2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
10 * For licensing information, see the file 'LICENCE' in this directory.
12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
25 /* For testing write failures */
30 static unsigned char *brokenbuf;
33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
36 /* max. erase failures before we mark a block bad */
37 #define MAX_ERASE_FAILURES 2
39 struct jffs2_inodirty {
41 struct jffs2_inodirty *next;
44 static struct jffs2_inodirty inodirty_nomem;
46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
48 struct jffs2_inodirty *this = c->wbuf_inodes;
50 /* If a malloc failed, consider _everything_ dirty */
51 if (this == &inodirty_nomem)
54 /* If ino == 0, _any_ non-GC writes mean 'yes' */
58 /* Look to see if the inode in question is pending in the wbuf */
67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
69 struct jffs2_inodirty *this;
71 this = c->wbuf_inodes;
73 if (this != &inodirty_nomem) {
75 struct jffs2_inodirty *next = this->next;
80 c->wbuf_inodes = NULL;
83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
85 struct jffs2_inodirty *new;
87 /* Mark the superblock dirty so that kupdated will flush... */
88 jffs2_erase_pending_trigger(c);
90 if (jffs2_wbuf_pending_for_ino(c, ino))
93 new = kmalloc(sizeof(*new), GFP_KERNEL);
95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 jffs2_clear_wbuf_ino_list(c);
97 c->wbuf_inodes = &inodirty_nomem;
101 new->next = c->wbuf_inodes;
102 c->wbuf_inodes = new;
106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
108 struct list_head *this, *next;
111 if (list_empty(&c->erasable_pending_wbuf_list))
114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
119 if ((jiffies + (n++)) & 127) {
120 /* Most of the time, we just erase it immediately. Otherwise we
121 spend ages scanning it on mount, etc. */
122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 list_add_tail(&jeb->list, &c->erase_pending_list);
124 c->nr_erasing_blocks++;
125 jffs2_erase_pending_trigger(c);
127 /* Sometimes, however, we leave it elsewhere so it doesn't get
128 immediately reused, and we spread the load a bit. */
129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 list_add_tail(&jeb->list, &c->erasable_list);
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY 1
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
140 D1(printk("About to refile bad block at %08x\n", jeb->offset));
142 /* File the existing block on the bad_used_list.... */
143 if (c->nextblock == jeb)
145 else /* Not sure this should ever happen... need more coffee */
146 list_del(&jeb->list);
147 if (jeb->first_node) {
148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 list_add(&jeb->list, &c->bad_used_list);
151 BUG_ON(allow_empty == REFILE_NOTEMPTY);
152 /* It has to have had some nodes or we couldn't be here */
153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 list_add(&jeb->list, &c->erase_pending_list);
155 c->nr_erasing_blocks++;
156 jffs2_erase_pending_trigger(c);
159 /* Adjust its size counts accordingly */
160 c->wasted_size += jeb->free_size;
161 c->free_size -= jeb->free_size;
162 jeb->wasted_size += jeb->free_size;
165 jffs2_dbg_dump_block_lists_nolock(c);
166 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
167 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
170 /* Recover from failure to write wbuf. Recover the nodes up to the
171 * wbuf, not the one which we were starting to try to write. */
173 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
175 struct jffs2_eraseblock *jeb, *new_jeb;
176 struct jffs2_raw_node_ref **first_raw, **raw;
180 uint32_t start, end, ofs, len;
182 spin_lock(&c->erase_completion_lock);
184 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
186 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
188 /* Find the first node to be recovered, by skipping over every
189 node which ends before the wbuf starts, or which is obsolete. */
190 first_raw = &jeb->first_node;
192 (ref_obsolete(*first_raw) ||
193 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
194 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
195 ref_offset(*first_raw), ref_flags(*first_raw),
196 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
198 first_raw = &(*first_raw)->next_phys;
202 /* All nodes were obsolete. Nothing to recover. */
203 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
204 spin_unlock(&c->erase_completion_lock);
208 start = ref_offset(*first_raw);
209 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
211 /* Find the last node to be recovered */
214 if (!ref_obsolete(*raw))
215 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
217 raw = &(*raw)->next_phys;
219 spin_unlock(&c->erase_completion_lock);
221 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
224 if (start < c->wbuf_ofs) {
225 /* First affected node was already partially written.
226 * Attempt to reread the old data into our buffer. */
228 buf = kmalloc(end - start, GFP_KERNEL);
230 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
236 if (jffs2_cleanmarker_oob(c))
237 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
239 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
241 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
245 if (ret || retlen != c->wbuf_ofs - start) {
246 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
251 first_raw = &(*first_raw)->next_phys;
252 /* If this was the only node to be recovered, give up */
256 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
257 start = ref_offset(*first_raw);
259 /* Read succeeded. Copy the remaining data from the wbuf */
260 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
263 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
264 Either 'buf' contains the data, or we find it in the wbuf */
267 /* ... and get an allocation of space from a shiny new block instead */
268 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE);
270 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
274 if (end-start >= c->wbuf_pagesize) {
275 /* Need to do another write immediately, but it's possible
276 that this is just because the wbuf itself is completely
277 full, and there's nothing earlier read back from the
278 flash. Hence 'buf' isn't necessarily what we're writing
280 unsigned char *rewrite_buf = buf?:c->wbuf;
281 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
283 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
288 if (breakme++ == 20) {
289 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
291 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
292 brokenbuf, NULL, c->oobinfo);
296 if (jffs2_cleanmarker_oob(c))
297 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
298 rewrite_buf, NULL, c->oobinfo);
300 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
302 if (ret || retlen != towrite) {
303 /* Argh. We tried. Really we did. */
304 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
308 struct jffs2_raw_node_ref *raw2;
310 raw2 = jffs2_alloc_raw_node_ref();
314 raw2->flash_offset = ofs | REF_OBSOLETE;
315 raw2->__totlen = ref_totlen(c, jeb, *first_raw);
316 raw2->next_phys = NULL;
317 raw2->next_in_ino = NULL;
319 jffs2_add_physical_node_ref(c, raw2);
323 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
325 c->wbuf_len = (end - start) - towrite;
326 c->wbuf_ofs = ofs + towrite;
327 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
328 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
331 /* OK, now we're left with the dregs in whichever buffer we're using */
333 memcpy(c->wbuf, buf, end-start);
336 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
339 c->wbuf_len = end - start;
342 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
343 new_jeb = &c->blocks[ofs / c->sector_size];
345 spin_lock(&c->erase_completion_lock);
346 if (new_jeb->first_node) {
347 /* Odd, but possible with ST flash later maybe */
348 new_jeb->last_node->next_phys = *first_raw;
350 new_jeb->first_node = *first_raw;
355 uint32_t rawlen = ref_totlen(c, jeb, *raw);
357 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
358 rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
360 if (ref_obsolete(*raw)) {
361 /* Shouldn't really happen much */
362 new_jeb->dirty_size += rawlen;
363 new_jeb->free_size -= rawlen;
364 c->dirty_size += rawlen;
366 new_jeb->used_size += rawlen;
367 new_jeb->free_size -= rawlen;
368 jeb->dirty_size += rawlen;
369 jeb->used_size -= rawlen;
370 c->dirty_size += rawlen;
372 c->free_size -= rawlen;
373 (*raw)->flash_offset = ofs | ref_flags(*raw);
375 new_jeb->last_node = *raw;
377 raw = &(*raw)->next_phys;
380 /* Fix up the original jeb now it's on the bad_list */
382 if (first_raw == &jeb->first_node) {
383 jeb->last_node = NULL;
384 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
385 list_del(&jeb->list);
386 list_add(&jeb->list, &c->erase_pending_list);
387 c->nr_erasing_blocks++;
388 jffs2_erase_pending_trigger(c);
391 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
393 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
394 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
396 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
397 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
399 spin_unlock(&c->erase_completion_lock);
401 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
404 /* Meaning of pad argument:
405 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
406 1: Pad, do not adjust nextblock free_size
407 2: Pad, adjust nextblock free_size
410 #define PAD_NOACCOUNT 1
411 #define PAD_ACCOUNTING 2
413 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
418 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
419 del_timer() the timer we never initialised. */
420 if (!jffs2_is_writebuffered(c))
423 if (!down_trylock(&c->alloc_sem)) {
425 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
429 if (!c->wbuf_len) /* already checked c->wbuf above */
432 /* claim remaining space on the page
433 this happens, if we have a change to a new block,
434 or if fsync forces us to flush the writebuffer.
435 if we have a switch to next page, we will not have
436 enough remaining space for this.
439 c->wbuf_len = PAD(c->wbuf_len);
441 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
442 with 8 byte page size */
443 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
445 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
446 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
447 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
448 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
449 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
450 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
453 /* else jffs2_flash_writev has actually filled in the rest of the
454 buffer for us, and will deal with the node refs etc. later. */
458 if (breakme++ == 20) {
459 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
461 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
462 &retlen, brokenbuf, NULL, c->oobinfo);
467 if (jffs2_cleanmarker_oob(c))
468 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
470 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
472 if (ret || retlen != c->wbuf_pagesize) {
474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
476 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
477 retlen, c->wbuf_pagesize);
481 jffs2_wbuf_recover(c);
486 spin_lock(&c->erase_completion_lock);
488 /* Adjust free size of the block if we padded. */
490 struct jffs2_eraseblock *jeb;
492 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
494 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
495 (jeb==c->nextblock)?"next":"", jeb->offset));
497 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
498 padded. If there is less free space in the block than that,
499 something screwed up */
500 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
501 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
502 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
503 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
504 jeb->offset, jeb->free_size);
507 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
508 c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
509 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
510 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
513 /* Stick any now-obsoleted blocks on the erase_pending_list */
514 jffs2_refile_wbuf_blocks(c);
515 jffs2_clear_wbuf_ino_list(c);
516 spin_unlock(&c->erase_completion_lock);
518 memset(c->wbuf,0xff,c->wbuf_pagesize);
519 /* adjust write buffer offset, else we get a non contiguous write bug */
520 c->wbuf_ofs += c->wbuf_pagesize;
525 /* Trigger garbage collection to flush the write-buffer.
526 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
527 outstanding. If ino arg non-zero, do it only if a write for the
528 given inode is outstanding. */
529 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
531 uint32_t old_wbuf_ofs;
532 uint32_t old_wbuf_len;
535 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
541 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
542 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
547 old_wbuf_ofs = c->wbuf_ofs;
548 old_wbuf_len = c->wbuf_len;
550 if (c->unchecked_size) {
551 /* GC won't make any progress for a while */
552 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
553 down_write(&c->wbuf_sem);
554 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
555 /* retry flushing wbuf in case jffs2_wbuf_recover
556 left some data in the wbuf */
558 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
559 up_write(&c->wbuf_sem);
560 } else while (old_wbuf_len &&
561 old_wbuf_ofs == c->wbuf_ofs) {
565 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
567 ret = jffs2_garbage_collect_pass(c);
569 /* GC failed. Flush it with padding instead */
571 down_write(&c->wbuf_sem);
572 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
573 /* retry flushing wbuf in case jffs2_wbuf_recover
574 left some data in the wbuf */
576 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
577 up_write(&c->wbuf_sem);
583 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
589 /* Pad write-buffer to end and write it, wasting space. */
590 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
597 down_write(&c->wbuf_sem);
598 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
599 /* retry - maybe wbuf recover left some data in wbuf. */
601 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
602 up_write(&c->wbuf_sem);
606 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
608 struct kvec outvecs[3];
610 uint32_t split_ofs = 0;
612 int ret, splitvec = -1;
615 unsigned char *wbuf_ptr;
617 uint32_t outvec_to = to;
619 /* If not NAND flash, don't bother */
620 if (!jffs2_is_writebuffered(c))
621 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
623 down_write(&c->wbuf_sem);
625 /* If wbuf_ofs is not initialized, set it to target address */
626 if (c->wbuf_ofs == 0xFFFFFFFF) {
627 c->wbuf_ofs = PAGE_DIV(to);
628 c->wbuf_len = PAGE_MOD(to);
629 memset(c->wbuf,0xff,c->wbuf_pagesize);
632 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
633 fail for ECC'd NOR because cleanmarker == 16, so a block starts at
635 if (jffs2_nor_ecc(c)) {
636 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
637 c->wbuf_ofs = PAGE_DIV(to);
638 c->wbuf_len = PAGE_MOD(to);
639 memset(c->wbuf,0xff,c->wbuf_pagesize);
643 /* Sanity checks on target address.
644 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
645 and it's permitted to write at the beginning of a new
646 erase block. Anything else, and you die.
647 New block starts at xxx000c (0-b = block header)
649 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
650 /* It's a write to a new block */
652 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
653 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
655 /* the underlying layer has to check wbuf_len to do the cleanup */
656 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
661 /* set pointer to new block */
662 c->wbuf_ofs = PAGE_DIV(to);
663 c->wbuf_len = PAGE_MOD(to);
666 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
667 /* We're not writing immediately after the writebuffer. Bad. */
668 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
670 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
671 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
675 /* Note outvecs[3] above. We know count is never greater than 2 */
677 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
684 /* Fill writebuffer first, if already in use */
686 uint32_t invec_ofs = 0;
688 /* adjust alignment offset */
689 if (c->wbuf_len != PAGE_MOD(to)) {
690 c->wbuf_len = PAGE_MOD(to);
691 /* take care of alignment to next page */
693 c->wbuf_len = c->wbuf_pagesize;
696 while(c->wbuf_len < c->wbuf_pagesize) {
702 thislen = c->wbuf_pagesize - c->wbuf_len;
704 if (thislen >= invecs[invec].iov_len)
705 thislen = invecs[invec].iov_len;
709 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
710 c->wbuf_len += thislen;
712 /* Get next invec, if actual did not fill the buffer */
713 if (c->wbuf_len < c->wbuf_pagesize)
717 /* write buffer is full, flush buffer */
718 ret = __jffs2_flush_wbuf(c, NOPAD);
720 /* the underlying layer has to check wbuf_len to do the cleanup */
721 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
722 /* Retlen zero to make sure our caller doesn't mark the space dirty.
723 We've already done everything that's necessary */
727 outvec_to += donelen;
728 c->wbuf_ofs = outvec_to;
730 /* All invecs done ? */
734 /* Set up the first outvec, containing the remainder of the
735 invec we partially used */
736 if (invecs[invec].iov_len > invec_ofs) {
737 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
738 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
739 if (totlen > c->wbuf_pagesize) {
741 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
748 /* OK, now we've flushed the wbuf and the start of the bits
749 we have been asked to write, now to write the rest.... */
751 /* totlen holds the amount of data still to be written */
753 for ( ; invec < count; invec++,outvec++ ) {
754 outvecs[outvec].iov_base = invecs[invec].iov_base;
755 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
756 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
758 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
763 /* Now the outvecs array holds all the remaining data to write */
764 /* Up to splitvec,split_ofs is to be written immediately. The rest
765 goes into the (now-empty) wbuf */
767 if (splitvec != -1) {
770 remainder = outvecs[splitvec].iov_len - split_ofs;
771 outvecs[splitvec].iov_len = split_ofs;
773 /* We did cross a page boundary, so we write some now */
774 if (jffs2_cleanmarker_oob(c))
775 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
777 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
779 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
780 /* At this point we have no problem,
781 c->wbuf is empty. However refile nextblock to avoid
782 writing again to same address.
784 struct jffs2_eraseblock *jeb;
786 spin_lock(&c->erase_completion_lock);
788 jeb = &c->blocks[outvec_to / c->sector_size];
789 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
792 spin_unlock(&c->erase_completion_lock);
796 donelen += wbuf_retlen;
797 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
800 outvecs[splitvec].iov_base += split_ofs;
801 outvecs[splitvec].iov_len = remainder;
810 /* Now splitvec points to the start of the bits we have to copy
814 for ( ; splitvec < outvec; splitvec++) {
815 /* Don't copy the wbuf into itself */
816 if (outvecs[splitvec].iov_base == c->wbuf)
818 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
819 wbuf_ptr += outvecs[splitvec].iov_len;
820 donelen += outvecs[splitvec].iov_len;
822 c->wbuf_len = wbuf_ptr - c->wbuf;
824 /* If there's a remainder in the wbuf and it's a non-GC write,
825 remember that the wbuf affects this ino */
829 if (jffs2_sum_active()) {
830 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
835 if (c->wbuf_len && ino)
836 jffs2_wbuf_dirties_inode(c, ino);
841 up_write(&c->wbuf_sem);
846 * This is the entry for flash write.
847 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
849 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
853 if (!jffs2_is_writebuffered(c))
854 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
856 vecs[0].iov_base = (unsigned char *) buf;
857 vecs[0].iov_len = len;
858 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
862 Handle readback from writebuffer and ECC failure return
864 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
866 loff_t orbf = 0, owbf = 0, lwbf = 0;
869 if (!jffs2_is_writebuffered(c))
870 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
873 down_read(&c->wbuf_sem);
874 if (jffs2_cleanmarker_oob(c))
875 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
877 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
879 if ( (ret == -EBADMSG) && (*retlen == len) ) {
880 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
883 * We have the raw data without ECC correction in the buffer, maybe
884 * we are lucky and all data or parts are correct. We check the node.
885 * If data are corrupted node check will sort it out.
886 * We keep this block, it will fail on write or erase and the we
887 * mark it bad. Or should we do that now? But we should give him a chance.
888 * Maybe we had a system crash or power loss before the ecc write or
889 * a erase was completed.
890 * So we return success. :)
895 /* if no writebuffer available or write buffer empty, return */
896 if (!c->wbuf_pagesize || !c->wbuf_len)
899 /* if we read in a different block, return */
900 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
903 if (ofs >= c->wbuf_ofs) {
904 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
905 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
907 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
911 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
912 if (orbf > len) /* is write beyond write buffer ? */
914 lwbf = len - orbf; /* number of bytes to copy */
915 if (lwbf > c->wbuf_len)
919 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
922 up_read(&c->wbuf_sem);
927 * Check, if the out of band area is empty
929 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
937 /* allocate a buffer for all oob data in this sector */
938 oob_size = c->mtd->oobsize;
940 buf = kmalloc(len, GFP_KERNEL);
942 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
946 * if mode = 0, we scan for a total empty oob area, else we have
947 * to take care of the cleanmarker in the first page of the block
949 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
951 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
956 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
957 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
962 /* Special check for first page */
963 for(i = 0; i < oob_size ; i++) {
964 /* Yeah, we know about the cleanmarker. */
965 if (mode && i >= c->fsdata_pos &&
966 i < c->fsdata_pos + c->fsdata_len)
969 if (buf[i] != 0xFF) {
970 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
971 buf[i], i, jeb->offset));
977 /* we know, we are aligned :) */
978 for (page = oob_size; page < len; page += sizeof(long)) {
979 unsigned long dat = *(unsigned long *)(&buf[page]);
993 * Scan for a valid cleanmarker and for bad blocks
994 * For virtual blocks (concatenated physical blocks) check the cleanmarker
995 * only in the first page of the first physical block, but scan for bad blocks in all
998 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1000 struct jffs2_unknown_node n;
1001 unsigned char buf[2 * NAND_MAX_OOBSIZE];
1003 int ret, i, cnt, retval = 0;
1004 size_t retlen, offset;
1007 offset = jeb->offset;
1008 oob_size = c->mtd->oobsize;
1010 /* Loop through the physical blocks */
1011 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1012 /* Check first if the block is bad. */
1013 if (c->mtd->block_isbad (c->mtd, offset)) {
1014 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1018 * We read oob data from page 0 and 1 of the block.
1019 * page 0 contains cleanmarker and badblock info
1020 * page 1 contains failure count of this block
1022 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1025 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1028 if (retlen < (oob_size << 1)) {
1029 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1033 /* Check cleanmarker only on the first physical block */
1035 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1036 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1037 n.totlen = cpu_to_je32 (8);
1038 p = (unsigned char *) &n;
1040 for (i = 0; i < c->fsdata_len; i++) {
1041 if (buf[c->fsdata_pos + i] != p[i]) {
1045 D1(if (retval == 1) {
1046 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1047 printk(KERN_WARNING "OOB at %08x was ", offset);
1048 for (i=0; i < oob_size; i++) {
1049 printk("%02x ", buf[i]);
1054 offset += c->mtd->erasesize;
1059 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1061 struct jffs2_unknown_node n;
1065 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1066 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1067 n.totlen = cpu_to_je32(8);
1069 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1072 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1075 if (retlen != c->fsdata_len) {
1076 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1083 * On NAND we try to mark this block bad. If the block was erased more
1084 * than MAX_ERASE_FAILURES we mark it finaly bad.
1085 * Don't care about failures. This block remains on the erase-pending
1086 * or badblock list as long as nobody manipulates the flash with
1087 * a bootloader or something like that.
1090 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1094 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1095 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1098 if (!c->mtd->block_markbad)
1099 return 1; // What else can we do?
1101 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1102 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1105 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1111 #define NAND_JFFS2_OOB16_FSDALEN 8
1113 static struct nand_oobinfo jffs2_oobinfo_docecc = {
1114 .useecc = MTD_NANDECC_PLACE,
1116 .eccpos = {0,1,2,3,4,5}
1120 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1122 struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1124 /* Do this only, if we have an oob buffer */
1125 if (!c->mtd->oobsize)
1128 /* Cleanmarker is out-of-band, so inline size zero */
1129 c->cleanmarker_size = 0;
1131 /* Should we use autoplacement ? */
1132 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1133 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1134 /* Get the position of the free bytes */
1135 if (!oinfo->oobfree[0][1]) {
1136 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1139 c->fsdata_pos = oinfo->oobfree[0][0];
1140 c->fsdata_len = oinfo->oobfree[0][1];
1141 if (c->fsdata_len > 8)
1144 /* This is just a legacy fallback and should go away soon */
1145 switch(c->mtd->ecctype) {
1146 case MTD_ECC_RS_DiskOnChip:
1147 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1148 c->oobinfo = &jffs2_oobinfo_docecc;
1150 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1151 c->badblock_pos = 15;
1155 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1162 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1166 /* Initialise write buffer */
1167 init_rwsem(&c->wbuf_sem);
1168 c->wbuf_pagesize = c->mtd->oobblock;
1169 c->wbuf_ofs = 0xFFFFFFFF;
1171 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1175 res = jffs2_nand_set_oobinfo(c);
1179 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1184 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1189 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1194 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1195 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1197 /* Initialize write buffer */
1198 init_rwsem(&c->wbuf_sem);
1201 c->wbuf_pagesize = c->mtd->erasesize;
1203 /* Find a suitable c->sector_size
1204 * - Not too much sectors
1205 * - Sectors have to be at least 4 K + some bytes
1206 * - All known dataflashes have erase sizes of 528 or 1056
1207 * - we take at least 8 eraseblocks and want to have at least 8K size
1208 * - The concatenation should be a power of 2
1211 c->sector_size = 8 * c->mtd->erasesize;
1213 while (c->sector_size < 8192) {
1214 c->sector_size *= 2;
1217 /* It may be necessary to adjust the flash size */
1218 c->flash_size = c->mtd->size;
1220 if ((c->flash_size % c->sector_size) != 0) {
1221 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1222 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1225 c->wbuf_ofs = 0xFFFFFFFF;
1226 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1230 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1235 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1239 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1240 /* Cleanmarker is actually larger on the flashes */
1241 c->cleanmarker_size = 16;
1243 /* Initialize write buffer */
1244 init_rwsem(&c->wbuf_sem);
1245 c->wbuf_pagesize = c->mtd->eccsize;
1246 c->wbuf_ofs = 0xFFFFFFFF;
1248 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1255 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1259 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1260 /* Cleanmarker currently occupies a whole programming region */
1261 c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd);
1263 /* Initialize write buffer */
1264 init_rwsem(&c->wbuf_sem);
1265 c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd);
1266 c->wbuf_ofs = 0xFFFFFFFF;
1268 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1275 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {