ACPI: fix 2.6.28 acpi.debug_level regression
[linux-2.6] / drivers / atm / horizon.c
1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4   
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9   
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14   
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18   
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/ioport.h>
42 #include <linux/wait.h>
43
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/atomic.h>
47 #include <asm/uaccess.h>
48 #include <asm/string.h>
49 #include <asm/byteorder.h>
50
51 #include "horizon.h"
52
53 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
54 #define description_string "Madge ATM Horizon [Ultra] driver"
55 #define version_string "1.2.1"
56
57 static inline void __init show_version (void) {
58   printk ("%s version %s\n", description_string, version_string);
59 }
60
61 /*
62   
63   CREDITS
64   
65   Driver and documentation by:
66   
67   Chris Aston        Madge Networks
68   Giuliano Procida   Madge Networks
69   Simon Benham       Madge Networks
70   Simon Johnson      Madge Networks
71   Various Others     Madge Networks
72   
73   Some inspiration taken from other drivers by:
74   
75   Alexandru Cucos    UTBv
76   Kari Mettinen      University of Helsinki
77   Werner Almesberger EPFL LRC
78   
79   Theory of Operation
80   
81   I Hardware, detection, initialisation and shutdown.
82   
83   1. Supported Hardware
84   
85   This driver should handle all variants of the PCI Madge ATM adapters
86   with the Horizon chipset. These are all PCI cards supporting PIO, BM
87   DMA and a form of MMIO (registers only, not internal RAM).
88   
89   The driver is only known to work with SONET and UTP Horizon Ultra
90   cards at 155Mb/s. However, code is in place to deal with both the
91   original Horizon and 25Mb/s operation.
92   
93   There are two revisions of the Horizon ASIC: the original and the
94   Ultra. Details of hardware bugs are in section III.
95   
96   The ASIC version can be distinguished by chip markings but is NOT
97   indicated by the PCI revision (all adapters seem to have PCI rev 1).
98   
99   I believe that:
100   
101   Horizon       => Collage  25 PCI Adapter (UTP and STP)
102   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
103   Ambassador x  => Collage 155 PCI Server (completely different)
104   
105   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
106   have a Madge B154 plus glue logic serializer. I have also found a
107   really ancient version of this with slightly different glue. It
108   comes with the revision 0 (140-025-01) ASIC.
109   
110   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
111   output (UTP) or an HP HFBR 5205 output (SONET). It has either
112   Madge's SAMBA framer or a SUNI-lite device (early versions). It
113   comes with the revision 1 (140-027-01) ASIC.
114   
115   2. Detection
116   
117   All Horizon-based cards present with the same PCI Vendor and Device
118   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
119   to enable bus-mastering (with appropriate latency).
120   
121   ATM_LAYER_STATUS in the control register distinguishes between the
122   two possible physical layers (25 and 155). It is not clear whether
123   the 155 cards can also operate at 25Mbps. We rely on the fact that a
124   card operates at 155 if and only if it has the newer Horizon Ultra
125   ASIC.
126   
127   For 155 cards the two possible framers are probed for and then set
128   up for loop-timing.
129   
130   3. Initialisation
131   
132   The card is reset and then put into a known state. The physical
133   layer is configured for normal operation at the appropriate speed;
134   in the case of the 155 cards, the framer is initialised with
135   line-based timing; the internal RAM is zeroed and the allocation of
136   buffers for RX and TX is made; the Burnt In Address is read and
137   copied to the ATM ESI; various policy settings for RX (VPI bits,
138   unknown VCs, oam cells) are made. Ideally all policy items should be
139   configurable at module load (if not actually on-demand), however,
140   only the vpi vs vci bit allocation can be specified at insmod.
141   
142   4. Shutdown
143   
144   This is in response to module_cleaup. No VCs are in use and the card
145   should be idle; it is reset.
146   
147   II Driver software (as it should be)
148   
149   0. Traffic Parameters
150   
151   The traffic classes (not an enumeration) are currently: ATM_NONE (no
152   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
153   (compatible with everything). Together with (perhaps only some of)
154   the following items they make up the traffic specification.
155   
156   struct atm_trafprm {
157     unsigned char traffic_class; traffic class (ATM_UBR, ...)
158     int           max_pcr;       maximum PCR in cells per second
159     int           pcr;           desired PCR in cells per second
160     int           min_pcr;       minimum PCR in cells per second
161     int           max_cdv;       maximum CDV in microseconds
162     int           max_sdu;       maximum SDU in bytes
163   };
164   
165   Note that these denote bandwidth available not bandwidth used; the
166   possibilities according to ATMF are:
167   
168   Real Time (cdv and max CDT given)
169   
170   CBR(pcr)             pcr bandwidth always available
171   rtVBR(pcr,scr,mbs)   scr bandwidth always available, upto pcr at mbs too
172   
173   Non Real Time
174   
175   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, upto pcr at mbs too
176   UBR()
177   ABR(mcr,pcr)         mcr bandwidth always available, upto pcr (depending) too
178   
179   mbs is max burst size (bucket)
180   pcr and scr have associated cdvt values
181   mcr is like scr but has no cdtv
182   cdtv may differ at each hop
183   
184   Some of the above items are qos items (as opposed to traffic
185   parameters). We have nothing to do with qos. All except ABR can have
186   their traffic parameters converted to GCRA parameters. The GCRA may
187   be implemented as a (real-number) leaky bucket. The GCRA can be used
188   in complicated ways by switches and in simpler ways by end-stations.
189   It can be used both to filter incoming cells and shape out-going
190   cells.
191   
192   ATM Linux actually supports:
193   
194   ATM_NONE() (no traffic in this direction)
195   ATM_UBR(max_frame_size)
196   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
197   
198   0 or ATM_MAX_PCR are used to indicate maximum available PCR
199   
200   A traffic specification consists of the AAL type and separate
201   traffic specifications for either direction. In ATM Linux it is:
202   
203   struct atm_qos {
204   struct atm_trafprm txtp;
205   struct atm_trafprm rxtp;
206   unsigned char aal;
207   };
208   
209   AAL types are:
210   
211   ATM_NO_AAL    AAL not specified
212   ATM_AAL0      "raw" ATM cells
213   ATM_AAL1      AAL1 (CBR)
214   ATM_AAL2      AAL2 (VBR)
215   ATM_AAL34     AAL3/4 (data)
216   ATM_AAL5      AAL5 (data)
217   ATM_SAAL      signaling AAL
218   
219   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
220   it does not implement AAL 3/4 SAR and it has a different notion of
221   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
222   supported by this driver.
223   
224   The Horizon has limited support for ABR (including UBR), VBR and
225   CBR. Each TX channel has a bucket (containing up to 31 cell units)
226   and two timers (PCR and SCR) associated with it that can be used to
227   govern cell emissions and host notification (in the case of ABR this
228   is presumably so that RM cells may be emitted at appropriate times).
229   The timers may either be disabled or may be set to any of 240 values
230   (determined by the clock crystal, a fixed (?) per-device divider, a
231   configurable divider and a configurable timer preload value).
232   
233   At the moment only UBR and CBR are supported by the driver. VBR will
234   be supported as soon as ATM for Linux supports it. ABR support is
235   very unlikely as RM cell handling is completely up to the driver.
236   
237   1. TX (TX channel setup and TX transfer)
238   
239   The TX half of the driver owns the TX Horizon registers. The TX
240   component in the IRQ handler is the BM completion handler. This can
241   only be entered when tx_busy is true (enforced by hardware). The
242   other TX component can only be entered when tx_busy is false
243   (enforced by driver). So TX is single-threaded.
244   
245   Apart from a minor optimisation to not re-select the last channel,
246   the TX send component works as follows:
247   
248   Atomic test and set tx_busy until we succeed; we should implement
249   some sort of timeout so that tx_busy will never be stuck at true.
250   
251   If no TX channel is set up for this VC we wait for an idle one (if
252   necessary) and set it up.
253   
254   At this point we have a TX channel ready for use. We wait for enough
255   buffers to become available then start a TX transmit (set the TX
256   descriptor, schedule transfer, exit).
257   
258   The IRQ component handles TX completion (stats, free buffer, tx_busy
259   unset, exit). We also re-schedule further transfers for the same
260   frame if needed.
261   
262   TX setup in more detail:
263   
264   TX open is a nop, the relevant information is held in the hrz_vcc
265   (vcc->dev_data) structure and is "cached" on the card.
266   
267   TX close gets the TX lock and clears the channel from the "cache".
268   
269   2. RX (Data Available and RX transfer)
270   
271   The RX half of the driver owns the RX registers. There are two RX
272   components in the IRQ handler: the data available handler deals with
273   fresh data that has arrived on the card, the BM completion handler
274   is very similar to the TX completion handler. The data available
275   handler grabs the rx_lock and it is only released once the data has
276   been discarded or completely transferred to the host. The BM
277   completion handler only runs when the lock is held; the data
278   available handler is locked out over the same period.
279   
280   Data available on the card triggers an interrupt. If the data is not
281   suitable for our existing RX channels or we cannot allocate a buffer
282   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
283   transfers may be scheduled for the same frame.
284   
285   RX setup in more detail:
286   
287   RX open...
288   RX close...
289   
290   III Hardware Bugs
291   
292   0. Byte vs Word addressing of adapter RAM.
293   
294   A design feature; see the .h file (especially the memory map).
295   
296   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
297   
298   The host must not start a transmit direction transfer at a
299   non-four-byte boundary in host memory. Instead the host should
300   perform a byte, or a two byte, or one byte followed by two byte
301   transfer in order to start the rest of the transfer on a four byte
302   boundary. RX is OK.
303   
304   Simultaneous transmit and receive direction bus master transfers are
305   not allowed.
306   
307   The simplest solution to these two is to always do PIO (never DMA)
308   in the TX direction on the original Horizon. More complicated
309   solutions are likely to hurt my brain.
310   
311   2. Loss of buffer on close VC
312   
313   When a VC is being closed, the buffer associated with it is not
314   returned to the pool. The host must store the reference to this
315   buffer and when opening a new VC then give it to that new VC.
316   
317   The host intervention currently consists of stacking such a buffer
318   pointer at VC close and checking the stack at VC open.
319   
320   3. Failure to close a VC
321   
322   If a VC is currently receiving a frame then closing the VC may fail
323   and the frame continues to be received.
324   
325   The solution is to make sure any received frames are flushed when
326   ready. This is currently done just before the solution to 2.
327   
328   4. PCI bus (original Horizon only, fixed in Ultra)
329   
330   Reading from the data port prior to initialisation will hang the PCI
331   bus. Just don't do that then! We don't.
332   
333   IV To Do List
334   
335   . Timer code may be broken.
336   
337   . Allow users to specify buffer allocation split for TX and RX.
338   
339   . Deal once and for all with buggy VC close.
340   
341   . Handle interrupted and/or non-blocking operations.
342   
343   . Change some macros to functions and move from .h to .c.
344   
345   . Try to limit the number of TX frames each VC may have queued, in
346     order to reduce the chances of TX buffer exhaustion.
347   
348   . Implement VBR (bucket and timers not understood) and ABR (need to
349     do RM cells manually); also no Linux support for either.
350   
351   . Implement QoS changes on open VCs (involves extracting parts of VC open
352     and close into separate functions and using them to make changes).
353   
354 */
355
356 /********** globals **********/
357
358 static void do_housekeeping (unsigned long arg);
359
360 static unsigned short debug = 0;
361 static unsigned short vpi_bits = 0;
362 static int max_tx_size = 9000;
363 static int max_rx_size = 9000;
364 static unsigned char pci_lat = 0;
365
366 /********** access functions **********/
367
368 /* Read / Write Horizon registers */
369 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
370   outl (cpu_to_le32 (data), dev->iobase + reg);
371 }
372
373 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
374   return le32_to_cpu (inl (dev->iobase + reg));
375 }
376
377 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
378   outw (cpu_to_le16 (data), dev->iobase + reg);
379 }
380
381 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
382   return le16_to_cpu (inw (dev->iobase + reg));
383 }
384
385 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
386   outsb (dev->iobase + reg, addr, len);
387 }
388
389 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
390   insb (dev->iobase + reg, addr, len);
391 }
392
393 /* Read / Write to a given address in Horizon buffer memory.
394    Interrupts must be disabled between the address register and data
395    port accesses as these must form an atomic operation. */
396 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
397   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
398   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
399   wr_regl (dev, MEMORY_PORT_OFF, data);
400 }
401
402 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
403   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
404   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
405   return rd_regl (dev, MEMORY_PORT_OFF);
406 }
407
408 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
409   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
410   wr_regl (dev, MEMORY_PORT_OFF, data);
411 }
412
413 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
414   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
415   return rd_regl (dev, MEMORY_PORT_OFF);
416 }
417
418 /********** specialised access functions **********/
419
420 /* RX */
421
422 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
423   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
424   return;
425 }
426
427 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
428   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
429     ;
430   return;
431 }
432
433 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
434   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
435   return;
436 }
437
438 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
439   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
440     ;
441   return;
442 }
443
444 /* TX */
445
446 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
447   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
448   return;
449 }
450
451 /* Update or query one configuration parameter of a particular channel. */
452
453 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
454   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
455            chan * TX_CHANNEL_CONFIG_MULT | mode);
456     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
457     return;
458 }
459
460 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
461   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
462            chan * TX_CHANNEL_CONFIG_MULT | mode);
463     return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
464 }
465
466 /********** dump functions **********/
467
468 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
469 #ifdef DEBUG_HORIZON
470   unsigned int i;
471   unsigned char * data = skb->data;
472   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
473   for (i=0; i<skb->len && i < 256;i++)
474     PRINTDM (DBG_DATA, "%02x ", data[i]);
475   PRINTDE (DBG_DATA,"");
476 #else
477   (void) prefix;
478   (void) vc;
479   (void) skb;
480 #endif
481   return;
482 }
483
484 static inline void dump_regs (hrz_dev * dev) {
485 #ifdef DEBUG_HORIZON
486   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
487   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
488   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
489   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
490   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
491   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
492 #else
493   (void) dev;
494 #endif
495   return;
496 }
497
498 static inline void dump_framer (hrz_dev * dev) {
499 #ifdef DEBUG_HORIZON
500   unsigned int i;
501   PRINTDB (DBG_REGS, "framer registers:");
502   for (i = 0; i < 0x10; ++i)
503     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
504   PRINTDE (DBG_REGS,"");
505 #else
506   (void) dev;
507 #endif
508   return;
509 }
510
511 /********** VPI/VCI <-> (RX) channel conversions **********/
512
513 /* RX channels are 10 bit integers, these fns are quite paranoid */
514
515 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
516   unsigned short vci_bits = 10 - vpi_bits;
517   if ((channel & RX_CHANNEL_MASK) == channel) {
518     *vci = channel & ((~0)<<vci_bits);
519     *vpi = channel >> vci_bits;
520     return channel ? 0 : -EINVAL;
521   }
522   return -EINVAL;
523 }
524
525 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
526   unsigned short vci_bits = 10 - vpi_bits;
527   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
528     *channel = vpi<<vci_bits | vci;
529     return *channel ? 0 : -EINVAL;
530   }
531   return -EINVAL;
532 }
533
534 /********** decode RX queue entries **********/
535
536 static inline u16 rx_q_entry_to_length (u32 x) {
537   return x & RX_Q_ENTRY_LENGTH_MASK;
538 }
539
540 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
541   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
542 }
543
544 /* Cell Transmit Rate Values
545  *
546  * the cell transmit rate (cells per sec) can be set to a variety of
547  * different values by specifying two parameters: a timer preload from
548  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
549  * an exponent from 0 to 14; the special value 15 disables the timer).
550  *
551  * cellrate = baserate / (preload * 2^divider)
552  *
553  * The maximum cell rate that can be specified is therefore just the
554  * base rate. Halving the preload is equivalent to adding 1 to the
555  * divider and so values 1 to 8 of the preload are redundant except
556  * in the case of a maximal divider (14).
557  *
558  * Given a desired cell rate, an algorithm to determine the preload
559  * and divider is:
560  * 
561  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
562  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
563  *    if x <= 16 then set p = x, d = 0 (high rates), done
564  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
565  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
566  *    we find the range (n will be between 1 and 14), set d = n
567  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
568  *
569  * The algorithm used below is a minor variant of the above.
570  *
571  * The base rate is derived from the oscillator frequency (Hz) using a
572  * fixed divider:
573  *
574  * baserate = freq / 32 in the case of some Unknown Card
575  * baserate = freq / 8  in the case of the Horizon        25
576  * baserate = freq / 8  in the case of the Horizon Ultra 155
577  *
578  * The Horizon cards have oscillators and base rates as follows:
579  *
580  * Card               Oscillator  Base Rate
581  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
582  * Horizon        25  32 MHz      4       MHz
583  * Horizon Ultra 155  40 MHz      5       MHz
584  *
585  * The following defines give the base rates in Hz. These were
586  * previously a factor of 100 larger, no doubt someone was using
587  * cps*100.
588  */
589
590 #define BR_UKN 1031250l
591 #define BR_HRZ 4000000l
592 #define BR_ULT 5000000l
593
594 // d is an exponent
595 #define CR_MIND 0
596 #define CR_MAXD 14
597
598 // p ranges from 1 to a power of 2
599 #define CR_MAXPEXP 4
600  
601 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
602                       u16 * bits, unsigned int * actual)
603 {
604         // note: rounding the rate down means rounding 'p' up
605         const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
606   
607         u32 div = CR_MIND;
608         u32 pre;
609   
610         // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
611         // the tests below. We could think harder about exact possibilities
612         // of failure...
613   
614         unsigned long br_man = br;
615         unsigned int br_exp = 0;
616   
617         PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
618                 r == round_up ? "up" : r == round_down ? "down" : "nearest");
619   
620         // avoid div by zero
621         if (!c) {
622                 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
623                 return -EINVAL;
624         }
625   
626         while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
627                 br_man = br_man >> 1;
628                 ++br_exp;
629         }
630         // (br >>br_exp) <<br_exp == br and
631         // br_exp <= CR_MAXPEXP+CR_MIND
632   
633         if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
634                 // Equivalent to: B <= (c << (MAXPEXP+MIND))
635                 // take care of rounding
636                 switch (r) {
637                         case round_down:
638                                 pre = DIV_ROUND_UP(br, c<<div);
639                                 // but p must be non-zero
640                                 if (!pre)
641                                         pre = 1;
642                                 break;
643                         case round_nearest:
644                                 pre = (br+(c<<div)/2)/(c<<div);
645                                 // but p must be non-zero
646                                 if (!pre)
647                                         pre = 1;
648                                 break;
649                         default:        /* round_up */
650                                 pre = br/(c<<div);
651                                 // but p must be non-zero
652                                 if (!pre)
653                                         return -EINVAL;
654                 }
655                 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
656                 goto got_it;
657         }
658   
659         // at this point we have
660         // d == MIND and (c << (MAXPEXP+MIND)) < B
661         while (div < CR_MAXD) {
662                 div++;
663                 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
664                         // Equivalent to: B <= (c << (MAXPEXP+d))
665                         // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
666                         // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
667                         // MAXP/2 < B/c2^d <= MAXP
668                         // take care of rounding
669                         switch (r) {
670                                 case round_down:
671                                         pre = DIV_ROUND_UP(br, c<<div);
672                                         break;
673                                 case round_nearest:
674                                         pre = (br+(c<<div)/2)/(c<<div);
675                                         break;
676                                 default: /* round_up */
677                                         pre = br/(c<<div);
678                         }
679                         PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
680                         goto got_it;
681                 }
682         }
683         // at this point we have
684         // d == MAXD and (c << (MAXPEXP+MAXD)) < B
685         // but we cannot go any higher
686         // take care of rounding
687         if (r == round_down)
688                 return -EINVAL;
689         pre = 1 << CR_MAXPEXP;
690         PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
691 got_it:
692         // paranoia
693         if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
694                 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
695                         div, pre);
696                 return -EINVAL;
697         } else {
698                 if (bits)
699                         *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
700                 if (actual) {
701                         *actual = DIV_ROUND_UP(br, pre<<div);
702                         PRINTD (DBG_QOS, "actual rate: %u", *actual);
703                 }
704                 return 0;
705         }
706 }
707
708 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
709                                      u16 * bit_pattern, unsigned int * actual) {
710   unsigned int my_actual;
711   
712   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
713           c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
714   
715   if (!actual)
716     // actual rate is not returned
717     actual = &my_actual;
718   
719   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
720     // should never happen as round_nearest always succeeds
721     return -1;
722   
723   if (c - tol <= *actual && *actual <= c + tol)
724     // within tolerance
725     return 0;
726   else
727     // intolerant, try rounding instead
728     return make_rate (dev, c, r, bit_pattern, actual);
729 }
730
731 /********** Listen on a VC **********/
732
733 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
734   // is there any guarantee that we don't get two simulataneous
735   // identical calls of this function from different processes? yes
736   // rate_lock
737   unsigned long flags;
738   u32 channel_type; // u16?
739   
740   u16 buf_ptr = RX_CHANNEL_IDLE;
741   
742   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
743   
744   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
745   
746   spin_lock_irqsave (&dev->mem_lock, flags);
747   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
748   spin_unlock_irqrestore (&dev->mem_lock, flags);
749   
750   // very serious error, should never occur
751   if (channel_type != RX_CHANNEL_DISABLED) {
752     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
753     return -EBUSY; // clean up?
754   }
755   
756   // Give back spare buffer
757   if (dev->noof_spare_buffers) {
758     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
759     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
760     // should never occur
761     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
762       // but easy to recover from
763       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
764       buf_ptr = RX_CHANNEL_IDLE;
765     }
766   } else {
767     PRINTD (DBG_VCC, "using IDLE buffer pointer");
768   }
769   
770   // Channel is currently disabled so change its status to idle
771   
772   // do we really need to save the flags again?
773   spin_lock_irqsave (&dev->mem_lock, flags);
774   
775   wr_mem (dev, &rx_desc->wr_buf_type,
776           buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
777   if (buf_ptr != RX_CHANNEL_IDLE)
778     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
779   
780   spin_unlock_irqrestore (&dev->mem_lock, flags);
781   
782   // rxer->rate = make_rate (qos->peak_cells);
783   
784   PRINTD (DBG_FLOW, "hrz_open_rx ok");
785   
786   return 0;
787 }
788
789 #if 0
790 /********** change vc rate for a given vc **********/
791
792 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
793   rxer->rate = make_rate (qos->peak_cells);
794 }
795 #endif
796
797 /********** free an skb (as per ATM device driver documentation) **********/
798
799 static void hrz_kfree_skb (struct sk_buff * skb) {
800   if (ATM_SKB(skb)->vcc->pop) {
801     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
802   } else {
803     dev_kfree_skb_any (skb);
804   }
805 }
806
807 /********** cancel listen on a VC **********/
808
809 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
810   unsigned long flags;
811   
812   u32 value;
813   
814   u32 r1, r2;
815   
816   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
817   
818   int was_idle = 0;
819   
820   spin_lock_irqsave (&dev->mem_lock, flags);
821   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
822   spin_unlock_irqrestore (&dev->mem_lock, flags);
823   
824   if (value == RX_CHANNEL_DISABLED) {
825     // I suppose this could happen once we deal with _NONE traffic properly
826     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
827     return;
828   }
829   if (value == RX_CHANNEL_IDLE)
830     was_idle = 1;
831   
832   spin_lock_irqsave (&dev->mem_lock, flags);
833   
834   for (;;) {
835     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
836     
837     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
838       break;
839     
840     was_idle = 0;
841   }
842   
843   if (was_idle) {
844     spin_unlock_irqrestore (&dev->mem_lock, flags);
845     return;
846   }
847   
848   WAIT_FLUSH_RX_COMPLETE(dev);
849   
850   // XXX Is this all really necessary? We can rely on the rx_data_av
851   // handler to discard frames that remain queued for delivery. If the
852   // worry is that immediately reopening the channel (perhaps by a
853   // different process) may cause some data to be mis-delivered then
854   // there may still be a simpler solution (such as busy-waiting on
855   // rx_busy once the channel is disabled or before a new one is
856   // opened - does this leave any holes?). Arguably setting up and
857   // tearing down the TX and RX halves of each virtual circuit could
858   // most safely be done within ?x_busy protected regions.
859   
860   // OK, current changes are that Simon's marker is disabled and we DO
861   // look for NULL rxer elsewhere. The code here seems flush frames
862   // and then remember the last dead cell belonging to the channel
863   // just disabled - the cell gets relinked at the next vc_open.
864   // However, when all VCs are closed or only a few opened there are a
865   // handful of buffers that are unusable.
866   
867   // Does anyone feel like documenting spare_buffers properly?
868   // Does anyone feel like fixing this in a nicer way?
869   
870   // Flush any data which is left in the channel
871   for (;;) {
872     // Change the rx channel port to something different to the RX
873     // channel we are trying to close to force Horizon to flush the rx
874     // channel read and write pointers.
875     
876     u16 other = vc^(RX_CHANS/2);
877     
878     SELECT_RX_CHANNEL (dev, other);
879     WAIT_UPDATE_COMPLETE (dev);
880     
881     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
882     
883     // Select this RX channel. Flush doesn't seem to work unless we
884     // select an RX channel before hand
885     
886     SELECT_RX_CHANNEL (dev, vc);
887     WAIT_UPDATE_COMPLETE (dev);
888     
889     // Attempt to flush a frame on this RX channel
890     
891     FLUSH_RX_CHANNEL (dev, vc);
892     WAIT_FLUSH_RX_COMPLETE (dev);
893     
894     // Force Horizon to flush rx channel read and write pointers as before
895     
896     SELECT_RX_CHANNEL (dev, other);
897     WAIT_UPDATE_COMPLETE (dev);
898     
899     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
900     
901     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
902     
903     if (r1 == r2) {
904       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
905       break;
906     }
907   }
908   
909 #if 0
910   {
911     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
912     rx_q_entry * rd_ptr = dev->rx_q_entry;
913     
914     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
915     
916     while (rd_ptr != wr_ptr) {
917       u32 x = rd_mem (dev, (HDW *) rd_ptr);
918       
919       if (vc == rx_q_entry_to_rx_channel (x)) {
920         x |= SIMONS_DODGEY_MARKER;
921         
922         PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
923         
924         wr_mem (dev, (HDW *) rd_ptr, x);
925       }
926       
927       if (rd_ptr == dev->rx_q_wrap)
928         rd_ptr = dev->rx_q_reset;
929       else
930         rd_ptr++;
931     }
932   }
933 #endif
934   
935   spin_unlock_irqrestore (&dev->mem_lock, flags);
936   
937   return;
938 }
939
940 /********** schedule RX transfers **********/
941
942 // Note on tail recursion: a GCC developer said that it is not likely
943 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
944 // are sure it does as you may otherwise overflow the kernel stack.
945
946 // giving this fn a return value would help GCC, alledgedly
947
948 static void rx_schedule (hrz_dev * dev, int irq) {
949   unsigned int rx_bytes;
950   
951   int pio_instead = 0;
952 #ifndef TAILRECURSIONWORKS
953   pio_instead = 1;
954   while (pio_instead) {
955 #endif
956     // bytes waiting for RX transfer
957     rx_bytes = dev->rx_bytes;
958     
959 #if 0
960     spin_count = 0;
961     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
962       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
963       if (++spin_count > 10) {
964         PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
965         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
966         clear_bit (rx_busy, &dev->flags);
967         hrz_kfree_skb (dev->rx_skb);
968         return;
969       }
970     }
971 #endif
972     
973     // this code follows the TX code but (at the moment) there is only
974     // one region - the skb itself. I don't know if this will change,
975     // but it doesn't hurt to have the code here, disabled.
976     
977     if (rx_bytes) {
978       // start next transfer within same region
979       if (rx_bytes <= MAX_PIO_COUNT) {
980         PRINTD (DBG_RX|DBG_BUS, "(pio)");
981         pio_instead = 1;
982       }
983       if (rx_bytes <= MAX_TRANSFER_COUNT) {
984         PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
985         dev->rx_bytes = 0;
986       } else {
987         PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
988         dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
989         rx_bytes = MAX_TRANSFER_COUNT;
990       }
991     } else {
992       // rx_bytes == 0 -- we're between regions
993       // regions remaining to transfer
994 #if 0
995       unsigned int rx_regions = dev->rx_regions;
996 #else
997       unsigned int rx_regions = 0;
998 #endif
999       
1000       if (rx_regions) {
1001 #if 0
1002         // start a new region
1003         dev->rx_addr = dev->rx_iovec->iov_base;
1004         rx_bytes = dev->rx_iovec->iov_len;
1005         ++dev->rx_iovec;
1006         dev->rx_regions = rx_regions - 1;
1007         
1008         if (rx_bytes <= MAX_PIO_COUNT) {
1009           PRINTD (DBG_RX|DBG_BUS, "(pio)");
1010           pio_instead = 1;
1011         }
1012         if (rx_bytes <= MAX_TRANSFER_COUNT) {
1013           PRINTD (DBG_RX|DBG_BUS, "(full region)");
1014           dev->rx_bytes = 0;
1015         } else {
1016           PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1017           dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1018           rx_bytes = MAX_TRANSFER_COUNT;
1019         }
1020 #endif
1021       } else {
1022         // rx_regions == 0
1023         // that's all folks - end of frame
1024         struct sk_buff * skb = dev->rx_skb;
1025         // dev->rx_iovec = 0;
1026         
1027         FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1028         
1029         dump_skb ("<<<", dev->rx_channel, skb);
1030         
1031         PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1032         
1033         {
1034           struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1035           // VC layer stats
1036           atomic_inc(&vcc->stats->rx);
1037           __net_timestamp(skb);
1038           // end of our responsability
1039           vcc->push (vcc, skb);
1040         }
1041       }
1042     }
1043     
1044     // note: writing RX_COUNT clears any interrupt condition
1045     if (rx_bytes) {
1046       if (pio_instead) {
1047         if (irq)
1048           wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1049         rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1050       } else {
1051         wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1052         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1053       }
1054       dev->rx_addr += rx_bytes;
1055     } else {
1056       if (irq)
1057         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1058       // allow another RX thread to start
1059       YELLOW_LED_ON(dev);
1060       clear_bit (rx_busy, &dev->flags);
1061       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1062     }
1063     
1064 #ifdef TAILRECURSIONWORKS
1065     // and we all bless optimised tail calls
1066     if (pio_instead)
1067       return rx_schedule (dev, 0);
1068     return;
1069 #else
1070     // grrrrrrr!
1071     irq = 0;
1072   }
1073   return;
1074 #endif
1075 }
1076
1077 /********** handle RX bus master complete events **********/
1078
1079 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1080   if (test_bit (rx_busy, &dev->flags)) {
1081     rx_schedule (dev, 1);
1082   } else {
1083     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1084     // clear interrupt condition on adapter
1085     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1086   }
1087   return;
1088 }
1089
1090 /********** (queue to) become the next TX thread **********/
1091
1092 static int tx_hold (hrz_dev * dev) {
1093   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1094   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1095   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1096   if (signal_pending (current))
1097     return -1;
1098   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1099   return 0;
1100 }
1101
1102 /********** allow another TX thread to start **********/
1103
1104 static inline void tx_release (hrz_dev * dev) {
1105   clear_bit (tx_busy, &dev->flags);
1106   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1107   wake_up_interruptible (&dev->tx_queue);
1108 }
1109
1110 /********** schedule TX transfers **********/
1111
1112 static void tx_schedule (hrz_dev * const dev, int irq) {
1113   unsigned int tx_bytes;
1114   
1115   int append_desc = 0;
1116   
1117   int pio_instead = 0;
1118 #ifndef TAILRECURSIONWORKS
1119   pio_instead = 1;
1120   while (pio_instead) {
1121 #endif
1122     // bytes in current region waiting for TX transfer
1123     tx_bytes = dev->tx_bytes;
1124     
1125 #if 0
1126     spin_count = 0;
1127     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1128       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1129       if (++spin_count > 10) {
1130         PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1131         wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1132         tx_release (dev);
1133         hrz_kfree_skb (dev->tx_skb);
1134         return;
1135       }
1136     }
1137 #endif
1138     
1139     if (tx_bytes) {
1140       // start next transfer within same region
1141       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1142         PRINTD (DBG_TX|DBG_BUS, "(pio)");
1143         pio_instead = 1;
1144       }
1145       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1146         PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1147         if (!dev->tx_iovec) {
1148           // end of last region
1149           append_desc = 1;
1150         }
1151         dev->tx_bytes = 0;
1152       } else {
1153         PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1154         dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1155         tx_bytes = MAX_TRANSFER_COUNT;
1156       }
1157     } else {
1158       // tx_bytes == 0 -- we're between regions
1159       // regions remaining to transfer
1160       unsigned int tx_regions = dev->tx_regions;
1161       
1162       if (tx_regions) {
1163         // start a new region
1164         dev->tx_addr = dev->tx_iovec->iov_base;
1165         tx_bytes = dev->tx_iovec->iov_len;
1166         ++dev->tx_iovec;
1167         dev->tx_regions = tx_regions - 1;
1168         
1169         if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1170           PRINTD (DBG_TX|DBG_BUS, "(pio)");
1171           pio_instead = 1;
1172         }
1173         if (tx_bytes <= MAX_TRANSFER_COUNT) {
1174           PRINTD (DBG_TX|DBG_BUS, "(full region)");
1175           dev->tx_bytes = 0;
1176         } else {
1177           PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1178           dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1179           tx_bytes = MAX_TRANSFER_COUNT;
1180         }
1181       } else {
1182         // tx_regions == 0
1183         // that's all folks - end of frame
1184         struct sk_buff * skb = dev->tx_skb;
1185         dev->tx_iovec = NULL;
1186         
1187         // VC layer stats
1188         atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1189         
1190         // free the skb
1191         hrz_kfree_skb (skb);
1192       }
1193     }
1194     
1195     // note: writing TX_COUNT clears any interrupt condition
1196     if (tx_bytes) {
1197       if (pio_instead) {
1198         if (irq)
1199           wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1200         wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1201         if (append_desc)
1202           wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1203       } else {
1204         wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1205         if (append_desc)
1206           wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1207         wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1208                  append_desc
1209                  ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1210                  : tx_bytes);
1211       }
1212       dev->tx_addr += tx_bytes;
1213     } else {
1214       if (irq)
1215         wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1216       YELLOW_LED_ON(dev);
1217       tx_release (dev);
1218     }
1219     
1220 #ifdef TAILRECURSIONWORKS
1221     // and we all bless optimised tail calls
1222     if (pio_instead)
1223       return tx_schedule (dev, 0);
1224     return;
1225 #else
1226     // grrrrrrr!
1227     irq = 0;
1228   }
1229   return;
1230 #endif
1231 }
1232
1233 /********** handle TX bus master complete events **********/
1234
1235 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1236   if (test_bit (tx_busy, &dev->flags)) {
1237     tx_schedule (dev, 1);
1238   } else {
1239     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1240     // clear interrupt condition on adapter
1241     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1242   }
1243   return;
1244 }
1245
1246 /********** move RX Q pointer to next item in circular buffer **********/
1247
1248 // called only from IRQ sub-handler
1249 static u32 rx_queue_entry_next (hrz_dev * dev) {
1250   u32 rx_queue_entry;
1251   spin_lock (&dev->mem_lock);
1252   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1253   if (dev->rx_q_entry == dev->rx_q_wrap)
1254     dev->rx_q_entry = dev->rx_q_reset;
1255   else
1256     dev->rx_q_entry++;
1257   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1258   spin_unlock (&dev->mem_lock);
1259   return rx_queue_entry;
1260 }
1261
1262 /********** handle RX disabled by device **********/
1263
1264 static inline void rx_disabled_handler (hrz_dev * dev) {
1265   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1266   // count me please
1267   PRINTK (KERN_WARNING, "RX was disabled!");
1268 }
1269
1270 /********** handle RX data received by device **********/
1271
1272 // called from IRQ handler
1273 static void rx_data_av_handler (hrz_dev * dev) {
1274   u32 rx_queue_entry;
1275   u32 rx_queue_entry_flags;
1276   u16 rx_len;
1277   u16 rx_channel;
1278   
1279   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1280   
1281   // try to grab rx lock (not possible during RX bus mastering)
1282   if (test_and_set_bit (rx_busy, &dev->flags)) {
1283     PRINTD (DBG_RX, "locked out of rx lock");
1284     return;
1285   }
1286   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1287   // lock is cleared if we fail now, o/w after bus master completion
1288   
1289   YELLOW_LED_OFF(dev);
1290   
1291   rx_queue_entry = rx_queue_entry_next (dev);
1292   
1293   rx_len = rx_q_entry_to_length (rx_queue_entry);
1294   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1295   
1296   WAIT_FLUSH_RX_COMPLETE (dev);
1297   
1298   SELECT_RX_CHANNEL (dev, rx_channel);
1299   
1300   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1301   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1302   
1303   if (!rx_len) {
1304     // (at least) bus-mastering breaks if we try to handle a
1305     // zero-length frame, besides AAL5 does not support them
1306     PRINTK (KERN_ERR, "zero-length frame!");
1307     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1308   }
1309   
1310   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1311     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1312   }
1313   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1314     struct atm_vcc * atm_vcc;
1315     
1316     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1317     
1318     atm_vcc = dev->rxer[rx_channel];
1319     // if no vcc is assigned to this channel, we should drop the frame
1320     // (is this what SIMONS etc. was trying to achieve?)
1321     
1322     if (atm_vcc) {
1323       
1324       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1325         
1326         if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1327             
1328           struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1329           if (skb) {
1330             // remember this so we can push it later
1331             dev->rx_skb = skb;
1332             // remember this so we can flush it later
1333             dev->rx_channel = rx_channel;
1334             
1335             // prepare socket buffer
1336             skb_put (skb, rx_len);
1337             ATM_SKB(skb)->vcc = atm_vcc;
1338             
1339             // simple transfer
1340             // dev->rx_regions = 0;
1341             // dev->rx_iovec = 0;
1342             dev->rx_bytes = rx_len;
1343             dev->rx_addr = skb->data;
1344             PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1345                     skb->data, rx_len);
1346             
1347             // do the business
1348             rx_schedule (dev, 0);
1349             return;
1350             
1351           } else {
1352             PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1353           }
1354           
1355         } else {
1356           PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1357           // do we count this?
1358         }
1359         
1360       } else {
1361         PRINTK (KERN_WARNING, "dropped over-size frame");
1362         // do we count this?
1363       }
1364       
1365     } else {
1366       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1367       // do we count this?
1368     }
1369     
1370   } else {
1371     // Wait update complete ? SPONG
1372   }
1373   
1374   // RX was aborted
1375   YELLOW_LED_ON(dev);
1376   
1377   FLUSH_RX_CHANNEL (dev,rx_channel);
1378   clear_bit (rx_busy, &dev->flags);
1379   
1380   return;
1381 }
1382
1383 /********** interrupt handler **********/
1384
1385 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1386 {
1387   hrz_dev *dev = dev_id;
1388   u32 int_source;
1389   unsigned int irq_ok;
1390   
1391   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1392   
1393   // definitely for us
1394   irq_ok = 0;
1395   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1396           & INTERESTING_INTERRUPTS)) {
1397     // In the interests of fairness, the handlers below are
1398     // called in sequence and without immediate return to the head of
1399     // the while loop. This is only of issue for slow hosts (or when
1400     // debugging messages are on). Really slow hosts may find a fast
1401     // sender keeps them permanently in the IRQ handler. :(
1402     
1403     // (only an issue for slow hosts) RX completion goes before
1404     // rx_data_av as the former implies rx_busy and so the latter
1405     // would just abort. If it reschedules another transfer
1406     // (continuing the same frame) then it will not clear rx_busy.
1407     
1408     // (only an issue for slow hosts) TX completion goes before RX
1409     // data available as it is a much shorter routine - there is the
1410     // chance that any further transfers it schedules will be complete
1411     // by the time of the return to the head of the while loop
1412     
1413     if (int_source & RX_BUS_MASTER_COMPLETE) {
1414       ++irq_ok;
1415       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1416       rx_bus_master_complete_handler (dev);
1417     }
1418     if (int_source & TX_BUS_MASTER_COMPLETE) {
1419       ++irq_ok;
1420       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1421       tx_bus_master_complete_handler (dev);
1422     }
1423     if (int_source & RX_DATA_AV) {
1424       ++irq_ok;
1425       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1426       rx_data_av_handler (dev);
1427     }
1428   }
1429   if (irq_ok) {
1430     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1431   } else {
1432     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1433   }
1434   
1435   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1436   if (irq_ok)
1437         return IRQ_HANDLED;
1438   return IRQ_NONE;
1439 }
1440
1441 /********** housekeeping **********/
1442
1443 static void do_housekeeping (unsigned long arg) {
1444   // just stats at the moment
1445   hrz_dev * dev = (hrz_dev *) arg;
1446
1447   // collect device-specific (not driver/atm-linux) stats here
1448   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1449   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1450   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1451   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1452
1453   mod_timer (&dev->housekeeping, jiffies + HZ/10);
1454
1455   return;
1456 }
1457
1458 /********** find an idle channel for TX and set it up **********/
1459
1460 // called with tx_busy set
1461 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1462   unsigned short idle_channels;
1463   short tx_channel = -1;
1464   unsigned int spin_count;
1465   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1466   
1467   // better would be to fail immediately, the caller can then decide whether
1468   // to wait or drop (depending on whether this is UBR etc.)
1469   spin_count = 0;
1470   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1471     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1472     // delay a bit here
1473     if (++spin_count > 100) {
1474       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1475       return -EBUSY;
1476     }
1477   }
1478   
1479   // got an idle channel
1480   {
1481     // tx_idle ensures we look for idle channels in RR order
1482     int chan = dev->tx_idle;
1483     
1484     int keep_going = 1;
1485     while (keep_going) {
1486       if (idle_channels & (1<<chan)) {
1487         tx_channel = chan;
1488         keep_going = 0;
1489       }
1490       ++chan;
1491       if (chan == TX_CHANS)
1492         chan = 0;
1493     }
1494     
1495     dev->tx_idle = chan;
1496   }
1497   
1498   // set up the channel we found
1499   {
1500     // Initialise the cell header in the transmit channel descriptor
1501     // a.k.a. prepare the channel and remember that we have done so.
1502     
1503     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1504     u32 rd_ptr;
1505     u32 wr_ptr;
1506     u16 channel = vcc->channel;
1507     
1508     unsigned long flags;
1509     spin_lock_irqsave (&dev->mem_lock, flags);
1510     
1511     // Update the transmit channel record.
1512     dev->tx_channel_record[tx_channel] = channel;
1513     
1514     // xBR channel
1515     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1516                               vcc->tx_xbr_bits);
1517     
1518     // Update the PCR counter preload value etc.
1519     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1520                               vcc->tx_pcr_bits);
1521
1522 #if 0
1523     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1524       // SCR timer
1525       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1526                                 vcc->tx_scr_bits);
1527       
1528       // Bucket size...
1529       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1530                                 vcc->tx_bucket_bits);
1531       
1532       // ... and fullness
1533       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1534                                 vcc->tx_bucket_bits);
1535     }
1536 #endif
1537
1538     // Initialise the read and write buffer pointers
1539     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1540     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1541     
1542     // idle TX channels should have identical pointers
1543     if (rd_ptr != wr_ptr) {
1544       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1545       // spin_unlock... return -E...
1546       // I wonder if gcc would get rid of one of the pointer aliases
1547     }
1548     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1549             rd_ptr, wr_ptr);
1550     
1551     switch (vcc->aal) {
1552       case aal0:
1553         PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1554         rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1555         wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556         break;
1557       case aal34:
1558         PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1559         rd_ptr |= CHANNEL_TYPE_AAL3_4;
1560         wr_ptr |= CHANNEL_TYPE_AAL3_4;
1561         break;
1562       case aal5:
1563         rd_ptr |= CHANNEL_TYPE_AAL5;
1564         wr_ptr |= CHANNEL_TYPE_AAL5;
1565         // Initialise the CRC
1566         wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1567         break;
1568     }
1569     
1570     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1571     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1572     
1573     // Write the Cell Header
1574     // Payload Type, CLP and GFC would go here if non-zero
1575     wr_mem (dev, &tx_desc->cell_header, channel);
1576     
1577     spin_unlock_irqrestore (&dev->mem_lock, flags);
1578   }
1579   
1580   return tx_channel;
1581 }
1582
1583 /********** send a frame **********/
1584
1585 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1586   unsigned int spin_count;
1587   int free_buffers;
1588   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1589   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1590   u16 channel = vcc->channel;
1591   
1592   u32 buffers_required;
1593   
1594   /* signed for error return */
1595   short tx_channel;
1596   
1597   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1598           channel, skb->data, skb->len);
1599   
1600   dump_skb (">>>", channel, skb);
1601   
1602   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1603     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1604     hrz_kfree_skb (skb);
1605     return -EIO;
1606   }
1607   
1608   // don't understand this
1609   ATM_SKB(skb)->vcc = atm_vcc;
1610   
1611   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1612     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1613     hrz_kfree_skb (skb);
1614     return -EIO;
1615   }
1616   
1617   if (!channel) {
1618     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1619     hrz_kfree_skb (skb);
1620     return -EIO;
1621   }
1622   
1623 #if 0
1624   {
1625     // where would be a better place for this? housekeeping?
1626     u16 status;
1627     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1628     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1629       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1630       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1631       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1632       if (test_bit (tx_busy, &dev->flags)) {
1633         hrz_kfree_skb (dev->tx_skb);
1634         tx_release (dev);
1635       }
1636     }
1637   }
1638 #endif
1639   
1640 #ifdef DEBUG_HORIZON
1641   /* wey-hey! */
1642   if (channel == 1023) {
1643     unsigned int i;
1644     unsigned short d = 0;
1645     char * s = skb->data;
1646     if (*s++ == 'D') {
1647       for (i = 0; i < 4; ++i) {
1648         d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10));
1649         ++s;
1650       }
1651       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1652     }
1653   }
1654 #endif
1655   
1656   // wait until TX is free and grab lock
1657   if (tx_hold (dev)) {
1658     hrz_kfree_skb (skb);
1659     return -ERESTARTSYS;
1660   }
1661  
1662   // Wait for enough space to be available in transmit buffer memory.
1663   
1664   // should be number of cells needed + 2 (according to hardware docs)
1665   // = ((framelen+8)+47) / 48 + 2
1666   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1667   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668   
1669   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1670   spin_count = 0;
1671   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1672     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1673             free_buffers, buffers_required);
1674     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1675     // mdelay (1);
1676     // what happens if we kill (current_pid, SIGKILL) ?
1677     schedule();
1678     if (++spin_count > 1000) {
1679       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1680               free_buffers, buffers_required);
1681       tx_release (dev);
1682       hrz_kfree_skb (skb);
1683       return -ERESTARTSYS;
1684     }
1685   }
1686   
1687   // Select a channel to transmit the frame on.
1688   if (channel == dev->last_vc) {
1689     PRINTD (DBG_TX, "last vc hack: hit");
1690     tx_channel = dev->tx_last;
1691   } else {
1692     PRINTD (DBG_TX, "last vc hack: miss");
1693     // Are we currently transmitting this VC on one of the channels?
1694     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1695       if (dev->tx_channel_record[tx_channel] == channel) {
1696         PRINTD (DBG_TX, "vc already on channel: hit");
1697         break;
1698       }
1699     if (tx_channel == TX_CHANS) { 
1700       PRINTD (DBG_TX, "vc already on channel: miss");
1701       // Find and set up an idle channel.
1702       tx_channel = setup_idle_tx_channel (dev, vcc);
1703       if (tx_channel < 0) {
1704         PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1705         tx_release (dev);
1706         return tx_channel;
1707       }
1708     }
1709     
1710     PRINTD (DBG_TX, "got channel");
1711     SELECT_TX_CHANNEL(dev, tx_channel);
1712     
1713     dev->last_vc = channel;
1714     dev->tx_last = tx_channel;
1715   }
1716   
1717   PRINTD (DBG_TX, "using channel %u", tx_channel);
1718   
1719   YELLOW_LED_OFF(dev);
1720   
1721   // TX start transfer
1722   
1723   {
1724     unsigned int tx_len = skb->len;
1725     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1726     // remember this so we can free it later
1727     dev->tx_skb = skb;
1728     
1729     if (tx_iovcnt) {
1730       // scatter gather transfer
1731       dev->tx_regions = tx_iovcnt;
1732       dev->tx_iovec = NULL;             /* @@@ needs rewritten */
1733       dev->tx_bytes = 0;
1734       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1735               skb->data, tx_len);
1736       tx_release (dev);
1737       hrz_kfree_skb (skb);
1738       return -EIO;
1739     } else {
1740       // simple transfer
1741       dev->tx_regions = 0;
1742       dev->tx_iovec = NULL;
1743       dev->tx_bytes = tx_len;
1744       dev->tx_addr = skb->data;
1745       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1746               skb->data, tx_len);
1747     }
1748     
1749     // and do the business
1750     tx_schedule (dev, 0);
1751     
1752   }
1753   
1754   return 0;
1755 }
1756
1757 /********** reset a card **********/
1758
1759 static void hrz_reset (const hrz_dev * dev) {
1760   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761   
1762   // why not set RESET_HORIZON to one and wait for the card to
1763   // reassert that bit as zero? Like so:
1764   control_0_reg = control_0_reg & RESET_HORIZON;
1765   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1766   while (control_0_reg & RESET_HORIZON)
1767     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768   
1769   // old reset code retained:
1770   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771            RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1772   // just guessing here
1773   udelay (1000);
1774   
1775   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1776 }
1777
1778 /********** read the burnt in address **********/
1779
1780 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781 {
1782         wr_regl (dev, CONTROL_0_REG, ctrl);
1783         udelay (5);
1784 }
1785   
1786 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787 {
1788         // DI must be valid around rising SK edge
1789         WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1790         WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1791 }
1792
1793 static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794 {
1795   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796   
1797   const unsigned int addr_bits = 6;
1798   const unsigned int data_bits = 16;
1799   
1800   unsigned int i;
1801   
1802   u16 res;
1803   
1804   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1805   WRITE_IT_WAIT(dev, ctrl);
1806   
1807   // wake Serial EEPROM and send 110 (READ) command
1808   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1809   CLOCK_IT(dev, ctrl);
1810   
1811   ctrl |= SEEPROM_DI;
1812   CLOCK_IT(dev, ctrl);
1813   
1814   ctrl &= ~SEEPROM_DI;
1815   CLOCK_IT(dev, ctrl);
1816   
1817   for (i=0; i<addr_bits; i++) {
1818     if (addr & (1 << (addr_bits-1)))
1819       ctrl |= SEEPROM_DI;
1820     else
1821       ctrl &= ~SEEPROM_DI;
1822     
1823     CLOCK_IT(dev, ctrl);
1824     
1825     addr = addr << 1;
1826   }
1827   
1828   // we could check that we have DO = 0 here
1829   ctrl &= ~SEEPROM_DI;
1830   
1831   res = 0;
1832   for (i=0;i<data_bits;i++) {
1833     res = res >> 1;
1834     
1835     CLOCK_IT(dev, ctrl);
1836     
1837     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1838       res |= (1 << (data_bits-1));
1839   }
1840   
1841   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1842   WRITE_IT_WAIT(dev, ctrl);
1843   
1844   return res;
1845 }
1846
1847 /********** initialise a card **********/
1848
1849 static int __devinit hrz_init (hrz_dev * dev) {
1850   int onefivefive;
1851   
1852   u16 chan;
1853   
1854   int buff_count;
1855   
1856   HDW * mem;
1857   
1858   cell_buf * tx_desc;
1859   cell_buf * rx_desc;
1860   
1861   u32 ctrl;
1862   
1863   ctrl = rd_regl (dev, CONTROL_0_REG);
1864   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865   onefivefive = ctrl & ATM_LAYER_STATUS;
1866   
1867   if (onefivefive)
1868     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869   else
1870     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871   
1872   printk (":");
1873   // Reset the card to get everything in a known state
1874   
1875   printk (" reset");
1876   hrz_reset (dev);
1877   
1878   // Clear all the buffer memory
1879   
1880   printk (" clearing memory");
1881   
1882   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883     wr_mem (dev, mem, 0);
1884   
1885   printk (" tx channels");
1886   
1887   // All transmit eight channels are set up as AAL5 ABR channels with
1888   // a 16us cell spacing. Why?
1889   
1890   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891   // buffer at 110h etc.
1892   
1893   for (chan = 0; chan < TX_CHANS; ++chan) {
1894     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895     cell_buf * buf = &memmap->inittxbufs[chan];
1896     
1897     // initialise the read and write buffer pointers
1898     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900     
1901     // set the status of the initial buffers to empty
1902     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903   }
1904   
1905   // Use space bufn3 at the moment for tx buffers
1906   
1907   printk (" tx buffers");
1908   
1909   tx_desc = memmap->bufn3;
1910   
1911   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912   
1913   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915     tx_desc++;
1916   }
1917   
1918   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919   
1920   // Initialise the transmit free buffer count
1921   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922   
1923   printk (" rx channels");
1924   
1925   // Initialise all of the receive channels to be AAL5 disabled with
1926   // an interrupt threshold of 0
1927   
1928   for (chan = 0; chan < RX_CHANS; ++chan) {
1929     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930     
1931     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932   }
1933   
1934   printk (" rx buffers");
1935   
1936   // Use space bufn4 at the moment for rx buffers
1937   
1938   rx_desc = memmap->bufn4;
1939   
1940   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941   
1942   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944     
1945     rx_desc++;
1946   }
1947   
1948   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949   
1950   // Initialise the receive free buffer count
1951   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952   
1953   // Initialize Horizons registers
1954   
1955   // TX config
1956   wr_regw (dev, TX_CONFIG_OFF,
1957            ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958   
1959   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960   wr_regw (dev, RX_CONFIG_OFF,
1961            DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962   
1963   // RX line config
1964   wr_regw (dev, RX_LINE_CONFIG_OFF,
1965            LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966   
1967   // Set the max AAL5 cell count to be just enough to contain the
1968   // largest AAL5 frame that the user wants to receive
1969   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970            DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971   
1972   // Enable receive
1973   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974   
1975   printk (" control");
1976   
1977   // Drive the OE of the LEDs then turn the green LED on
1978   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979   wr_regl (dev, CONTROL_0_REG, ctrl);
1980   
1981   // Test for a 155-capable card
1982   
1983   if (onefivefive) {
1984     // Select 155 mode... make this a choice (or: how do we detect
1985     // external line speed and switch?)
1986     ctrl |= ATM_LAYER_SELECT;
1987     wr_regl (dev, CONTROL_0_REG, ctrl);
1988     
1989     // test SUNI-lite vs SAMBA
1990     
1991     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1993     // engineers.  It'll never work.
1994     
1995     if (rd_framer (dev, 0) & 0x00f0) {
1996       // SUNI
1997       printk (" SUNI");
1998       
1999       // Reset, just in case
2000       wr_framer (dev, 0x00, 0x0080);
2001       wr_framer (dev, 0x00, 0x0000);
2002       
2003       // Configure transmit FIFO
2004       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005       
2006       // Set line timed mode
2007       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008     } else {
2009       // SAMBA
2010       printk (" SAMBA");
2011       
2012       // Reset, just in case
2013       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015       
2016       // Turn off diagnostic loopback and enable line-timed mode
2017       wr_framer (dev, 0, 0x0002);
2018       
2019       // Turn on transmit outputs
2020       wr_framer (dev, 2, 0x0B80);
2021     }
2022   } else {
2023     // Select 25 mode
2024     ctrl &= ~ATM_LAYER_SELECT;
2025     
2026     // Madge B154 setup
2027     // none required?
2028   }
2029   
2030   printk (" LEDs");
2031   
2032   GREEN_LED_ON(dev);
2033   YELLOW_LED_ON(dev);
2034   
2035   printk (" ESI=");
2036   
2037   {
2038     u16 b = 0;
2039     int i;
2040     u8 * esi = dev->atm_dev->esi;
2041     
2042     // in the card I have, EEPROM
2043     // addresses 0, 1, 2 contain 0
2044     // addresess 5, 6 etc. contain ffff
2045     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046     // the read_bia routine gets the BIA in Ethernet bit order
2047     
2048     for (i=0; i < ESI_LEN; ++i) {
2049       if (i % 2 == 0)
2050         b = read_bia (dev, i/2 + 2);
2051       else
2052         b = b >> 8;
2053       esi[i] = b & 0xFF;
2054       printk ("%02x", esi[i]);
2055     }
2056   }
2057   
2058   // Enable RX_Q and ?X_COMPLETE interrupts only
2059   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060   printk (" IRQ on");
2061   
2062   printk (".\n");
2063   
2064   return onefivefive;
2065 }
2066
2067 /********** check max_sdu **********/
2068
2069 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071   
2072   switch (aal) {
2073     case aal0:
2074       if (!(tp->max_sdu)) {
2075         PRINTD (DBG_QOS, "defaulting max_sdu");
2076         tp->max_sdu = ATM_AAL0_SDU;
2077       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078         PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079         return -EINVAL;
2080       }
2081       break;
2082     case aal34:
2083       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084         PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085         tp->max_sdu = ATM_MAX_AAL34_PDU;
2086       }
2087       break;
2088     case aal5:
2089       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090         PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091         tp->max_sdu = max_frame_size;
2092       }
2093       break;
2094   }
2095   return 0;
2096 }
2097
2098 /********** check pcr **********/
2099
2100 // something like this should be part of ATM Linux
2101 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102   // we are assuming non-UBR, and non-special values of pcr
2103   if (tp->min_pcr == ATM_MAX_PCR)
2104     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105   else if (tp->min_pcr < 0)
2106     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107   else if (tp->min_pcr && tp->min_pcr > pcr)
2108     PRINTD (DBG_QOS, "pcr less than min_pcr");
2109   else
2110     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112     // [this would get rid of next two conditionals]
2113     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119     else {
2120       // each limit unspecified or not violated
2121       PRINTD (DBG_QOS, "xBR(pcr) OK");
2122       return 0;
2123     }
2124   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125           pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126   return -EINVAL;
2127 }
2128
2129 /********** open VC **********/
2130
2131 static int hrz_open (struct atm_vcc *atm_vcc)
2132 {
2133   int error;
2134   u16 channel;
2135   
2136   struct atm_qos * qos;
2137   struct atm_trafprm * txtp;
2138   struct atm_trafprm * rxtp;
2139   
2140   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141   hrz_vcc vcc;
2142   hrz_vcc * vccp; // allocated late
2143   short vpi = atm_vcc->vpi;
2144   int vci = atm_vcc->vci;
2145   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146   
2147 #ifdef ATM_VPI_UNSPEC
2148   // UNSPEC is deprecated, remove this code eventually
2149   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151     return -EINVAL;
2152   }
2153 #endif
2154   
2155   error = vpivci_to_channel (&channel, vpi, vci);
2156   if (error) {
2157     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158     return error;
2159   }
2160   
2161   vcc.channel = channel;
2162   // max speed for the moment
2163   vcc.tx_rate = 0x0;
2164   
2165   qos = &atm_vcc->qos;
2166   
2167   // check AAL and remember it
2168   switch (qos->aal) {
2169     case ATM_AAL0:
2170       // we would if it were 48 bytes and not 52!
2171       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172       vcc.aal = aal0;
2173       break;
2174     case ATM_AAL34:
2175       // we would if I knew how do the SAR!
2176       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177       vcc.aal = aal34;
2178       break;
2179     case ATM_AAL5:
2180       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181       vcc.aal = aal5;
2182       break;
2183     default:
2184       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185       return -EINVAL;
2186       break;
2187   }
2188   
2189   // TX traffic parameters
2190   
2191   // there are two, interrelated problems here: 1. the reservation of
2192   // PCR is not a binary choice, we are given bounds and/or a
2193   // desirable value; 2. the device is only capable of certain values,
2194   // most of which are not integers. It is almost certainly acceptable
2195   // to be off by a maximum of 1 to 10 cps.
2196   
2197   // Pragmatic choice: always store an integral PCR as that which has
2198   // been allocated, even if we allocate a little (or a lot) less,
2199   // after rounding. The actual allocation depends on what we can
2200   // manage with our rate selection algorithm. The rate selection
2201   // algorithm is given an integral PCR and a tolerance and told
2202   // whether it should round the value up or down if the tolerance is
2203   // exceeded; it returns: a) the actual rate selected (rounded up to
2204   // the nearest integer), b) a bit pattern to feed to the timer
2205   // register, and c) a failure value if no applicable rate exists.
2206   
2207   // Part of the job is done by atm_pcr_goal which gives us a PCR
2208   // specification which says: EITHER grab the maximum available PCR
2209   // (and perhaps a lower bound which we musn't pass), OR grab this
2210   // amount, rounding down if you have to (and perhaps a lower bound
2211   // which we musn't pass) OR grab this amount, rounding up if you
2212   // have to (and perhaps an upper bound which we musn't pass). If any
2213   // bounds ARE passed we fail. Note that rounding is only rounding to
2214   // match device limitations, we do not round down to satisfy
2215   // bandwidth availability even if this would not violate any given
2216   // lower bound.
2217   
2218   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2219   // (say) so this is not even a binary fixpoint cell rate (but this
2220   // device can do it). To avoid this sort of hassle we use a
2221   // tolerance parameter (currently fixed at 10 cps).
2222   
2223   PRINTD (DBG_QOS, "TX:");
2224   
2225   txtp = &qos->txtp;
2226   
2227   // set up defaults for no traffic
2228   vcc.tx_rate = 0;
2229   // who knows what would actually happen if you try and send on this?
2230   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2231   vcc.tx_pcr_bits = CLOCK_DISABLE;
2232 #if 0
2233   vcc.tx_scr_bits = CLOCK_DISABLE;
2234   vcc.tx_bucket_bits = 0;
2235 #endif
2236   
2237   if (txtp->traffic_class != ATM_NONE) {
2238     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2239     if (error) {
2240       PRINTD (DBG_QOS, "TX max_sdu check failed");
2241       return error;
2242     }
2243     
2244     switch (txtp->traffic_class) {
2245       case ATM_UBR: {
2246         // we take "the PCR" as a rate-cap
2247         // not reserved
2248         vcc.tx_rate = 0;
2249         make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2250         vcc.tx_xbr_bits = ABR_RATE_TYPE;
2251         break;
2252       }
2253 #if 0
2254       case ATM_ABR: {
2255         // reserve min, allow up to max
2256         vcc.tx_rate = 0; // ?
2257         make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2258         vcc.tx_xbr_bits = ABR_RATE_TYPE;
2259         break;
2260       }
2261 #endif
2262       case ATM_CBR: {
2263         int pcr = atm_pcr_goal (txtp);
2264         rounding r;
2265         if (!pcr) {
2266           // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2267           // should really have: once someone gets unlimited bandwidth
2268           // that no more non-UBR channels can be opened until the
2269           // unlimited one closes?? For the moment, round_down means
2270           // greedy people actually get something and not nothing
2271           r = round_down;
2272           // slight race (no locking) here so we may get -EAGAIN
2273           // later; the greedy bastards would deserve it :)
2274           PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2275           pcr = dev->tx_avail;
2276         } else if (pcr < 0) {
2277           r = round_down;
2278           pcr = -pcr;
2279         } else {
2280           r = round_up;
2281         }
2282         error = make_rate_with_tolerance (dev, pcr, r, 10,
2283                                           &vcc.tx_pcr_bits, &vcc.tx_rate);
2284         if (error) {
2285           PRINTD (DBG_QOS, "could not make rate from TX PCR");
2286           return error;
2287         }
2288         // not really clear what further checking is needed
2289         error = atm_pcr_check (txtp, vcc.tx_rate);
2290         if (error) {
2291           PRINTD (DBG_QOS, "TX PCR failed consistency check");
2292           return error;
2293         }
2294         vcc.tx_xbr_bits = CBR_RATE_TYPE;
2295         break;
2296       }
2297 #if 0
2298       case ATM_VBR: {
2299         int pcr = atm_pcr_goal (txtp);
2300         // int scr = atm_scr_goal (txtp);
2301         int scr = pcr/2; // just for fun
2302         unsigned int mbs = 60; // just for fun
2303         rounding pr;
2304         rounding sr;
2305         unsigned int bucket;
2306         if (!pcr) {
2307           pr = round_nearest;
2308           pcr = 1<<30;
2309         } else if (pcr < 0) {
2310           pr = round_down;
2311           pcr = -pcr;
2312         } else {
2313           pr = round_up;
2314         }
2315         error = make_rate_with_tolerance (dev, pcr, pr, 10,
2316                                           &vcc.tx_pcr_bits, 0);
2317         if (!scr) {
2318           // see comments for PCR with CBR above
2319           sr = round_down;
2320           // slight race (no locking) here so we may get -EAGAIN
2321           // later; the greedy bastards would deserve it :)
2322           PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2323           scr = dev->tx_avail;
2324         } else if (scr < 0) {
2325           sr = round_down;
2326           scr = -scr;
2327         } else {
2328           sr = round_up;
2329         }
2330         error = make_rate_with_tolerance (dev, scr, sr, 10,
2331                                           &vcc.tx_scr_bits, &vcc.tx_rate);
2332         if (error) {
2333           PRINTD (DBG_QOS, "could not make rate from TX SCR");
2334           return error;
2335         }
2336         // not really clear what further checking is needed
2337         // error = atm_scr_check (txtp, vcc.tx_rate);
2338         if (error) {
2339           PRINTD (DBG_QOS, "TX SCR failed consistency check");
2340           return error;
2341         }
2342         // bucket calculations (from a piece of paper...) cell bucket
2343         // capacity must be largest integer smaller than m(p-s)/p + 1
2344         // where m = max burst size, p = pcr, s = scr
2345         bucket = mbs*(pcr-scr)/pcr;
2346         if (bucket*pcr != mbs*(pcr-scr))
2347           bucket += 1;
2348         if (bucket > BUCKET_MAX_SIZE) {
2349           PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2350                   bucket, BUCKET_MAX_SIZE);
2351           bucket = BUCKET_MAX_SIZE;
2352         }
2353         vcc.tx_xbr_bits = VBR_RATE_TYPE;
2354         vcc.tx_bucket_bits = bucket;
2355         break;
2356       }
2357 #endif
2358       default: {
2359         PRINTD (DBG_QOS, "unsupported TX traffic class");
2360         return -EINVAL;
2361         break;
2362       }
2363     }
2364   }
2365   
2366   // RX traffic parameters
2367   
2368   PRINTD (DBG_QOS, "RX:");
2369   
2370   rxtp = &qos->rxtp;
2371   
2372   // set up defaults for no traffic
2373   vcc.rx_rate = 0;
2374   
2375   if (rxtp->traffic_class != ATM_NONE) {
2376     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2377     if (error) {
2378       PRINTD (DBG_QOS, "RX max_sdu check failed");
2379       return error;
2380     }
2381     switch (rxtp->traffic_class) {
2382       case ATM_UBR: {
2383         // not reserved
2384         break;
2385       }
2386 #if 0
2387       case ATM_ABR: {
2388         // reserve min
2389         vcc.rx_rate = 0; // ?
2390         break;
2391       }
2392 #endif
2393       case ATM_CBR: {
2394         int pcr = atm_pcr_goal (rxtp);
2395         if (!pcr) {
2396           // slight race (no locking) here so we may get -EAGAIN
2397           // later; the greedy bastards would deserve it :)
2398           PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2399           pcr = dev->rx_avail;
2400         } else if (pcr < 0) {
2401           pcr = -pcr;
2402         }
2403         vcc.rx_rate = pcr;
2404         // not really clear what further checking is needed
2405         error = atm_pcr_check (rxtp, vcc.rx_rate);
2406         if (error) {
2407           PRINTD (DBG_QOS, "RX PCR failed consistency check");
2408           return error;
2409         }
2410         break;
2411       }
2412 #if 0
2413       case ATM_VBR: {
2414         // int scr = atm_scr_goal (rxtp);
2415         int scr = 1<<16; // just for fun
2416         if (!scr) {
2417           // slight race (no locking) here so we may get -EAGAIN
2418           // later; the greedy bastards would deserve it :)
2419           PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2420           scr = dev->rx_avail;
2421         } else if (scr < 0) {
2422           scr = -scr;
2423         }
2424         vcc.rx_rate = scr;
2425         // not really clear what further checking is needed
2426         // error = atm_scr_check (rxtp, vcc.rx_rate);
2427         if (error) {
2428           PRINTD (DBG_QOS, "RX SCR failed consistency check");
2429           return error;
2430         }
2431         break;
2432       }
2433 #endif
2434       default: {
2435         PRINTD (DBG_QOS, "unsupported RX traffic class");
2436         return -EINVAL;
2437         break;
2438       }
2439     }
2440   }
2441   
2442   
2443   // late abort useful for diagnostics
2444   if (vcc.aal != aal5) {
2445     PRINTD (DBG_QOS, "AAL not supported");
2446     return -EINVAL;
2447   }
2448   
2449   // get space for our vcc stuff and copy parameters into it
2450   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2451   if (!vccp) {
2452     PRINTK (KERN_ERR, "out of memory!");
2453     return -ENOMEM;
2454   }
2455   *vccp = vcc;
2456   
2457   // clear error and grab cell rate resource lock
2458   error = 0;
2459   spin_lock (&dev->rate_lock);
2460   
2461   if (vcc.tx_rate > dev->tx_avail) {
2462     PRINTD (DBG_QOS, "not enough TX PCR left");
2463     error = -EAGAIN;
2464   }
2465   
2466   if (vcc.rx_rate > dev->rx_avail) {
2467     PRINTD (DBG_QOS, "not enough RX PCR left");
2468     error = -EAGAIN;
2469   }
2470   
2471   if (!error) {
2472     // really consume cell rates
2473     dev->tx_avail -= vcc.tx_rate;
2474     dev->rx_avail -= vcc.rx_rate;
2475     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2476             vcc.tx_rate, vcc.rx_rate);
2477   }
2478   
2479   // release lock and exit on error
2480   spin_unlock (&dev->rate_lock);
2481   if (error) {
2482     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2483     kfree (vccp);
2484     return error;
2485   }
2486   
2487   // this is "immediately before allocating the connection identifier
2488   // in hardware" - so long as the next call does not fail :)
2489   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490   
2491   // any errors here are very serious and should never occur
2492   
2493   if (rxtp->traffic_class != ATM_NONE) {
2494     if (dev->rxer[channel]) {
2495       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2496       error = -EBUSY;
2497     }
2498     if (!error)
2499       error = hrz_open_rx (dev, channel);
2500     if (error) {
2501       kfree (vccp);
2502       return error;
2503     }
2504     // this link allows RX frames through
2505     dev->rxer[channel] = atm_vcc;
2506   }
2507   
2508   // success, set elements of atm_vcc
2509   atm_vcc->dev_data = (void *) vccp;
2510   
2511   // indicate readiness
2512   set_bit(ATM_VF_READY,&atm_vcc->flags);
2513   
2514   return 0;
2515 }
2516
2517 /********** close VC **********/
2518
2519 static void hrz_close (struct atm_vcc * atm_vcc) {
2520   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2521   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2522   u16 channel = vcc->channel;
2523   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524   
2525   // indicate unreadiness
2526   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527
2528   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2529     unsigned int i;
2530     
2531     // let any TX on this channel that has started complete
2532     // no restart, just keep trying
2533     while (tx_hold (dev))
2534       ;
2535     // remove record of any tx_channel having been setup for this channel
2536     for (i = 0; i < TX_CHANS; ++i)
2537       if (dev->tx_channel_record[i] == channel) {
2538         dev->tx_channel_record[i] = -1;
2539         break;
2540       }
2541     if (dev->last_vc == channel)
2542       dev->tx_last = -1;
2543     tx_release (dev);
2544   }
2545
2546   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2547     // disable RXing - it tries quite hard
2548     hrz_close_rx (dev, channel);
2549     // forget the vcc - no more skbs will be pushed
2550     if (atm_vcc != dev->rxer[channel])
2551       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2552               "arghhh! we're going to die!",
2553               atm_vcc, dev->rxer[channel]);
2554     dev->rxer[channel] = NULL;
2555   }
2556   
2557   // atomically release our rate reservation
2558   spin_lock (&dev->rate_lock);
2559   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2560           vcc->tx_rate, vcc->rx_rate);
2561   dev->tx_avail += vcc->tx_rate;
2562   dev->rx_avail += vcc->rx_rate;
2563   spin_unlock (&dev->rate_lock);
2564   
2565   // free our structure
2566   kfree (vcc);
2567   // say the VPI/VCI is free again
2568   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2569 }
2570
2571 #if 0
2572 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2573                            void *optval, int optlen) {
2574   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2575   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2576   switch (level) {
2577     case SOL_SOCKET:
2578       switch (optname) {
2579 //      case SO_BCTXOPT:
2580 //        break;
2581 //      case SO_BCRXOPT:
2582 //        break;
2583         default:
2584           return -ENOPROTOOPT;
2585           break;
2586       };
2587       break;
2588   }
2589   return -EINVAL;
2590 }
2591
2592 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2593                            void *optval, int optlen) {
2594   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2595   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2596   switch (level) {
2597     case SOL_SOCKET:
2598       switch (optname) {
2599 //      case SO_BCTXOPT:
2600 //        break;
2601 //      case SO_BCRXOPT:
2602 //        break;
2603         default:
2604           return -ENOPROTOOPT;
2605           break;
2606       };
2607       break;
2608   }
2609   return -EINVAL;
2610 }
2611 #endif
2612
2613 #if 0
2614 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2615   hrz_dev * dev = HRZ_DEV(atm_dev);
2616   PRINTD (DBG_FLOW, "hrz_ioctl");
2617   return -1;
2618 }
2619
2620 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2621   hrz_dev * dev = HRZ_DEV(atm_dev);
2622   PRINTD (DBG_FLOW, "hrz_phy_get");
2623   return 0;
2624 }
2625
2626 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2627                          unsigned long addr) {
2628   hrz_dev * dev = HRZ_DEV(atm_dev);
2629   PRINTD (DBG_FLOW, "hrz_phy_put");
2630 }
2631
2632 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2633   hrz_dev * dev = HRZ_DEV(vcc->dev);
2634   PRINTD (DBG_FLOW, "hrz_change_qos");
2635   return -1;
2636 }
2637 #endif
2638
2639 /********** proc file contents **********/
2640
2641 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2642   hrz_dev * dev = HRZ_DEV(atm_dev);
2643   int left = *pos;
2644   PRINTD (DBG_FLOW, "hrz_proc_read");
2645   
2646   /* more diagnostics here? */
2647   
2648 #if 0
2649   if (!left--) {
2650     unsigned int count = sprintf (page, "vbr buckets:");
2651     unsigned int i;
2652     for (i = 0; i < TX_CHANS; ++i)
2653       count += sprintf (page, " %u/%u",
2654                         query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2655                         query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2656     count += sprintf (page+count, ".\n");
2657     return count;
2658   }
2659 #endif
2660   
2661   if (!left--)
2662     return sprintf (page,
2663                     "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2664                     dev->tx_cell_count, dev->rx_cell_count,
2665                     dev->hec_error_count, dev->unassigned_cell_count);
2666   
2667   if (!left--)
2668     return sprintf (page,
2669                     "free cell buffers: TX %hu, RX %hu+%hu.\n",
2670                     rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2671                     rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2672                     dev->noof_spare_buffers);
2673   
2674   if (!left--)
2675     return sprintf (page,
2676                     "cps remaining: TX %u, RX %u\n",
2677                     dev->tx_avail, dev->rx_avail);
2678   
2679   return 0;
2680 }
2681
2682 static const struct atmdev_ops hrz_ops = {
2683   .open = hrz_open,
2684   .close        = hrz_close,
2685   .send = hrz_send,
2686   .proc_read    = hrz_proc_read,
2687   .owner        = THIS_MODULE,
2688 };
2689
2690 static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2691 {
2692         hrz_dev * dev;
2693         int err = 0;
2694
2695         // adapter slot free, read resources from PCI configuration space
2696         u32 iobase = pci_resource_start (pci_dev, 0);
2697         u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2698         unsigned int irq;
2699         unsigned char lat;
2700
2701         PRINTD (DBG_FLOW, "hrz_probe");
2702
2703         if (pci_enable_device(pci_dev))
2704                 return -EINVAL;
2705
2706         /* XXX DEV_LABEL is a guess */
2707         if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2708                 err = -EINVAL;
2709                 goto out_disable;
2710         }
2711
2712         dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2713         if (!dev) {
2714                 // perhaps we should be nice: deregister all adapters and abort?
2715                 PRINTD(DBG_ERR, "out of memory");
2716                 err = -ENOMEM;
2717                 goto out_release;
2718         }
2719
2720         pci_set_drvdata(pci_dev, dev);
2721
2722         // grab IRQ and install handler - move this someplace more sensible
2723         irq = pci_dev->irq;
2724         if (request_irq(irq,
2725                         interrupt_handler,
2726                         IRQF_SHARED, /* irqflags guess */
2727                         DEV_LABEL, /* name guess */
2728                         dev)) {
2729                 PRINTD(DBG_WARN, "request IRQ failed!");
2730                 err = -EINVAL;
2731                 goto out_free;
2732         }
2733
2734         PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2735                iobase, irq, membase);
2736
2737         dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL);
2738         if (!(dev->atm_dev)) {
2739                 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2740                 err = -EINVAL;
2741                 goto out_free_irq;
2742         }
2743
2744         PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2745                dev->atm_dev->number, dev, dev->atm_dev);
2746         dev->atm_dev->dev_data = (void *) dev;
2747         dev->pci_dev = pci_dev; 
2748
2749         // enable bus master accesses
2750         pci_set_master(pci_dev);
2751
2752         // frobnicate latency (upwards, usually)
2753         pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2754         if (pci_lat) {
2755                 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2756                        "changing", lat, pci_lat);
2757                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2758         } else if (lat < MIN_PCI_LATENCY) {
2759                 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2760                        "increasing", lat, MIN_PCI_LATENCY);
2761                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2762         }
2763
2764         dev->iobase = iobase;
2765         dev->irq = irq; 
2766         dev->membase = membase; 
2767
2768         dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2769         dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2770
2771         // these next three are performance hacks
2772         dev->last_vc = -1;
2773         dev->tx_last = -1;
2774         dev->tx_idle = 0;
2775
2776         dev->tx_regions = 0;
2777         dev->tx_bytes = 0;
2778         dev->tx_skb = NULL;
2779         dev->tx_iovec = NULL;
2780
2781         dev->tx_cell_count = 0;
2782         dev->rx_cell_count = 0;
2783         dev->hec_error_count = 0;
2784         dev->unassigned_cell_count = 0;
2785
2786         dev->noof_spare_buffers = 0;
2787
2788         {
2789                 unsigned int i;
2790                 for (i = 0; i < TX_CHANS; ++i)
2791                         dev->tx_channel_record[i] = -1;
2792         }
2793
2794         dev->flags = 0;
2795
2796         // Allocate cell rates and remember ASIC version
2797         // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2798         // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2799         // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2800
2801         if (hrz_init(dev)) {
2802                 // to be really pedantic, this should be ATM_OC3c_PCR
2803                 dev->tx_avail = ATM_OC3_PCR;
2804                 dev->rx_avail = ATM_OC3_PCR;
2805                 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2806         } else {
2807                 dev->tx_avail = ((25600000/8)*26)/(27*53);
2808                 dev->rx_avail = ((25600000/8)*26)/(27*53);
2809                 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2810         }
2811
2812         // rate changes spinlock
2813         spin_lock_init(&dev->rate_lock);
2814
2815         // on-board memory access spinlock; we want atomic reads and
2816         // writes to adapter memory (handles IRQ and SMP)
2817         spin_lock_init(&dev->mem_lock);
2818
2819         init_waitqueue_head(&dev->tx_queue);
2820
2821         // vpi in 0..4, vci in 6..10
2822         dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2823         dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2824
2825         init_timer(&dev->housekeeping);
2826         dev->housekeeping.function = do_housekeeping;
2827         dev->housekeeping.data = (unsigned long) dev;
2828         mod_timer(&dev->housekeeping, jiffies);
2829
2830 out:
2831         return err;
2832
2833 out_free_irq:
2834         free_irq(dev->irq, dev);
2835 out_free:
2836         kfree(dev);
2837 out_release:
2838         release_region(iobase, HRZ_IO_EXTENT);
2839 out_disable:
2840         pci_disable_device(pci_dev);
2841         goto out;
2842 }
2843
2844 static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2845 {
2846         hrz_dev *dev;
2847
2848         dev = pci_get_drvdata(pci_dev);
2849
2850         PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2851         del_timer_sync(&dev->housekeeping);
2852         hrz_reset(dev);
2853         atm_dev_deregister(dev->atm_dev);
2854         free_irq(dev->irq, dev);
2855         release_region(dev->iobase, HRZ_IO_EXTENT);
2856         kfree(dev);
2857
2858         pci_disable_device(pci_dev);
2859 }
2860
2861 static void __init hrz_check_args (void) {
2862 #ifdef DEBUG_HORIZON
2863   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2864 #else
2865   if (debug)
2866     PRINTK (KERN_NOTICE, "no debug support in this image");
2867 #endif
2868   
2869   if (vpi_bits > HRZ_MAX_VPI)
2870     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2871             vpi_bits = HRZ_MAX_VPI);
2872   
2873   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2874     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2875             max_tx_size = TX_AAL5_LIMIT);
2876   
2877   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2878     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2879             max_rx_size = RX_AAL5_LIMIT);
2880   
2881   return;
2882 }
2883
2884 MODULE_AUTHOR(maintainer_string);
2885 MODULE_DESCRIPTION(description_string);
2886 MODULE_LICENSE("GPL");
2887 module_param(debug, ushort, 0644);
2888 module_param(vpi_bits, ushort, 0);
2889 module_param(max_tx_size, int, 0);
2890 module_param(max_rx_size, int, 0);
2891 module_param(pci_lat, byte, 0);
2892 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2893 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2894 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2895 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2896 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2897
2898 static struct pci_device_id hrz_pci_tbl[] = {
2899         { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2900           0, 0, 0 },
2901         { 0, }
2902 };
2903
2904 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2905
2906 static struct pci_driver hrz_driver = {
2907         .name =         "horizon",
2908         .probe =        hrz_probe,
2909         .remove =       __devexit_p(hrz_remove_one),
2910         .id_table =     hrz_pci_tbl,
2911 };
2912
2913 /********** module entry **********/
2914
2915 static int __init hrz_module_init (void) {
2916   // sanity check - cast is needed since printk does not support %Zu
2917   if (sizeof(struct MEMMAP) != 128*1024/4) {
2918     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2919             (unsigned long) sizeof(struct MEMMAP));
2920     return -ENOMEM;
2921   }
2922   
2923   show_version();
2924   
2925   // check arguments
2926   hrz_check_args();
2927   
2928   // get the juice
2929   return pci_register_driver(&hrz_driver);
2930 }
2931
2932 /********** module exit **********/
2933
2934 static void __exit hrz_module_exit (void) {
2935   PRINTD (DBG_FLOW, "cleanup_module");
2936
2937   pci_unregister_driver(&hrz_driver);
2938 }
2939
2940 module_init(hrz_module_init);
2941 module_exit(hrz_module_exit);