Merge branch 'for-david' of git://git.kernel.org/pub/scm/linux/kernel/git/chris/linux-2.6
[linux-2.6] / drivers / net / ixgb / ixgb_hw.c
1 /*******************************************************************************
2
3   Intel PRO/10GbE Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ixgb_hw.c
30  * Shared functions for accessing and configuring the adapter
31  */
32
33 #include "ixgb_hw.h"
34 #include "ixgb_ids.h"
35
36 /*  Local function prototypes */
37
38 static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
39
40 static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
41
42 static void ixgb_get_bus_info(struct ixgb_hw *hw);
43
44 static bool ixgb_link_reset(struct ixgb_hw *hw);
45
46 static void ixgb_optics_reset(struct ixgb_hw *hw);
47
48 static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
49
50 static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
51
52 static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
53
54 static void ixgb_clear_vfta(struct ixgb_hw *hw);
55
56 static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
57
58 static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
59                                   u32 reg_address,
60                                   u32 phy_address,
61                                   u32 device_type);
62
63 static bool ixgb_setup_fc(struct ixgb_hw *hw);
64
65 static bool mac_addr_valid(u8 *mac_addr);
66
67 static u32 ixgb_mac_reset(struct ixgb_hw *hw)
68 {
69         u32 ctrl_reg;
70
71         ctrl_reg =  IXGB_CTRL0_RST |
72                                 IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
73                                 IXGB_CTRL0_SDP2_DIR |
74                                 IXGB_CTRL0_SDP1_DIR |
75                                 IXGB_CTRL0_SDP0_DIR |
76                                 IXGB_CTRL0_SDP3  |   /* Initial value 1101   */
77                                 IXGB_CTRL0_SDP2  |
78                                 IXGB_CTRL0_SDP0;
79
80 #ifdef HP_ZX1
81         /* Workaround for 82597EX reset errata */
82         IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
83 #else
84         IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
85 #endif
86
87         /* Delay a few ms just to allow the reset to complete */
88         msleep(IXGB_DELAY_AFTER_RESET);
89         ctrl_reg = IXGB_READ_REG(hw, CTRL0);
90 #ifdef DBG
91         /* Make sure the self-clearing global reset bit did self clear */
92         ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
93 #endif
94
95         if (hw->subsystem_vendor_id == SUN_SUBVENDOR_ID) {
96                 ctrl_reg =  /* Enable interrupt from XFP and SerDes */
97                            IXGB_CTRL1_GPI0_EN |
98                            IXGB_CTRL1_SDP6_DIR |
99                            IXGB_CTRL1_SDP7_DIR |
100                            IXGB_CTRL1_SDP6 |
101                            IXGB_CTRL1_SDP7;
102                 IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
103                 ixgb_optics_reset_bcm(hw);
104         }
105
106         if (hw->phy_type == ixgb_phy_type_txn17401)
107                 ixgb_optics_reset(hw);
108
109         return ctrl_reg;
110 }
111
112 /******************************************************************************
113  * Reset the transmit and receive units; mask and clear all interrupts.
114  *
115  * hw - Struct containing variables accessed by shared code
116  *****************************************************************************/
117 bool
118 ixgb_adapter_stop(struct ixgb_hw *hw)
119 {
120         u32 ctrl_reg;
121         u32 icr_reg;
122
123         DEBUGFUNC("ixgb_adapter_stop");
124
125         /* If we are stopped or resetting exit gracefully and wait to be
126          * started again before accessing the hardware.
127          */
128         if (hw->adapter_stopped) {
129                 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
130                 return false;
131         }
132
133         /* Set the Adapter Stopped flag so other driver functions stop
134          * touching the Hardware.
135          */
136         hw->adapter_stopped = true;
137
138         /* Clear interrupt mask to stop board from generating interrupts */
139         DEBUGOUT("Masking off all interrupts\n");
140         IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
141
142         /* Disable the Transmit and Receive units.  Then delay to allow
143          * any pending transactions to complete before we hit the MAC with
144          * the global reset.
145          */
146         IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
147         IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
148         msleep(IXGB_DELAY_BEFORE_RESET);
149
150         /* Issue a global reset to the MAC.  This will reset the chip's
151          * transmit, receive, DMA, and link units.  It will not effect
152          * the current PCI configuration.  The global reset bit is self-
153          * clearing, and should clear within a microsecond.
154          */
155         DEBUGOUT("Issuing a global reset to MAC\n");
156
157         ctrl_reg = ixgb_mac_reset(hw);
158
159         /* Clear interrupt mask to stop board from generating interrupts */
160         DEBUGOUT("Masking off all interrupts\n");
161         IXGB_WRITE_REG(hw, IMC, 0xffffffff);
162
163         /* Clear any pending interrupt events. */
164         icr_reg = IXGB_READ_REG(hw, ICR);
165
166         return (ctrl_reg & IXGB_CTRL0_RST);
167 }
168
169
170 /******************************************************************************
171  * Identifies the vendor of the optics module on the adapter.  The SR adapters
172  * support two different types of XPAK optics, so it is necessary to determine
173  * which optics are present before applying any optics-specific workarounds.
174  *
175  * hw - Struct containing variables accessed by shared code.
176  *
177  * Returns: the vendor of the XPAK optics module.
178  *****************************************************************************/
179 static ixgb_xpak_vendor
180 ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
181 {
182         u32 i;
183         u16 vendor_name[5];
184         ixgb_xpak_vendor xpak_vendor;
185
186         DEBUGFUNC("ixgb_identify_xpak_vendor");
187
188         /* Read the first few bytes of the vendor string from the XPAK NVR
189          * registers.  These are standard XENPAK/XPAK registers, so all XPAK
190          * devices should implement them. */
191         for (i = 0; i < 5; i++) {
192                 vendor_name[i] = ixgb_read_phy_reg(hw,
193                                                    MDIO_PMA_PMD_XPAK_VENDOR_NAME
194                                                    + i, IXGB_PHY_ADDRESS,
195                                                    MDIO_PMA_PMD_DID);
196         }
197
198         /* Determine the actual vendor */
199         if (vendor_name[0] == 'I' &&
200             vendor_name[1] == 'N' &&
201             vendor_name[2] == 'T' &&
202             vendor_name[3] == 'E' && vendor_name[4] == 'L') {
203                 xpak_vendor = ixgb_xpak_vendor_intel;
204         } else {
205                 xpak_vendor = ixgb_xpak_vendor_infineon;
206         }
207
208         return (xpak_vendor);
209 }
210
211 /******************************************************************************
212  * Determine the physical layer module on the adapter.
213  *
214  * hw - Struct containing variables accessed by shared code.  The device_id
215  *      field must be (correctly) populated before calling this routine.
216  *
217  * Returns: the phy type of the adapter.
218  *****************************************************************************/
219 static ixgb_phy_type
220 ixgb_identify_phy(struct ixgb_hw *hw)
221 {
222         ixgb_phy_type phy_type;
223         ixgb_xpak_vendor xpak_vendor;
224
225         DEBUGFUNC("ixgb_identify_phy");
226
227         /* Infer the transceiver/phy type from the device id */
228         switch (hw->device_id) {
229         case IXGB_DEVICE_ID_82597EX:
230                 DEBUGOUT("Identified TXN17401 optics\n");
231                 phy_type = ixgb_phy_type_txn17401;
232                 break;
233
234         case IXGB_DEVICE_ID_82597EX_SR:
235                 /* The SR adapters carry two different types of XPAK optics
236                  * modules; read the vendor identifier to determine the exact
237                  * type of optics. */
238                 xpak_vendor = ixgb_identify_xpak_vendor(hw);
239                 if (xpak_vendor == ixgb_xpak_vendor_intel) {
240                         DEBUGOUT("Identified TXN17201 optics\n");
241                         phy_type = ixgb_phy_type_txn17201;
242                 } else {
243                         DEBUGOUT("Identified G6005 optics\n");
244                         phy_type = ixgb_phy_type_g6005;
245                 }
246                 break;
247         case IXGB_DEVICE_ID_82597EX_LR:
248                 DEBUGOUT("Identified G6104 optics\n");
249                 phy_type = ixgb_phy_type_g6104;
250                 break;
251         case IXGB_DEVICE_ID_82597EX_CX4:
252                 DEBUGOUT("Identified CX4\n");
253                 xpak_vendor = ixgb_identify_xpak_vendor(hw);
254                 if (xpak_vendor == ixgb_xpak_vendor_intel) {
255                         DEBUGOUT("Identified TXN17201 optics\n");
256                         phy_type = ixgb_phy_type_txn17201;
257                 } else {
258                         DEBUGOUT("Identified G6005 optics\n");
259                         phy_type = ixgb_phy_type_g6005;
260                 }
261                 break;
262         default:
263                 DEBUGOUT("Unknown physical layer module\n");
264                 phy_type = ixgb_phy_type_unknown;
265                 break;
266         }
267
268         /* update phy type for sun specific board */
269         if (hw->subsystem_vendor_id == SUN_SUBVENDOR_ID)
270                 phy_type = ixgb_phy_type_bcm;
271
272         return (phy_type);
273 }
274
275 /******************************************************************************
276  * Performs basic configuration of the adapter.
277  *
278  * hw - Struct containing variables accessed by shared code
279  *
280  * Resets the controller.
281  * Reads and validates the EEPROM.
282  * Initializes the receive address registers.
283  * Initializes the multicast table.
284  * Clears all on-chip counters.
285  * Calls routine to setup flow control settings.
286  * Leaves the transmit and receive units disabled and uninitialized.
287  *
288  * Returns:
289  *      true if successful,
290  *      false if unrecoverable problems were encountered.
291  *****************************************************************************/
292 bool
293 ixgb_init_hw(struct ixgb_hw *hw)
294 {
295         u32 i;
296         u32 ctrl_reg;
297         bool status;
298
299         DEBUGFUNC("ixgb_init_hw");
300
301         /* Issue a global reset to the MAC.  This will reset the chip's
302          * transmit, receive, DMA, and link units.  It will not effect
303          * the current PCI configuration.  The global reset bit is self-
304          * clearing, and should clear within a microsecond.
305          */
306         DEBUGOUT("Issuing a global reset to MAC\n");
307
308         ctrl_reg = ixgb_mac_reset(hw);
309
310         DEBUGOUT("Issuing an EE reset to MAC\n");
311 #ifdef HP_ZX1
312         /* Workaround for 82597EX reset errata */
313         IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
314 #else
315         IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
316 #endif
317
318         /* Delay a few ms just to allow the reset to complete */
319         msleep(IXGB_DELAY_AFTER_EE_RESET);
320
321         if (!ixgb_get_eeprom_data(hw))
322                 return false;
323
324         /* Use the device id to determine the type of phy/transceiver. */
325         hw->device_id = ixgb_get_ee_device_id(hw);
326         hw->phy_type = ixgb_identify_phy(hw);
327
328         /* Setup the receive addresses.
329          * Receive Address Registers (RARs 0 - 15).
330          */
331         ixgb_init_rx_addrs(hw);
332
333         /*
334          * Check that a valid MAC address has been set.
335          * If it is not valid, we fail hardware init.
336          */
337         if (!mac_addr_valid(hw->curr_mac_addr)) {
338                 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
339                 return(false);
340         }
341
342         /* tell the routines in this file they can access hardware again */
343         hw->adapter_stopped = false;
344
345         /* Fill in the bus_info structure */
346         ixgb_get_bus_info(hw);
347
348         /* Zero out the Multicast HASH table */
349         DEBUGOUT("Zeroing the MTA\n");
350         for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
351                 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
352
353         /* Zero out the VLAN Filter Table Array */
354         ixgb_clear_vfta(hw);
355
356         /* Zero all of the hardware counters */
357         ixgb_clear_hw_cntrs(hw);
358
359         /* Call a subroutine to setup flow control. */
360         status = ixgb_setup_fc(hw);
361
362         /* 82597EX errata: Call check-for-link in case lane deskew is locked */
363         ixgb_check_for_link(hw);
364
365         return (status);
366 }
367
368 /******************************************************************************
369  * Initializes receive address filters.
370  *
371  * hw - Struct containing variables accessed by shared code
372  *
373  * Places the MAC address in receive address register 0 and clears the rest
374  * of the receive address registers. Clears the multicast table. Assumes
375  * the receiver is in reset when the routine is called.
376  *****************************************************************************/
377 static void
378 ixgb_init_rx_addrs(struct ixgb_hw *hw)
379 {
380         u32 i;
381
382         DEBUGFUNC("ixgb_init_rx_addrs");
383
384         /*
385          * If the current mac address is valid, assume it is a software override
386          * to the permanent address.
387          * Otherwise, use the permanent address from the eeprom.
388          */
389         if (!mac_addr_valid(hw->curr_mac_addr)) {
390
391                 /* Get the MAC address from the eeprom for later reference */
392                 ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
393
394                 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
395                           hw->curr_mac_addr[0],
396                           hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
397                 DEBUGOUT3("%.2X %.2X %.2X\n",
398                           hw->curr_mac_addr[3],
399                           hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
400         } else {
401
402                 /* Setup the receive address. */
403                 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
404                 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
405                           hw->curr_mac_addr[0],
406                           hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
407                 DEBUGOUT3("%.2X %.2X %.2X\n",
408                           hw->curr_mac_addr[3],
409                           hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
410
411                 ixgb_rar_set(hw, hw->curr_mac_addr, 0);
412         }
413
414         /* Zero out the other 15 receive addresses. */
415         DEBUGOUT("Clearing RAR[1-15]\n");
416         for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
417                 /* Write high reg first to disable the AV bit first */
418                 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
419                 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
420         }
421
422         return;
423 }
424
425 /******************************************************************************
426  * Updates the MAC's list of multicast addresses.
427  *
428  * hw - Struct containing variables accessed by shared code
429  * mc_addr_list - the list of new multicast addresses
430  * mc_addr_count - number of addresses
431  * pad - number of bytes between addresses in the list
432  *
433  * The given list replaces any existing list. Clears the last 15 receive
434  * address registers and the multicast table. Uses receive address registers
435  * for the first 15 multicast addresses, and hashes the rest into the
436  * multicast table.
437  *****************************************************************************/
438 void
439 ixgb_mc_addr_list_update(struct ixgb_hw *hw,
440                           u8 *mc_addr_list,
441                           u32 mc_addr_count,
442                           u32 pad)
443 {
444         u32 hash_value;
445         u32 i;
446         u32 rar_used_count = 1;         /* RAR[0] is used for our MAC address */
447
448         DEBUGFUNC("ixgb_mc_addr_list_update");
449
450         /* Set the new number of MC addresses that we are being requested to use. */
451         hw->num_mc_addrs = mc_addr_count;
452
453         /* Clear RAR[1-15] */
454         DEBUGOUT(" Clearing RAR[1-15]\n");
455         for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
456                 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
457                 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
458         }
459
460         /* Clear the MTA */
461         DEBUGOUT(" Clearing MTA\n");
462         for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
463                 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
464
465         /* Add the new addresses */
466         for (i = 0; i < mc_addr_count; i++) {
467                 DEBUGOUT(" Adding the multicast addresses:\n");
468                 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
469                           mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)],
470                           mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
471                                        1],
472                           mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
473                                        2],
474                           mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
475                                        3],
476                           mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
477                                        4],
478                           mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
479                                        5]);
480
481                 /* Place this multicast address in the RAR if there is room, *
482                  * else put it in the MTA
483                  */
484                 if (rar_used_count < IXGB_RAR_ENTRIES) {
485                         ixgb_rar_set(hw,
486                                      mc_addr_list +
487                                      (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)),
488                                      rar_used_count);
489                         DEBUGOUT1("Added a multicast address to RAR[%d]\n", i);
490                         rar_used_count++;
491                 } else {
492                         hash_value = ixgb_hash_mc_addr(hw,
493                                                        mc_addr_list +
494                                                        (i *
495                                                         (IXGB_ETH_LENGTH_OF_ADDRESS
496                                                          + pad)));
497
498                         DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
499
500                         ixgb_mta_set(hw, hash_value);
501                 }
502         }
503
504         DEBUGOUT("MC Update Complete\n");
505         return;
506 }
507
508 /******************************************************************************
509  * Hashes an address to determine its location in the multicast table
510  *
511  * hw - Struct containing variables accessed by shared code
512  * mc_addr - the multicast address to hash
513  *
514  * Returns:
515  *      The hash value
516  *****************************************************************************/
517 static u32
518 ixgb_hash_mc_addr(struct ixgb_hw *hw,
519                    u8 *mc_addr)
520 {
521         u32 hash_value = 0;
522
523         DEBUGFUNC("ixgb_hash_mc_addr");
524
525         /* The portion of the address that is used for the hash table is
526          * determined by the mc_filter_type setting.
527          */
528         switch (hw->mc_filter_type) {
529                 /* [0] [1] [2] [3] [4] [5]
530                  * 01  AA  00  12  34  56
531                  * LSB                 MSB - According to H/W docs */
532         case 0:
533                 /* [47:36] i.e. 0x563 for above example address */
534                 hash_value =
535                     ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
536                 break;
537         case 1:         /* [46:35] i.e. 0xAC6 for above example address */
538                 hash_value =
539                     ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
540                 break;
541         case 2:         /* [45:34] i.e. 0x5D8 for above example address */
542                 hash_value =
543                     ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
544                 break;
545         case 3:         /* [43:32] i.e. 0x634 for above example address */
546                 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
547                 break;
548         default:
549                 /* Invalid mc_filter_type, what should we do? */
550                 DEBUGOUT("MC filter type param set incorrectly\n");
551                 ASSERT(0);
552                 break;
553         }
554
555         hash_value &= 0xFFF;
556         return (hash_value);
557 }
558
559 /******************************************************************************
560  * Sets the bit in the multicast table corresponding to the hash value.
561  *
562  * hw - Struct containing variables accessed by shared code
563  * hash_value - Multicast address hash value
564  *****************************************************************************/
565 static void
566 ixgb_mta_set(struct ixgb_hw *hw,
567                   u32 hash_value)
568 {
569         u32 hash_bit, hash_reg;
570         u32 mta_reg;
571
572         /* The MTA is a register array of 128 32-bit registers.
573          * It is treated like an array of 4096 bits.  We want to set
574          * bit BitArray[hash_value]. So we figure out what register
575          * the bit is in, read it, OR in the new bit, then write
576          * back the new value.  The register is determined by the
577          * upper 7 bits of the hash value and the bit within that
578          * register are determined by the lower 5 bits of the value.
579          */
580         hash_reg = (hash_value >> 5) & 0x7F;
581         hash_bit = hash_value & 0x1F;
582
583         mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
584
585         mta_reg |= (1 << hash_bit);
586
587         IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
588
589         return;
590 }
591
592 /******************************************************************************
593  * Puts an ethernet address into a receive address register.
594  *
595  * hw - Struct containing variables accessed by shared code
596  * addr - Address to put into receive address register
597  * index - Receive address register to write
598  *****************************************************************************/
599 void
600 ixgb_rar_set(struct ixgb_hw *hw,
601                   u8 *addr,
602                   u32 index)
603 {
604         u32 rar_low, rar_high;
605
606         DEBUGFUNC("ixgb_rar_set");
607
608         /* HW expects these in little endian so we reverse the byte order
609          * from network order (big endian) to little endian
610          */
611         rar_low = ((u32) addr[0] |
612                    ((u32)addr[1] << 8) |
613                    ((u32)addr[2] << 16) |
614                    ((u32)addr[3] << 24));
615
616         rar_high = ((u32) addr[4] |
617                         ((u32)addr[5] << 8) |
618                         IXGB_RAH_AV);
619
620         IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
621         IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
622         return;
623 }
624
625 /******************************************************************************
626  * Writes a value to the specified offset in the VLAN filter table.
627  *
628  * hw - Struct containing variables accessed by shared code
629  * offset - Offset in VLAN filer table to write
630  * value - Value to write into VLAN filter table
631  *****************************************************************************/
632 void
633 ixgb_write_vfta(struct ixgb_hw *hw,
634                  u32 offset,
635                  u32 value)
636 {
637         IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
638         return;
639 }
640
641 /******************************************************************************
642  * Clears the VLAN filer table
643  *
644  * hw - Struct containing variables accessed by shared code
645  *****************************************************************************/
646 static void
647 ixgb_clear_vfta(struct ixgb_hw *hw)
648 {
649         u32 offset;
650
651         for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
652                 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
653         return;
654 }
655
656 /******************************************************************************
657  * Configures the flow control settings based on SW configuration.
658  *
659  * hw - Struct containing variables accessed by shared code
660  *****************************************************************************/
661
662 static bool
663 ixgb_setup_fc(struct ixgb_hw *hw)
664 {
665         u32 ctrl_reg;
666         u32 pap_reg = 0;   /* by default, assume no pause time */
667         bool status = true;
668
669         DEBUGFUNC("ixgb_setup_fc");
670
671         /* Get the current control reg 0 settings */
672         ctrl_reg = IXGB_READ_REG(hw, CTRL0);
673
674         /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
675         ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
676
677         /* The possible values of the "flow_control" parameter are:
678          *      0:  Flow control is completely disabled
679          *      1:  Rx flow control is enabled (we can receive pause frames
680          *          but not send pause frames).
681          *      2:  Tx flow control is enabled (we can send pause frames
682          *          but we do not support receiving pause frames).
683          *      3:  Both Rx and TX flow control (symmetric) are enabled.
684          *  other:  Invalid.
685          */
686         switch (hw->fc.type) {
687         case ixgb_fc_none:      /* 0 */
688                 /* Set CMDC bit to disable Rx Flow control */
689                 ctrl_reg |= (IXGB_CTRL0_CMDC);
690                 break;
691         case ixgb_fc_rx_pause:  /* 1 */
692                 /* RX Flow control is enabled, and TX Flow control is
693                  * disabled.
694                  */
695                 ctrl_reg |= (IXGB_CTRL0_RPE);
696                 break;
697         case ixgb_fc_tx_pause:  /* 2 */
698                 /* TX Flow control is enabled, and RX Flow control is
699                  * disabled, by a software over-ride.
700                  */
701                 ctrl_reg |= (IXGB_CTRL0_TPE);
702                 pap_reg = hw->fc.pause_time;
703                 break;
704         case ixgb_fc_full:      /* 3 */
705                 /* Flow control (both RX and TX) is enabled by a software
706                  * over-ride.
707                  */
708                 ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
709                 pap_reg = hw->fc.pause_time;
710                 break;
711         default:
712                 /* We should never get here.  The value should be 0-3. */
713                 DEBUGOUT("Flow control param set incorrectly\n");
714                 ASSERT(0);
715                 break;
716         }
717
718         /* Write the new settings */
719         IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
720
721         if (pap_reg != 0)
722                 IXGB_WRITE_REG(hw, PAP, pap_reg);
723
724         /* Set the flow control receive threshold registers.  Normally,
725          * these registers will be set to a default threshold that may be
726          * adjusted later by the driver's runtime code.  However, if the
727          * ability to transmit pause frames in not enabled, then these
728          * registers will be set to 0.
729          */
730         if (!(hw->fc.type & ixgb_fc_tx_pause)) {
731                 IXGB_WRITE_REG(hw, FCRTL, 0);
732                 IXGB_WRITE_REG(hw, FCRTH, 0);
733         } else {
734            /* We need to set up the Receive Threshold high and low water
735             * marks as well as (optionally) enabling the transmission of XON
736             * frames. */
737                 if (hw->fc.send_xon) {
738                         IXGB_WRITE_REG(hw, FCRTL,
739                                 (hw->fc.low_water | IXGB_FCRTL_XONE));
740                 } else {
741                         IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
742                 }
743                 IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
744         }
745         return (status);
746 }
747
748 /******************************************************************************
749  * Reads a word from a device over the Management Data Interface (MDI) bus.
750  * This interface is used to manage Physical layer devices.
751  *
752  * hw          - Struct containing variables accessed by hw code
753  * reg_address - Offset of device register being read.
754  * phy_address - Address of device on MDI.
755  *
756  * Returns:  Data word (16 bits) from MDI device.
757  *
758  * The 82597EX has support for several MDI access methods.  This routine
759  * uses the new protocol MDI Single Command and Address Operation.
760  * This requires that first an address cycle command is sent, followed by a
761  * read command.
762  *****************************************************************************/
763 static u16
764 ixgb_read_phy_reg(struct ixgb_hw *hw,
765                 u32 reg_address,
766                 u32 phy_address,
767                 u32 device_type)
768 {
769         u32 i;
770         u32 data;
771         u32 command = 0;
772
773         ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
774         ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
775         ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
776
777         /* Setup and write the address cycle command */
778         command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
779                    (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
780                    (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
781                    (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
782
783         IXGB_WRITE_REG(hw, MSCA, command);
784
785     /**************************************************************
786     ** Check every 10 usec to see if the address cycle completed
787     ** The COMMAND bit will clear when the operation is complete.
788     ** This may take as long as 64 usecs (we'll wait 100 usecs max)
789     ** from the CPU Write to the Ready bit assertion.
790     **************************************************************/
791
792         for (i = 0; i < 10; i++)
793         {
794                 udelay(10);
795
796                 command = IXGB_READ_REG(hw, MSCA);
797
798                 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
799                         break;
800         }
801
802         ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
803
804         /* Address cycle complete, setup and write the read command */
805         command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
806                    (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
807                    (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
808                    (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
809
810         IXGB_WRITE_REG(hw, MSCA, command);
811
812     /**************************************************************
813     ** Check every 10 usec to see if the read command completed
814     ** The COMMAND bit will clear when the operation is complete.
815     ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
816     ** from the CPU Write to the Ready bit assertion.
817     **************************************************************/
818
819         for (i = 0; i < 10; i++)
820         {
821                 udelay(10);
822
823                 command = IXGB_READ_REG(hw, MSCA);
824
825                 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
826                         break;
827         }
828
829         ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
830
831         /* Operation is complete, get the data from the MDIO Read/Write Data
832          * register and return.
833          */
834         data = IXGB_READ_REG(hw, MSRWD);
835         data >>= IXGB_MSRWD_READ_DATA_SHIFT;
836         return((u16) data);
837 }
838
839 /******************************************************************************
840  * Writes a word to a device over the Management Data Interface (MDI) bus.
841  * This interface is used to manage Physical layer devices.
842  *
843  * hw          - Struct containing variables accessed by hw code
844  * reg_address - Offset of device register being read.
845  * phy_address - Address of device on MDI.
846  * device_type - Also known as the Device ID or DID.
847  * data        - 16-bit value to be written
848  *
849  * Returns:  void.
850  *
851  * The 82597EX has support for several MDI access methods.  This routine
852  * uses the new protocol MDI Single Command and Address Operation.
853  * This requires that first an address cycle command is sent, followed by a
854  * write command.
855  *****************************************************************************/
856 static void
857 ixgb_write_phy_reg(struct ixgb_hw *hw,
858                         u32 reg_address,
859                         u32 phy_address,
860                         u32 device_type,
861                         u16 data)
862 {
863         u32 i;
864         u32 command = 0;
865
866         ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
867         ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
868         ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
869
870         /* Put the data in the MDIO Read/Write Data register */
871         IXGB_WRITE_REG(hw, MSRWD, (u32)data);
872
873         /* Setup and write the address cycle command */
874         command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
875                            (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
876                            (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
877                            (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
878
879         IXGB_WRITE_REG(hw, MSCA, command);
880
881         /**************************************************************
882         ** Check every 10 usec to see if the address cycle completed
883         ** The COMMAND bit will clear when the operation is complete.
884         ** This may take as long as 64 usecs (we'll wait 100 usecs max)
885         ** from the CPU Write to the Ready bit assertion.
886         **************************************************************/
887
888         for (i = 0; i < 10; i++)
889         {
890                 udelay(10);
891
892                 command = IXGB_READ_REG(hw, MSCA);
893
894                 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
895                         break;
896         }
897
898         ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
899
900         /* Address cycle complete, setup and write the write command */
901         command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
902                            (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
903                            (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
904                            (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
905
906         IXGB_WRITE_REG(hw, MSCA, command);
907
908         /**************************************************************
909         ** Check every 10 usec to see if the read command completed
910         ** The COMMAND bit will clear when the operation is complete.
911         ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
912         ** from the CPU Write to the Ready bit assertion.
913         **************************************************************/
914
915         for (i = 0; i < 10; i++)
916         {
917                 udelay(10);
918
919                 command = IXGB_READ_REG(hw, MSCA);
920
921                 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
922                         break;
923         }
924
925         ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
926
927         /* Operation is complete, return. */
928 }
929
930 /******************************************************************************
931  * Checks to see if the link status of the hardware has changed.
932  *
933  * hw - Struct containing variables accessed by hw code
934  *
935  * Called by any function that needs to check the link status of the adapter.
936  *****************************************************************************/
937 void
938 ixgb_check_for_link(struct ixgb_hw *hw)
939 {
940         u32 status_reg;
941         u32 xpcss_reg;
942
943         DEBUGFUNC("ixgb_check_for_link");
944
945         xpcss_reg = IXGB_READ_REG(hw, XPCSS);
946         status_reg = IXGB_READ_REG(hw, STATUS);
947
948         if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
949             (status_reg & IXGB_STATUS_LU)) {
950                 hw->link_up = true;
951         } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
952                    (status_reg & IXGB_STATUS_LU)) {
953                 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
954                 hw->link_up = ixgb_link_reset(hw);
955         } else {
956                 /*
957                  * 82597EX errata.  Since the lane deskew problem may prevent
958                  * link, reset the link before reporting link down.
959                  */
960                 hw->link_up = ixgb_link_reset(hw);
961         }
962         /*  Anything else for 10 Gig?? */
963 }
964
965 /******************************************************************************
966  * Check for a bad link condition that may have occurred.
967  * The indication is that the RFC / LFC registers may be incrementing
968  * continually.  A full adapter reset is required to recover.
969  *
970  * hw - Struct containing variables accessed by hw code
971  *
972  * Called by any function that needs to check the link status of the adapter.
973  *****************************************************************************/
974 bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
975 {
976         u32 newLFC, newRFC;
977         bool bad_link_returncode = false;
978
979         if (hw->phy_type == ixgb_phy_type_txn17401) {
980                 newLFC = IXGB_READ_REG(hw, LFC);
981                 newRFC = IXGB_READ_REG(hw, RFC);
982                 if ((hw->lastLFC + 250 < newLFC)
983                     || (hw->lastRFC + 250 < newRFC)) {
984                         DEBUGOUT
985                             ("BAD LINK! too many LFC/RFC since last check\n");
986                         bad_link_returncode = true;
987                 }
988                 hw->lastLFC = newLFC;
989                 hw->lastRFC = newRFC;
990         }
991
992         return bad_link_returncode;
993 }
994
995 /******************************************************************************
996  * Clears all hardware statistics counters.
997  *
998  * hw - Struct containing variables accessed by shared code
999  *****************************************************************************/
1000 static void
1001 ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
1002 {
1003         volatile u32 temp_reg;
1004
1005         DEBUGFUNC("ixgb_clear_hw_cntrs");
1006
1007         /* if we are stopped or resetting exit gracefully */
1008         if (hw->adapter_stopped) {
1009                 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
1010                 return;
1011         }
1012
1013         temp_reg = IXGB_READ_REG(hw, TPRL);
1014         temp_reg = IXGB_READ_REG(hw, TPRH);
1015         temp_reg = IXGB_READ_REG(hw, GPRCL);
1016         temp_reg = IXGB_READ_REG(hw, GPRCH);
1017         temp_reg = IXGB_READ_REG(hw, BPRCL);
1018         temp_reg = IXGB_READ_REG(hw, BPRCH);
1019         temp_reg = IXGB_READ_REG(hw, MPRCL);
1020         temp_reg = IXGB_READ_REG(hw, MPRCH);
1021         temp_reg = IXGB_READ_REG(hw, UPRCL);
1022         temp_reg = IXGB_READ_REG(hw, UPRCH);
1023         temp_reg = IXGB_READ_REG(hw, VPRCL);
1024         temp_reg = IXGB_READ_REG(hw, VPRCH);
1025         temp_reg = IXGB_READ_REG(hw, JPRCL);
1026         temp_reg = IXGB_READ_REG(hw, JPRCH);
1027         temp_reg = IXGB_READ_REG(hw, GORCL);
1028         temp_reg = IXGB_READ_REG(hw, GORCH);
1029         temp_reg = IXGB_READ_REG(hw, TORL);
1030         temp_reg = IXGB_READ_REG(hw, TORH);
1031         temp_reg = IXGB_READ_REG(hw, RNBC);
1032         temp_reg = IXGB_READ_REG(hw, RUC);
1033         temp_reg = IXGB_READ_REG(hw, ROC);
1034         temp_reg = IXGB_READ_REG(hw, RLEC);
1035         temp_reg = IXGB_READ_REG(hw, CRCERRS);
1036         temp_reg = IXGB_READ_REG(hw, ICBC);
1037         temp_reg = IXGB_READ_REG(hw, ECBC);
1038         temp_reg = IXGB_READ_REG(hw, MPC);
1039         temp_reg = IXGB_READ_REG(hw, TPTL);
1040         temp_reg = IXGB_READ_REG(hw, TPTH);
1041         temp_reg = IXGB_READ_REG(hw, GPTCL);
1042         temp_reg = IXGB_READ_REG(hw, GPTCH);
1043         temp_reg = IXGB_READ_REG(hw, BPTCL);
1044         temp_reg = IXGB_READ_REG(hw, BPTCH);
1045         temp_reg = IXGB_READ_REG(hw, MPTCL);
1046         temp_reg = IXGB_READ_REG(hw, MPTCH);
1047         temp_reg = IXGB_READ_REG(hw, UPTCL);
1048         temp_reg = IXGB_READ_REG(hw, UPTCH);
1049         temp_reg = IXGB_READ_REG(hw, VPTCL);
1050         temp_reg = IXGB_READ_REG(hw, VPTCH);
1051         temp_reg = IXGB_READ_REG(hw, JPTCL);
1052         temp_reg = IXGB_READ_REG(hw, JPTCH);
1053         temp_reg = IXGB_READ_REG(hw, GOTCL);
1054         temp_reg = IXGB_READ_REG(hw, GOTCH);
1055         temp_reg = IXGB_READ_REG(hw, TOTL);
1056         temp_reg = IXGB_READ_REG(hw, TOTH);
1057         temp_reg = IXGB_READ_REG(hw, DC);
1058         temp_reg = IXGB_READ_REG(hw, PLT64C);
1059         temp_reg = IXGB_READ_REG(hw, TSCTC);
1060         temp_reg = IXGB_READ_REG(hw, TSCTFC);
1061         temp_reg = IXGB_READ_REG(hw, IBIC);
1062         temp_reg = IXGB_READ_REG(hw, RFC);
1063         temp_reg = IXGB_READ_REG(hw, LFC);
1064         temp_reg = IXGB_READ_REG(hw, PFRC);
1065         temp_reg = IXGB_READ_REG(hw, PFTC);
1066         temp_reg = IXGB_READ_REG(hw, MCFRC);
1067         temp_reg = IXGB_READ_REG(hw, MCFTC);
1068         temp_reg = IXGB_READ_REG(hw, XONRXC);
1069         temp_reg = IXGB_READ_REG(hw, XONTXC);
1070         temp_reg = IXGB_READ_REG(hw, XOFFRXC);
1071         temp_reg = IXGB_READ_REG(hw, XOFFTXC);
1072         temp_reg = IXGB_READ_REG(hw, RJC);
1073         return;
1074 }
1075
1076 /******************************************************************************
1077  * Turns on the software controllable LED
1078  *
1079  * hw - Struct containing variables accessed by shared code
1080  *****************************************************************************/
1081 void
1082 ixgb_led_on(struct ixgb_hw *hw)
1083 {
1084         u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1085
1086         /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1087         ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1088         IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1089         return;
1090 }
1091
1092 /******************************************************************************
1093  * Turns off the software controllable LED
1094  *
1095  * hw - Struct containing variables accessed by shared code
1096  *****************************************************************************/
1097 void
1098 ixgb_led_off(struct ixgb_hw *hw)
1099 {
1100         u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1101
1102         /* To turn off the LED, set software-definable pin 0 (SDP0). */
1103         ctrl0_reg |= IXGB_CTRL0_SDP0;
1104         IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1105         return;
1106 }
1107
1108 /******************************************************************************
1109  * Gets the current PCI bus type, speed, and width of the hardware
1110  *
1111  * hw - Struct containing variables accessed by shared code
1112  *****************************************************************************/
1113 static void
1114 ixgb_get_bus_info(struct ixgb_hw *hw)
1115 {
1116         u32 status_reg;
1117
1118         status_reg = IXGB_READ_REG(hw, STATUS);
1119
1120         hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1121                 ixgb_bus_type_pcix : ixgb_bus_type_pci;
1122
1123         if (hw->bus.type == ixgb_bus_type_pci) {
1124                 hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1125                         ixgb_bus_speed_66 : ixgb_bus_speed_33;
1126         } else {
1127                 switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1128                 case IXGB_STATUS_PCIX_SPD_66:
1129                         hw->bus.speed = ixgb_bus_speed_66;
1130                         break;
1131                 case IXGB_STATUS_PCIX_SPD_100:
1132                         hw->bus.speed = ixgb_bus_speed_100;
1133                         break;
1134                 case IXGB_STATUS_PCIX_SPD_133:
1135                         hw->bus.speed = ixgb_bus_speed_133;
1136                         break;
1137                 default:
1138                         hw->bus.speed = ixgb_bus_speed_reserved;
1139                         break;
1140                 }
1141         }
1142
1143         hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1144                 ixgb_bus_width_64 : ixgb_bus_width_32;
1145
1146         return;
1147 }
1148
1149 /******************************************************************************
1150  * Tests a MAC address to ensure it is a valid Individual Address
1151  *
1152  * mac_addr - pointer to MAC address.
1153  *
1154  *****************************************************************************/
1155 static bool
1156 mac_addr_valid(u8 *mac_addr)
1157 {
1158         bool is_valid = true;
1159         DEBUGFUNC("mac_addr_valid");
1160
1161         /* Make sure it is not a multicast address */
1162         if (IS_MULTICAST(mac_addr)) {
1163                 DEBUGOUT("MAC address is multicast\n");
1164                 is_valid = false;
1165         }
1166         /* Not a broadcast address */
1167         else if (IS_BROADCAST(mac_addr)) {
1168                 DEBUGOUT("MAC address is broadcast\n");
1169                 is_valid = false;
1170         }
1171         /* Reject the zero address */
1172         else if (mac_addr[0] == 0 &&
1173                          mac_addr[1] == 0 &&
1174                          mac_addr[2] == 0 &&
1175                          mac_addr[3] == 0 &&
1176                          mac_addr[4] == 0 &&
1177                          mac_addr[5] == 0) {
1178                 DEBUGOUT("MAC address is all zeros\n");
1179                 is_valid = false;
1180         }
1181         return (is_valid);
1182 }
1183
1184 /******************************************************************************
1185  * Resets the 10GbE link.  Waits the settle time and returns the state of
1186  * the link.
1187  *
1188  * hw - Struct containing variables accessed by shared code
1189  *****************************************************************************/
1190 static bool
1191 ixgb_link_reset(struct ixgb_hw *hw)
1192 {
1193         bool link_status = false;
1194         u8 wait_retries = MAX_RESET_ITERATIONS;
1195         u8 lrst_retries = MAX_RESET_ITERATIONS;
1196
1197         do {
1198                 /* Reset the link */
1199                 IXGB_WRITE_REG(hw, CTRL0,
1200                                IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1201
1202                 /* Wait for link-up and lane re-alignment */
1203                 do {
1204                         udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1205                         link_status =
1206                             ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1207                              && (IXGB_READ_REG(hw, XPCSS) &
1208                                  IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
1209                 } while (!link_status && --wait_retries);
1210
1211         } while (!link_status && --lrst_retries);
1212
1213         return link_status;
1214 }
1215
1216 /******************************************************************************
1217  * Resets the 10GbE optics module.
1218  *
1219  * hw - Struct containing variables accessed by shared code
1220  *****************************************************************************/
1221 static void
1222 ixgb_optics_reset(struct ixgb_hw *hw)
1223 {
1224         if (hw->phy_type == ixgb_phy_type_txn17401) {
1225                 u16 mdio_reg;
1226
1227                 ixgb_write_phy_reg(hw,
1228                                         MDIO_PMA_PMD_CR1,
1229                                         IXGB_PHY_ADDRESS,
1230                                         MDIO_PMA_PMD_DID,
1231                                         MDIO_PMA_PMD_CR1_RESET);
1232
1233                 mdio_reg = ixgb_read_phy_reg( hw,
1234                                                 MDIO_PMA_PMD_CR1,
1235                                                 IXGB_PHY_ADDRESS,
1236                                                 MDIO_PMA_PMD_DID);
1237         }
1238
1239         return;
1240 }
1241
1242 /******************************************************************************
1243  * Resets the 10GbE optics module for Sun variant NIC.
1244  *
1245  * hw - Struct containing variables accessed by shared code
1246  *****************************************************************************/
1247
1248 #define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
1249 #define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
1250 #define   IXGB_BCM8704_USER_CTRL_REG                0xC800
1251 #define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
1252 #define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
1253 #define   IXGB_SUN_PHY_ADDRESS                      0x0000
1254 #define   IXGB_SUN_PHY_RESET_DELAY                     305
1255
1256 static void
1257 ixgb_optics_reset_bcm(struct ixgb_hw *hw)
1258 {
1259         u32 ctrl = IXGB_READ_REG(hw, CTRL0);
1260         ctrl &= ~IXGB_CTRL0_SDP2;
1261         ctrl |= IXGB_CTRL0_SDP3;
1262         IXGB_WRITE_REG(hw, CTRL0, ctrl);
1263
1264         /* SerDes needs extra delay */
1265         msleep(IXGB_SUN_PHY_RESET_DELAY);
1266
1267         /* Broadcom 7408L configuration */
1268         /* Reference clock config */
1269         ixgb_write_phy_reg(hw,
1270                            IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1271                            IXGB_SUN_PHY_ADDRESS,
1272                            IXGB_BCM8704_USER_DEV3_ADDR,
1273                            IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
1274         /*  we must read the registers twice */
1275         ixgb_read_phy_reg(hw,
1276                           IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1277                           IXGB_SUN_PHY_ADDRESS,
1278                           IXGB_BCM8704_USER_DEV3_ADDR);
1279         ixgb_read_phy_reg(hw,
1280                           IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1281                           IXGB_SUN_PHY_ADDRESS,
1282                           IXGB_BCM8704_USER_DEV3_ADDR);
1283
1284         ixgb_write_phy_reg(hw,
1285                            IXGB_BCM8704_USER_CTRL_REG,
1286                            IXGB_SUN_PHY_ADDRESS,
1287                            IXGB_BCM8704_USER_DEV3_ADDR,
1288                            IXGB_BCM8704_USER_CTRL_REG_VAL);
1289         ixgb_read_phy_reg(hw,
1290                           IXGB_BCM8704_USER_CTRL_REG,
1291                           IXGB_SUN_PHY_ADDRESS,
1292                           IXGB_BCM8704_USER_DEV3_ADDR);
1293         ixgb_read_phy_reg(hw,
1294                           IXGB_BCM8704_USER_CTRL_REG,
1295                           IXGB_SUN_PHY_ADDRESS,
1296                           IXGB_BCM8704_USER_DEV3_ADDR);
1297
1298         /* SerDes needs extra delay */
1299         msleep(IXGB_SUN_PHY_RESET_DELAY);
1300
1301         return;
1302 }