2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
63 #include <asm/div64.h>
66 #include <asm/systemcfg.h>
67 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
75 /* keep track of when we need to update the rtc */
76 time_t last_rtc_update;
77 extern int piranha_simulator;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
87 #define XSEC_PER_SEC (1024*1024)
90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
102 unsigned long processor_freq;
103 DEFINE_SPINLOCK(rtc_lock);
104 EXPORT_SYMBOL_GPL(rtc_lock);
107 unsigned tb_to_ns_shift;
109 struct gettimeofday_struct do_gtod;
111 extern unsigned long wall_jiffies;
113 extern struct timezone sys_tz;
114 static long timezone_offset;
116 void ppc_adjtimex(void);
118 static unsigned adjusting_time = 0;
120 unsigned long ppc_proc_freq;
121 unsigned long ppc_tb_freq;
123 u64 tb_last_jiffy __cacheline_aligned_in_smp;
124 unsigned long tb_last_stamp;
127 * Note that on ppc32 this only stores the bottom 32 bits of
128 * the timebase value, but that's enough to tell when a jiffy
131 DEFINE_PER_CPU(unsigned long, last_jiffy);
133 static __inline__ void timer_check_rtc(void)
136 * update the rtc when needed, this should be performed on the
137 * right fraction of a second. Half or full second ?
138 * Full second works on mk48t59 clocks, others need testing.
139 * Note that this update is basically only used through
140 * the adjtimex system calls. Setting the HW clock in
141 * any other way is a /dev/rtc and userland business.
142 * This is still wrong by -0.5/+1.5 jiffies because of the
143 * timer interrupt resolution and possible delay, but here we
144 * hit a quantization limit which can only be solved by higher
145 * resolution timers and decoupling time management from timer
146 * interrupts. This is also wrong on the clocks
147 * which require being written at the half second boundary.
148 * We should have an rtc call that only sets the minutes and
149 * seconds like on Intel to avoid problems with non UTC clocks.
151 if (ppc_md.set_rtc_time && ntp_synced() &&
152 xtime.tv_sec - last_rtc_update >= 659 &&
153 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
154 jiffies - wall_jiffies == 1) {
156 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
159 if (ppc_md.set_rtc_time(&tm) == 0)
160 last_rtc_update = xtime.tv_sec + 1;
162 /* Try again one minute later */
163 last_rtc_update += 60;
168 * This version of gettimeofday has microsecond resolution.
170 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
172 unsigned long sec, usec;
174 struct gettimeofday_vars *temp_varp;
175 u64 temp_tb_to_xs, temp_stamp_xsec;
178 * These calculations are faster (gets rid of divides)
179 * if done in units of 1/2^20 rather than microseconds.
180 * The conversion to microseconds at the end is done
181 * without a divide (and in fact, without a multiply)
183 temp_varp = do_gtod.varp;
184 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
185 temp_tb_to_xs = temp_varp->tb_to_xs;
186 temp_stamp_xsec = temp_varp->stamp_xsec;
187 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
188 sec = xsec / XSEC_PER_SEC;
189 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
190 usec = SCALE_XSEC(usec, 1000000);
196 void do_gettimeofday(struct timeval *tv)
199 /* do this the old way */
200 unsigned long flags, seq;
201 unsigned int sec, nsec, usec, lost;
204 seq = read_seqbegin_irqsave(&xtime_lock, flags);
206 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
207 lost = jiffies - wall_jiffies;
208 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
209 usec = nsec / 1000 + lost * (1000000 / HZ);
210 while (usec >= 1000000) {
218 __do_gettimeofday(tv, get_tb());
221 EXPORT_SYMBOL(do_gettimeofday);
223 /* Synchronize xtime with do_gettimeofday */
225 static inline void timer_sync_xtime(unsigned long cur_tb)
228 /* why do we do this? */
229 struct timeval my_tv;
231 __do_gettimeofday(&my_tv, cur_tb);
233 if (xtime.tv_sec <= my_tv.tv_sec) {
234 xtime.tv_sec = my_tv.tv_sec;
235 xtime.tv_nsec = my_tv.tv_usec * 1000;
241 * There are two copies of tb_to_xs and stamp_xsec so that no
242 * lock is needed to access and use these values in
243 * do_gettimeofday. We alternate the copies and as long as a
244 * reasonable time elapses between changes, there will never
245 * be inconsistent values. ntpd has a minimum of one minute
248 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
252 struct gettimeofday_vars *temp_varp;
254 temp_idx = (do_gtod.var_idx == 0);
255 temp_varp = &do_gtod.vars[temp_idx];
257 temp_varp->tb_to_xs = new_tb_to_xs;
258 temp_varp->tb_orig_stamp = new_tb_stamp;
259 temp_varp->stamp_xsec = new_stamp_xsec;
261 do_gtod.varp = temp_varp;
262 do_gtod.var_idx = temp_idx;
266 * tb_update_count is used to allow the userspace gettimeofday code
267 * to assure itself that it sees a consistent view of the tb_to_xs and
268 * stamp_xsec variables. It reads the tb_update_count, then reads
269 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
270 * the two values of tb_update_count match and are even then the
271 * tb_to_xs and stamp_xsec values are consistent. If not, then it
272 * loops back and reads them again until this criteria is met.
274 ++(systemcfg->tb_update_count);
276 systemcfg->tb_orig_stamp = new_tb_stamp;
277 systemcfg->stamp_xsec = new_stamp_xsec;
278 systemcfg->tb_to_xs = new_tb_to_xs;
280 ++(systemcfg->tb_update_count);
285 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
286 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
287 * difference tb - tb_orig_stamp small enough to always fit inside a
288 * 32 bits number. This is a requirement of our fast 32 bits userland
289 * implementation in the vdso. If we "miss" a call to this function
290 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
291 * with a too big difference, then the vdso will fallback to calling
294 static __inline__ void timer_recalc_offset(u64 cur_tb)
296 unsigned long offset;
301 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
302 if ((offset & 0x80000000u) == 0)
304 new_stamp_xsec = do_gtod.varp->stamp_xsec
305 + mulhdu(offset, do_gtod.varp->tb_to_xs);
306 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
310 unsigned long profile_pc(struct pt_regs *regs)
312 unsigned long pc = instruction_pointer(regs);
314 if (in_lock_functions(pc))
319 EXPORT_SYMBOL(profile_pc);
322 #ifdef CONFIG_PPC_ISERIES
325 * This function recalibrates the timebase based on the 49-bit time-of-day
326 * value in the Titan chip. The Titan is much more accurate than the value
327 * returned by the service processor for the timebase frequency.
330 static void iSeries_tb_recal(void)
332 struct div_result divres;
333 unsigned long titan, tb;
335 titan = HvCallXm_loadTod();
336 if ( iSeries_recal_titan ) {
337 unsigned long tb_ticks = tb - iSeries_recal_tb;
338 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
339 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
340 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
341 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
343 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
344 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
346 if ( tick_diff < 0 ) {
347 tick_diff = -tick_diff;
351 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
352 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
353 new_tb_ticks_per_jiffy, sign, tick_diff );
354 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
355 tb_ticks_per_sec = new_tb_ticks_per_sec;
356 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
357 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
358 tb_to_xs = divres.result_low;
359 do_gtod.varp->tb_to_xs = tb_to_xs;
360 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
361 systemcfg->tb_to_xs = tb_to_xs;
364 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
365 " new tb_ticks_per_jiffy = %lu\n"
366 " old tb_ticks_per_jiffy = %lu\n",
367 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
371 iSeries_recal_titan = titan;
372 iSeries_recal_tb = tb;
377 * For iSeries shared processors, we have to let the hypervisor
378 * set the hardware decrementer. We set a virtual decrementer
379 * in the lppaca and call the hypervisor if the virtual
380 * decrementer is less than the current value in the hardware
381 * decrementer. (almost always the new decrementer value will
382 * be greater than the current hardware decementer so the hypervisor
383 * call will not be needed)
387 * timer_interrupt - gets called when the decrementer overflows,
388 * with interrupts disabled.
390 void timer_interrupt(struct pt_regs * regs)
393 int cpu = smp_processor_id();
397 if (atomic_read(&ppc_n_lost_interrupts) != 0)
403 profile_tick(CPU_PROFILING, regs);
405 #ifdef CONFIG_PPC_ISERIES
406 get_paca()->lppaca.int_dword.fields.decr_int = 0;
409 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
410 >= tb_ticks_per_jiffy) {
411 /* Update last_jiffy */
412 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
413 /* Handle RTCL overflow on 601 */
414 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
415 per_cpu(last_jiffy, cpu) -= 1000000000;
418 * We cannot disable the decrementer, so in the period
419 * between this cpu's being marked offline in cpu_online_map
420 * and calling stop-self, it is taking timer interrupts.
421 * Avoid calling into the scheduler rebalancing code if this
424 if (!cpu_is_offline(cpu))
425 update_process_times(user_mode(regs));
428 * No need to check whether cpu is offline here; boot_cpuid
429 * should have been fixed up by now.
431 if (cpu != boot_cpuid)
434 write_seqlock(&xtime_lock);
435 tb_last_jiffy += tb_ticks_per_jiffy;
436 tb_last_stamp = per_cpu(last_jiffy, cpu);
437 timer_recalc_offset(tb_last_jiffy);
439 timer_sync_xtime(tb_last_jiffy);
441 write_sequnlock(&xtime_lock);
442 if (adjusting_time && (time_adjust == 0))
446 next_dec = tb_ticks_per_jiffy - ticks;
449 #ifdef CONFIG_PPC_ISERIES
450 if (hvlpevent_is_pending())
451 process_hvlpevents(regs);
455 /* collect purr register values often, for accurate calculations */
456 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
457 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
458 cu->current_tb = mfspr(SPRN_PURR);
465 void wakeup_decrementer(void)
469 set_dec(tb_ticks_per_jiffy);
471 * We don't expect this to be called on a machine with a 601,
472 * so using get_tbl is fine.
474 tb_last_stamp = tb_last_jiffy = get_tb();
476 per_cpu(last_jiffy, i) = tb_last_stamp;
480 void __init smp_space_timers(unsigned int max_cpus)
483 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
484 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
487 if (i != boot_cpuid) {
488 previous_tb += offset;
489 per_cpu(last_jiffy, i) = previous_tb;
496 * Scheduler clock - returns current time in nanosec units.
498 * Note: mulhdu(a, b) (multiply high double unsigned) returns
499 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
500 * are 64-bit unsigned numbers.
502 unsigned long long sched_clock(void)
506 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
509 int do_settimeofday(struct timespec *tv)
511 time_t wtm_sec, new_sec = tv->tv_sec;
512 long wtm_nsec, new_nsec = tv->tv_nsec;
515 u64 new_xsec, tb_delta_xs;
517 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
520 write_seqlock_irqsave(&xtime_lock, flags);
523 * Updating the RTC is not the job of this code. If the time is
524 * stepped under NTP, the RTC will be updated after STA_UNSYNC
525 * is cleared. Tools like clock/hwclock either copy the RTC
526 * to the system time, in which case there is no point in writing
527 * to the RTC again, or write to the RTC but then they don't call
528 * settimeofday to perform this operation.
530 #ifdef CONFIG_PPC_ISERIES
531 if (first_settimeofday) {
533 first_settimeofday = 0;
536 tb_delta = tb_ticks_since(tb_last_stamp);
537 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
538 tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
540 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
541 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
543 set_normalized_timespec(&xtime, new_sec, new_nsec);
544 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
546 /* In case of a large backwards jump in time with NTP, we want the
547 * clock to be updated as soon as the PLL is again in lock.
549 last_rtc_update = new_sec - 658;
555 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
556 do_div(new_xsec, NSEC_PER_SEC);
558 new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
559 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
562 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
563 systemcfg->tz_dsttime = sys_tz.tz_dsttime;
566 write_sequnlock_irqrestore(&xtime_lock, flags);
571 EXPORT_SYMBOL(do_settimeofday);
573 void __init generic_calibrate_decr(void)
575 struct device_node *cpu;
580 * The cpu node should have a timebase-frequency property
581 * to tell us the rate at which the decrementer counts.
583 cpu = of_find_node_by_type(NULL, "cpu");
585 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
588 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
596 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
599 ppc_proc_freq = DEFAULT_PROC_FREQ;
602 fp = (unsigned int *)get_property(cpu, "clock-frequency",
610 /* Set the time base to zero */
614 /* Clear any pending timer interrupts */
615 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
617 /* Enable decrementer interrupt */
618 mtspr(SPRN_TCR, TCR_DIE);
621 printk(KERN_ERR "WARNING: Estimating processor frequency "
627 unsigned long get_boot_time(void)
631 if (ppc_md.get_boot_time)
632 return ppc_md.get_boot_time();
633 if (!ppc_md.get_rtc_time)
635 ppc_md.get_rtc_time(&tm);
636 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
637 tm.tm_hour, tm.tm_min, tm.tm_sec);
640 /* This function is only called on the boot processor */
641 void __init time_init(void)
644 unsigned long tm = 0;
645 struct div_result res;
649 if (ppc_md.time_init != NULL)
650 timezone_offset = ppc_md.time_init();
653 /* 601 processor: dec counts down by 128 every 128ns */
654 ppc_tb_freq = 1000000000;
655 tb_last_stamp = get_rtcl();
656 tb_last_jiffy = tb_last_stamp;
658 /* Normal PowerPC with timebase register */
659 ppc_md.calibrate_decr();
660 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
661 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
662 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
663 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
664 tb_last_stamp = tb_last_jiffy = get_tb();
667 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
668 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
669 tb_ticks_per_usec = ppc_tb_freq / 1000000;
670 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
671 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
672 tb_to_xs = res.result_low;
675 get_paca()->default_decr = tb_ticks_per_jiffy;
679 * Compute scale factor for sched_clock.
680 * The calibrate_decr() function has set tb_ticks_per_sec,
681 * which is the timebase frequency.
682 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
683 * the 128-bit result as a 64.64 fixed-point number.
684 * We then shift that number right until it is less than 1.0,
685 * giving us the scale factor and shift count to use in
688 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
689 scale = res.result_low;
690 for (shift = 0; res.result_high != 0; ++shift) {
691 scale = (scale >> 1) | (res.result_high << 63);
692 res.result_high >>= 1;
694 tb_to_ns_scale = scale;
695 tb_to_ns_shift = shift;
697 #ifdef CONFIG_PPC_ISERIES
698 if (!piranha_simulator)
700 tm = get_boot_time();
702 write_seqlock_irqsave(&xtime_lock, flags);
705 do_gtod.varp = &do_gtod.vars[0];
707 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
708 __get_cpu_var(last_jiffy) = tb_last_stamp;
709 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
710 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
711 do_gtod.varp->tb_to_xs = tb_to_xs;
712 do_gtod.tb_to_us = tb_to_us;
714 systemcfg->tb_orig_stamp = tb_last_jiffy;
715 systemcfg->tb_update_count = 0;
716 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
717 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
718 systemcfg->tb_to_xs = tb_to_xs;
723 /* If platform provided a timezone (pmac), we correct the time */
724 if (timezone_offset) {
725 sys_tz.tz_minuteswest = -timezone_offset / 60;
726 sys_tz.tz_dsttime = 0;
727 xtime.tv_sec -= timezone_offset;
730 last_rtc_update = xtime.tv_sec;
731 set_normalized_timespec(&wall_to_monotonic,
732 -xtime.tv_sec, -xtime.tv_nsec);
733 write_sequnlock_irqrestore(&xtime_lock, flags);
735 /* Not exact, but the timer interrupt takes care of this */
736 set_dec(tb_ticks_per_jiffy);
740 * After adjtimex is called, adjust the conversion of tb ticks
741 * to microseconds to keep do_gettimeofday synchronized
744 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
745 * adjust the frequency.
748 /* #define DEBUG_PPC_ADJTIMEX 1 */
750 void ppc_adjtimex(void)
753 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
754 new_tb_to_xs, new_xsec, new_stamp_xsec;
755 unsigned long tb_ticks_per_sec_delta;
756 long delta_freq, ltemp;
757 struct div_result divres;
759 long singleshot_ppm = 0;
762 * Compute parts per million frequency adjustment to
763 * accomplish the time adjustment implied by time_offset to be
764 * applied over the elapsed time indicated by time_constant.
765 * Use SHIFT_USEC to get it into the same units as
768 if ( time_offset < 0 ) {
769 ltemp = -time_offset;
770 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
771 ltemp >>= SHIFT_KG + time_constant;
775 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
776 ltemp >>= SHIFT_KG + time_constant;
779 /* If there is a single shot time adjustment in progress */
781 #ifdef DEBUG_PPC_ADJTIMEX
782 printk("ppc_adjtimex: ");
783 if ( adjusting_time == 0 )
785 printk("single shot time_adjust = %ld\n", time_adjust);
791 * Compute parts per million frequency adjustment
792 * to match time_adjust
794 singleshot_ppm = tickadj * HZ;
796 * The adjustment should be tickadj*HZ to match the code in
797 * linux/kernel/timer.c, but experiments show that this is too
798 * large. 3/4 of tickadj*HZ seems about right
800 singleshot_ppm -= singleshot_ppm / 4;
801 /* Use SHIFT_USEC to get it into the same units as time_freq */
802 singleshot_ppm <<= SHIFT_USEC;
803 if ( time_adjust < 0 )
804 singleshot_ppm = -singleshot_ppm;
807 #ifdef DEBUG_PPC_ADJTIMEX
808 if ( adjusting_time )
809 printk("ppc_adjtimex: ending single shot time_adjust\n");
814 /* Add up all of the frequency adjustments */
815 delta_freq = time_freq + ltemp + singleshot_ppm;
818 * Compute a new value for tb_ticks_per_sec based on
819 * the frequency adjustment
821 den = 1000000 * (1 << (SHIFT_USEC - 8));
822 if ( delta_freq < 0 ) {
823 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
824 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
827 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
828 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
831 #ifdef DEBUG_PPC_ADJTIMEX
832 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
833 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
837 * Compute a new value of tb_to_xs (used to convert tb to
838 * microseconds) and a new value of stamp_xsec which is the
839 * time (in 1/2^20 second units) corresponding to
840 * tb_orig_stamp. This new value of stamp_xsec compensates
841 * for the change in frequency (implied by the new tb_to_xs)
842 * which guarantees that the current time remains the same.
844 write_seqlock_irqsave( &xtime_lock, flags );
845 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
846 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
847 new_tb_to_xs = divres.result_low;
848 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
850 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
851 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
853 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
855 write_sequnlock_irqrestore( &xtime_lock, flags );
856 #endif /* CONFIG_PPC64 */
861 #define STARTOFTIME 1970
862 #define SECDAY 86400L
863 #define SECYR (SECDAY * 365)
864 #define leapyear(year) ((year) % 4 == 0 && \
865 ((year) % 100 != 0 || (year) % 400 == 0))
866 #define days_in_year(a) (leapyear(a) ? 366 : 365)
867 #define days_in_month(a) (month_days[(a) - 1])
869 static int month_days[12] = {
870 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
874 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
876 void GregorianDay(struct rtc_time * tm)
881 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
883 lastYear = tm->tm_year - 1;
886 * Number of leap corrections to apply up to end of last year
888 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
891 * This year is a leap year if it is divisible by 4 except when it is
892 * divisible by 100 unless it is divisible by 400
894 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
896 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
898 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
901 tm->tm_wday = day % 7;
904 void to_tm(int tim, struct rtc_time * tm)
907 register long hms, day;
912 /* Hours, minutes, seconds are easy */
913 tm->tm_hour = hms / 3600;
914 tm->tm_min = (hms % 3600) / 60;
915 tm->tm_sec = (hms % 3600) % 60;
917 /* Number of years in days */
918 for (i = STARTOFTIME; day >= days_in_year(i); i++)
919 day -= days_in_year(i);
922 /* Number of months in days left */
923 if (leapyear(tm->tm_year))
924 days_in_month(FEBRUARY) = 29;
925 for (i = 1; day >= days_in_month(i); i++)
926 day -= days_in_month(i);
927 days_in_month(FEBRUARY) = 28;
930 /* Days are what is left over (+1) from all that. */
931 tm->tm_mday = day + 1;
934 * Determine the day of week
939 /* Auxiliary function to compute scaling factors */
940 /* Actually the choice of a timebase running at 1/4 the of the bus
941 * frequency giving resolution of a few tens of nanoseconds is quite nice.
942 * It makes this computation very precise (27-28 bits typically) which
943 * is optimistic considering the stability of most processor clock
944 * oscillators and the precision with which the timebase frequency
945 * is measured but does not harm.
947 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
949 unsigned mlt=0, tmp, err;
950 /* No concern for performance, it's done once: use a stupid
951 * but safe and compact method to find the multiplier.
954 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
955 if (mulhwu(inscale, mlt|tmp) < outscale)
959 /* We might still be off by 1 for the best approximation.
960 * A side effect of this is that if outscale is too large
961 * the returned value will be zero.
962 * Many corner cases have been checked and seem to work,
963 * some might have been forgotten in the test however.
966 err = inscale * (mlt+1);
967 if (err <= inscale/2)
973 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
976 void div128_by_32(u64 dividend_high, u64 dividend_low,
977 unsigned divisor, struct div_result *dr)
979 unsigned long a, b, c, d;
980 unsigned long w, x, y, z;
983 a = dividend_high >> 32;
984 b = dividend_high & 0xffffffff;
985 c = dividend_low >> 32;
986 d = dividend_low & 0xffffffff;
989 ra = ((u64)(a - (w * divisor)) << 32) + b;
991 rb = ((u64) do_div(ra, divisor) << 32) + c;
994 rc = ((u64) do_div(rb, divisor) << 32) + d;
1000 dr->result_high = ((u64)w << 32) + x;
1001 dr->result_low = ((u64)y << 32) + z;