1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 #include <linux/config.h>
138 #include <linux/module.h>
139 #include <linux/moduleparam.h>
140 #include <linux/kernel.h>
141 #include <linux/types.h>
142 #include <linux/slab.h>
143 #include <linux/delay.h>
144 #include <linux/init.h>
145 #include <linux/pci.h>
146 #include <linux/dma-mapping.h>
147 #include <linux/netdevice.h>
148 #include <linux/etherdevice.h>
149 #include <linux/mii.h>
150 #include <linux/if_vlan.h>
151 #include <linux/skbuff.h>
152 #include <linux/ethtool.h>
153 #include <linux/string.h>
154 #include <asm/unaligned.h>
157 #define DRV_NAME "e100"
158 #define DRV_EXT "-NAPI"
159 #define DRV_VERSION "3.4.14-k2"DRV_EXT
160 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
161 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
162 #define PFX DRV_NAME ": "
164 #define E100_WATCHDOG_PERIOD (2 * HZ)
165 #define E100_NAPI_WEIGHT 16
167 MODULE_DESCRIPTION(DRV_DESCRIPTION);
168 MODULE_AUTHOR(DRV_COPYRIGHT);
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
172 static int debug = 3;
173 module_param(debug, int, 0);
174 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
175 #define DPRINTK(nlevel, klevel, fmt, args...) \
176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
178 __FUNCTION__ , ## args))
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static struct pci_device_id e100_id_table[] = {
184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
227 MODULE_DEVICE_TABLE(pci, e100_id_table);
230 mac_82557_D100_A = 0,
231 mac_82557_D100_B = 1,
232 mac_82557_D100_C = 2,
233 mac_82558_D101_A4 = 4,
234 mac_82558_D101_B0 = 5,
238 mac_82550_D102_C = 13,
246 phy_100a = 0x000003E0,
247 phy_100c = 0x035002A8,
248 phy_82555_tx = 0x015002A8,
249 phy_nsc_tx = 0x5C002000,
250 phy_82562_et = 0x033002A8,
251 phy_82562_em = 0x032002A8,
252 phy_82562_ek = 0x031002A8,
253 phy_82562_eh = 0x017002A8,
254 phy_unknown = 0xFFFFFFFF,
257 /* CSR (Control/Status Registers) */
282 RU_UNINITIALIZED = -1,
286 stat_ack_not_ours = 0x00,
287 stat_ack_sw_gen = 0x04,
289 stat_ack_cu_idle = 0x20,
290 stat_ack_frame_rx = 0x40,
291 stat_ack_cu_cmd_done = 0x80,
292 stat_ack_not_present = 0xFF,
293 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
294 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298 irq_mask_none = 0x00,
306 ruc_load_base = 0x06,
309 cuc_dump_addr = 0x40,
310 cuc_dump_stats = 0x50,
311 cuc_load_base = 0x60,
312 cuc_dump_reset = 0x70,
316 cuc_dump_complete = 0x0000A005,
317 cuc_dump_reset_complete = 0x0000A007,
321 software_reset = 0x0000,
323 selective_reset = 0x0002,
326 enum eeprom_ctrl_lo {
334 mdi_write = 0x04000000,
335 mdi_read = 0x08000000,
336 mdi_ready = 0x10000000,
346 enum eeprom_offsets {
347 eeprom_cnfg_mdix = 0x03,
349 eeprom_config_asf = 0x0D,
350 eeprom_smbus_addr = 0x90,
353 enum eeprom_cnfg_mdix {
354 eeprom_mdix_enabled = 0x0080,
358 eeprom_id_wol = 0x0020,
361 enum eeprom_config_asf {
367 cb_complete = 0x8000,
396 struct rx *next, *prev;
401 #if defined(__BIG_ENDIAN_BITFIELD)
407 /*0*/ u8 X(byte_count:6, pad0:2);
408 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
409 /*2*/ u8 adaptive_ifs;
410 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
411 term_write_cache_line:1), pad3:4);
412 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
413 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
414 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
415 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
416 rx_discard_overruns:1), rx_save_bad_frames:1);
417 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
418 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
420 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
421 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
422 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
423 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
425 /*11*/ u8 X(linear_priority:3, pad11:5);
426 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
427 /*13*/ u8 ip_addr_lo;
428 /*14*/ u8 ip_addr_hi;
429 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
430 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
431 pad15_2:1), crs_or_cdt:1);
432 /*16*/ u8 fc_delay_lo;
433 /*17*/ u8 fc_delay_hi;
434 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
435 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
436 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
437 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
438 full_duplex_force:1), full_duplex_pin:1);
439 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
440 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
441 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
445 #define E100_MAX_MULTICAST_ADDRS 64
448 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
451 /* Important: keep total struct u32-aligned */
452 #define UCODE_SIZE 134
459 u32 ucode[UCODE_SIZE];
460 struct config config;
473 u32 dump_buffer_addr;
475 struct cb *next, *prev;
481 lb_none = 0, lb_mac = 1, lb_phy = 3,
485 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
486 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
487 tx_multiple_collisions, tx_total_collisions;
488 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
489 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
490 rx_short_frame_errors;
491 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
492 u16 xmt_tco_frames, rcv_tco_frames;
512 struct param_range rfds;
513 struct param_range cbs;
517 /* Begin: frequently used values: keep adjacent for cache effect */
518 u32 msg_enable ____cacheline_aligned;
519 struct net_device *netdev;
520 struct pci_dev *pdev;
522 struct rx *rxs ____cacheline_aligned;
523 struct rx *rx_to_use;
524 struct rx *rx_to_clean;
525 struct rfd blank_rfd;
526 enum ru_state ru_running;
528 spinlock_t cb_lock ____cacheline_aligned;
530 struct csr __iomem *csr;
531 enum scb_cmd_lo cuc_cmd;
532 unsigned int cbs_avail;
534 struct cb *cb_to_use;
535 struct cb *cb_to_send;
536 struct cb *cb_to_clean;
538 /* End: frequently used values: keep adjacent for cache effect */
542 promiscuous = (1 << 1),
543 multicast_all = (1 << 2),
544 wol_magic = (1 << 3),
545 ich_10h_workaround = (1 << 4),
546 } flags ____cacheline_aligned;
550 struct params params;
551 struct net_device_stats net_stats;
552 struct timer_list watchdog;
553 struct timer_list blink_timer;
554 struct mii_if_info mii;
555 struct work_struct tx_timeout_task;
556 enum loopback loopback;
561 dma_addr_t cbs_dma_addr;
567 u32 tx_single_collisions;
568 u32 tx_multiple_collisions;
573 u32 rx_fc_unsupported;
575 u32 rx_over_length_errors;
583 static inline void e100_write_flush(struct nic *nic)
585 /* Flush previous PCI writes through intermediate bridges
586 * by doing a benign read */
587 (void)readb(&nic->csr->scb.status);
590 static inline void e100_enable_irq(struct nic *nic)
594 spin_lock_irqsave(&nic->cmd_lock, flags);
595 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
596 spin_unlock_irqrestore(&nic->cmd_lock, flags);
597 e100_write_flush(nic);
600 static inline void e100_disable_irq(struct nic *nic)
604 spin_lock_irqsave(&nic->cmd_lock, flags);
605 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
606 spin_unlock_irqrestore(&nic->cmd_lock, flags);
607 e100_write_flush(nic);
610 static void e100_hw_reset(struct nic *nic)
612 /* Put CU and RU into idle with a selective reset to get
613 * device off of PCI bus */
614 writel(selective_reset, &nic->csr->port);
615 e100_write_flush(nic); udelay(20);
617 /* Now fully reset device */
618 writel(software_reset, &nic->csr->port);
619 e100_write_flush(nic); udelay(20);
621 /* Mask off our interrupt line - it's unmasked after reset */
622 e100_disable_irq(nic);
625 static int e100_self_test(struct nic *nic)
627 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
629 /* Passing the self-test is a pretty good indication
630 * that the device can DMA to/from host memory */
632 nic->mem->selftest.signature = 0;
633 nic->mem->selftest.result = 0xFFFFFFFF;
635 writel(selftest | dma_addr, &nic->csr->port);
636 e100_write_flush(nic);
637 /* Wait 10 msec for self-test to complete */
640 /* Interrupts are enabled after self-test */
641 e100_disable_irq(nic);
643 /* Check results of self-test */
644 if(nic->mem->selftest.result != 0) {
645 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
646 nic->mem->selftest.result);
649 if(nic->mem->selftest.signature == 0) {
650 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
657 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
659 u32 cmd_addr_data[3];
663 /* Three cmds: write/erase enable, write data, write/erase disable */
664 cmd_addr_data[0] = op_ewen << (addr_len - 2);
665 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
667 cmd_addr_data[2] = op_ewds << (addr_len - 2);
669 /* Bit-bang cmds to write word to eeprom */
670 for(j = 0; j < 3; j++) {
673 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
674 e100_write_flush(nic); udelay(4);
676 for(i = 31; i >= 0; i--) {
677 ctrl = (cmd_addr_data[j] & (1 << i)) ?
679 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
680 e100_write_flush(nic); udelay(4);
682 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
683 e100_write_flush(nic); udelay(4);
685 /* Wait 10 msec for cmd to complete */
689 writeb(0, &nic->csr->eeprom_ctrl_lo);
690 e100_write_flush(nic); udelay(4);
694 /* General technique stolen from the eepro100 driver - very clever */
695 static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
702 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
705 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
706 e100_write_flush(nic); udelay(4);
708 /* Bit-bang to read word from eeprom */
709 for(i = 31; i >= 0; i--) {
710 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
711 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
712 e100_write_flush(nic); udelay(4);
714 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
715 e100_write_flush(nic); udelay(4);
717 /* Eeprom drives a dummy zero to EEDO after receiving
718 * complete address. Use this to adjust addr_len. */
719 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
720 if(!(ctrl & eedo) && i > 16) {
721 *addr_len -= (i - 16);
725 data = (data << 1) | (ctrl & eedo ? 1 : 0);
729 writeb(0, &nic->csr->eeprom_ctrl_lo);
730 e100_write_flush(nic); udelay(4);
732 return le16_to_cpu(data);
735 /* Load entire EEPROM image into driver cache and validate checksum */
736 static int e100_eeprom_load(struct nic *nic)
738 u16 addr, addr_len = 8, checksum = 0;
740 /* Try reading with an 8-bit addr len to discover actual addr len */
741 e100_eeprom_read(nic, &addr_len, 0);
742 nic->eeprom_wc = 1 << addr_len;
744 for(addr = 0; addr < nic->eeprom_wc; addr++) {
745 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
746 if(addr < nic->eeprom_wc - 1)
747 checksum += cpu_to_le16(nic->eeprom[addr]);
750 /* The checksum, stored in the last word, is calculated such that
751 * the sum of words should be 0xBABA */
752 checksum = le16_to_cpu(0xBABA - checksum);
753 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
754 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
761 /* Save (portion of) driver EEPROM cache to device and update checksum */
762 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
764 u16 addr, addr_len = 8, checksum = 0;
766 /* Try reading with an 8-bit addr len to discover actual addr len */
767 e100_eeprom_read(nic, &addr_len, 0);
768 nic->eeprom_wc = 1 << addr_len;
770 if(start + count >= nic->eeprom_wc)
773 for(addr = start; addr < start + count; addr++)
774 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
776 /* The checksum, stored in the last word, is calculated such that
777 * the sum of words should be 0xBABA */
778 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
779 checksum += cpu_to_le16(nic->eeprom[addr]);
780 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
781 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
782 nic->eeprom[nic->eeprom_wc - 1]);
787 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
788 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
789 static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
795 spin_lock_irqsave(&nic->cmd_lock, flags);
797 /* Previous command is accepted when SCB clears */
798 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
799 if(likely(!readb(&nic->csr->scb.cmd_lo)))
802 if(unlikely(i > E100_WAIT_SCB_FAST))
805 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
810 if(unlikely(cmd != cuc_resume))
811 writel(dma_addr, &nic->csr->scb.gen_ptr);
812 writeb(cmd, &nic->csr->scb.cmd_lo);
815 spin_unlock_irqrestore(&nic->cmd_lock, flags);
820 static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
821 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
827 spin_lock_irqsave(&nic->cb_lock, flags);
829 if(unlikely(!nic->cbs_avail)) {
835 nic->cb_to_use = cb->next;
839 if(unlikely(!nic->cbs_avail))
842 cb_prepare(nic, cb, skb);
844 /* Order is important otherwise we'll be in a race with h/w:
845 * set S-bit in current first, then clear S-bit in previous. */
846 cb->command |= cpu_to_le16(cb_s);
848 cb->prev->command &= cpu_to_le16(~cb_s);
850 while(nic->cb_to_send != nic->cb_to_use) {
851 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
852 nic->cb_to_send->dma_addr))) {
853 /* Ok, here's where things get sticky. It's
854 * possible that we can't schedule the command
855 * because the controller is too busy, so
856 * let's just queue the command and try again
857 * when another command is scheduled. */
860 schedule_work(&nic->tx_timeout_task);
864 nic->cuc_cmd = cuc_resume;
865 nic->cb_to_send = nic->cb_to_send->next;
870 spin_unlock_irqrestore(&nic->cb_lock, flags);
875 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
880 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
882 for(i = 0; i < 100; i++) {
884 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
889 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
890 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
891 return (u16)data_out;
894 static int mdio_read(struct net_device *netdev, int addr, int reg)
896 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
899 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
901 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
904 static void e100_get_defaults(struct nic *nic)
906 struct param_range rfds = { .min = 16, .max = 256, .count = 64 };
907 struct param_range cbs = { .min = 64, .max = 256, .count = 64 };
909 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
910 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
911 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
912 if(nic->mac == mac_unknown)
913 nic->mac = mac_82557_D100_A;
915 nic->params.rfds = rfds;
916 nic->params.cbs = cbs;
918 /* Quadwords to DMA into FIFO before starting frame transmit */
919 nic->tx_threshold = 0xE0;
921 /* no interrupt for every tx completion, delay = 256us if not 557*/
922 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
923 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
925 /* Template for a freshly allocated RFD */
926 nic->blank_rfd.command = cpu_to_le16(cb_el);
927 nic->blank_rfd.rbd = 0xFFFFFFFF;
928 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
931 nic->mii.phy_id_mask = 0x1F;
932 nic->mii.reg_num_mask = 0x1F;
933 nic->mii.dev = nic->netdev;
934 nic->mii.mdio_read = mdio_read;
935 nic->mii.mdio_write = mdio_write;
938 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
940 struct config *config = &cb->u.config;
941 u8 *c = (u8 *)config;
943 cb->command = cpu_to_le16(cb_config);
945 memset(config, 0, sizeof(struct config));
947 config->byte_count = 0x16; /* bytes in this struct */
948 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
949 config->direct_rx_dma = 0x1; /* reserved */
950 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
951 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
952 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
953 config->tx_underrun_retry = 0x3; /* # of underrun retries */
954 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
956 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
957 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
958 config->ifs = 0x6; /* x16 = inter frame spacing */
959 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
960 config->pad15_1 = 0x1;
961 config->pad15_2 = 0x1;
962 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
963 config->fc_delay_hi = 0x40; /* time delay for fc frame */
964 config->tx_padding = 0x1; /* 1=pad short frames */
965 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
967 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
968 config->pad20_1 = 0x1F;
969 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
970 config->pad21_1 = 0x5;
972 config->adaptive_ifs = nic->adaptive_ifs;
973 config->loopback = nic->loopback;
975 if(nic->mii.force_media && nic->mii.full_duplex)
976 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
978 if(nic->flags & promiscuous || nic->loopback) {
979 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
980 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
981 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
984 if(nic->flags & multicast_all)
985 config->multicast_all = 0x1; /* 1=accept, 0=no */
987 /* disable WoL when up */
988 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
989 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
991 if(nic->mac >= mac_82558_D101_A4) {
992 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
993 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
994 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
995 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
996 if(nic->mac >= mac_82559_D101M)
997 config->tno_intr = 0x1; /* TCO stats enable */
999 config->standard_stat_counter = 0x0;
1002 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1003 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1004 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1005 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1006 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1007 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1010 static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1013 static const u32 ucode[UCODE_SIZE] = {
1014 /* NFS packets are misinterpreted as TCO packets and
1015 * incorrectly routed to the BMC over SMBus. This
1016 * microcode patch checks the fragmented IP bit in the
1017 * NFS/UDP header to distinguish between NFS and TCO. */
1018 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF,
1019 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000,
1020 0x00906EFD, 0x00900EFD, 0x00E00EF8,
1023 if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1024 for(i = 0; i < UCODE_SIZE; i++)
1025 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1026 cb->command = cpu_to_le16(cb_ucode);
1028 cb->command = cpu_to_le16(cb_nop);
1031 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1032 struct sk_buff *skb)
1034 cb->command = cpu_to_le16(cb_iaaddr);
1035 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1038 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1040 cb->command = cpu_to_le16(cb_dump);
1041 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1042 offsetof(struct mem, dump_buf));
1045 #define NCONFIG_AUTO_SWITCH 0x0080
1046 #define MII_NSC_CONG MII_RESV1
1047 #define NSC_CONG_ENABLE 0x0100
1048 #define NSC_CONG_TXREADY 0x0400
1049 #define ADVERTISE_FC_SUPPORTED 0x0400
1050 static int e100_phy_init(struct nic *nic)
1052 struct net_device *netdev = nic->netdev;
1054 u16 bmcr, stat, id_lo, id_hi, cong;
1056 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1057 for(addr = 0; addr < 32; addr++) {
1058 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1059 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1060 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1061 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1062 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1065 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1069 /* Selected the phy and isolate the rest */
1070 for(addr = 0; addr < 32; addr++) {
1071 if(addr != nic->mii.phy_id) {
1072 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1074 bmcr = mdio_read(netdev, addr, MII_BMCR);
1075 mdio_write(netdev, addr, MII_BMCR,
1076 bmcr & ~BMCR_ISOLATE);
1081 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1082 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1083 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1084 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1086 /* Handle National tx phys */
1087 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1088 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1089 /* Disable congestion control */
1090 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1091 cong |= NSC_CONG_TXREADY;
1092 cong &= ~NSC_CONG_ENABLE;
1093 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1096 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1097 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) {
1098 /* enable/disable MDI/MDI-X auto-switching.
1099 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */
1100 if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) ||
1101 (nic->mac == mac_82551_10) || (nic->mii.force_media) ||
1102 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))
1103 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0);
1105 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH);
1111 static int e100_hw_init(struct nic *nic)
1117 DPRINTK(HW, ERR, "e100_hw_init\n");
1118 if(!in_interrupt() && (err = e100_self_test(nic)))
1121 if((err = e100_phy_init(nic)))
1123 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1125 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1127 if((err = e100_exec_cb(nic, NULL, e100_load_ucode)))
1129 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1131 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1133 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1134 nic->dma_addr + offsetof(struct mem, stats))))
1136 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1139 e100_disable_irq(nic);
1144 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1146 struct net_device *netdev = nic->netdev;
1147 struct dev_mc_list *list = netdev->mc_list;
1148 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1150 cb->command = cpu_to_le16(cb_multi);
1151 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1152 for(i = 0; list && i < count; i++, list = list->next)
1153 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1157 static void e100_set_multicast_list(struct net_device *netdev)
1159 struct nic *nic = netdev_priv(netdev);
1161 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1162 netdev->mc_count, netdev->flags);
1164 if(netdev->flags & IFF_PROMISC)
1165 nic->flags |= promiscuous;
1167 nic->flags &= ~promiscuous;
1169 if(netdev->flags & IFF_ALLMULTI ||
1170 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1171 nic->flags |= multicast_all;
1173 nic->flags &= ~multicast_all;
1175 e100_exec_cb(nic, NULL, e100_configure);
1176 e100_exec_cb(nic, NULL, e100_multi);
1179 static void e100_update_stats(struct nic *nic)
1181 struct net_device_stats *ns = &nic->net_stats;
1182 struct stats *s = &nic->mem->stats;
1183 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1184 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1187 /* Device's stats reporting may take several microseconds to
1188 * complete, so where always waiting for results of the
1189 * previous command. */
1191 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1193 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1194 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1195 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1196 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1197 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1198 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1199 ns->collisions += nic->tx_collisions;
1200 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1201 le32_to_cpu(s->tx_lost_crs);
1202 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1203 nic->rx_over_length_errors;
1204 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1205 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1206 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1207 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1208 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1209 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1210 le32_to_cpu(s->rx_alignment_errors) +
1211 le32_to_cpu(s->rx_short_frame_errors) +
1212 le32_to_cpu(s->rx_cdt_errors);
1213 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1214 nic->tx_single_collisions +=
1215 le32_to_cpu(s->tx_single_collisions);
1216 nic->tx_multiple_collisions +=
1217 le32_to_cpu(s->tx_multiple_collisions);
1218 if(nic->mac >= mac_82558_D101_A4) {
1219 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1220 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1221 nic->rx_fc_unsupported +=
1222 le32_to_cpu(s->fc_rcv_unsupported);
1223 if(nic->mac >= mac_82559_D101M) {
1224 nic->tx_tco_frames +=
1225 le16_to_cpu(s->xmt_tco_frames);
1226 nic->rx_tco_frames +=
1227 le16_to_cpu(s->rcv_tco_frames);
1233 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1234 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1237 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1239 /* Adjust inter-frame-spacing (IFS) between two transmits if
1240 * we're getting collisions on a half-duplex connection. */
1242 if(duplex == DUPLEX_HALF) {
1243 u32 prev = nic->adaptive_ifs;
1244 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1246 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1247 (nic->tx_frames > min_frames)) {
1248 if(nic->adaptive_ifs < 60)
1249 nic->adaptive_ifs += 5;
1250 } else if (nic->tx_frames < min_frames) {
1251 if(nic->adaptive_ifs >= 5)
1252 nic->adaptive_ifs -= 5;
1254 if(nic->adaptive_ifs != prev)
1255 e100_exec_cb(nic, NULL, e100_configure);
1259 static void e100_watchdog(unsigned long data)
1261 struct nic *nic = (struct nic *)data;
1262 struct ethtool_cmd cmd;
1264 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1266 /* mii library handles link maintenance tasks */
1268 mii_ethtool_gset(&nic->mii, &cmd);
1270 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1271 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1272 cmd.speed == SPEED_100 ? "100" : "10",
1273 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1274 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1275 DPRINTK(LINK, INFO, "link down\n");
1278 mii_check_link(&nic->mii);
1280 /* Software generated interrupt to recover from (rare) Rx
1281 * allocation failure.
1282 * Unfortunately have to use a spinlock to not re-enable interrupts
1283 * accidentally, due to hardware that shares a register between the
1284 * interrupt mask bit and the SW Interrupt generation bit */
1285 spin_lock_irq(&nic->cmd_lock);
1286 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1287 spin_unlock_irq(&nic->cmd_lock);
1288 e100_write_flush(nic);
1290 e100_update_stats(nic);
1291 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1293 if(nic->mac <= mac_82557_D100_C)
1294 /* Issue a multicast command to workaround a 557 lock up */
1295 e100_set_multicast_list(nic->netdev);
1297 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1298 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1299 nic->flags |= ich_10h_workaround;
1301 nic->flags &= ~ich_10h_workaround;
1303 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1306 static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1307 struct sk_buff *skb)
1309 cb->command = nic->tx_command;
1310 /* interrupt every 16 packets regardless of delay */
1311 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1312 cb->command |= cpu_to_le16(cb_i);
1313 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1314 cb->u.tcb.tcb_byte_count = 0;
1315 cb->u.tcb.threshold = nic->tx_threshold;
1316 cb->u.tcb.tbd_count = 1;
1317 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1318 skb->data, skb->len, PCI_DMA_TODEVICE));
1319 /* check for mapping failure? */
1320 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1323 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1325 struct nic *nic = netdev_priv(netdev);
1328 if(nic->flags & ich_10h_workaround) {
1329 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1330 Issue a NOP command followed by a 1us delay before
1331 issuing the Tx command. */
1332 if(e100_exec_cmd(nic, cuc_nop, 0))
1333 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1337 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1341 /* We queued the skb, but now we're out of space. */
1342 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1343 netif_stop_queue(netdev);
1346 /* This is a hard error - log it. */
1347 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1348 netif_stop_queue(netdev);
1352 netdev->trans_start = jiffies;
1356 static inline int e100_tx_clean(struct nic *nic)
1361 spin_lock(&nic->cb_lock);
1363 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1364 nic->cb_to_clean->status);
1366 /* Clean CBs marked complete */
1367 for(cb = nic->cb_to_clean;
1368 cb->status & cpu_to_le16(cb_complete);
1369 cb = nic->cb_to_clean = cb->next) {
1370 if(likely(cb->skb != NULL)) {
1371 nic->net_stats.tx_packets++;
1372 nic->net_stats.tx_bytes += cb->skb->len;
1374 pci_unmap_single(nic->pdev,
1375 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1376 le16_to_cpu(cb->u.tcb.tbd.size),
1378 dev_kfree_skb_any(cb->skb);
1386 spin_unlock(&nic->cb_lock);
1388 /* Recover from running out of Tx resources in xmit_frame */
1389 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1390 netif_wake_queue(nic->netdev);
1395 static void e100_clean_cbs(struct nic *nic)
1398 while(nic->cbs_avail != nic->params.cbs.count) {
1399 struct cb *cb = nic->cb_to_clean;
1401 pci_unmap_single(nic->pdev,
1402 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1403 le16_to_cpu(cb->u.tcb.tbd.size),
1405 dev_kfree_skb(cb->skb);
1407 nic->cb_to_clean = nic->cb_to_clean->next;
1410 pci_free_consistent(nic->pdev,
1411 sizeof(struct cb) * nic->params.cbs.count,
1412 nic->cbs, nic->cbs_dma_addr);
1416 nic->cuc_cmd = cuc_start;
1417 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1421 static int e100_alloc_cbs(struct nic *nic)
1424 unsigned int i, count = nic->params.cbs.count;
1426 nic->cuc_cmd = cuc_start;
1427 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1430 nic->cbs = pci_alloc_consistent(nic->pdev,
1431 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1435 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1436 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1437 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1439 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1440 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1441 ((i+1) % count) * sizeof(struct cb));
1445 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1446 nic->cbs_avail = count;
1451 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1453 if(!nic->rxs) return;
1454 if(RU_SUSPENDED != nic->ru_running) return;
1456 /* handle init time starts */
1457 if(!rx) rx = nic->rxs;
1459 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1461 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1462 nic->ru_running = RU_RUNNING;
1466 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1467 static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1469 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1472 /* Align, init, and map the RFD. */
1473 rx->skb->dev = nic->netdev;
1474 skb_reserve(rx->skb, NET_IP_ALIGN);
1475 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1476 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1477 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1479 if(pci_dma_mapping_error(rx->dma_addr)) {
1480 dev_kfree_skb_any(rx->skb);
1486 /* Link the RFD to end of RFA by linking previous RFD to
1487 * this one, and clearing EL bit of previous. */
1489 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1490 put_unaligned(cpu_to_le32(rx->dma_addr),
1491 (u32 *)&prev_rfd->link);
1493 prev_rfd->command &= ~cpu_to_le16(cb_el);
1494 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1495 sizeof(struct rfd), PCI_DMA_TODEVICE);
1501 static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
1502 unsigned int *work_done, unsigned int work_to_do)
1504 struct sk_buff *skb = rx->skb;
1505 struct rfd *rfd = (struct rfd *)skb->data;
1506 u16 rfd_status, actual_size;
1508 if(unlikely(work_done && *work_done >= work_to_do))
1511 /* Need to sync before taking a peek at cb_complete bit */
1512 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1513 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1514 rfd_status = le16_to_cpu(rfd->status);
1516 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1518 /* If data isn't ready, nothing to indicate */
1519 if(unlikely(!(rfd_status & cb_complete)))
1522 /* Get actual data size */
1523 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1524 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1525 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1528 pci_unmap_single(nic->pdev, rx->dma_addr,
1529 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1531 /* this allows for a fast restart without re-enabling interrupts */
1532 if(le16_to_cpu(rfd->command) & cb_el)
1533 nic->ru_running = RU_SUSPENDED;
1535 /* Pull off the RFD and put the actual data (minus eth hdr) */
1536 skb_reserve(skb, sizeof(struct rfd));
1537 skb_put(skb, actual_size);
1538 skb->protocol = eth_type_trans(skb, nic->netdev);
1540 if(unlikely(!(rfd_status & cb_ok))) {
1541 /* Don't indicate if hardware indicates errors */
1542 dev_kfree_skb_any(skb);
1543 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1544 /* Don't indicate oversized frames */
1545 nic->rx_over_length_errors++;
1546 dev_kfree_skb_any(skb);
1548 nic->net_stats.rx_packets++;
1549 nic->net_stats.rx_bytes += actual_size;
1550 nic->netdev->last_rx = jiffies;
1551 netif_receive_skb(skb);
1561 static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1562 unsigned int work_to_do)
1565 int restart_required = 0;
1566 struct rx *rx_to_start = NULL;
1568 /* are we already rnr? then pay attention!!! this ensures that
1569 * the state machine progression never allows a start with a
1570 * partially cleaned list, avoiding a race between hardware
1571 * and rx_to_clean when in NAPI mode */
1572 if(RU_SUSPENDED == nic->ru_running)
1573 restart_required = 1;
1575 /* Indicate newly arrived packets */
1576 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1577 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1578 if(-EAGAIN == err) {
1579 /* hit quota so have more work to do, restart once
1580 * cleanup is complete */
1581 restart_required = 0;
1583 } else if(-ENODATA == err)
1584 break; /* No more to clean */
1587 /* save our starting point as the place we'll restart the receiver */
1588 if(restart_required)
1589 rx_to_start = nic->rx_to_clean;
1591 /* Alloc new skbs to refill list */
1592 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1593 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1594 break; /* Better luck next time (see watchdog) */
1597 if(restart_required) {
1599 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1600 e100_start_receiver(nic, rx_to_start);
1606 static void e100_rx_clean_list(struct nic *nic)
1609 unsigned int i, count = nic->params.rfds.count;
1611 nic->ru_running = RU_UNINITIALIZED;
1614 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1616 pci_unmap_single(nic->pdev, rx->dma_addr,
1617 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1618 dev_kfree_skb(rx->skb);
1625 nic->rx_to_use = nic->rx_to_clean = NULL;
1628 static int e100_rx_alloc_list(struct nic *nic)
1631 unsigned int i, count = nic->params.rfds.count;
1633 nic->rx_to_use = nic->rx_to_clean = NULL;
1634 nic->ru_running = RU_UNINITIALIZED;
1636 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1638 memset(nic->rxs, 0, sizeof(struct rx) * count);
1640 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1641 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1642 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1643 if(e100_rx_alloc_skb(nic, rx)) {
1644 e100_rx_clean_list(nic);
1649 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1650 nic->ru_running = RU_SUSPENDED;
1655 static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1657 struct net_device *netdev = dev_id;
1658 struct nic *nic = netdev_priv(netdev);
1659 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1661 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1663 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1664 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1667 /* Ack interrupt(s) */
1668 writeb(stat_ack, &nic->csr->scb.stat_ack);
1670 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1671 if(stat_ack & stat_ack_rnr)
1672 nic->ru_running = RU_SUSPENDED;
1674 if(likely(netif_rx_schedule_prep(netdev))) {
1675 e100_disable_irq(nic);
1676 __netif_rx_schedule(netdev);
1682 static int e100_poll(struct net_device *netdev, int *budget)
1684 struct nic *nic = netdev_priv(netdev);
1685 unsigned int work_to_do = min(netdev->quota, *budget);
1686 unsigned int work_done = 0;
1689 e100_rx_clean(nic, &work_done, work_to_do);
1690 tx_cleaned = e100_tx_clean(nic);
1692 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1693 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1694 netif_rx_complete(netdev);
1695 e100_enable_irq(nic);
1699 *budget -= work_done;
1700 netdev->quota -= work_done;
1705 #ifdef CONFIG_NET_POLL_CONTROLLER
1706 static void e100_netpoll(struct net_device *netdev)
1708 struct nic *nic = netdev_priv(netdev);
1710 e100_disable_irq(nic);
1711 e100_intr(nic->pdev->irq, netdev, NULL);
1713 e100_enable_irq(nic);
1717 static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1719 struct nic *nic = netdev_priv(netdev);
1720 return &nic->net_stats;
1723 static int e100_set_mac_address(struct net_device *netdev, void *p)
1725 struct nic *nic = netdev_priv(netdev);
1726 struct sockaddr *addr = p;
1728 if (!is_valid_ether_addr(addr->sa_data))
1729 return -EADDRNOTAVAIL;
1731 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1732 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1737 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1739 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1741 netdev->mtu = new_mtu;
1746 static int e100_asf(struct nic *nic)
1748 /* ASF can be enabled from eeprom */
1749 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1750 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1751 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1752 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1756 static int e100_up(struct nic *nic)
1760 if((err = e100_rx_alloc_list(nic)))
1762 if((err = e100_alloc_cbs(nic)))
1763 goto err_rx_clean_list;
1764 if((err = e100_hw_init(nic)))
1766 e100_set_multicast_list(nic->netdev);
1767 e100_start_receiver(nic, NULL);
1768 mod_timer(&nic->watchdog, jiffies);
1769 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
1770 nic->netdev->name, nic->netdev)))
1772 netif_wake_queue(nic->netdev);
1773 netif_poll_enable(nic->netdev);
1774 /* enable ints _after_ enabling poll, preventing a race between
1775 * disable ints+schedule */
1776 e100_enable_irq(nic);
1780 del_timer_sync(&nic->watchdog);
1782 e100_clean_cbs(nic);
1784 e100_rx_clean_list(nic);
1788 static void e100_down(struct nic *nic)
1790 /* wait here for poll to complete */
1791 netif_poll_disable(nic->netdev);
1792 netif_stop_queue(nic->netdev);
1794 free_irq(nic->pdev->irq, nic->netdev);
1795 del_timer_sync(&nic->watchdog);
1796 netif_carrier_off(nic->netdev);
1797 e100_clean_cbs(nic);
1798 e100_rx_clean_list(nic);
1801 static void e100_tx_timeout(struct net_device *netdev)
1803 struct nic *nic = netdev_priv(netdev);
1805 /* Reset outside of interrupt context, to avoid request_irq
1806 * in interrupt context */
1807 schedule_work(&nic->tx_timeout_task);
1810 static void e100_tx_timeout_task(struct net_device *netdev)
1812 struct nic *nic = netdev_priv(netdev);
1814 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
1815 readb(&nic->csr->scb.status));
1816 e100_down(netdev_priv(netdev));
1817 e100_up(netdev_priv(netdev));
1820 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
1823 struct sk_buff *skb;
1825 /* Use driver resources to perform internal MAC or PHY
1826 * loopback test. A single packet is prepared and transmitted
1827 * in loopback mode, and the test passes if the received
1828 * packet compares byte-for-byte to the transmitted packet. */
1830 if((err = e100_rx_alloc_list(nic)))
1832 if((err = e100_alloc_cbs(nic)))
1835 /* ICH PHY loopback is broken so do MAC loopback instead */
1836 if(nic->flags & ich && loopback_mode == lb_phy)
1837 loopback_mode = lb_mac;
1839 nic->loopback = loopback_mode;
1840 if((err = e100_hw_init(nic)))
1841 goto err_loopback_none;
1843 if(loopback_mode == lb_phy)
1844 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
1847 e100_start_receiver(nic, NULL);
1849 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
1851 goto err_loopback_none;
1853 skb_put(skb, ETH_DATA_LEN);
1854 memset(skb->data, 0xFF, ETH_DATA_LEN);
1855 e100_xmit_frame(skb, nic->netdev);
1859 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1860 skb->data, ETH_DATA_LEN))
1864 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
1865 nic->loopback = lb_none;
1867 e100_clean_cbs(nic);
1869 e100_rx_clean_list(nic);
1873 #define MII_LED_CONTROL 0x1B
1874 static void e100_blink_led(unsigned long data)
1876 struct nic *nic = (struct nic *)data;
1884 nic->leds = (nic->leds & led_on) ? led_off :
1885 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
1886 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
1887 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
1890 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1892 struct nic *nic = netdev_priv(netdev);
1893 return mii_ethtool_gset(&nic->mii, cmd);
1896 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1898 struct nic *nic = netdev_priv(netdev);
1901 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
1902 err = mii_ethtool_sset(&nic->mii, cmd);
1903 e100_exec_cb(nic, NULL, e100_configure);
1908 static void e100_get_drvinfo(struct net_device *netdev,
1909 struct ethtool_drvinfo *info)
1911 struct nic *nic = netdev_priv(netdev);
1912 strcpy(info->driver, DRV_NAME);
1913 strcpy(info->version, DRV_VERSION);
1914 strcpy(info->fw_version, "N/A");
1915 strcpy(info->bus_info, pci_name(nic->pdev));
1918 static int e100_get_regs_len(struct net_device *netdev)
1920 struct nic *nic = netdev_priv(netdev);
1921 #define E100_PHY_REGS 0x1C
1922 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
1923 sizeof(nic->mem->dump_buf) / sizeof(u32)
1924 return E100_REGS_LEN * sizeof(u32);
1927 static void e100_get_regs(struct net_device *netdev,
1928 struct ethtool_regs *regs, void *p)
1930 struct nic *nic = netdev_priv(netdev);
1934 regs->version = (1 << 24) | nic->rev_id;
1935 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
1936 readb(&nic->csr->scb.cmd_lo) << 16 |
1937 readw(&nic->csr->scb.status);
1938 for(i = E100_PHY_REGS; i >= 0; i--)
1939 buff[1 + E100_PHY_REGS - i] =
1940 mdio_read(netdev, nic->mii.phy_id, i);
1941 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
1942 e100_exec_cb(nic, NULL, e100_dump);
1944 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
1945 sizeof(nic->mem->dump_buf));
1948 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1950 struct nic *nic = netdev_priv(netdev);
1951 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
1952 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
1955 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1957 struct nic *nic = netdev_priv(netdev);
1959 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
1963 nic->flags |= wol_magic;
1965 nic->flags &= ~wol_magic;
1967 e100_exec_cb(nic, NULL, e100_configure);
1972 static u32 e100_get_msglevel(struct net_device *netdev)
1974 struct nic *nic = netdev_priv(netdev);
1975 return nic->msg_enable;
1978 static void e100_set_msglevel(struct net_device *netdev, u32 value)
1980 struct nic *nic = netdev_priv(netdev);
1981 nic->msg_enable = value;
1984 static int e100_nway_reset(struct net_device *netdev)
1986 struct nic *nic = netdev_priv(netdev);
1987 return mii_nway_restart(&nic->mii);
1990 static u32 e100_get_link(struct net_device *netdev)
1992 struct nic *nic = netdev_priv(netdev);
1993 return mii_link_ok(&nic->mii);
1996 static int e100_get_eeprom_len(struct net_device *netdev)
1998 struct nic *nic = netdev_priv(netdev);
1999 return nic->eeprom_wc << 1;
2002 #define E100_EEPROM_MAGIC 0x1234
2003 static int e100_get_eeprom(struct net_device *netdev,
2004 struct ethtool_eeprom *eeprom, u8 *bytes)
2006 struct nic *nic = netdev_priv(netdev);
2008 eeprom->magic = E100_EEPROM_MAGIC;
2009 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2014 static int e100_set_eeprom(struct net_device *netdev,
2015 struct ethtool_eeprom *eeprom, u8 *bytes)
2017 struct nic *nic = netdev_priv(netdev);
2019 if(eeprom->magic != E100_EEPROM_MAGIC)
2022 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2024 return e100_eeprom_save(nic, eeprom->offset >> 1,
2025 (eeprom->len >> 1) + 1);
2028 static void e100_get_ringparam(struct net_device *netdev,
2029 struct ethtool_ringparam *ring)
2031 struct nic *nic = netdev_priv(netdev);
2032 struct param_range *rfds = &nic->params.rfds;
2033 struct param_range *cbs = &nic->params.cbs;
2035 ring->rx_max_pending = rfds->max;
2036 ring->tx_max_pending = cbs->max;
2037 ring->rx_mini_max_pending = 0;
2038 ring->rx_jumbo_max_pending = 0;
2039 ring->rx_pending = rfds->count;
2040 ring->tx_pending = cbs->count;
2041 ring->rx_mini_pending = 0;
2042 ring->rx_jumbo_pending = 0;
2045 static int e100_set_ringparam(struct net_device *netdev,
2046 struct ethtool_ringparam *ring)
2048 struct nic *nic = netdev_priv(netdev);
2049 struct param_range *rfds = &nic->params.rfds;
2050 struct param_range *cbs = &nic->params.cbs;
2052 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2055 if(netif_running(netdev))
2057 rfds->count = max(ring->rx_pending, rfds->min);
2058 rfds->count = min(rfds->count, rfds->max);
2059 cbs->count = max(ring->tx_pending, cbs->min);
2060 cbs->count = min(cbs->count, cbs->max);
2061 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2062 rfds->count, cbs->count);
2063 if(netif_running(netdev))
2069 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2070 "Link test (on/offline)",
2071 "Eeprom test (on/offline)",
2072 "Self test (offline)",
2073 "Mac loopback (offline)",
2074 "Phy loopback (offline)",
2076 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2078 static int e100_diag_test_count(struct net_device *netdev)
2080 return E100_TEST_LEN;
2083 static void e100_diag_test(struct net_device *netdev,
2084 struct ethtool_test *test, u64 *data)
2086 struct ethtool_cmd cmd;
2087 struct nic *nic = netdev_priv(netdev);
2090 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2091 data[0] = !mii_link_ok(&nic->mii);
2092 data[1] = e100_eeprom_load(nic);
2093 if(test->flags & ETH_TEST_FL_OFFLINE) {
2095 /* save speed, duplex & autoneg settings */
2096 err = mii_ethtool_gset(&nic->mii, &cmd);
2098 if(netif_running(netdev))
2100 data[2] = e100_self_test(nic);
2101 data[3] = e100_loopback_test(nic, lb_mac);
2102 data[4] = e100_loopback_test(nic, lb_phy);
2104 /* restore speed, duplex & autoneg settings */
2105 err = mii_ethtool_sset(&nic->mii, &cmd);
2107 if(netif_running(netdev))
2110 for(i = 0; i < E100_TEST_LEN; i++)
2111 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2113 msleep_interruptible(4 * 1000);
2116 static int e100_phys_id(struct net_device *netdev, u32 data)
2118 struct nic *nic = netdev_priv(netdev);
2120 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2121 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2122 mod_timer(&nic->blink_timer, jiffies);
2123 msleep_interruptible(data * 1000);
2124 del_timer_sync(&nic->blink_timer);
2125 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2130 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2131 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2132 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2133 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2134 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2135 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2136 "tx_heartbeat_errors", "tx_window_errors",
2137 /* device-specific stats */
2138 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2139 "tx_flow_control_pause", "rx_flow_control_pause",
2140 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2142 #define E100_NET_STATS_LEN 21
2143 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2145 static int e100_get_stats_count(struct net_device *netdev)
2147 return E100_STATS_LEN;
2150 static void e100_get_ethtool_stats(struct net_device *netdev,
2151 struct ethtool_stats *stats, u64 *data)
2153 struct nic *nic = netdev_priv(netdev);
2156 for(i = 0; i < E100_NET_STATS_LEN; i++)
2157 data[i] = ((unsigned long *)&nic->net_stats)[i];
2159 data[i++] = nic->tx_deferred;
2160 data[i++] = nic->tx_single_collisions;
2161 data[i++] = nic->tx_multiple_collisions;
2162 data[i++] = nic->tx_fc_pause;
2163 data[i++] = nic->rx_fc_pause;
2164 data[i++] = nic->rx_fc_unsupported;
2165 data[i++] = nic->tx_tco_frames;
2166 data[i++] = nic->rx_tco_frames;
2169 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2173 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2176 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2181 static struct ethtool_ops e100_ethtool_ops = {
2182 .get_settings = e100_get_settings,
2183 .set_settings = e100_set_settings,
2184 .get_drvinfo = e100_get_drvinfo,
2185 .get_regs_len = e100_get_regs_len,
2186 .get_regs = e100_get_regs,
2187 .get_wol = e100_get_wol,
2188 .set_wol = e100_set_wol,
2189 .get_msglevel = e100_get_msglevel,
2190 .set_msglevel = e100_set_msglevel,
2191 .nway_reset = e100_nway_reset,
2192 .get_link = e100_get_link,
2193 .get_eeprom_len = e100_get_eeprom_len,
2194 .get_eeprom = e100_get_eeprom,
2195 .set_eeprom = e100_set_eeprom,
2196 .get_ringparam = e100_get_ringparam,
2197 .set_ringparam = e100_set_ringparam,
2198 .self_test_count = e100_diag_test_count,
2199 .self_test = e100_diag_test,
2200 .get_strings = e100_get_strings,
2201 .phys_id = e100_phys_id,
2202 .get_stats_count = e100_get_stats_count,
2203 .get_ethtool_stats = e100_get_ethtool_stats,
2204 .get_perm_addr = ethtool_op_get_perm_addr,
2207 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2209 struct nic *nic = netdev_priv(netdev);
2211 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2214 static int e100_alloc(struct nic *nic)
2216 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2218 return nic->mem ? 0 : -ENOMEM;
2221 static void e100_free(struct nic *nic)
2224 pci_free_consistent(nic->pdev, sizeof(struct mem),
2225 nic->mem, nic->dma_addr);
2230 static int e100_open(struct net_device *netdev)
2232 struct nic *nic = netdev_priv(netdev);
2235 netif_carrier_off(netdev);
2236 if((err = e100_up(nic)))
2237 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2241 static int e100_close(struct net_device *netdev)
2243 e100_down(netdev_priv(netdev));
2247 static int __devinit e100_probe(struct pci_dev *pdev,
2248 const struct pci_device_id *ent)
2250 struct net_device *netdev;
2254 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2255 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2256 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2260 netdev->open = e100_open;
2261 netdev->stop = e100_close;
2262 netdev->hard_start_xmit = e100_xmit_frame;
2263 netdev->get_stats = e100_get_stats;
2264 netdev->set_multicast_list = e100_set_multicast_list;
2265 netdev->set_mac_address = e100_set_mac_address;
2266 netdev->change_mtu = e100_change_mtu;
2267 netdev->do_ioctl = e100_do_ioctl;
2268 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2269 netdev->tx_timeout = e100_tx_timeout;
2270 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2271 netdev->poll = e100_poll;
2272 netdev->weight = E100_NAPI_WEIGHT;
2273 #ifdef CONFIG_NET_POLL_CONTROLLER
2274 netdev->poll_controller = e100_netpoll;
2276 strcpy(netdev->name, pci_name(pdev));
2278 nic = netdev_priv(netdev);
2279 nic->netdev = netdev;
2281 nic->msg_enable = (1 << debug) - 1;
2282 pci_set_drvdata(pdev, netdev);
2284 if((err = pci_enable_device(pdev))) {
2285 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2286 goto err_out_free_dev;
2289 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2290 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2291 "base address, aborting.\n");
2293 goto err_out_disable_pdev;
2296 if((err = pci_request_regions(pdev, DRV_NAME))) {
2297 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2298 goto err_out_disable_pdev;
2301 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2302 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2303 goto err_out_free_res;
2306 SET_MODULE_OWNER(netdev);
2307 SET_NETDEV_DEV(netdev, &pdev->dev);
2309 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2311 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2313 goto err_out_free_res;
2316 if(ent->driver_data)
2321 e100_get_defaults(nic);
2323 /* locks must be initialized before calling hw_reset */
2324 spin_lock_init(&nic->cb_lock);
2325 spin_lock_init(&nic->cmd_lock);
2327 /* Reset the device before pci_set_master() in case device is in some
2328 * funky state and has an interrupt pending - hint: we don't have the
2329 * interrupt handler registered yet. */
2332 pci_set_master(pdev);
2334 init_timer(&nic->watchdog);
2335 nic->watchdog.function = e100_watchdog;
2336 nic->watchdog.data = (unsigned long)nic;
2337 init_timer(&nic->blink_timer);
2338 nic->blink_timer.function = e100_blink_led;
2339 nic->blink_timer.data = (unsigned long)nic;
2341 INIT_WORK(&nic->tx_timeout_task,
2342 (void (*)(void *))e100_tx_timeout_task, netdev);
2344 if((err = e100_alloc(nic))) {
2345 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2346 goto err_out_iounmap;
2349 if((err = e100_eeprom_load(nic)))
2354 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2355 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2356 if(!is_valid_ether_addr(netdev->perm_addr)) {
2357 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2358 "EEPROM, aborting.\n");
2363 /* Wol magic packet can be enabled from eeprom */
2364 if((nic->mac >= mac_82558_D101_A4) &&
2365 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2366 nic->flags |= wol_magic;
2368 /* ack any pending wake events, disable PME */
2369 pci_enable_wake(pdev, 0, 0);
2371 strcpy(netdev->name, "eth%d");
2372 if((err = register_netdev(netdev))) {
2373 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2377 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
2378 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2379 pci_resource_start(pdev, 0), pdev->irq,
2380 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2381 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2390 pci_release_regions(pdev);
2391 err_out_disable_pdev:
2392 pci_disable_device(pdev);
2394 pci_set_drvdata(pdev, NULL);
2395 free_netdev(netdev);
2399 static void __devexit e100_remove(struct pci_dev *pdev)
2401 struct net_device *netdev = pci_get_drvdata(pdev);
2404 struct nic *nic = netdev_priv(netdev);
2405 unregister_netdev(netdev);
2408 free_netdev(netdev);
2409 pci_release_regions(pdev);
2410 pci_disable_device(pdev);
2411 pci_set_drvdata(pdev, NULL);
2416 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2418 struct net_device *netdev = pci_get_drvdata(pdev);
2419 struct nic *nic = netdev_priv(netdev);
2421 if(netif_running(netdev))
2424 netif_device_detach(netdev);
2426 pci_save_state(pdev);
2427 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic)));
2428 pci_disable_device(pdev);
2429 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2434 static int e100_resume(struct pci_dev *pdev)
2436 struct net_device *netdev = pci_get_drvdata(pdev);
2437 struct nic *nic = netdev_priv(netdev);
2439 pci_set_power_state(pdev, PCI_D0);
2440 pci_restore_state(pdev);
2441 /* ack any pending wake events, disable PME */
2442 pci_enable_wake(pdev, 0, 0);
2443 if(e100_hw_init(nic))
2444 DPRINTK(HW, ERR, "e100_hw_init failed\n");
2446 netif_device_attach(netdev);
2447 if(netif_running(netdev))
2455 static void e100_shutdown(struct pci_dev *pdev)
2457 struct net_device *netdev = pci_get_drvdata(pdev);
2458 struct nic *nic = netdev_priv(netdev);
2461 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2463 pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
2468 static struct pci_driver e100_driver = {
2470 .id_table = e100_id_table,
2471 .probe = e100_probe,
2472 .remove = __devexit_p(e100_remove),
2474 .suspend = e100_suspend,
2475 .resume = e100_resume,
2477 .shutdown = e100_shutdown,
2480 static int __init e100_init_module(void)
2482 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2483 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2484 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2486 return pci_module_init(&e100_driver);
2489 static void __exit e100_cleanup_module(void)
2491 pci_unregister_driver(&e100_driver);
2494 module_init(e100_init_module);
2495 module_exit(e100_cleanup_module);