Remove blkdev warning triggered by using md
[linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50
51 static void unplug_slaves(mddev_t *mddev);
52
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58         struct pool_info *pi = data;
59         r1bio_t *r1_bio;
60         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61
62         /* allocate a r1bio with room for raid_disks entries in the bios array */
63         r1_bio = kzalloc(size, gfp_flags);
64         if (!r1_bio)
65                 unplug_slaves(pi->mddev);
66
67         return r1_bio;
68 }
69
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72         kfree(r1_bio);
73 }
74
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83         struct pool_info *pi = data;
84         struct page *page;
85         r1bio_t *r1_bio;
86         struct bio *bio;
87         int i, j;
88
89         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90         if (!r1_bio) {
91                 unplug_slaves(pi->mddev);
92                 return NULL;
93         }
94
95         /*
96          * Allocate bios : 1 for reading, n-1 for writing
97          */
98         for (j = pi->raid_disks ; j-- ; ) {
99                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100                 if (!bio)
101                         goto out_free_bio;
102                 r1_bio->bios[j] = bio;
103         }
104         /*
105          * Allocate RESYNC_PAGES data pages and attach them to
106          * the first bio.
107          * If this is a user-requested check/repair, allocate
108          * RESYNC_PAGES for each bio.
109          */
110         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111                 j = pi->raid_disks;
112         else
113                 j = 1;
114         while(j--) {
115                 bio = r1_bio->bios[j];
116                 for (i = 0; i < RESYNC_PAGES; i++) {
117                         page = alloc_page(gfp_flags);
118                         if (unlikely(!page))
119                                 goto out_free_pages;
120
121                         bio->bi_io_vec[i].bv_page = page;
122                 }
123         }
124         /* If not user-requests, copy the page pointers to all bios */
125         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126                 for (i=0; i<RESYNC_PAGES ; i++)
127                         for (j=1; j<pi->raid_disks; j++)
128                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
130         }
131
132         r1_bio->master_bio = NULL;
133
134         return r1_bio;
135
136 out_free_pages:
137         for (i=0; i < RESYNC_PAGES ; i++)
138                 for (j=0 ; j < pi->raid_disks; j++)
139                         safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140         j = -1;
141 out_free_bio:
142         while ( ++j < pi->raid_disks )
143                 bio_put(r1_bio->bios[j]);
144         r1bio_pool_free(r1_bio, data);
145         return NULL;
146 }
147
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150         struct pool_info *pi = data;
151         int i,j;
152         r1bio_t *r1bio = __r1_bio;
153
154         for (i = 0; i < RESYNC_PAGES; i++)
155                 for (j = pi->raid_disks; j-- ;) {
156                         if (j == 0 ||
157                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
158                             r1bio->bios[0]->bi_io_vec[i].bv_page)
159                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160                 }
161         for (i=0 ; i < pi->raid_disks; i++)
162                 bio_put(r1bio->bios[i]);
163
164         r1bio_pool_free(r1bio, data);
165 }
166
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169         int i;
170
171         for (i = 0; i < conf->raid_disks; i++) {
172                 struct bio **bio = r1_bio->bios + i;
173                 if (*bio && *bio != IO_BLOCKED)
174                         bio_put(*bio);
175                 *bio = NULL;
176         }
177 }
178
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181         conf_t *conf = mddev_to_conf(r1_bio->mddev);
182
183         /*
184          * Wake up any possible resync thread that waits for the device
185          * to go idle.
186          */
187         allow_barrier(conf);
188
189         put_all_bios(conf, r1_bio);
190         mempool_free(r1_bio, conf->r1bio_pool);
191 }
192
193 static void put_buf(r1bio_t *r1_bio)
194 {
195         conf_t *conf = mddev_to_conf(r1_bio->mddev);
196         int i;
197
198         for (i=0; i<conf->raid_disks; i++) {
199                 struct bio *bio = r1_bio->bios[i];
200                 if (bio->bi_end_io)
201                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202         }
203
204         mempool_free(r1_bio, conf->r1buf_pool);
205
206         lower_barrier(conf);
207 }
208
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211         unsigned long flags;
212         mddev_t *mddev = r1_bio->mddev;
213         conf_t *conf = mddev_to_conf(mddev);
214
215         spin_lock_irqsave(&conf->device_lock, flags);
216         list_add(&r1_bio->retry_list, &conf->retry_list);
217         conf->nr_queued ++;
218         spin_unlock_irqrestore(&conf->device_lock, flags);
219
220         wake_up(&conf->wait_barrier);
221         md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231         struct bio *bio = r1_bio->master_bio;
232
233         /* if nobody has done the final endio yet, do it now */
234         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
237                         (unsigned long long) bio->bi_sector,
238                         (unsigned long long) bio->bi_sector +
239                                 (bio->bi_size >> 9) - 1);
240
241                 bio_endio(bio,
242                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243         }
244         free_r1bio(r1_bio);
245 }
246
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252         conf_t *conf = mddev_to_conf(r1_bio->mddev);
253
254         conf->mirrors[disk].head_position =
255                 r1_bio->sector + (r1_bio->sectors);
256 }
257
258 static void raid1_end_read_request(struct bio *bio, int error)
259 {
260         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262         int mirror;
263         conf_t *conf = mddev_to_conf(r1_bio->mddev);
264
265         mirror = r1_bio->read_disk;
266         /*
267          * this branch is our 'one mirror IO has finished' event handler:
268          */
269         update_head_pos(mirror, r1_bio);
270
271         if (uptodate)
272                 set_bit(R1BIO_Uptodate, &r1_bio->state);
273         else {
274                 /* If all other devices have failed, we want to return
275                  * the error upwards rather than fail the last device.
276                  * Here we redefine "uptodate" to mean "Don't want to retry"
277                  */
278                 unsigned long flags;
279                 spin_lock_irqsave(&conf->device_lock, flags);
280                 if (r1_bio->mddev->degraded == conf->raid_disks ||
281                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283                         uptodate = 1;
284                 spin_unlock_irqrestore(&conf->device_lock, flags);
285         }
286
287         if (uptodate)
288                 raid_end_bio_io(r1_bio);
289         else {
290                 /*
291                  * oops, read error:
292                  */
293                 char b[BDEVNAME_SIZE];
294                 if (printk_ratelimit())
295                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297                 reschedule_retry(r1_bio);
298         }
299
300         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
301 }
302
303 static void raid1_end_write_request(struct bio *bio, int error)
304 {
305         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308         conf_t *conf = mddev_to_conf(r1_bio->mddev);
309         struct bio *to_put = NULL;
310
311
312         for (mirror = 0; mirror < conf->raid_disks; mirror++)
313                 if (r1_bio->bios[mirror] == bio)
314                         break;
315
316         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319                 r1_bio->mddev->barriers_work = 0;
320                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
321         } else {
322                 /*
323                  * this branch is our 'one mirror IO has finished' event handler:
324                  */
325                 r1_bio->bios[mirror] = NULL;
326                 to_put = bio;
327                 if (!uptodate) {
328                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329                         /* an I/O failed, we can't clear the bitmap */
330                         set_bit(R1BIO_Degraded, &r1_bio->state);
331                 } else
332                         /*
333                          * Set R1BIO_Uptodate in our master bio, so that
334                          * we will return a good error code for to the higher
335                          * levels even if IO on some other mirrored buffer fails.
336                          *
337                          * The 'master' represents the composite IO operation to
338                          * user-side. So if something waits for IO, then it will
339                          * wait for the 'master' bio.
340                          */
341                         set_bit(R1BIO_Uptodate, &r1_bio->state);
342
343                 update_head_pos(mirror, r1_bio);
344
345                 if (behind) {
346                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347                                 atomic_dec(&r1_bio->behind_remaining);
348
349                         /* In behind mode, we ACK the master bio once the I/O has safely
350                          * reached all non-writemostly disks. Setting the Returned bit
351                          * ensures that this gets done only once -- we don't ever want to
352                          * return -EIO here, instead we'll wait */
353
354                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356                                 /* Maybe we can return now */
357                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358                                         struct bio *mbio = r1_bio->master_bio;
359                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360                                                (unsigned long long) mbio->bi_sector,
361                                                (unsigned long long) mbio->bi_sector +
362                                                (mbio->bi_size >> 9) - 1);
363                                         bio_endio(mbio, 0);
364                                 }
365                         }
366                 }
367                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
368         }
369         /*
370          *
371          * Let's see if all mirrored write operations have finished
372          * already.
373          */
374         if (atomic_dec_and_test(&r1_bio->remaining)) {
375                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376                         reschedule_retry(r1_bio);
377                 else {
378                         /* it really is the end of this request */
379                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380                                 /* free extra copy of the data pages */
381                                 int i = bio->bi_vcnt;
382                                 while (i--)
383                                         safe_put_page(bio->bi_io_vec[i].bv_page);
384                         }
385                         /* clear the bitmap if all writes complete successfully */
386                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387                                         r1_bio->sectors,
388                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
389                                         behind);
390                         md_write_end(r1_bio->mddev);
391                         raid_end_bio_io(r1_bio);
392                 }
393         }
394
395         if (to_put)
396                 bio_put(to_put);
397 }
398
399
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416         const unsigned long this_sector = r1_bio->sector;
417         int new_disk = conf->last_used, disk = new_disk;
418         int wonly_disk = -1;
419         const int sectors = r1_bio->sectors;
420         sector_t new_distance, current_distance;
421         mdk_rdev_t *rdev;
422
423         rcu_read_lock();
424         /*
425          * Check if we can balance. We can balance on the whole
426          * device if no resync is going on, or below the resync window.
427          * We take the first readable disk when above the resync window.
428          */
429  retry:
430         if (conf->mddev->recovery_cp < MaxSector &&
431             (this_sector + sectors >= conf->next_resync)) {
432                 /* Choose the first operation device, for consistancy */
433                 new_disk = 0;
434
435                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436                      r1_bio->bios[new_disk] == IO_BLOCKED ||
437                      !rdev || !test_bit(In_sync, &rdev->flags)
438                              || test_bit(WriteMostly, &rdev->flags);
439                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
440
441                         if (rdev && test_bit(In_sync, &rdev->flags) &&
442                                 r1_bio->bios[new_disk] != IO_BLOCKED)
443                                 wonly_disk = new_disk;
444
445                         if (new_disk == conf->raid_disks - 1) {
446                                 new_disk = wonly_disk;
447                                 break;
448                         }
449                 }
450                 goto rb_out;
451         }
452
453
454         /* make sure the disk is operational */
455         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456              r1_bio->bios[new_disk] == IO_BLOCKED ||
457              !rdev || !test_bit(In_sync, &rdev->flags) ||
458                      test_bit(WriteMostly, &rdev->flags);
459              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
460
461                 if (rdev && test_bit(In_sync, &rdev->flags) &&
462                     r1_bio->bios[new_disk] != IO_BLOCKED)
463                         wonly_disk = new_disk;
464
465                 if (new_disk <= 0)
466                         new_disk = conf->raid_disks;
467                 new_disk--;
468                 if (new_disk == disk) {
469                         new_disk = wonly_disk;
470                         break;
471                 }
472         }
473
474         if (new_disk < 0)
475                 goto rb_out;
476
477         disk = new_disk;
478         /* now disk == new_disk == starting point for search */
479
480         /*
481          * Don't change to another disk for sequential reads:
482          */
483         if (conf->next_seq_sect == this_sector)
484                 goto rb_out;
485         if (this_sector == conf->mirrors[new_disk].head_position)
486                 goto rb_out;
487
488         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489
490         /* Find the disk whose head is closest */
491
492         do {
493                 if (disk <= 0)
494                         disk = conf->raid_disks;
495                 disk--;
496
497                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
498
499                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500                     !test_bit(In_sync, &rdev->flags) ||
501                     test_bit(WriteMostly, &rdev->flags))
502                         continue;
503
504                 if (!atomic_read(&rdev->nr_pending)) {
505                         new_disk = disk;
506                         break;
507                 }
508                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509                 if (new_distance < current_distance) {
510                         current_distance = new_distance;
511                         new_disk = disk;
512                 }
513         } while (disk != conf->last_used);
514
515  rb_out:
516
517
518         if (new_disk >= 0) {
519                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520                 if (!rdev)
521                         goto retry;
522                 atomic_inc(&rdev->nr_pending);
523                 if (!test_bit(In_sync, &rdev->flags)) {
524                         /* cannot risk returning a device that failed
525                          * before we inc'ed nr_pending
526                          */
527                         rdev_dec_pending(rdev, conf->mddev);
528                         goto retry;
529                 }
530                 conf->next_seq_sect = this_sector + sectors;
531                 conf->last_used = new_disk;
532         }
533         rcu_read_unlock();
534
535         return new_disk;
536 }
537
538 static void unplug_slaves(mddev_t *mddev)
539 {
540         conf_t *conf = mddev_to_conf(mddev);
541         int i;
542
543         rcu_read_lock();
544         for (i=0; i<mddev->raid_disks; i++) {
545                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
548
549                         atomic_inc(&rdev->nr_pending);
550                         rcu_read_unlock();
551
552                         blk_unplug(r_queue);
553
554                         rdev_dec_pending(rdev, mddev);
555                         rcu_read_lock();
556                 }
557         }
558         rcu_read_unlock();
559 }
560
561 static void raid1_unplug(struct request_queue *q)
562 {
563         mddev_t *mddev = q->queuedata;
564
565         unplug_slaves(mddev);
566         md_wakeup_thread(mddev->thread);
567 }
568
569 static int raid1_congested(void *data, int bits)
570 {
571         mddev_t *mddev = data;
572         conf_t *conf = mddev_to_conf(mddev);
573         int i, ret = 0;
574
575         rcu_read_lock();
576         for (i = 0; i < mddev->raid_disks; i++) {
577                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
578                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
579                         struct request_queue *q = bdev_get_queue(rdev->bdev);
580
581                         /* Note the '|| 1' - when read_balance prefers
582                          * non-congested targets, it can be removed
583                          */
584                         if ((bits & (1<<BDI_write_congested)) || 1)
585                                 ret |= bdi_congested(&q->backing_dev_info, bits);
586                         else
587                                 ret &= bdi_congested(&q->backing_dev_info, bits);
588                 }
589         }
590         rcu_read_unlock();
591         return ret;
592 }
593
594
595 static int flush_pending_writes(conf_t *conf)
596 {
597         /* Any writes that have been queued but are awaiting
598          * bitmap updates get flushed here.
599          * We return 1 if any requests were actually submitted.
600          */
601         int rv = 0;
602
603         spin_lock_irq(&conf->device_lock);
604
605         if (conf->pending_bio_list.head) {
606                 struct bio *bio;
607                 bio = bio_list_get(&conf->pending_bio_list);
608                 blk_remove_plug(conf->mddev->queue);
609                 spin_unlock_irq(&conf->device_lock);
610                 /* flush any pending bitmap writes to
611                  * disk before proceeding w/ I/O */
612                 bitmap_unplug(conf->mddev->bitmap);
613
614                 while (bio) { /* submit pending writes */
615                         struct bio *next = bio->bi_next;
616                         bio->bi_next = NULL;
617                         generic_make_request(bio);
618                         bio = next;
619                 }
620                 rv = 1;
621         } else
622                 spin_unlock_irq(&conf->device_lock);
623         return rv;
624 }
625
626 /* Barriers....
627  * Sometimes we need to suspend IO while we do something else,
628  * either some resync/recovery, or reconfigure the array.
629  * To do this we raise a 'barrier'.
630  * The 'barrier' is a counter that can be raised multiple times
631  * to count how many activities are happening which preclude
632  * normal IO.
633  * We can only raise the barrier if there is no pending IO.
634  * i.e. if nr_pending == 0.
635  * We choose only to raise the barrier if no-one is waiting for the
636  * barrier to go down.  This means that as soon as an IO request
637  * is ready, no other operations which require a barrier will start
638  * until the IO request has had a chance.
639  *
640  * So: regular IO calls 'wait_barrier'.  When that returns there
641  *    is no backgroup IO happening,  It must arrange to call
642  *    allow_barrier when it has finished its IO.
643  * backgroup IO calls must call raise_barrier.  Once that returns
644  *    there is no normal IO happeing.  It must arrange to call
645  *    lower_barrier when the particular background IO completes.
646  */
647 #define RESYNC_DEPTH 32
648
649 static void raise_barrier(conf_t *conf)
650 {
651         spin_lock_irq(&conf->resync_lock);
652
653         /* Wait until no block IO is waiting */
654         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
655                             conf->resync_lock,
656                             raid1_unplug(conf->mddev->queue));
657
658         /* block any new IO from starting */
659         conf->barrier++;
660
661         /* No wait for all pending IO to complete */
662         wait_event_lock_irq(conf->wait_barrier,
663                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
664                             conf->resync_lock,
665                             raid1_unplug(conf->mddev->queue));
666
667         spin_unlock_irq(&conf->resync_lock);
668 }
669
670 static void lower_barrier(conf_t *conf)
671 {
672         unsigned long flags;
673         spin_lock_irqsave(&conf->resync_lock, flags);
674         conf->barrier--;
675         spin_unlock_irqrestore(&conf->resync_lock, flags);
676         wake_up(&conf->wait_barrier);
677 }
678
679 static void wait_barrier(conf_t *conf)
680 {
681         spin_lock_irq(&conf->resync_lock);
682         if (conf->barrier) {
683                 conf->nr_waiting++;
684                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
685                                     conf->resync_lock,
686                                     raid1_unplug(conf->mddev->queue));
687                 conf->nr_waiting--;
688         }
689         conf->nr_pending++;
690         spin_unlock_irq(&conf->resync_lock);
691 }
692
693 static void allow_barrier(conf_t *conf)
694 {
695         unsigned long flags;
696         spin_lock_irqsave(&conf->resync_lock, flags);
697         conf->nr_pending--;
698         spin_unlock_irqrestore(&conf->resync_lock, flags);
699         wake_up(&conf->wait_barrier);
700 }
701
702 static void freeze_array(conf_t *conf)
703 {
704         /* stop syncio and normal IO and wait for everything to
705          * go quite.
706          * We increment barrier and nr_waiting, and then
707          * wait until nr_pending match nr_queued+1
708          * This is called in the context of one normal IO request
709          * that has failed. Thus any sync request that might be pending
710          * will be blocked by nr_pending, and we need to wait for
711          * pending IO requests to complete or be queued for re-try.
712          * Thus the number queued (nr_queued) plus this request (1)
713          * must match the number of pending IOs (nr_pending) before
714          * we continue.
715          */
716         spin_lock_irq(&conf->resync_lock);
717         conf->barrier++;
718         conf->nr_waiting++;
719         wait_event_lock_irq(conf->wait_barrier,
720                             conf->nr_pending == conf->nr_queued+1,
721                             conf->resync_lock,
722                             ({ flush_pending_writes(conf);
723                                raid1_unplug(conf->mddev->queue); }));
724         spin_unlock_irq(&conf->resync_lock);
725 }
726 static void unfreeze_array(conf_t *conf)
727 {
728         /* reverse the effect of the freeze */
729         spin_lock_irq(&conf->resync_lock);
730         conf->barrier--;
731         conf->nr_waiting--;
732         wake_up(&conf->wait_barrier);
733         spin_unlock_irq(&conf->resync_lock);
734 }
735
736
737 /* duplicate the data pages for behind I/O */
738 static struct page **alloc_behind_pages(struct bio *bio)
739 {
740         int i;
741         struct bio_vec *bvec;
742         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
743                                         GFP_NOIO);
744         if (unlikely(!pages))
745                 goto do_sync_io;
746
747         bio_for_each_segment(bvec, bio, i) {
748                 pages[i] = alloc_page(GFP_NOIO);
749                 if (unlikely(!pages[i]))
750                         goto do_sync_io;
751                 memcpy(kmap(pages[i]) + bvec->bv_offset,
752                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
753                 kunmap(pages[i]);
754                 kunmap(bvec->bv_page);
755         }
756
757         return pages;
758
759 do_sync_io:
760         if (pages)
761                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
762                         put_page(pages[i]);
763         kfree(pages);
764         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
765         return NULL;
766 }
767
768 static int make_request(struct request_queue *q, struct bio * bio)
769 {
770         mddev_t *mddev = q->queuedata;
771         conf_t *conf = mddev_to_conf(mddev);
772         mirror_info_t *mirror;
773         r1bio_t *r1_bio;
774         struct bio *read_bio;
775         int i, targets = 0, disks;
776         struct bitmap *bitmap = mddev->bitmap;
777         unsigned long flags;
778         struct bio_list bl;
779         struct page **behind_pages = NULL;
780         const int rw = bio_data_dir(bio);
781         const int do_sync = bio_sync(bio);
782         int do_barriers;
783         mdk_rdev_t *blocked_rdev;
784
785         /*
786          * Register the new request and wait if the reconstruction
787          * thread has put up a bar for new requests.
788          * Continue immediately if no resync is active currently.
789          * We test barriers_work *after* md_write_start as md_write_start
790          * may cause the first superblock write, and that will check out
791          * if barriers work.
792          */
793
794         md_write_start(mddev, bio); /* wait on superblock update early */
795
796         if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
797                 if (rw == WRITE)
798                         md_write_end(mddev);
799                 bio_endio(bio, -EOPNOTSUPP);
800                 return 0;
801         }
802
803         wait_barrier(conf);
804
805         disk_stat_inc(mddev->gendisk, ios[rw]);
806         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
807
808         /*
809          * make_request() can abort the operation when READA is being
810          * used and no empty request is available.
811          *
812          */
813         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
814
815         r1_bio->master_bio = bio;
816         r1_bio->sectors = bio->bi_size >> 9;
817         r1_bio->state = 0;
818         r1_bio->mddev = mddev;
819         r1_bio->sector = bio->bi_sector;
820
821         if (rw == READ) {
822                 /*
823                  * read balancing logic:
824                  */
825                 int rdisk = read_balance(conf, r1_bio);
826
827                 if (rdisk < 0) {
828                         /* couldn't find anywhere to read from */
829                         raid_end_bio_io(r1_bio);
830                         return 0;
831                 }
832                 mirror = conf->mirrors + rdisk;
833
834                 r1_bio->read_disk = rdisk;
835
836                 read_bio = bio_clone(bio, GFP_NOIO);
837
838                 r1_bio->bios[rdisk] = read_bio;
839
840                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
841                 read_bio->bi_bdev = mirror->rdev->bdev;
842                 read_bio->bi_end_io = raid1_end_read_request;
843                 read_bio->bi_rw = READ | do_sync;
844                 read_bio->bi_private = r1_bio;
845
846                 generic_make_request(read_bio);
847                 return 0;
848         }
849
850         /*
851          * WRITE:
852          */
853         /* first select target devices under spinlock and
854          * inc refcount on their rdev.  Record them by setting
855          * bios[x] to bio
856          */
857         disks = conf->raid_disks;
858 #if 0
859         { static int first=1;
860         if (first) printk("First Write sector %llu disks %d\n",
861                           (unsigned long long)r1_bio->sector, disks);
862         first = 0;
863         }
864 #endif
865  retry_write:
866         blocked_rdev = NULL;
867         rcu_read_lock();
868         for (i = 0;  i < disks; i++) {
869                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
870                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
871                         atomic_inc(&rdev->nr_pending);
872                         blocked_rdev = rdev;
873                         break;
874                 }
875                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876                         atomic_inc(&rdev->nr_pending);
877                         if (test_bit(Faulty, &rdev->flags)) {
878                                 rdev_dec_pending(rdev, mddev);
879                                 r1_bio->bios[i] = NULL;
880                         } else
881                                 r1_bio->bios[i] = bio;
882                         targets++;
883                 } else
884                         r1_bio->bios[i] = NULL;
885         }
886         rcu_read_unlock();
887
888         if (unlikely(blocked_rdev)) {
889                 /* Wait for this device to become unblocked */
890                 int j;
891
892                 for (j = 0; j < i; j++)
893                         if (r1_bio->bios[j])
894                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
895
896                 allow_barrier(conf);
897                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
898                 wait_barrier(conf);
899                 goto retry_write;
900         }
901
902         BUG_ON(targets == 0); /* we never fail the last device */
903
904         if (targets < conf->raid_disks) {
905                 /* array is degraded, we will not clear the bitmap
906                  * on I/O completion (see raid1_end_write_request) */
907                 set_bit(R1BIO_Degraded, &r1_bio->state);
908         }
909
910         /* do behind I/O ? */
911         if (bitmap &&
912             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
913             (behind_pages = alloc_behind_pages(bio)) != NULL)
914                 set_bit(R1BIO_BehindIO, &r1_bio->state);
915
916         atomic_set(&r1_bio->remaining, 0);
917         atomic_set(&r1_bio->behind_remaining, 0);
918
919         do_barriers = bio_barrier(bio);
920         if (do_barriers)
921                 set_bit(R1BIO_Barrier, &r1_bio->state);
922
923         bio_list_init(&bl);
924         for (i = 0; i < disks; i++) {
925                 struct bio *mbio;
926                 if (!r1_bio->bios[i])
927                         continue;
928
929                 mbio = bio_clone(bio, GFP_NOIO);
930                 r1_bio->bios[i] = mbio;
931
932                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
933                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
934                 mbio->bi_end_io = raid1_end_write_request;
935                 mbio->bi_rw = WRITE | do_barriers | do_sync;
936                 mbio->bi_private = r1_bio;
937
938                 if (behind_pages) {
939                         struct bio_vec *bvec;
940                         int j;
941
942                         /* Yes, I really want the '__' version so that
943                          * we clear any unused pointer in the io_vec, rather
944                          * than leave them unchanged.  This is important
945                          * because when we come to free the pages, we won't
946                          * know the originial bi_idx, so we just free
947                          * them all
948                          */
949                         __bio_for_each_segment(bvec, mbio, j, 0)
950                                 bvec->bv_page = behind_pages[j];
951                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
952                                 atomic_inc(&r1_bio->behind_remaining);
953                 }
954
955                 atomic_inc(&r1_bio->remaining);
956
957                 bio_list_add(&bl, mbio);
958         }
959         kfree(behind_pages); /* the behind pages are attached to the bios now */
960
961         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
962                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
963         spin_lock_irqsave(&conf->device_lock, flags);
964         bio_list_merge(&conf->pending_bio_list, &bl);
965         bio_list_init(&bl);
966
967         blk_plug_device(mddev->queue);
968         spin_unlock_irqrestore(&conf->device_lock, flags);
969
970         /* In case raid1d snuck into freeze_array */
971         wake_up(&conf->wait_barrier);
972
973         if (do_sync)
974                 md_wakeup_thread(mddev->thread);
975 #if 0
976         while ((bio = bio_list_pop(&bl)) != NULL)
977                 generic_make_request(bio);
978 #endif
979
980         return 0;
981 }
982
983 static void status(struct seq_file *seq, mddev_t *mddev)
984 {
985         conf_t *conf = mddev_to_conf(mddev);
986         int i;
987
988         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
989                    conf->raid_disks - mddev->degraded);
990         rcu_read_lock();
991         for (i = 0; i < conf->raid_disks; i++) {
992                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
993                 seq_printf(seq, "%s",
994                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
995         }
996         rcu_read_unlock();
997         seq_printf(seq, "]");
998 }
999
1000
1001 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1002 {
1003         char b[BDEVNAME_SIZE];
1004         conf_t *conf = mddev_to_conf(mddev);
1005
1006         /*
1007          * If it is not operational, then we have already marked it as dead
1008          * else if it is the last working disks, ignore the error, let the
1009          * next level up know.
1010          * else mark the drive as failed
1011          */
1012         if (test_bit(In_sync, &rdev->flags)
1013             && (conf->raid_disks - mddev->degraded) == 1)
1014                 /*
1015                  * Don't fail the drive, act as though we were just a
1016                  * normal single drive
1017                  */
1018                 return;
1019         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1020                 unsigned long flags;
1021                 spin_lock_irqsave(&conf->device_lock, flags);
1022                 mddev->degraded++;
1023                 set_bit(Faulty, &rdev->flags);
1024                 spin_unlock_irqrestore(&conf->device_lock, flags);
1025                 /*
1026                  * if recovery is running, make sure it aborts.
1027                  */
1028                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1029         } else
1030                 set_bit(Faulty, &rdev->flags);
1031         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1032         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1033                 "raid1: Operation continuing on %d devices.\n",
1034                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1035 }
1036
1037 static void print_conf(conf_t *conf)
1038 {
1039         int i;
1040
1041         printk("RAID1 conf printout:\n");
1042         if (!conf) {
1043                 printk("(!conf)\n");
1044                 return;
1045         }
1046         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1047                 conf->raid_disks);
1048
1049         rcu_read_lock();
1050         for (i = 0; i < conf->raid_disks; i++) {
1051                 char b[BDEVNAME_SIZE];
1052                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1053                 if (rdev)
1054                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1055                                i, !test_bit(In_sync, &rdev->flags),
1056                                !test_bit(Faulty, &rdev->flags),
1057                                bdevname(rdev->bdev,b));
1058         }
1059         rcu_read_unlock();
1060 }
1061
1062 static void close_sync(conf_t *conf)
1063 {
1064         wait_barrier(conf);
1065         allow_barrier(conf);
1066
1067         mempool_destroy(conf->r1buf_pool);
1068         conf->r1buf_pool = NULL;
1069 }
1070
1071 static int raid1_spare_active(mddev_t *mddev)
1072 {
1073         int i;
1074         conf_t *conf = mddev->private;
1075
1076         /*
1077          * Find all failed disks within the RAID1 configuration 
1078          * and mark them readable.
1079          * Called under mddev lock, so rcu protection not needed.
1080          */
1081         for (i = 0; i < conf->raid_disks; i++) {
1082                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1083                 if (rdev
1084                     && !test_bit(Faulty, &rdev->flags)
1085                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1086                         unsigned long flags;
1087                         spin_lock_irqsave(&conf->device_lock, flags);
1088                         mddev->degraded--;
1089                         spin_unlock_irqrestore(&conf->device_lock, flags);
1090                 }
1091         }
1092
1093         print_conf(conf);
1094         return 0;
1095 }
1096
1097
1098 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1099 {
1100         conf_t *conf = mddev->private;
1101         int found = 0;
1102         int mirror = 0;
1103         mirror_info_t *p;
1104
1105         for (mirror=0; mirror < mddev->raid_disks; mirror++)
1106                 if ( !(p=conf->mirrors+mirror)->rdev) {
1107
1108                         blk_queue_stack_limits(mddev->queue,
1109                                                rdev->bdev->bd_disk->queue);
1110                         /* as we don't honour merge_bvec_fn, we must never risk
1111                          * violating it, so limit ->max_sector to one PAGE, as
1112                          * a one page request is never in violation.
1113                          */
1114                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1115                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1116                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1117
1118                         p->head_position = 0;
1119                         rdev->raid_disk = mirror;
1120                         found = 1;
1121                         /* As all devices are equivalent, we don't need a full recovery
1122                          * if this was recently any drive of the array
1123                          */
1124                         if (rdev->saved_raid_disk < 0)
1125                                 conf->fullsync = 1;
1126                         rcu_assign_pointer(p->rdev, rdev);
1127                         break;
1128                 }
1129
1130         print_conf(conf);
1131         return found;
1132 }
1133
1134 static int raid1_remove_disk(mddev_t *mddev, int number)
1135 {
1136         conf_t *conf = mddev->private;
1137         int err = 0;
1138         mdk_rdev_t *rdev;
1139         mirror_info_t *p = conf->mirrors+ number;
1140
1141         print_conf(conf);
1142         rdev = p->rdev;
1143         if (rdev) {
1144                 if (test_bit(In_sync, &rdev->flags) ||
1145                     atomic_read(&rdev->nr_pending)) {
1146                         err = -EBUSY;
1147                         goto abort;
1148                 }
1149                 p->rdev = NULL;
1150                 synchronize_rcu();
1151                 if (atomic_read(&rdev->nr_pending)) {
1152                         /* lost the race, try later */
1153                         err = -EBUSY;
1154                         p->rdev = rdev;
1155                 }
1156         }
1157 abort:
1158
1159         print_conf(conf);
1160         return err;
1161 }
1162
1163
1164 static void end_sync_read(struct bio *bio, int error)
1165 {
1166         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1167         int i;
1168
1169         for (i=r1_bio->mddev->raid_disks; i--; )
1170                 if (r1_bio->bios[i] == bio)
1171                         break;
1172         BUG_ON(i < 0);
1173         update_head_pos(i, r1_bio);
1174         /*
1175          * we have read a block, now it needs to be re-written,
1176          * or re-read if the read failed.
1177          * We don't do much here, just schedule handling by raid1d
1178          */
1179         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1180                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1181
1182         if (atomic_dec_and_test(&r1_bio->remaining))
1183                 reschedule_retry(r1_bio);
1184 }
1185
1186 static void end_sync_write(struct bio *bio, int error)
1187 {
1188         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1189         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1190         mddev_t *mddev = r1_bio->mddev;
1191         conf_t *conf = mddev_to_conf(mddev);
1192         int i;
1193         int mirror=0;
1194
1195         for (i = 0; i < conf->raid_disks; i++)
1196                 if (r1_bio->bios[i] == bio) {
1197                         mirror = i;
1198                         break;
1199                 }
1200         if (!uptodate) {
1201                 int sync_blocks = 0;
1202                 sector_t s = r1_bio->sector;
1203                 long sectors_to_go = r1_bio->sectors;
1204                 /* make sure these bits doesn't get cleared. */
1205                 do {
1206                         bitmap_end_sync(mddev->bitmap, s,
1207                                         &sync_blocks, 1);
1208                         s += sync_blocks;
1209                         sectors_to_go -= sync_blocks;
1210                 } while (sectors_to_go > 0);
1211                 md_error(mddev, conf->mirrors[mirror].rdev);
1212         }
1213
1214         update_head_pos(mirror, r1_bio);
1215
1216         if (atomic_dec_and_test(&r1_bio->remaining)) {
1217                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1218                 put_buf(r1_bio);
1219         }
1220 }
1221
1222 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1223 {
1224         conf_t *conf = mddev_to_conf(mddev);
1225         int i;
1226         int disks = conf->raid_disks;
1227         struct bio *bio, *wbio;
1228
1229         bio = r1_bio->bios[r1_bio->read_disk];
1230
1231
1232         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1233                 /* We have read all readable devices.  If we haven't
1234                  * got the block, then there is no hope left.
1235                  * If we have, then we want to do a comparison
1236                  * and skip the write if everything is the same.
1237                  * If any blocks failed to read, then we need to
1238                  * attempt an over-write
1239                  */
1240                 int primary;
1241                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1242                         for (i=0; i<mddev->raid_disks; i++)
1243                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1244                                         md_error(mddev, conf->mirrors[i].rdev);
1245
1246                         md_done_sync(mddev, r1_bio->sectors, 1);
1247                         put_buf(r1_bio);
1248                         return;
1249                 }
1250                 for (primary=0; primary<mddev->raid_disks; primary++)
1251                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1252                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1253                                 r1_bio->bios[primary]->bi_end_io = NULL;
1254                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1255                                 break;
1256                         }
1257                 r1_bio->read_disk = primary;
1258                 for (i=0; i<mddev->raid_disks; i++)
1259                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1260                                 int j;
1261                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1262                                 struct bio *pbio = r1_bio->bios[primary];
1263                                 struct bio *sbio = r1_bio->bios[i];
1264
1265                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1266                                         for (j = vcnt; j-- ; ) {
1267                                                 struct page *p, *s;
1268                                                 p = pbio->bi_io_vec[j].bv_page;
1269                                                 s = sbio->bi_io_vec[j].bv_page;
1270                                                 if (memcmp(page_address(p),
1271                                                            page_address(s),
1272                                                            PAGE_SIZE))
1273                                                         break;
1274                                         }
1275                                 } else
1276                                         j = 0;
1277                                 if (j >= 0)
1278                                         mddev->resync_mismatches += r1_bio->sectors;
1279                                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1280                                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1281                                         sbio->bi_end_io = NULL;
1282                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1283                                 } else {
1284                                         /* fixup the bio for reuse */
1285                                         sbio->bi_vcnt = vcnt;
1286                                         sbio->bi_size = r1_bio->sectors << 9;
1287                                         sbio->bi_idx = 0;
1288                                         sbio->bi_phys_segments = 0;
1289                                         sbio->bi_hw_segments = 0;
1290                                         sbio->bi_hw_front_size = 0;
1291                                         sbio->bi_hw_back_size = 0;
1292                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1293                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1294                                         sbio->bi_next = NULL;
1295                                         sbio->bi_sector = r1_bio->sector +
1296                                                 conf->mirrors[i].rdev->data_offset;
1297                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1298                                         for (j = 0; j < vcnt ; j++)
1299                                                 memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1300                                                        page_address(pbio->bi_io_vec[j].bv_page),
1301                                                        PAGE_SIZE);
1302
1303                                 }
1304                         }
1305         }
1306         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1307                 /* ouch - failed to read all of that.
1308                  * Try some synchronous reads of other devices to get
1309                  * good data, much like with normal read errors.  Only
1310                  * read into the pages we already have so we don't
1311                  * need to re-issue the read request.
1312                  * We don't need to freeze the array, because being in an
1313                  * active sync request, there is no normal IO, and
1314                  * no overlapping syncs.
1315                  */
1316                 sector_t sect = r1_bio->sector;
1317                 int sectors = r1_bio->sectors;
1318                 int idx = 0;
1319
1320                 while(sectors) {
1321                         int s = sectors;
1322                         int d = r1_bio->read_disk;
1323                         int success = 0;
1324                         mdk_rdev_t *rdev;
1325
1326                         if (s > (PAGE_SIZE>>9))
1327                                 s = PAGE_SIZE >> 9;
1328                         do {
1329                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1330                                         /* No rcu protection needed here devices
1331                                          * can only be removed when no resync is
1332                                          * active, and resync is currently active
1333                                          */
1334                                         rdev = conf->mirrors[d].rdev;
1335                                         if (sync_page_io(rdev->bdev,
1336                                                          sect + rdev->data_offset,
1337                                                          s<<9,
1338                                                          bio->bi_io_vec[idx].bv_page,
1339                                                          READ)) {
1340                                                 success = 1;
1341                                                 break;
1342                                         }
1343                                 }
1344                                 d++;
1345                                 if (d == conf->raid_disks)
1346                                         d = 0;
1347                         } while (!success && d != r1_bio->read_disk);
1348
1349                         if (success) {
1350                                 int start = d;
1351                                 /* write it back and re-read */
1352                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1353                                 while (d != r1_bio->read_disk) {
1354                                         if (d == 0)
1355                                                 d = conf->raid_disks;
1356                                         d--;
1357                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1358                                                 continue;
1359                                         rdev = conf->mirrors[d].rdev;
1360                                         atomic_add(s, &rdev->corrected_errors);
1361                                         if (sync_page_io(rdev->bdev,
1362                                                          sect + rdev->data_offset,
1363                                                          s<<9,
1364                                                          bio->bi_io_vec[idx].bv_page,
1365                                                          WRITE) == 0)
1366                                                 md_error(mddev, rdev);
1367                                 }
1368                                 d = start;
1369                                 while (d != r1_bio->read_disk) {
1370                                         if (d == 0)
1371                                                 d = conf->raid_disks;
1372                                         d--;
1373                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1374                                                 continue;
1375                                         rdev = conf->mirrors[d].rdev;
1376                                         if (sync_page_io(rdev->bdev,
1377                                                          sect + rdev->data_offset,
1378                                                          s<<9,
1379                                                          bio->bi_io_vec[idx].bv_page,
1380                                                          READ) == 0)
1381                                                 md_error(mddev, rdev);
1382                                 }
1383                         } else {
1384                                 char b[BDEVNAME_SIZE];
1385                                 /* Cannot read from anywhere, array is toast */
1386                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1387                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1388                                        " for block %llu\n",
1389                                        bdevname(bio->bi_bdev,b),
1390                                        (unsigned long long)r1_bio->sector);
1391                                 md_done_sync(mddev, r1_bio->sectors, 0);
1392                                 put_buf(r1_bio);
1393                                 return;
1394                         }
1395                         sectors -= s;
1396                         sect += s;
1397                         idx ++;
1398                 }
1399         }
1400
1401         /*
1402          * schedule writes
1403          */
1404         atomic_set(&r1_bio->remaining, 1);
1405         for (i = 0; i < disks ; i++) {
1406                 wbio = r1_bio->bios[i];
1407                 if (wbio->bi_end_io == NULL ||
1408                     (wbio->bi_end_io == end_sync_read &&
1409                      (i == r1_bio->read_disk ||
1410                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1411                         continue;
1412
1413                 wbio->bi_rw = WRITE;
1414                 wbio->bi_end_io = end_sync_write;
1415                 atomic_inc(&r1_bio->remaining);
1416                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1417
1418                 generic_make_request(wbio);
1419         }
1420
1421         if (atomic_dec_and_test(&r1_bio->remaining)) {
1422                 /* if we're here, all write(s) have completed, so clean up */
1423                 md_done_sync(mddev, r1_bio->sectors, 1);
1424                 put_buf(r1_bio);
1425         }
1426 }
1427
1428 /*
1429  * This is a kernel thread which:
1430  *
1431  *      1.      Retries failed read operations on working mirrors.
1432  *      2.      Updates the raid superblock when problems encounter.
1433  *      3.      Performs writes following reads for array syncronising.
1434  */
1435
1436 static void fix_read_error(conf_t *conf, int read_disk,
1437                            sector_t sect, int sectors)
1438 {
1439         mddev_t *mddev = conf->mddev;
1440         while(sectors) {
1441                 int s = sectors;
1442                 int d = read_disk;
1443                 int success = 0;
1444                 int start;
1445                 mdk_rdev_t *rdev;
1446
1447                 if (s > (PAGE_SIZE>>9))
1448                         s = PAGE_SIZE >> 9;
1449
1450                 do {
1451                         /* Note: no rcu protection needed here
1452                          * as this is synchronous in the raid1d thread
1453                          * which is the thread that might remove
1454                          * a device.  If raid1d ever becomes multi-threaded....
1455                          */
1456                         rdev = conf->mirrors[d].rdev;
1457                         if (rdev &&
1458                             test_bit(In_sync, &rdev->flags) &&
1459                             sync_page_io(rdev->bdev,
1460                                          sect + rdev->data_offset,
1461                                          s<<9,
1462                                          conf->tmppage, READ))
1463                                 success = 1;
1464                         else {
1465                                 d++;
1466                                 if (d == conf->raid_disks)
1467                                         d = 0;
1468                         }
1469                 } while (!success && d != read_disk);
1470
1471                 if (!success) {
1472                         /* Cannot read from anywhere -- bye bye array */
1473                         md_error(mddev, conf->mirrors[read_disk].rdev);
1474                         break;
1475                 }
1476                 /* write it back and re-read */
1477                 start = d;
1478                 while (d != read_disk) {
1479                         if (d==0)
1480                                 d = conf->raid_disks;
1481                         d--;
1482                         rdev = conf->mirrors[d].rdev;
1483                         if (rdev &&
1484                             test_bit(In_sync, &rdev->flags)) {
1485                                 if (sync_page_io(rdev->bdev,
1486                                                  sect + rdev->data_offset,
1487                                                  s<<9, conf->tmppage, WRITE)
1488                                     == 0)
1489                                         /* Well, this device is dead */
1490                                         md_error(mddev, rdev);
1491                         }
1492                 }
1493                 d = start;
1494                 while (d != read_disk) {
1495                         char b[BDEVNAME_SIZE];
1496                         if (d==0)
1497                                 d = conf->raid_disks;
1498                         d--;
1499                         rdev = conf->mirrors[d].rdev;
1500                         if (rdev &&
1501                             test_bit(In_sync, &rdev->flags)) {
1502                                 if (sync_page_io(rdev->bdev,
1503                                                  sect + rdev->data_offset,
1504                                                  s<<9, conf->tmppage, READ)
1505                                     == 0)
1506                                         /* Well, this device is dead */
1507                                         md_error(mddev, rdev);
1508                                 else {
1509                                         atomic_add(s, &rdev->corrected_errors);
1510                                         printk(KERN_INFO
1511                                                "raid1:%s: read error corrected "
1512                                                "(%d sectors at %llu on %s)\n",
1513                                                mdname(mddev), s,
1514                                                (unsigned long long)(sect +
1515                                                    rdev->data_offset),
1516                                                bdevname(rdev->bdev, b));
1517                                 }
1518                         }
1519                 }
1520                 sectors -= s;
1521                 sect += s;
1522         }
1523 }
1524
1525 static void raid1d(mddev_t *mddev)
1526 {
1527         r1bio_t *r1_bio;
1528         struct bio *bio;
1529         unsigned long flags;
1530         conf_t *conf = mddev_to_conf(mddev);
1531         struct list_head *head = &conf->retry_list;
1532         int unplug=0;
1533         mdk_rdev_t *rdev;
1534
1535         md_check_recovery(mddev);
1536         
1537         for (;;) {
1538                 char b[BDEVNAME_SIZE];
1539
1540                 unplug += flush_pending_writes(conf);
1541
1542                 spin_lock_irqsave(&conf->device_lock, flags);
1543                 if (list_empty(head)) {
1544                         spin_unlock_irqrestore(&conf->device_lock, flags);
1545                         break;
1546                 }
1547                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1548                 list_del(head->prev);
1549                 conf->nr_queued--;
1550                 spin_unlock_irqrestore(&conf->device_lock, flags);
1551
1552                 mddev = r1_bio->mddev;
1553                 conf = mddev_to_conf(mddev);
1554                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1555                         sync_request_write(mddev, r1_bio);
1556                         unplug = 1;
1557                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1558                         /* some requests in the r1bio were BIO_RW_BARRIER
1559                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1560                          * Better resubmit without the barrier.
1561                          * We know which devices to resubmit for, because
1562                          * all others have had their bios[] entry cleared.
1563                          * We already have a nr_pending reference on these rdevs.
1564                          */
1565                         int i;
1566                         const int do_sync = bio_sync(r1_bio->master_bio);
1567                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1568                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1569                         for (i=0; i < conf->raid_disks; i++)
1570                                 if (r1_bio->bios[i])
1571                                         atomic_inc(&r1_bio->remaining);
1572                         for (i=0; i < conf->raid_disks; i++)
1573                                 if (r1_bio->bios[i]) {
1574                                         struct bio_vec *bvec;
1575                                         int j;
1576
1577                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1578                                         /* copy pages from the failed bio, as
1579                                          * this might be a write-behind device */
1580                                         __bio_for_each_segment(bvec, bio, j, 0)
1581                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1582                                         bio_put(r1_bio->bios[i]);
1583                                         bio->bi_sector = r1_bio->sector +
1584                                                 conf->mirrors[i].rdev->data_offset;
1585                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1586                                         bio->bi_end_io = raid1_end_write_request;
1587                                         bio->bi_rw = WRITE | do_sync;
1588                                         bio->bi_private = r1_bio;
1589                                         r1_bio->bios[i] = bio;
1590                                         generic_make_request(bio);
1591                                 }
1592                 } else {
1593                         int disk;
1594
1595                         /* we got a read error. Maybe the drive is bad.  Maybe just
1596                          * the block and we can fix it.
1597                          * We freeze all other IO, and try reading the block from
1598                          * other devices.  When we find one, we re-write
1599                          * and check it that fixes the read error.
1600                          * This is all done synchronously while the array is
1601                          * frozen
1602                          */
1603                         if (mddev->ro == 0) {
1604                                 freeze_array(conf);
1605                                 fix_read_error(conf, r1_bio->read_disk,
1606                                                r1_bio->sector,
1607                                                r1_bio->sectors);
1608                                 unfreeze_array(conf);
1609                         }
1610
1611                         bio = r1_bio->bios[r1_bio->read_disk];
1612                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1613                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1614                                        " read error for block %llu\n",
1615                                        bdevname(bio->bi_bdev,b),
1616                                        (unsigned long long)r1_bio->sector);
1617                                 raid_end_bio_io(r1_bio);
1618                         } else {
1619                                 const int do_sync = bio_sync(r1_bio->master_bio);
1620                                 r1_bio->bios[r1_bio->read_disk] =
1621                                         mddev->ro ? IO_BLOCKED : NULL;
1622                                 r1_bio->read_disk = disk;
1623                                 bio_put(bio);
1624                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1625                                 r1_bio->bios[r1_bio->read_disk] = bio;
1626                                 rdev = conf->mirrors[disk].rdev;
1627                                 if (printk_ratelimit())
1628                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1629                                                " another mirror\n",
1630                                                bdevname(rdev->bdev,b),
1631                                                (unsigned long long)r1_bio->sector);
1632                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1633                                 bio->bi_bdev = rdev->bdev;
1634                                 bio->bi_end_io = raid1_end_read_request;
1635                                 bio->bi_rw = READ | do_sync;
1636                                 bio->bi_private = r1_bio;
1637                                 unplug = 1;
1638                                 generic_make_request(bio);
1639                         }
1640                 }
1641         }
1642         if (unplug)
1643                 unplug_slaves(mddev);
1644 }
1645
1646
1647 static int init_resync(conf_t *conf)
1648 {
1649         int buffs;
1650
1651         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1652         BUG_ON(conf->r1buf_pool);
1653         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1654                                           conf->poolinfo);
1655         if (!conf->r1buf_pool)
1656                 return -ENOMEM;
1657         conf->next_resync = 0;
1658         return 0;
1659 }
1660
1661 /*
1662  * perform a "sync" on one "block"
1663  *
1664  * We need to make sure that no normal I/O request - particularly write
1665  * requests - conflict with active sync requests.
1666  *
1667  * This is achieved by tracking pending requests and a 'barrier' concept
1668  * that can be installed to exclude normal IO requests.
1669  */
1670
1671 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1672 {
1673         conf_t *conf = mddev_to_conf(mddev);
1674         r1bio_t *r1_bio;
1675         struct bio *bio;
1676         sector_t max_sector, nr_sectors;
1677         int disk = -1;
1678         int i;
1679         int wonly = -1;
1680         int write_targets = 0, read_targets = 0;
1681         int sync_blocks;
1682         int still_degraded = 0;
1683
1684         if (!conf->r1buf_pool)
1685         {
1686 /*
1687                 printk("sync start - bitmap %p\n", mddev->bitmap);
1688 */
1689                 if (init_resync(conf))
1690                         return 0;
1691         }
1692
1693         max_sector = mddev->size << 1;
1694         if (sector_nr >= max_sector) {
1695                 /* If we aborted, we need to abort the
1696                  * sync on the 'current' bitmap chunk (there will
1697                  * only be one in raid1 resync.
1698                  * We can find the current addess in mddev->curr_resync
1699                  */
1700                 if (mddev->curr_resync < max_sector) /* aborted */
1701                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1702                                                 &sync_blocks, 1);
1703                 else /* completed sync */
1704                         conf->fullsync = 0;
1705
1706                 bitmap_close_sync(mddev->bitmap);
1707                 close_sync(conf);
1708                 return 0;
1709         }
1710
1711         if (mddev->bitmap == NULL &&
1712             mddev->recovery_cp == MaxSector &&
1713             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1714             conf->fullsync == 0) {
1715                 *skipped = 1;
1716                 return max_sector - sector_nr;
1717         }
1718         /* before building a request, check if we can skip these blocks..
1719          * This call the bitmap_start_sync doesn't actually record anything
1720          */
1721         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1722             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1723                 /* We can skip this block, and probably several more */
1724                 *skipped = 1;
1725                 return sync_blocks;
1726         }
1727         /*
1728          * If there is non-resync activity waiting for a turn,
1729          * and resync is going fast enough,
1730          * then let it though before starting on this new sync request.
1731          */
1732         if (!go_faster && conf->nr_waiting)
1733                 msleep_interruptible(1000);
1734
1735         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1736         raise_barrier(conf);
1737
1738         conf->next_resync = sector_nr;
1739
1740         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1741         rcu_read_lock();
1742         /*
1743          * If we get a correctably read error during resync or recovery,
1744          * we might want to read from a different device.  So we
1745          * flag all drives that could conceivably be read from for READ,
1746          * and any others (which will be non-In_sync devices) for WRITE.
1747          * If a read fails, we try reading from something else for which READ
1748          * is OK.
1749          */
1750
1751         r1_bio->mddev = mddev;
1752         r1_bio->sector = sector_nr;
1753         r1_bio->state = 0;
1754         set_bit(R1BIO_IsSync, &r1_bio->state);
1755
1756         for (i=0; i < conf->raid_disks; i++) {
1757                 mdk_rdev_t *rdev;
1758                 bio = r1_bio->bios[i];
1759
1760                 /* take from bio_init */
1761                 bio->bi_next = NULL;
1762                 bio->bi_flags |= 1 << BIO_UPTODATE;
1763                 bio->bi_rw = READ;
1764                 bio->bi_vcnt = 0;
1765                 bio->bi_idx = 0;
1766                 bio->bi_phys_segments = 0;
1767                 bio->bi_hw_segments = 0;
1768                 bio->bi_size = 0;
1769                 bio->bi_end_io = NULL;
1770                 bio->bi_private = NULL;
1771
1772                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1773                 if (rdev == NULL ||
1774                            test_bit(Faulty, &rdev->flags)) {
1775                         still_degraded = 1;
1776                         continue;
1777                 } else if (!test_bit(In_sync, &rdev->flags)) {
1778                         bio->bi_rw = WRITE;
1779                         bio->bi_end_io = end_sync_write;
1780                         write_targets ++;
1781                 } else {
1782                         /* may need to read from here */
1783                         bio->bi_rw = READ;
1784                         bio->bi_end_io = end_sync_read;
1785                         if (test_bit(WriteMostly, &rdev->flags)) {
1786                                 if (wonly < 0)
1787                                         wonly = i;
1788                         } else {
1789                                 if (disk < 0)
1790                                         disk = i;
1791                         }
1792                         read_targets++;
1793                 }
1794                 atomic_inc(&rdev->nr_pending);
1795                 bio->bi_sector = sector_nr + rdev->data_offset;
1796                 bio->bi_bdev = rdev->bdev;
1797                 bio->bi_private = r1_bio;
1798         }
1799         rcu_read_unlock();
1800         if (disk < 0)
1801                 disk = wonly;
1802         r1_bio->read_disk = disk;
1803
1804         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1805                 /* extra read targets are also write targets */
1806                 write_targets += read_targets-1;
1807
1808         if (write_targets == 0 || read_targets == 0) {
1809                 /* There is nowhere to write, so all non-sync
1810                  * drives must be failed - so we are finished
1811                  */
1812                 sector_t rv = max_sector - sector_nr;
1813                 *skipped = 1;
1814                 put_buf(r1_bio);
1815                 return rv;
1816         }
1817
1818         if (max_sector > mddev->resync_max)
1819                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1820         nr_sectors = 0;
1821         sync_blocks = 0;
1822         do {
1823                 struct page *page;
1824                 int len = PAGE_SIZE;
1825                 if (sector_nr + (len>>9) > max_sector)
1826                         len = (max_sector - sector_nr) << 9;
1827                 if (len == 0)
1828                         break;
1829                 if (sync_blocks == 0) {
1830                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1831                                                &sync_blocks, still_degraded) &&
1832                             !conf->fullsync &&
1833                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1834                                 break;
1835                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1836                         if (len > (sync_blocks<<9))
1837                                 len = sync_blocks<<9;
1838                 }
1839
1840                 for (i=0 ; i < conf->raid_disks; i++) {
1841                         bio = r1_bio->bios[i];
1842                         if (bio->bi_end_io) {
1843                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1844                                 if (bio_add_page(bio, page, len, 0) == 0) {
1845                                         /* stop here */
1846                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1847                                         while (i > 0) {
1848                                                 i--;
1849                                                 bio = r1_bio->bios[i];
1850                                                 if (bio->bi_end_io==NULL)
1851                                                         continue;
1852                                                 /* remove last page from this bio */
1853                                                 bio->bi_vcnt--;
1854                                                 bio->bi_size -= len;
1855                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1856                                         }
1857                                         goto bio_full;
1858                                 }
1859                         }
1860                 }
1861                 nr_sectors += len>>9;
1862                 sector_nr += len>>9;
1863                 sync_blocks -= (len>>9);
1864         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1865  bio_full:
1866         r1_bio->sectors = nr_sectors;
1867
1868         /* For a user-requested sync, we read all readable devices and do a
1869          * compare
1870          */
1871         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1872                 atomic_set(&r1_bio->remaining, read_targets);
1873                 for (i=0; i<conf->raid_disks; i++) {
1874                         bio = r1_bio->bios[i];
1875                         if (bio->bi_end_io == end_sync_read) {
1876                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1877                                 generic_make_request(bio);
1878                         }
1879                 }
1880         } else {
1881                 atomic_set(&r1_bio->remaining, 1);
1882                 bio = r1_bio->bios[r1_bio->read_disk];
1883                 md_sync_acct(bio->bi_bdev, nr_sectors);
1884                 generic_make_request(bio);
1885
1886         }
1887         return nr_sectors;
1888 }
1889
1890 static int run(mddev_t *mddev)
1891 {
1892         conf_t *conf;
1893         int i, j, disk_idx;
1894         mirror_info_t *disk;
1895         mdk_rdev_t *rdev;
1896         struct list_head *tmp;
1897
1898         if (mddev->level != 1) {
1899                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1900                        mdname(mddev), mddev->level);
1901                 goto out;
1902         }
1903         if (mddev->reshape_position != MaxSector) {
1904                 printk("raid1: %s: reshape_position set but not supported\n",
1905                        mdname(mddev));
1906                 goto out;
1907         }
1908         /*
1909          * copy the already verified devices into our private RAID1
1910          * bookkeeping area. [whatever we allocate in run(),
1911          * should be freed in stop()]
1912          */
1913         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1914         mddev->private = conf;
1915         if (!conf)
1916                 goto out_no_mem;
1917
1918         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1919                                  GFP_KERNEL);
1920         if (!conf->mirrors)
1921                 goto out_no_mem;
1922
1923         conf->tmppage = alloc_page(GFP_KERNEL);
1924         if (!conf->tmppage)
1925                 goto out_no_mem;
1926
1927         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1928         if (!conf->poolinfo)
1929                 goto out_no_mem;
1930         conf->poolinfo->mddev = mddev;
1931         conf->poolinfo->raid_disks = mddev->raid_disks;
1932         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1933                                           r1bio_pool_free,
1934                                           conf->poolinfo);
1935         if (!conf->r1bio_pool)
1936                 goto out_no_mem;
1937
1938         spin_lock_init(&conf->device_lock);
1939         mddev->queue->queue_lock = &conf->device_lock;
1940
1941         rdev_for_each(rdev, tmp, mddev) {
1942                 disk_idx = rdev->raid_disk;
1943                 if (disk_idx >= mddev->raid_disks
1944                     || disk_idx < 0)
1945                         continue;
1946                 disk = conf->mirrors + disk_idx;
1947
1948                 disk->rdev = rdev;
1949
1950                 blk_queue_stack_limits(mddev->queue,
1951                                        rdev->bdev->bd_disk->queue);
1952                 /* as we don't honour merge_bvec_fn, we must never risk
1953                  * violating it, so limit ->max_sector to one PAGE, as
1954                  * a one page request is never in violation.
1955                  */
1956                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1957                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1958                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1959
1960                 disk->head_position = 0;
1961         }
1962         conf->raid_disks = mddev->raid_disks;
1963         conf->mddev = mddev;
1964         INIT_LIST_HEAD(&conf->retry_list);
1965
1966         spin_lock_init(&conf->resync_lock);
1967         init_waitqueue_head(&conf->wait_barrier);
1968
1969         bio_list_init(&conf->pending_bio_list);
1970         bio_list_init(&conf->flushing_bio_list);
1971
1972
1973         mddev->degraded = 0;
1974         for (i = 0; i < conf->raid_disks; i++) {
1975
1976                 disk = conf->mirrors + i;
1977
1978                 if (!disk->rdev ||
1979                     !test_bit(In_sync, &disk->rdev->flags)) {
1980                         disk->head_position = 0;
1981                         mddev->degraded++;
1982                         if (disk->rdev)
1983                                 conf->fullsync = 1;
1984                 }
1985         }
1986         if (mddev->degraded == conf->raid_disks) {
1987                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1988                         mdname(mddev));
1989                 goto out_free_conf;
1990         }
1991         if (conf->raid_disks - mddev->degraded == 1)
1992                 mddev->recovery_cp = MaxSector;
1993
1994         /*
1995          * find the first working one and use it as a starting point
1996          * to read balancing.
1997          */
1998         for (j = 0; j < conf->raid_disks &&
1999                      (!conf->mirrors[j].rdev ||
2000                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2001                 /* nothing */;
2002         conf->last_used = j;
2003
2004
2005         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
2006         if (!mddev->thread) {
2007                 printk(KERN_ERR
2008                        "raid1: couldn't allocate thread for %s\n",
2009                        mdname(mddev));
2010                 goto out_free_conf;
2011         }
2012
2013         printk(KERN_INFO 
2014                 "raid1: raid set %s active with %d out of %d mirrors\n",
2015                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2016                 mddev->raid_disks);
2017         /*
2018          * Ok, everything is just fine now
2019          */
2020         mddev->array_size = mddev->size;
2021
2022         mddev->queue->unplug_fn = raid1_unplug;
2023         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2024         mddev->queue->backing_dev_info.congested_data = mddev;
2025
2026         return 0;
2027
2028 out_no_mem:
2029         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2030                mdname(mddev));
2031
2032 out_free_conf:
2033         if (conf) {
2034                 if (conf->r1bio_pool)
2035                         mempool_destroy(conf->r1bio_pool);
2036                 kfree(conf->mirrors);
2037                 safe_put_page(conf->tmppage);
2038                 kfree(conf->poolinfo);
2039                 kfree(conf);
2040                 mddev->private = NULL;
2041         }
2042 out:
2043         return -EIO;
2044 }
2045
2046 static int stop(mddev_t *mddev)
2047 {
2048         conf_t *conf = mddev_to_conf(mddev);
2049         struct bitmap *bitmap = mddev->bitmap;
2050         int behind_wait = 0;
2051
2052         /* wait for behind writes to complete */
2053         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2054                 behind_wait++;
2055                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2056                 set_current_state(TASK_UNINTERRUPTIBLE);
2057                 schedule_timeout(HZ); /* wait a second */
2058                 /* need to kick something here to make sure I/O goes? */
2059         }
2060
2061         md_unregister_thread(mddev->thread);
2062         mddev->thread = NULL;
2063         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2064         if (conf->r1bio_pool)
2065                 mempool_destroy(conf->r1bio_pool);
2066         kfree(conf->mirrors);
2067         kfree(conf->poolinfo);
2068         kfree(conf);
2069         mddev->private = NULL;
2070         return 0;
2071 }
2072
2073 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2074 {
2075         /* no resync is happening, and there is enough space
2076          * on all devices, so we can resize.
2077          * We need to make sure resync covers any new space.
2078          * If the array is shrinking we should possibly wait until
2079          * any io in the removed space completes, but it hardly seems
2080          * worth it.
2081          */
2082         mddev->array_size = sectors>>1;
2083         set_capacity(mddev->gendisk, mddev->array_size << 1);
2084         mddev->changed = 1;
2085         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2086                 mddev->recovery_cp = mddev->size << 1;
2087                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2088         }
2089         mddev->size = mddev->array_size;
2090         mddev->resync_max_sectors = sectors;
2091         return 0;
2092 }
2093
2094 static int raid1_reshape(mddev_t *mddev)
2095 {
2096         /* We need to:
2097          * 1/ resize the r1bio_pool
2098          * 2/ resize conf->mirrors
2099          *
2100          * We allocate a new r1bio_pool if we can.
2101          * Then raise a device barrier and wait until all IO stops.
2102          * Then resize conf->mirrors and swap in the new r1bio pool.
2103          *
2104          * At the same time, we "pack" the devices so that all the missing
2105          * devices have the higher raid_disk numbers.
2106          */
2107         mempool_t *newpool, *oldpool;
2108         struct pool_info *newpoolinfo;
2109         mirror_info_t *newmirrors;
2110         conf_t *conf = mddev_to_conf(mddev);
2111         int cnt, raid_disks;
2112         unsigned long flags;
2113         int d, d2;
2114
2115         /* Cannot change chunk_size, layout, or level */
2116         if (mddev->chunk_size != mddev->new_chunk ||
2117             mddev->layout != mddev->new_layout ||
2118             mddev->level != mddev->new_level) {
2119                 mddev->new_chunk = mddev->chunk_size;
2120                 mddev->new_layout = mddev->layout;
2121                 mddev->new_level = mddev->level;
2122                 return -EINVAL;
2123         }
2124
2125         md_allow_write(mddev);
2126
2127         raid_disks = mddev->raid_disks + mddev->delta_disks;
2128
2129         if (raid_disks < conf->raid_disks) {
2130                 cnt=0;
2131                 for (d= 0; d < conf->raid_disks; d++)
2132                         if (conf->mirrors[d].rdev)
2133                                 cnt++;
2134                 if (cnt > raid_disks)
2135                         return -EBUSY;
2136         }
2137
2138         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2139         if (!newpoolinfo)
2140                 return -ENOMEM;
2141         newpoolinfo->mddev = mddev;
2142         newpoolinfo->raid_disks = raid_disks;
2143
2144         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2145                                  r1bio_pool_free, newpoolinfo);
2146         if (!newpool) {
2147                 kfree(newpoolinfo);
2148                 return -ENOMEM;
2149         }
2150         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2151         if (!newmirrors) {
2152                 kfree(newpoolinfo);
2153                 mempool_destroy(newpool);
2154                 return -ENOMEM;
2155         }
2156
2157         raise_barrier(conf);
2158
2159         /* ok, everything is stopped */
2160         oldpool = conf->r1bio_pool;
2161         conf->r1bio_pool = newpool;
2162
2163         for (d = d2 = 0; d < conf->raid_disks; d++) {
2164                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2165                 if (rdev && rdev->raid_disk != d2) {
2166                         char nm[20];
2167                         sprintf(nm, "rd%d", rdev->raid_disk);
2168                         sysfs_remove_link(&mddev->kobj, nm);
2169                         rdev->raid_disk = d2;
2170                         sprintf(nm, "rd%d", rdev->raid_disk);
2171                         sysfs_remove_link(&mddev->kobj, nm);
2172                         if (sysfs_create_link(&mddev->kobj,
2173                                               &rdev->kobj, nm))
2174                                 printk(KERN_WARNING
2175                                        "md/raid1: cannot register "
2176                                        "%s for %s\n",
2177                                        nm, mdname(mddev));
2178                 }
2179                 if (rdev)
2180                         newmirrors[d2++].rdev = rdev;
2181         }
2182         kfree(conf->mirrors);
2183         conf->mirrors = newmirrors;
2184         kfree(conf->poolinfo);
2185         conf->poolinfo = newpoolinfo;
2186
2187         spin_lock_irqsave(&conf->device_lock, flags);
2188         mddev->degraded += (raid_disks - conf->raid_disks);
2189         spin_unlock_irqrestore(&conf->device_lock, flags);
2190         conf->raid_disks = mddev->raid_disks = raid_disks;
2191         mddev->delta_disks = 0;
2192
2193         conf->last_used = 0; /* just make sure it is in-range */
2194         lower_barrier(conf);
2195
2196         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2197         md_wakeup_thread(mddev->thread);
2198
2199         mempool_destroy(oldpool);
2200         return 0;
2201 }
2202
2203 static void raid1_quiesce(mddev_t *mddev, int state)
2204 {
2205         conf_t *conf = mddev_to_conf(mddev);
2206
2207         switch(state) {
2208         case 1:
2209                 raise_barrier(conf);
2210                 break;
2211         case 0:
2212                 lower_barrier(conf);
2213                 break;
2214         }
2215 }
2216
2217
2218 static struct mdk_personality raid1_personality =
2219 {
2220         .name           = "raid1",
2221         .level          = 1,
2222         .owner          = THIS_MODULE,
2223         .make_request   = make_request,
2224         .run            = run,
2225         .stop           = stop,
2226         .status         = status,
2227         .error_handler  = error,
2228         .hot_add_disk   = raid1_add_disk,
2229         .hot_remove_disk= raid1_remove_disk,
2230         .spare_active   = raid1_spare_active,
2231         .sync_request   = sync_request,
2232         .resize         = raid1_resize,
2233         .check_reshape  = raid1_reshape,
2234         .quiesce        = raid1_quiesce,
2235 };
2236
2237 static int __init raid_init(void)
2238 {
2239         return register_md_personality(&raid1_personality);
2240 }
2241
2242 static void raid_exit(void)
2243 {
2244         unregister_md_personality(&raid1_personality);
2245 }
2246
2247 module_init(raid_init);
2248 module_exit(raid_exit);
2249 MODULE_LICENSE("GPL");
2250 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2251 MODULE_ALIAS("md-raid1");
2252 MODULE_ALIAS("md-level-1");