_lock(tsk, &flags);
9683 update_rq_clock(rq);
9685 running = task_current(rq, tsk);
9686 on_rq = tsk->se.on_rq;
9689 dequeue_task(rq, tsk, 0);
9690 if (unlikely(running))
9691 tsk->sched_class->put_prev_task(rq, tsk);
9693 set_task_rq(tsk, task_cpu(tsk));
9695 #ifdef CONFIG_FAIR_GROUP_SCHED
9696 if (tsk->sched_class->moved_group)
9697 tsk->sched_class->moved_group(tsk);
9700 if (unlikely(running))
9701 tsk->sched_class->set_curr_task(rq);
9703 enqueue_task(rq, tsk, 0);
9705 task_rq_unlock(rq, &flags);
9707 #endif /* CONFIG_GROUP_SCHED */
9709 #ifdef CONFIG_FAIR_GROUP_SCHED
9710 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9712 struct cfs_rq *cfs_rq = se->cfs_rq;
9717 dequeue_entity(cfs_rq, se, 0);
9719 se->load.weight = shares;
9720 se->load.inv_weight = 0;
9723 enqueue_entity(cfs_rq, se, 0);
9726 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9728 struct cfs_rq *cfs_rq = se->cfs_rq;
9729 struct rq *rq = cfs_rq->rq;
9730 unsigned long flags;
9732 spin_lock_irqsave(&rq->lock, flags);
9733 __set_se_shares(se, shares);
9734 spin_unlock_irqrestore(&rq->lock, flags);
9737 static DEFINE_MUTEX(shares_mutex);
9739 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9742 unsigned long flags;
9745 * We can't change the weight of the root cgroup.
9750 if (shares < MIN_SHARES)
9751 shares = MIN_SHARES;
9752 else if (shares > MAX_SHARES)
9753 shares = MAX_SHARES;
9755 mutex_lock(&shares_mutex);
9756 if (tg->shares == shares)
9759 spin_lock_irqsave(&task_group_lock, flags);
9760 for_each_possible_cpu(i)
9761 unregister_fair_sched_group(tg, i);
9762 list_del_rcu(&tg->siblings);
9763 spin_unlock_irqrestore(&task_group_lock, flags);
9765 /* wait for any ongoing reference to this group to finish */
9766 synchronize_sched();
9769 * Now we are free to modify the group's share on each cpu
9770 * w/o tripping rebalance_share or load_balance_fair.
9772 tg->shares = shares;
9773 for_each_possible_cpu(i) {
9777 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9778 set_se_shares(tg->se[i], shares);
9782 * Enable load balance activity on this group, by inserting it back on
9783 * each cpu's rq->leaf_cfs_rq_list.
9785 spin_lock_irqsave(&task_group_lock, flags);
9786 for_each_possible_cpu(i)
9787 register_fair_sched_group(tg, i);
9788 list_add_rcu(&tg->siblings, &tg->parent->children);
9789 spin_unlock_irqrestore(&task_group_lock, flags);
9791 mutex_unlock(&shares_mutex);
9795 unsigned long sched_group_shares(struct task_group *tg)
9801 #ifdef CONFIG_RT_GROUP_SCHED
9803 * Ensure that the real time constraints are schedulable.
9805 static DEFINE_MUTEX(rt_constraints_mutex);
9807 static unsigned long to_ratio(u64 period, u64 runtime)
9809 if (runtime == RUNTIME_INF)
9812 return div64_u64(runtime << 20, period);
9815 /* Must be called with tasklist_lock held */
9816 static inline int tg_has_rt_tasks(struct task_group *tg)
9818 struct task_struct *g, *p;
9820 do_each_thread(g, p) {
9821 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9823 } while_each_thread(g, p);
9828 struct rt_schedulable_data {
9829 struct task_group *tg;
9834 static int tg_schedulable(struct task_group *tg, void *data)
9836 struct rt_schedulable_data *d = data;
9837 struct task_group *child;
9838 unsigned long total, sum = 0;
9839 u64 period, runtime;
9841 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9842 runtime = tg->rt_bandwidth.rt_runtime;
9845 period = d->rt_period;
9846 runtime = d->rt_runtime;
9849 #ifdef CONFIG_USER_SCHED
9850 if (tg == &root_task_group) {
9851 period = global_rt_period();
9852 runtime = global_rt_runtime();
9857 * Cannot have more runtime than the period.
9859 if (runtime > period && runtime != RUNTIME_INF)
9863 * Ensure we don't starve existing RT tasks.
9865 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9868 total = to_ratio(period, runtime);
9871 * Nobody can have more than the global setting allows.
9873 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9877 * The sum of our children's runtime should not exceed our own.
9879 list_for_each_entry_rcu(child, &tg->children, siblings) {
9880 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9881 runtime = child->rt_bandwidth.rt_runtime;
9883 if (child == d->tg) {
9884 period = d->rt_period;
9885 runtime = d->rt_runtime;
9888 sum += to_ratio(period, runtime);
9897 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9899 struct rt_schedulable_data data = {
9901 .rt_period = period,
9902 .rt_runtime = runtime,
9905 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9908 static int tg_set_bandwidth(struct task_group *tg,
9909 u64 rt_period, u64 rt_runtime)
9913 mutex_lock(&rt_constraints_mutex);
9914 read_lock(&tasklist_lock);
9915 err = __rt_schedulable(tg, rt_period, rt_runtime);
9919 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9920 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9921 tg->rt_bandwidth.rt_runtime = rt_runtime;
9923 for_each_possible_cpu(i) {
9924 struct rt_rq *rt_rq = tg->rt_rq[i];
9926 spin_lock(&rt_rq->rt_runtime_lock);
9927 rt_rq->rt_runtime = rt_runtime;
9928 spin_unlock(&rt_rq->rt_runtime_lock);
9930 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9932 read_unlock(&tasklist_lock);
9933 mutex_unlock(&rt_constraints_mutex);
9938 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9940 u64 rt_runtime, rt_period;
9942 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9943 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9944 if (rt_runtime_us < 0)
9945 rt_runtime = RUNTIME_INF;
9947 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9950 long sched_group_rt_runtime(struct task_group *tg)
9954 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9957 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9958 do_div(rt_runtime_us, NSEC_PER_USEC);
9959 return rt_runtime_us;
9962 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9964 u64 rt_runtime, rt_period;
9966 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9967 rt_runtime = tg->rt_bandwidth.rt_runtime;
9972 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9975 long sched_group_rt_period(struct task_group *tg)
9979 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9980 do_div(rt_period_us, NSEC_PER_USEC);
9981 return rt_period_us;
9984 static int sched_rt_global_constraints(void)
9986 u64 runtime, period;
9989 if (sysctl_sched_rt_period <= 0)
9992 runtime = global_rt_runtime();
9993 period = global_rt_period();
9996 * Sanity check on the sysctl variables.
9998 if (runtime > period && runtime != RUNTIME_INF)
10001 mutex_lock(&rt_constraints_mutex);
10002 read_lock(&tasklist_lock);
10003 ret = __rt_schedulable(NULL, 0, 0);
10004 read_unlock(&tasklist_lock);
10005 mutex_unlock(&rt_constraints_mutex);
10010 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10012 /* Don't accept realtime tasks when there is no way for them to run */
10013 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10019 #else /* !CONFIG_RT_GROUP_SCHED */
10020 static int sched_rt_global_constraints(void)
10022 unsigned long flags;
10025 if (sysctl_sched_rt_period <= 0)
10029 * There's always some RT tasks in the root group
10030 * -- migration, kstopmachine etc..
10032 if (sysctl_sched_rt_runtime == 0)
10035 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10036 for_each_possible_cpu(i) {
10037 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10039 spin_lock(&rt_rq->rt_runtime_lock);
10040 rt_rq->rt_runtime = global_rt_runtime();
10041 spin_unlock(&rt_rq->rt_runtime_lock);
10043 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10047 #endif /* CONFIG_RT_GROUP_SCHED */
10049 int sched_rt_handler(struct ctl_table *table, int write,
10050 struct file *filp, void __user *buffer, size_t *lenp,
10054 int old_period, old_runtime;
10055 static DEFINE_MUTEX(mutex);
10057 mutex_lock(&mutex);
10058 old_period = sysctl_sched_rt_period;
10059 old_runtime = sysctl_sched_rt_runtime;
10061 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10063 if (!ret && write) {
10064 ret = sched_rt_global_constraints();
10066 sysctl_sched_rt_period = old_period;
10067 sysctl_sched_rt_runtime = old_runtime;
10069 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10070 def_rt_bandwidth.rt_period =
10071 ns_to_ktime(global_rt_period());
10074 mutex_unlock(&mutex);
10079 #ifdef CONFIG_CGROUP_SCHED
10081 /* return corresponding task_group object of a cgroup */
10082 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10084 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10085 struct task_group, css);
10088 static struct cgroup_subsys_state *
10089 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10091 struct task_group *tg, *parent;
10093 if (!cgrp->parent) {
10094 /* This is early initialization for the top cgroup */
10095 return &init_task_group.css;
10098 parent = cgroup_tg(cgrp->parent);
10099 tg = sched_create_group(parent);
10101 return ERR_PTR(-ENOMEM);
10107 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10109 struct task_group *tg = cgroup_tg(cgrp);
10111 sched_destroy_group(tg);
10115 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10116 struct task_struct *tsk)
10118 #ifdef CONFIG_RT_GROUP_SCHED
10119 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10122 /* We don't support RT-tasks being in separate groups */
10123 if (tsk->sched_class != &fair_sched_class)
10131 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10132 struct cgroup *old_cont, struct task_struct *tsk)
10134 sched_move_task(tsk);
10137 #ifdef CONFIG_FAIR_GROUP_SCHED
10138 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10141 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10144 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10146 struct task_group *tg = cgroup_tg(cgrp);
10148 return (u64) tg->shares;
10150 #endif /* CONFIG_FAIR_GROUP_SCHED */
10152 #ifdef CONFIG_RT_GROUP_SCHED
10153 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10156 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10159 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10161 return sched_group_rt_runtime(cgroup_tg(cgrp));
10164 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10167 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10170 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10172 return sched_group_rt_period(cgroup_tg(cgrp));
10174 #endif /* CONFIG_RT_GROUP_SCHED */
10176 static struct cftype cpu_files[] = {
10177 #ifdef CONFIG_FAIR_GROUP_SCHED
10180 .read_u64 = cpu_shares_read_u64,
10181 .write_u64 = cpu_shares_write_u64,
10184 #ifdef CONFIG_RT_GROUP_SCHED
10186 .name = "rt_runtime_us",
10187 .read_s64 = cpu_rt_runtime_read,
10188 .write_s64 = cpu_rt_runtime_write,
10191 .name = "rt_period_us",
10192 .read_u64 = cpu_rt_period_read_uint,
10193 .write_u64 = cpu_rt_period_write_uint,
10198 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10200 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10203 struct cgroup_subsys cpu_cgroup_subsys = {
10205 .create = cpu_cgroup_create,
10206 .destroy = cpu_cgroup_destroy,
10207 .can_attach = cpu_cgroup_can_attach,
10208 .attach = cpu_cgroup_attach,
10209 .populate = cpu_cgroup_populate,
10210 .subsys_id = cpu_cgroup_subsys_id,
10214 #endif /* CONFIG_CGROUP_SCHED */
10216 #ifdef CONFIG_CGROUP_CPUACCT
10219 * CPU accounting code for task groups.
10221 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10222 * (balbir@in.ibm.com).
10225 /* track cpu usage of a group of tasks and its child groups */
10227 struct cgroup_subsys_state css;
10228 /* cpuusage holds pointer to a u64-type object on every cpu */
10230 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10231 struct cpuacct *parent;
10234 struct cgroup_subsys cpuacct_subsys;
10236 /* return cpu accounting group corresponding to this container */
10237 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10239 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10240 struct cpuacct, css);
10243 /* return cpu accounting group to which this task belongs */
10244 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10246 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10247 struct cpuacct, css);
10250 /* create a new cpu accounting group */
10251 static struct cgroup_subsys_state *cpuacct_create(
10252 struct cgroup_subsys *ss, struct cgroup *cgrp)
10254 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10260 ca->cpuusage = alloc_percpu(u64);
10264 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10265 if (percpu_counter_init(&ca->cpustat[i], 0))
10266 goto out_free_counters;
10269 ca->parent = cgroup_ca(cgrp->parent);
10275 percpu_counter_destroy(&ca->cpustat[i]);
10276 free_percpu(ca->cpuusage);
10280 return ERR_PTR(-ENOMEM);
10283 /* destroy an existing cpu accounting group */
10285 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10287 struct cpuacct *ca = cgroup_ca(cgrp);
10290 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10291 percpu_counter_destroy(&ca->cpustat[i]);
10292 free_percpu(ca->cpuusage);
10296 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10298 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10301 #ifndef CONFIG_64BIT
10303 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10305 spin_lock_irq(&cpu_rq(cpu)->lock);
10307 spin_unlock_irq(&cpu_rq(cpu)->lock);
10315 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10317 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10319 #ifndef CONFIG_64BIT
10321 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10323 spin_lock_irq(&cpu_rq(cpu)->lock);
10325 spin_unlock_irq(&cpu_rq(cpu)->lock);
10331 /* return total cpu usage (in nanoseconds) of a group */
10332 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10334 struct cpuacct *ca = cgroup_ca(cgrp);
10335 u64 totalcpuusage = 0;
10338 for_each_present_cpu(i)
10339 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10341 return totalcpuusage;
10344 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10347 struct cpuacct *ca = cgroup_ca(cgrp);
10356 for_each_present_cpu(i)
10357 cpuacct_cpuusage_write(ca, i, 0);
10363 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10364 struct seq_file *m)
10366 struct cpuacct *ca = cgroup_ca(cgroup);
10370 for_each_present_cpu(i) {
10371 percpu = cpuacct_cpuusage_read(ca, i);
10372 seq_printf(m, "%llu ", (unsigned long long) percpu);
10374 seq_printf(m, "\n");
10378 static const char *cpuacct_stat_desc[] = {
10379 [CPUACCT_STAT_USER] = "user",
10380 [CPUACCT_STAT_SYSTEM] = "system",
10383 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10384 struct cgroup_map_cb *cb)
10386 struct cpuacct *ca = cgroup_ca(cgrp);
10389 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10390 s64 val = percpu_counter_read(&ca->cpustat[i]);
10391 val = cputime64_to_clock_t(val);
10392 cb->fill(cb, cpuacct_stat_desc[i], val);
10397 static struct cftype files[] = {
10400 .read_u64 = cpuusage_read,
10401 .write_u64 = cpuusage_write,
10404 .name = "usage_percpu",
10405 .read_seq_string = cpuacct_percpu_seq_read,
10409 .read_map = cpuacct_stats_show,
10413 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10415 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10419 * charge this task's execution time to its accounting group.
10421 * called with rq->lock held.
10423 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10425 struct cpuacct *ca;
10428 if (unlikely(!cpuacct_subsys.active))
10431 cpu = task_cpu(tsk);
10437 for (; ca; ca = ca->parent) {
10438 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10439 *cpuusage += cputime;
10446 * Charge the system/user time to the task's accounting group.
10448 static void cpuacct_update_stats(struct task_struct *tsk,
10449 enum cpuacct_stat_index idx, cputime_t val)
10451 struct cpuacct *ca;
10453 if (unlikely(!cpuacct_subsys.active))
10460 percpu_counter_add(&ca->cpustat[idx], val);
10466 struct cgroup_subsys cpuacct_subsys = {
10468 .create = cpuacct_create,
10469 .destroy = cpuacct_destroy,
10470 .populate = cpuacct_populate,
10471 .subsys_id = cpuacct_subsys_id,
10473 #endif /* CONFIG_CGROUP_CPUACCT */