2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/config.h>
24 #include <linux/kprobes.h>
25 #include <linux/ptrace.h>
26 #include <linux/preempt.h>
27 #include <linux/stop_machine.h>
28 #include <asm/cacheflush.h>
29 #include <asm/kdebug.h>
30 #include <asm/sections.h>
31 #include <asm/uaccess.h>
32 #include <linux/module.h>
34 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
37 int __kprobes arch_prepare_kprobe(struct kprobe *p)
39 /* Make sure the probe isn't going on a difficult instruction */
40 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
43 if ((unsigned long)p->addr & 0x01) {
44 printk("Attempt to register kprobe at an unaligned address\n");
48 /* Use the get_insn_slot() facility for correctness */
49 if (!(p->ainsn.insn = get_insn_slot()))
52 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
54 get_instruction_type(&p->ainsn);
59 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
61 switch (*(__u8 *) instruction) {
62 case 0x0c: /* bassm */
68 switch (*(__u16 *) instruction) {
70 case 0xb25a: /* bsa */
71 case 0xb240: /* bakr */
72 case 0xb258: /* bsg */
80 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
82 /* default fixup method */
83 ainsn->fixup = FIXUP_PSW_NORMAL;
86 ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
88 /* save the instruction length (pop 5-5) in bytes */
89 switch (*(__u8 *) (ainsn->insn) >> 4) {
102 switch (*(__u8 *) ainsn->insn) {
103 case 0x05: /* balr */
104 case 0x0d: /* basr */
105 ainsn->fixup = FIXUP_RETURN_REGISTER;
106 /* if r2 = 0, no branch will be taken */
107 if ((*ainsn->insn & 0x0f) == 0)
108 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
110 case 0x06: /* bctr */
112 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
116 ainsn->fixup = FIXUP_RETURN_REGISTER;
121 case 0x87: /* bxle */
122 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
124 case 0x82: /* lpsw */
125 ainsn->fixup = FIXUP_NOT_REQUIRED;
127 case 0xb2: /* lpswe */
128 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
129 ainsn->fixup = FIXUP_NOT_REQUIRED;
132 case 0xa7: /* bras */
133 if ((*ainsn->insn & 0x0f) == 0x05) {
134 ainsn->fixup |= FIXUP_RETURN_REGISTER;
138 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
139 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
140 ainsn->fixup |= FIXUP_RETURN_REGISTER;
143 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
144 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
145 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
148 case 0xe3: /* bctg */
149 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
150 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
156 static int __kprobes swap_instruction(void *aref)
158 struct ins_replace_args *args = aref;
162 "0: mvc 0(2,%2),0(%3)\n"
166 : "+d" (err), "=m" (*args->ptr)
167 : "a" (args->ptr), "a" (&args->new), "m" (args->new));
171 void __kprobes arch_arm_kprobe(struct kprobe *p)
173 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
174 unsigned long status = kcb->kprobe_status;
175 struct ins_replace_args args;
178 args.old = p->opcode;
179 args.new = BREAKPOINT_INSTRUCTION;
181 kcb->kprobe_status = KPROBE_SWAP_INST;
182 stop_machine_run(swap_instruction, &args, NR_CPUS);
183 kcb->kprobe_status = status;
186 void __kprobes arch_disarm_kprobe(struct kprobe *p)
188 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
189 unsigned long status = kcb->kprobe_status;
190 struct ins_replace_args args;
193 args.old = BREAKPOINT_INSTRUCTION;
194 args.new = p->opcode;
196 kcb->kprobe_status = KPROBE_SWAP_INST;
197 stop_machine_run(swap_instruction, &args, NR_CPUS);
198 kcb->kprobe_status = status;
201 void __kprobes arch_remove_kprobe(struct kprobe *p)
203 mutex_lock(&kprobe_mutex);
204 free_insn_slot(p->ainsn.insn);
205 mutex_unlock(&kprobe_mutex);
208 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
210 per_cr_bits kprobe_per_regs[1];
212 memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
213 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
215 /* Set up the per control reg info, will pass to lctl */
216 kprobe_per_regs[0].em_instruction_fetch = 1;
217 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
218 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
220 /* Set the PER control regs, turns on single step for this address */
221 __ctl_load(kprobe_per_regs, 9, 11);
222 regs->psw.mask |= PSW_MASK_PER;
223 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
226 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
228 kcb->prev_kprobe.kp = kprobe_running();
229 kcb->prev_kprobe.status = kcb->kprobe_status;
230 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
231 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
232 sizeof(kcb->kprobe_saved_ctl));
235 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
237 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
238 kcb->kprobe_status = kcb->prev_kprobe.status;
239 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
240 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
241 sizeof(kcb->kprobe_saved_ctl));
244 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
245 struct kprobe_ctlblk *kcb)
247 __get_cpu_var(current_kprobe) = p;
248 /* Save the interrupt and per flags */
249 kcb->kprobe_saved_imask = regs->psw.mask &
250 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
251 /* Save the control regs that govern PER */
252 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
255 /* Called with kretprobe_lock held */
256 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
257 struct pt_regs *regs)
259 struct kretprobe_instance *ri;
261 if ((ri = get_free_rp_inst(rp)) != NULL) {
264 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
266 /* Replace the return addr with trampoline addr */
267 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
275 static int __kprobes kprobe_handler(struct pt_regs *regs)
279 unsigned long *addr = (unsigned long *)
280 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
281 struct kprobe_ctlblk *kcb;
284 * We don't want to be preempted for the entire
285 * duration of kprobe processing
288 kcb = get_kprobe_ctlblk();
290 /* Check we're not actually recursing */
291 if (kprobe_running()) {
292 p = get_kprobe(addr);
294 if (kcb->kprobe_status == KPROBE_HIT_SS &&
295 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
296 regs->psw.mask &= ~PSW_MASK_PER;
297 regs->psw.mask |= kcb->kprobe_saved_imask;
300 /* We have reentered the kprobe_handler(), since
301 * another probe was hit while within the handler.
302 * We here save the original kprobes variables and
303 * just single step on the instruction of the new probe
304 * without calling any user handlers.
306 save_previous_kprobe(kcb);
307 set_current_kprobe(p, regs, kcb);
308 kprobes_inc_nmissed_count(p);
309 prepare_singlestep(p, regs);
310 kcb->kprobe_status = KPROBE_REENTER;
313 p = __get_cpu_var(current_kprobe);
314 if (p->break_handler && p->break_handler(p, regs)) {
321 p = get_kprobe(addr);
323 if (*addr != BREAKPOINT_INSTRUCTION) {
325 * The breakpoint instruction was removed right
326 * after we hit it. Another cpu has removed
327 * either a probepoint or a debugger breakpoint
328 * at this address. In either case, no further
329 * handling of this interrupt is appropriate.
334 /* Not one of ours: let kernel handle it */
338 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
339 set_current_kprobe(p, regs, kcb);
340 if (p->pre_handler && p->pre_handler(p, regs))
341 /* handler has already set things up, so skip ss setup */
345 prepare_singlestep(p, regs);
346 kcb->kprobe_status = KPROBE_HIT_SS;
350 preempt_enable_no_resched();
355 * Function return probe trampoline:
356 * - init_kprobes() establishes a probepoint here
357 * - When the probed function returns, this probe
358 * causes the handlers to fire
360 void __kprobes kretprobe_trampoline_holder(void)
362 asm volatile(".global kretprobe_trampoline\n"
363 "kretprobe_trampoline: bcr 0,0\n");
367 * Called when the probe at kretprobe trampoline is hit
369 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
371 struct kretprobe_instance *ri = NULL;
372 struct hlist_head *head;
373 struct hlist_node *node, *tmp;
374 unsigned long flags, orig_ret_address = 0;
375 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
377 spin_lock_irqsave(&kretprobe_lock, flags);
378 head = kretprobe_inst_table_head(current);
381 * It is possible to have multiple instances associated with a given
382 * task either because an multiple functions in the call path
383 * have a return probe installed on them, and/or more then one return
384 * return probe was registered for a target function.
386 * We can handle this because:
387 * - instances are always inserted at the head of the list
388 * - when multiple return probes are registered for the same
389 * function, the first instance's ret_addr will point to the
390 * real return address, and all the rest will point to
391 * kretprobe_trampoline
393 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
394 if (ri->task != current)
395 /* another task is sharing our hash bucket */
398 if (ri->rp && ri->rp->handler)
399 ri->rp->handler(ri, regs);
401 orig_ret_address = (unsigned long)ri->ret_addr;
404 if (orig_ret_address != trampoline_address) {
406 * This is the real return address. Any other
407 * instances associated with this task are for
408 * other calls deeper on the call stack
413 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
414 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
416 reset_current_kprobe();
417 spin_unlock_irqrestore(&kretprobe_lock, flags);
418 preempt_enable_no_resched();
421 * By returning a non-zero value, we are telling
422 * kprobe_handler() that we don't want the post_handler
423 * to run (and have re-enabled preemption)
429 * Called after single-stepping. p->addr is the address of the
430 * instruction whose first byte has been replaced by the "breakpoint"
431 * instruction. To avoid the SMP problems that can occur when we
432 * temporarily put back the original opcode to single-step, we
433 * single-stepped a copy of the instruction. The address of this
434 * copy is p->ainsn.insn.
436 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
438 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
440 regs->psw.addr &= PSW_ADDR_INSN;
442 if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
443 regs->psw.addr = (unsigned long)p->addr +
444 ((unsigned long)regs->psw.addr -
445 (unsigned long)p->ainsn.insn);
447 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
448 if ((unsigned long)regs->psw.addr -
449 (unsigned long)p->ainsn.insn == p->ainsn.ilen)
450 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
452 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
453 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
454 (regs->gprs[p->ainsn.reg] -
455 (unsigned long)p->ainsn.insn))
458 regs->psw.addr |= PSW_ADDR_AMODE;
459 /* turn off PER mode */
460 regs->psw.mask &= ~PSW_MASK_PER;
461 /* Restore the original per control regs */
462 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
463 regs->psw.mask |= kcb->kprobe_saved_imask;
466 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
468 struct kprobe *cur = kprobe_running();
469 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
474 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
475 kcb->kprobe_status = KPROBE_HIT_SSDONE;
476 cur->post_handler(cur, regs, 0);
479 resume_execution(cur, regs);
481 /*Restore back the original saved kprobes variables and continue. */
482 if (kcb->kprobe_status == KPROBE_REENTER) {
483 restore_previous_kprobe(kcb);
486 reset_current_kprobe();
488 preempt_enable_no_resched();
491 * if somebody else is singlestepping across a probe point, psw mask
492 * will have PER set, in which case, continue the remaining processing
493 * of do_single_step, as if this is not a probe hit.
495 if (regs->psw.mask & PSW_MASK_PER) {
502 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
504 struct kprobe *cur = kprobe_running();
505 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
506 const struct exception_table_entry *entry;
508 switch(kcb->kprobe_status) {
509 case KPROBE_SWAP_INST:
510 /* We are here because the instruction replacement failed */
515 * We are here because the instruction being single
516 * stepped caused a page fault. We reset the current
517 * kprobe and the nip points back to the probe address
518 * and allow the page fault handler to continue as a
521 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
522 regs->psw.mask &= ~PSW_MASK_PER;
523 regs->psw.mask |= kcb->kprobe_saved_imask;
524 if (kcb->kprobe_status == KPROBE_REENTER)
525 restore_previous_kprobe(kcb);
527 reset_current_kprobe();
528 preempt_enable_no_resched();
530 case KPROBE_HIT_ACTIVE:
531 case KPROBE_HIT_SSDONE:
533 * We increment the nmissed count for accounting,
534 * we can also use npre/npostfault count for accouting
535 * these specific fault cases.
537 kprobes_inc_nmissed_count(cur);
540 * We come here because instructions in the pre/post
541 * handler caused the page_fault, this could happen
542 * if handler tries to access user space by
543 * copy_from_user(), get_user() etc. Let the
544 * user-specified handler try to fix it first.
546 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
550 * In case the user-specified fault handler returned
551 * zero, try to fix up.
553 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
555 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
560 * fixup_exception() could not handle it,
561 * Let do_page_fault() fix it.
571 * Wrapper routine to for handling exceptions.
573 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
574 unsigned long val, void *data)
576 struct die_args *args = (struct die_args *)data;
577 int ret = NOTIFY_DONE;
581 if (kprobe_handler(args->regs))
585 if (post_kprobe_handler(args->regs))
590 /* kprobe_running() needs smp_processor_id() */
592 if (kprobe_running() &&
593 kprobe_fault_handler(args->regs, args->trapnr))
603 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
605 struct jprobe *jp = container_of(p, struct jprobe, kp);
607 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
609 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
611 /* setup return addr to the jprobe handler routine */
612 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
614 /* r14 is the function return address */
615 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
616 /* r15 is the stack pointer */
617 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
618 addr = (unsigned long)kcb->jprobe_saved_r15;
620 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
621 MIN_STACK_SIZE(addr));
625 void __kprobes jprobe_return(void)
627 asm volatile(".word 0x0002");
630 void __kprobes jprobe_return_end(void)
632 asm volatile("bcr 0,0");
635 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
637 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
638 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
640 /* Put the regs back */
641 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
642 /* put the stack back */
643 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
644 MIN_STACK_SIZE(stack_addr));
645 preempt_enable_no_resched();
649 static struct kprobe trampoline_p = {
650 .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
651 .pre_handler = trampoline_probe_handler
654 int __init arch_init_kprobes(void)
656 return register_kprobe(&trampoline_p);