Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         /*
490          * XXX need to get goal block from mballoc's data structures
491          */
492
493         return ext4_find_near(inode, partial);
494 }
495
496 /**
497  *      ext4_blks_to_allocate: Look up the block map and count the number
498  *      of direct blocks need to be allocated for the given branch.
499  *
500  *      @branch: chain of indirect blocks
501  *      @k: number of blocks need for indirect blocks
502  *      @blks: number of data blocks to be mapped.
503  *      @blocks_to_boundary:  the offset in the indirect block
504  *
505  *      return the total number of blocks to be allocate, including the
506  *      direct and indirect blocks.
507  */
508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
509                 int blocks_to_boundary)
510 {
511         unsigned long count = 0;
512
513         /*
514          * Simple case, [t,d]Indirect block(s) has not allocated yet
515          * then it's clear blocks on that path have not allocated
516          */
517         if (k > 0) {
518                 /* right now we don't handle cross boundary allocation */
519                 if (blks < blocks_to_boundary + 1)
520                         count += blks;
521                 else
522                         count += blocks_to_boundary + 1;
523                 return count;
524         }
525
526         count++;
527         while (count < blks && count <= blocks_to_boundary &&
528                 le32_to_cpu(*(branch[0].p + count)) == 0) {
529                 count++;
530         }
531         return count;
532 }
533
534 /**
535  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
536  *      @indirect_blks: the number of blocks need to allocate for indirect
537  *                      blocks
538  *
539  *      @new_blocks: on return it will store the new block numbers for
540  *      the indirect blocks(if needed) and the first direct block,
541  *      @blks:  on return it will store the total number of allocated
542  *              direct blocks
543  */
544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
545                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
546                                 int indirect_blks, int blks,
547                                 ext4_fsblk_t new_blocks[4], int *err)
548 {
549         int target, i;
550         unsigned long count = 0, blk_allocated = 0;
551         int index = 0;
552         ext4_fsblk_t current_block = 0;
553         int ret = 0;
554
555         /*
556          * Here we try to allocate the requested multiple blocks at once,
557          * on a best-effort basis.
558          * To build a branch, we should allocate blocks for
559          * the indirect blocks(if not allocated yet), and at least
560          * the first direct block of this branch.  That's the
561          * minimum number of blocks need to allocate(required)
562          */
563         /* first we try to allocate the indirect blocks */
564         target = indirect_blks;
565         while (target > 0) {
566                 count = target;
567                 /* allocating blocks for indirect blocks and direct blocks */
568                 current_block = ext4_new_meta_blocks(handle, inode,
569                                                         goal, &count, err);
570                 if (*err)
571                         goto failed_out;
572
573                 target -= count;
574                 /* allocate blocks for indirect blocks */
575                 while (index < indirect_blks && count) {
576                         new_blocks[index++] = current_block++;
577                         count--;
578                 }
579                 if (count > 0) {
580                         /*
581                          * save the new block number
582                          * for the first direct block
583                          */
584                         new_blocks[index] = current_block;
585                         printk(KERN_INFO "%s returned more blocks than "
586                                                 "requested\n", __func__);
587                         WARN_ON(1);
588                         break;
589                 }
590         }
591
592         target = blks - count ;
593         blk_allocated = count;
594         if (!target)
595                 goto allocated;
596         /* Now allocate data blocks */
597         count = target;
598         /* allocating blocks for data blocks */
599         current_block = ext4_new_blocks(handle, inode, iblock,
600                                                 goal, &count, err);
601         if (*err && (target == blks)) {
602                 /*
603                  * if the allocation failed and we didn't allocate
604                  * any blocks before
605                  */
606                 goto failed_out;
607         }
608         if (!*err) {
609                 if (target == blks) {
610                 /*
611                  * save the new block number
612                  * for the first direct block
613                  */
614                         new_blocks[index] = current_block;
615                 }
616                 blk_allocated += count;
617         }
618 allocated:
619         /* total number of blocks allocated for direct blocks */
620         ret = blk_allocated;
621         *err = 0;
622         return ret;
623 failed_out:
624         for (i = 0; i < index; i++)
625                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
626         return ret;
627 }
628
629 /**
630  *      ext4_alloc_branch - allocate and set up a chain of blocks.
631  *      @inode: owner
632  *      @indirect_blks: number of allocated indirect blocks
633  *      @blks: number of allocated direct blocks
634  *      @offsets: offsets (in the blocks) to store the pointers to next.
635  *      @branch: place to store the chain in.
636  *
637  *      This function allocates blocks, zeroes out all but the last one,
638  *      links them into chain and (if we are synchronous) writes them to disk.
639  *      In other words, it prepares a branch that can be spliced onto the
640  *      inode. It stores the information about that chain in the branch[], in
641  *      the same format as ext4_get_branch() would do. We are calling it after
642  *      we had read the existing part of chain and partial points to the last
643  *      triple of that (one with zero ->key). Upon the exit we have the same
644  *      picture as after the successful ext4_get_block(), except that in one
645  *      place chain is disconnected - *branch->p is still zero (we did not
646  *      set the last link), but branch->key contains the number that should
647  *      be placed into *branch->p to fill that gap.
648  *
649  *      If allocation fails we free all blocks we've allocated (and forget
650  *      their buffer_heads) and return the error value the from failed
651  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
652  *      as described above and return 0.
653  */
654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
655                                 ext4_lblk_t iblock, int indirect_blks,
656                                 int *blks, ext4_fsblk_t goal,
657                                 ext4_lblk_t *offsets, Indirect *branch)
658 {
659         int blocksize = inode->i_sb->s_blocksize;
660         int i, n = 0;
661         int err = 0;
662         struct buffer_head *bh;
663         int num;
664         ext4_fsblk_t new_blocks[4];
665         ext4_fsblk_t current_block;
666
667         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
668                                 *blks, new_blocks, &err);
669         if (err)
670                 return err;
671
672         branch[0].key = cpu_to_le32(new_blocks[0]);
673         /*
674          * metadata blocks and data blocks are allocated.
675          */
676         for (n = 1; n <= indirect_blks;  n++) {
677                 /*
678                  * Get buffer_head for parent block, zero it out
679                  * and set the pointer to new one, then send
680                  * parent to disk.
681                  */
682                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683                 branch[n].bh = bh;
684                 lock_buffer(bh);
685                 BUFFER_TRACE(bh, "call get_create_access");
686                 err = ext4_journal_get_create_access(handle, bh);
687                 if (err) {
688                         unlock_buffer(bh);
689                         brelse(bh);
690                         goto failed;
691                 }
692
693                 memset(bh->b_data, 0, blocksize);
694                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695                 branch[n].key = cpu_to_le32(new_blocks[n]);
696                 *branch[n].p = branch[n].key;
697                 if (n == indirect_blks) {
698                         current_block = new_blocks[n];
699                         /*
700                          * End of chain, update the last new metablock of
701                          * the chain to point to the new allocated
702                          * data blocks numbers
703                          */
704                         for (i=1; i < num; i++)
705                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
706                 }
707                 BUFFER_TRACE(bh, "marking uptodate");
708                 set_buffer_uptodate(bh);
709                 unlock_buffer(bh);
710
711                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712                 err = ext4_journal_dirty_metadata(handle, bh);
713                 if (err)
714                         goto failed;
715         }
716         *blks = num;
717         return err;
718 failed:
719         /* Allocation failed, free what we already allocated */
720         for (i = 1; i <= n ; i++) {
721                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
722                 ext4_journal_forget(handle, branch[i].bh);
723         }
724         for (i = 0; i < indirect_blks; i++)
725                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
726
727         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
728
729         return err;
730 }
731
732 /**
733  * ext4_splice_branch - splice the allocated branch onto inode.
734  * @inode: owner
735  * @block: (logical) number of block we are adding
736  * @chain: chain of indirect blocks (with a missing link - see
737  *      ext4_alloc_branch)
738  * @where: location of missing link
739  * @num:   number of indirect blocks we are adding
740  * @blks:  number of direct blocks we are adding
741  *
742  * This function fills the missing link and does all housekeeping needed in
743  * inode (->i_blocks, etc.). In case of success we end up with the full
744  * chain to new block and return 0.
745  */
746 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
747                         ext4_lblk_t block, Indirect *where, int num, int blks)
748 {
749         int i;
750         int err = 0;
751         ext4_fsblk_t current_block;
752
753         /*
754          * If we're splicing into a [td]indirect block (as opposed to the
755          * inode) then we need to get write access to the [td]indirect block
756          * before the splice.
757          */
758         if (where->bh) {
759                 BUFFER_TRACE(where->bh, "get_write_access");
760                 err = ext4_journal_get_write_access(handle, where->bh);
761                 if (err)
762                         goto err_out;
763         }
764         /* That's it */
765
766         *where->p = where->key;
767
768         /*
769          * Update the host buffer_head or inode to point to more just allocated
770          * direct blocks blocks
771          */
772         if (num == 0 && blks > 1) {
773                 current_block = le32_to_cpu(where->key) + 1;
774                 for (i = 1; i < blks; i++)
775                         *(where->p + i) = cpu_to_le32(current_block++);
776         }
777
778         /* We are done with atomic stuff, now do the rest of housekeeping */
779
780         inode->i_ctime = ext4_current_time(inode);
781         ext4_mark_inode_dirty(handle, inode);
782
783         /* had we spliced it onto indirect block? */
784         if (where->bh) {
785                 /*
786                  * If we spliced it onto an indirect block, we haven't
787                  * altered the inode.  Note however that if it is being spliced
788                  * onto an indirect block at the very end of the file (the
789                  * file is growing) then we *will* alter the inode to reflect
790                  * the new i_size.  But that is not done here - it is done in
791                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
792                  */
793                 jbd_debug(5, "splicing indirect only\n");
794                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795                 err = ext4_journal_dirty_metadata(handle, where->bh);
796                 if (err)
797                         goto err_out;
798         } else {
799                 /*
800                  * OK, we spliced it into the inode itself on a direct block.
801                  * Inode was dirtied above.
802                  */
803                 jbd_debug(5, "splicing direct\n");
804         }
805         return err;
806
807 err_out:
808         for (i = 1; i <= num; i++) {
809                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
810                 ext4_journal_forget(handle, where[i].bh);
811                 ext4_free_blocks(handle, inode,
812                                         le32_to_cpu(where[i-1].key), 1, 0);
813         }
814         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
815
816         return err;
817 }
818
819 /*
820  * Allocation strategy is simple: if we have to allocate something, we will
821  * have to go the whole way to leaf. So let's do it before attaching anything
822  * to tree, set linkage between the newborn blocks, write them if sync is
823  * required, recheck the path, free and repeat if check fails, otherwise
824  * set the last missing link (that will protect us from any truncate-generated
825  * removals - all blocks on the path are immune now) and possibly force the
826  * write on the parent block.
827  * That has a nice additional property: no special recovery from the failed
828  * allocations is needed - we simply release blocks and do not touch anything
829  * reachable from inode.
830  *
831  * `handle' can be NULL if create == 0.
832  *
833  * return > 0, # of blocks mapped or allocated.
834  * return = 0, if plain lookup failed.
835  * return < 0, error case.
836  *
837  *
838  * Need to be called with
839  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
841  */
842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
843                 ext4_lblk_t iblock, unsigned long maxblocks,
844                 struct buffer_head *bh_result,
845                 int create, int extend_disksize)
846 {
847         int err = -EIO;
848         ext4_lblk_t offsets[4];
849         Indirect chain[4];
850         Indirect *partial;
851         ext4_fsblk_t goal;
852         int indirect_blks;
853         int blocks_to_boundary = 0;
854         int depth;
855         struct ext4_inode_info *ei = EXT4_I(inode);
856         int count = 0;
857         ext4_fsblk_t first_block = 0;
858         loff_t disksize;
859
860
861         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
862         J_ASSERT(handle != NULL || create == 0);
863         depth = ext4_block_to_path(inode, iblock, offsets,
864                                         &blocks_to_boundary);
865
866         if (depth == 0)
867                 goto out;
868
869         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
870
871         /* Simplest case - block found, no allocation needed */
872         if (!partial) {
873                 first_block = le32_to_cpu(chain[depth - 1].key);
874                 clear_buffer_new(bh_result);
875                 count++;
876                 /*map more blocks*/
877                 while (count < maxblocks && count <= blocks_to_boundary) {
878                         ext4_fsblk_t blk;
879
880                         blk = le32_to_cpu(*(chain[depth-1].p + count));
881
882                         if (blk == first_block + count)
883                                 count++;
884                         else
885                                 break;
886                 }
887                 goto got_it;
888         }
889
890         /* Next simple case - plain lookup or failed read of indirect block */
891         if (!create || err == -EIO)
892                 goto cleanup;
893
894         /*
895          * Okay, we need to do block allocation.
896         */
897         goal = ext4_find_goal(inode, iblock, partial);
898
899         /* the number of blocks need to allocate for [d,t]indirect blocks */
900         indirect_blks = (chain + depth) - partial - 1;
901
902         /*
903          * Next look up the indirect map to count the totoal number of
904          * direct blocks to allocate for this branch.
905          */
906         count = ext4_blks_to_allocate(partial, indirect_blks,
907                                         maxblocks, blocks_to_boundary);
908         /*
909          * Block out ext4_truncate while we alter the tree
910          */
911         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912                                         &count, goal,
913                                         offsets + (partial - chain), partial);
914
915         /*
916          * The ext4_splice_branch call will free and forget any buffers
917          * on the new chain if there is a failure, but that risks using
918          * up transaction credits, especially for bitmaps where the
919          * credits cannot be returned.  Can we handle this somehow?  We
920          * may need to return -EAGAIN upwards in the worst case.  --sct
921          */
922         if (!err)
923                 err = ext4_splice_branch(handle, inode, iblock,
924                                         partial, indirect_blks, count);
925         /*
926          * i_disksize growing is protected by i_data_sem.  Don't forget to
927          * protect it if you're about to implement concurrent
928          * ext4_get_block() -bzzz
929         */
930         if (!err && extend_disksize) {
931                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932                 if (disksize > i_size_read(inode))
933                         disksize = i_size_read(inode);
934                 if (disksize > ei->i_disksize)
935                         ei->i_disksize = disksize;
936         }
937         if (err)
938                 goto cleanup;
939
940         set_buffer_new(bh_result);
941 got_it:
942         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943         if (count > blocks_to_boundary)
944                 set_buffer_boundary(bh_result);
945         err = count;
946         /* Clean up and exit */
947         partial = chain + depth - 1;    /* the whole chain */
948 cleanup:
949         while (partial > chain) {
950                 BUFFER_TRACE(partial->bh, "call brelse");
951                 brelse(partial->bh);
952                 partial--;
953         }
954         BUFFER_TRACE(bh_result, "returned");
955 out:
956         return err;
957 }
958
959 /*
960  * Calculate the number of metadata blocks need to reserve
961  * to allocate @blocks for non extent file based file
962  */
963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
964 {
965         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966         int ind_blks, dind_blks, tind_blks;
967
968         /* number of new indirect blocks needed */
969         ind_blks = (blocks + icap - 1) / icap;
970
971         dind_blks = (ind_blks + icap - 1) / icap;
972
973         tind_blks = 1;
974
975         return ind_blks + dind_blks + tind_blks;
976 }
977
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate given number of blocks
981  */
982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984         if (!blocks)
985                 return 0;
986
987         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988                 return ext4_ext_calc_metadata_amount(inode, blocks);
989
990         return ext4_indirect_calc_metadata_amount(inode, blocks);
991 }
992
993 static void ext4_da_update_reserve_space(struct inode *inode, int used)
994 {
995         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996         int total, mdb, mdb_free;
997
998         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999         /* recalculate the number of metablocks still need to be reserved */
1000         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001         mdb = ext4_calc_metadata_amount(inode, total);
1002
1003         /* figure out how many metablocks to release */
1004         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1006
1007         if (mdb_free) {
1008                 /* Account for allocated meta_blocks */
1009                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1010
1011                 /* update fs dirty blocks counter */
1012                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1015         }
1016
1017         /* update per-inode reservations */
1018         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1019         EXT4_I(inode)->i_reserved_data_blocks -= used;
1020
1021         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1022 }
1023
1024 /*
1025  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026  * and returns if the blocks are already mapped.
1027  *
1028  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029  * and store the allocated blocks in the result buffer head and mark it
1030  * mapped.
1031  *
1032  * If file type is extents based, it will call ext4_ext_get_blocks(),
1033  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034  * based files
1035  *
1036  * On success, it returns the number of blocks being mapped or allocate.
1037  * if create==0 and the blocks are pre-allocated and uninitialized block,
1038  * the result buffer head is unmapped. If the create ==1, it will make sure
1039  * the buffer head is mapped.
1040  *
1041  * It returns 0 if plain look up failed (blocks have not been allocated), in
1042  * that casem, buffer head is unmapped
1043  *
1044  * It returns the error in case of allocation failure.
1045  */
1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047                         unsigned long max_blocks, struct buffer_head *bh,
1048                         int create, int extend_disksize, int flag)
1049 {
1050         int retval;
1051
1052         clear_buffer_mapped(bh);
1053
1054         /*
1055          * Try to see if we can get  the block without requesting
1056          * for new file system block.
1057          */
1058         down_read((&EXT4_I(inode)->i_data_sem));
1059         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061                                 bh, 0, 0);
1062         } else {
1063                 retval = ext4_get_blocks_handle(handle,
1064                                 inode, block, max_blocks, bh, 0, 0);
1065         }
1066         up_read((&EXT4_I(inode)->i_data_sem));
1067
1068         /* If it is only a block(s) look up */
1069         if (!create)
1070                 return retval;
1071
1072         /*
1073          * Returns if the blocks have already allocated
1074          *
1075          * Note that if blocks have been preallocated
1076          * ext4_ext_get_block() returns th create = 0
1077          * with buffer head unmapped.
1078          */
1079         if (retval > 0 && buffer_mapped(bh))
1080                 return retval;
1081
1082         /*
1083          * New blocks allocate and/or writing to uninitialized extent
1084          * will possibly result in updating i_data, so we take
1085          * the write lock of i_data_sem, and call get_blocks()
1086          * with create == 1 flag.
1087          */
1088         down_write((&EXT4_I(inode)->i_data_sem));
1089
1090         /*
1091          * if the caller is from delayed allocation writeout path
1092          * we have already reserved fs blocks for allocation
1093          * let the underlying get_block() function know to
1094          * avoid double accounting
1095          */
1096         if (flag)
1097                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1098         /*
1099          * We need to check for EXT4 here because migrate
1100          * could have changed the inode type in between
1101          */
1102         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104                                 bh, create, extend_disksize);
1105         } else {
1106                 retval = ext4_get_blocks_handle(handle, inode, block,
1107                                 max_blocks, bh, create, extend_disksize);
1108
1109                 if (retval > 0 && buffer_new(bh)) {
1110                         /*
1111                          * We allocated new blocks which will result in
1112                          * i_data's format changing.  Force the migrate
1113                          * to fail by clearing migrate flags
1114                          */
1115                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116                                                         ~EXT4_EXT_MIGRATE;
1117                 }
1118         }
1119
1120         if (flag) {
1121                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1122                 /*
1123                  * Update reserved blocks/metadata blocks
1124                  * after successful block allocation
1125                  * which were deferred till now
1126                  */
1127                 if ((retval > 0) && buffer_delay(bh))
1128                         ext4_da_update_reserve_space(inode, retval);
1129         }
1130
1131         up_write((&EXT4_I(inode)->i_data_sem));
1132         return retval;
1133 }
1134
1135 /* Maximum number of blocks we map for direct IO at once. */
1136 #define DIO_MAX_BLOCKS 4096
1137
1138 int ext4_get_block(struct inode *inode, sector_t iblock,
1139                    struct buffer_head *bh_result, int create)
1140 {
1141         handle_t *handle = ext4_journal_current_handle();
1142         int ret = 0, started = 0;
1143         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1144         int dio_credits;
1145
1146         if (create && !handle) {
1147                 /* Direct IO write... */
1148                 if (max_blocks > DIO_MAX_BLOCKS)
1149                         max_blocks = DIO_MAX_BLOCKS;
1150                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151                 handle = ext4_journal_start(inode, dio_credits);
1152                 if (IS_ERR(handle)) {
1153                         ret = PTR_ERR(handle);
1154                         goto out;
1155                 }
1156                 started = 1;
1157         }
1158
1159         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1160                                         max_blocks, bh_result, create, 0, 0);
1161         if (ret > 0) {
1162                 bh_result->b_size = (ret << inode->i_blkbits);
1163                 ret = 0;
1164         }
1165         if (started)
1166                 ext4_journal_stop(handle);
1167 out:
1168         return ret;
1169 }
1170
1171 /*
1172  * `handle' can be NULL if create is zero
1173  */
1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1175                                 ext4_lblk_t block, int create, int *errp)
1176 {
1177         struct buffer_head dummy;
1178         int fatal = 0, err;
1179
1180         J_ASSERT(handle != NULL || create == 0);
1181
1182         dummy.b_state = 0;
1183         dummy.b_blocknr = -1000;
1184         buffer_trace_init(&dummy.b_history);
1185         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1186                                         &dummy, create, 1, 0);
1187         /*
1188          * ext4_get_blocks_handle() returns number of blocks
1189          * mapped. 0 in case of a HOLE.
1190          */
1191         if (err > 0) {
1192                 if (err > 1)
1193                         WARN_ON(1);
1194                 err = 0;
1195         }
1196         *errp = err;
1197         if (!err && buffer_mapped(&dummy)) {
1198                 struct buffer_head *bh;
1199                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200                 if (!bh) {
1201                         *errp = -EIO;
1202                         goto err;
1203                 }
1204                 if (buffer_new(&dummy)) {
1205                         J_ASSERT(create != 0);
1206                         J_ASSERT(handle != NULL);
1207
1208                         /*
1209                          * Now that we do not always journal data, we should
1210                          * keep in mind whether this should always journal the
1211                          * new buffer as metadata.  For now, regular file
1212                          * writes use ext4_get_block instead, so it's not a
1213                          * problem.
1214                          */
1215                         lock_buffer(bh);
1216                         BUFFER_TRACE(bh, "call get_create_access");
1217                         fatal = ext4_journal_get_create_access(handle, bh);
1218                         if (!fatal && !buffer_uptodate(bh)) {
1219                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1220                                 set_buffer_uptodate(bh);
1221                         }
1222                         unlock_buffer(bh);
1223                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224                         err = ext4_journal_dirty_metadata(handle, bh);
1225                         if (!fatal)
1226                                 fatal = err;
1227                 } else {
1228                         BUFFER_TRACE(bh, "not a new buffer");
1229                 }
1230                 if (fatal) {
1231                         *errp = fatal;
1232                         brelse(bh);
1233                         bh = NULL;
1234                 }
1235                 return bh;
1236         }
1237 err:
1238         return NULL;
1239 }
1240
1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1242                                ext4_lblk_t block, int create, int *err)
1243 {
1244         struct buffer_head *bh;
1245
1246         bh = ext4_getblk(handle, inode, block, create, err);
1247         if (!bh)
1248                 return bh;
1249         if (buffer_uptodate(bh))
1250                 return bh;
1251         ll_rw_block(READ_META, 1, &bh);
1252         wait_on_buffer(bh);
1253         if (buffer_uptodate(bh))
1254                 return bh;
1255         put_bh(bh);
1256         *err = -EIO;
1257         return NULL;
1258 }
1259
1260 static int walk_page_buffers(handle_t *handle,
1261                              struct buffer_head *head,
1262                              unsigned from,
1263                              unsigned to,
1264                              int *partial,
1265                              int (*fn)(handle_t *handle,
1266                                        struct buffer_head *bh))
1267 {
1268         struct buffer_head *bh;
1269         unsigned block_start, block_end;
1270         unsigned blocksize = head->b_size;
1271         int err, ret = 0;
1272         struct buffer_head *next;
1273
1274         for (bh = head, block_start = 0;
1275              ret == 0 && (bh != head || !block_start);
1276              block_start = block_end, bh = next)
1277         {
1278                 next = bh->b_this_page;
1279                 block_end = block_start + blocksize;
1280                 if (block_end <= from || block_start >= to) {
1281                         if (partial && !buffer_uptodate(bh))
1282                                 *partial = 1;
1283                         continue;
1284                 }
1285                 err = (*fn)(handle, bh);
1286                 if (!ret)
1287                         ret = err;
1288         }
1289         return ret;
1290 }
1291
1292 /*
1293  * To preserve ordering, it is essential that the hole instantiation and
1294  * the data write be encapsulated in a single transaction.  We cannot
1295  * close off a transaction and start a new one between the ext4_get_block()
1296  * and the commit_write().  So doing the jbd2_journal_start at the start of
1297  * prepare_write() is the right place.
1298  *
1299  * Also, this function can nest inside ext4_writepage() ->
1300  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1301  * has generated enough buffer credits to do the whole page.  So we won't
1302  * block on the journal in that case, which is good, because the caller may
1303  * be PF_MEMALLOC.
1304  *
1305  * By accident, ext4 can be reentered when a transaction is open via
1306  * quota file writes.  If we were to commit the transaction while thus
1307  * reentered, there can be a deadlock - we would be holding a quota
1308  * lock, and the commit would never complete if another thread had a
1309  * transaction open and was blocking on the quota lock - a ranking
1310  * violation.
1311  *
1312  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1313  * will _not_ run commit under these circumstances because handle->h_ref
1314  * is elevated.  We'll still have enough credits for the tiny quotafile
1315  * write.
1316  */
1317 static int do_journal_get_write_access(handle_t *handle,
1318                                         struct buffer_head *bh)
1319 {
1320         if (!buffer_mapped(bh) || buffer_freed(bh))
1321                 return 0;
1322         return ext4_journal_get_write_access(handle, bh);
1323 }
1324
1325 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326                                 loff_t pos, unsigned len, unsigned flags,
1327                                 struct page **pagep, void **fsdata)
1328 {
1329         struct inode *inode = mapping->host;
1330         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1331         handle_t *handle;
1332         int retries = 0;
1333         struct page *page;
1334         pgoff_t index;
1335         unsigned from, to;
1336
1337         index = pos >> PAGE_CACHE_SHIFT;
1338         from = pos & (PAGE_CACHE_SIZE - 1);
1339         to = from + len;
1340
1341 retry:
1342         handle = ext4_journal_start(inode, needed_blocks);
1343         if (IS_ERR(handle)) {
1344                 ret = PTR_ERR(handle);
1345                 goto out;
1346         }
1347
1348         page = __grab_cache_page(mapping, index);
1349         if (!page) {
1350                 ext4_journal_stop(handle);
1351                 ret = -ENOMEM;
1352                 goto out;
1353         }
1354         *pagep = page;
1355
1356         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357                                                         ext4_get_block);
1358
1359         if (!ret && ext4_should_journal_data(inode)) {
1360                 ret = walk_page_buffers(handle, page_buffers(page),
1361                                 from, to, NULL, do_journal_get_write_access);
1362         }
1363
1364         if (ret) {
1365                 unlock_page(page);
1366                 ext4_journal_stop(handle);
1367                 page_cache_release(page);
1368                 /*
1369                  * block_write_begin may have instantiated a few blocks
1370                  * outside i_size.  Trim these off again. Don't need
1371                  * i_size_read because we hold i_mutex.
1372                  */
1373                 if (pos + len > inode->i_size)
1374                         vmtruncate(inode, inode->i_size);
1375         }
1376
1377         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1378                 goto retry;
1379 out:
1380         return ret;
1381 }
1382
1383 /* For write_end() in data=journal mode */
1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1385 {
1386         if (!buffer_mapped(bh) || buffer_freed(bh))
1387                 return 0;
1388         set_buffer_uptodate(bh);
1389         return ext4_journal_dirty_metadata(handle, bh);
1390 }
1391
1392 /*
1393  * We need to pick up the new inode size which generic_commit_write gave us
1394  * `file' can be NULL - eg, when called from page_symlink().
1395  *
1396  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1397  * buffers are managed internally.
1398  */
1399 static int ext4_ordered_write_end(struct file *file,
1400                                 struct address_space *mapping,
1401                                 loff_t pos, unsigned len, unsigned copied,
1402                                 struct page *page, void *fsdata)
1403 {
1404         handle_t *handle = ext4_journal_current_handle();
1405         struct inode *inode = mapping->host;
1406         int ret = 0, ret2;
1407
1408         ret = ext4_jbd2_file_inode(handle, inode);
1409
1410         if (ret == 0) {
1411                 loff_t new_i_size;
1412
1413                 new_i_size = pos + copied;
1414                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1415                         ext4_update_i_disksize(inode, new_i_size);
1416                         /* We need to mark inode dirty even if
1417                          * new_i_size is less that inode->i_size
1418                          * bu greater than i_disksize.(hint delalloc)
1419                          */
1420                         ext4_mark_inode_dirty(handle, inode);
1421                 }
1422
1423                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1424                                                         page, fsdata);
1425                 copied = ret2;
1426                 if (ret2 < 0)
1427                         ret = ret2;
1428         }
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432
1433         return ret ? ret : copied;
1434 }
1435
1436 static int ext4_writeback_write_end(struct file *file,
1437                                 struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned copied,
1439                                 struct page *page, void *fsdata)
1440 {
1441         handle_t *handle = ext4_journal_current_handle();
1442         struct inode *inode = mapping->host;
1443         int ret = 0, ret2;
1444         loff_t new_i_size;
1445
1446         new_i_size = pos + copied;
1447         if (new_i_size > EXT4_I(inode)->i_disksize) {
1448                 ext4_update_i_disksize(inode, new_i_size);
1449                 /* We need to mark inode dirty even if
1450                  * new_i_size is less that inode->i_size
1451                  * bu greater than i_disksize.(hint delalloc)
1452                  */
1453                 ext4_mark_inode_dirty(handle, inode);
1454         }
1455
1456         ret2 = generic_write_end(file, mapping, pos, len, copied,
1457                                                         page, fsdata);
1458         copied = ret2;
1459         if (ret2 < 0)
1460                 ret = ret2;
1461
1462         ret2 = ext4_journal_stop(handle);
1463         if (!ret)
1464                 ret = ret2;
1465
1466         return ret ? ret : copied;
1467 }
1468
1469 static int ext4_journalled_write_end(struct file *file,
1470                                 struct address_space *mapping,
1471                                 loff_t pos, unsigned len, unsigned copied,
1472                                 struct page *page, void *fsdata)
1473 {
1474         handle_t *handle = ext4_journal_current_handle();
1475         struct inode *inode = mapping->host;
1476         int ret = 0, ret2;
1477         int partial = 0;
1478         unsigned from, to;
1479         loff_t new_i_size;
1480
1481         from = pos & (PAGE_CACHE_SIZE - 1);
1482         to = from + len;
1483
1484         if (copied < len) {
1485                 if (!PageUptodate(page))
1486                         copied = 0;
1487                 page_zero_new_buffers(page, from+copied, to);
1488         }
1489
1490         ret = walk_page_buffers(handle, page_buffers(page), from,
1491                                 to, &partial, write_end_fn);
1492         if (!partial)
1493                 SetPageUptodate(page);
1494         new_i_size = pos + copied;
1495         if (new_i_size > inode->i_size)
1496                 i_size_write(inode, pos+copied);
1497         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1498         if (new_i_size > EXT4_I(inode)->i_disksize) {
1499                 ext4_update_i_disksize(inode, new_i_size);
1500                 ret2 = ext4_mark_inode_dirty(handle, inode);
1501                 if (!ret)
1502                         ret = ret2;
1503         }
1504
1505         unlock_page(page);
1506         ret2 = ext4_journal_stop(handle);
1507         if (!ret)
1508                 ret = ret2;
1509         page_cache_release(page);
1510
1511         return ret ? ret : copied;
1512 }
1513
1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1515 {
1516         int retries = 0;
1517        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518        unsigned long md_needed, mdblocks, total = 0;
1519
1520         /*
1521          * recalculate the amount of metadata blocks to reserve
1522          * in order to allocate nrblocks
1523          * worse case is one extent per block
1524          */
1525 repeat:
1526         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528         mdblocks = ext4_calc_metadata_amount(inode, total);
1529         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1530
1531         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532         total = md_needed + nrblocks;
1533
1534         if (ext4_claim_free_blocks(sbi, total)) {
1535                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537                         yield();
1538                         goto repeat;
1539                 }
1540                 return -ENOSPC;
1541         }
1542         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1544
1545         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546         return 0;       /* success */
1547 }
1548
1549 static void ext4_da_release_space(struct inode *inode, int to_free)
1550 {
1551         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552         int total, mdb, mdb_free, release;
1553
1554         if (!to_free)
1555                 return;         /* Nothing to release, exit */
1556
1557         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1558
1559         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1560                 /*
1561                  * if there is no reserved blocks, but we try to free some
1562                  * then the counter is messed up somewhere.
1563                  * but since this function is called from invalidate
1564                  * page, it's harmless to return without any action
1565                  */
1566                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567                             "blocks for inode %lu, but there is no reserved "
1568                             "data blocks\n", to_free, inode->i_ino);
1569                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570                 return;
1571         }
1572
1573         /* recalculate the number of metablocks still need to be reserved */
1574         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1575         mdb = ext4_calc_metadata_amount(inode, total);
1576
1577         /* figure out how many metablocks to release */
1578         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1580
1581         release = to_free + mdb_free;
1582
1583         /* update fs dirty blocks counter for truncate case */
1584         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1585
1586         /* update per-inode reservations */
1587         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1589
1590         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1592         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1593 }
1594
1595 static void ext4_da_page_release_reservation(struct page *page,
1596                                                 unsigned long offset)
1597 {
1598         int to_release = 0;
1599         struct buffer_head *head, *bh;
1600         unsigned int curr_off = 0;
1601
1602         head = page_buffers(page);
1603         bh = head;
1604         do {
1605                 unsigned int next_off = curr_off + bh->b_size;
1606
1607                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1608                         to_release++;
1609                         clear_buffer_delay(bh);
1610                 }
1611                 curr_off = next_off;
1612         } while ((bh = bh->b_this_page) != head);
1613         ext4_da_release_space(page->mapping->host, to_release);
1614 }
1615
1616 /*
1617  * Delayed allocation stuff
1618  */
1619
1620 struct mpage_da_data {
1621         struct inode *inode;
1622         struct buffer_head lbh;                 /* extent of blocks */
1623         unsigned long first_page, next_page;    /* extent of pages */
1624         get_block_t *get_block;
1625         struct writeback_control *wbc;
1626         int io_done;
1627         long pages_written;
1628         int retval;
1629 };
1630
1631 /*
1632  * mpage_da_submit_io - walks through extent of pages and try to write
1633  * them with writepage() call back
1634  *
1635  * @mpd->inode: inode
1636  * @mpd->first_page: first page of the extent
1637  * @mpd->next_page: page after the last page of the extent
1638  * @mpd->get_block: the filesystem's block mapper function
1639  *
1640  * By the time mpage_da_submit_io() is called we expect all blocks
1641  * to be allocated. this may be wrong if allocation failed.
1642  *
1643  * As pages are already locked by write_cache_pages(), we can't use it
1644  */
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646 {
1647         struct address_space *mapping = mpd->inode->i_mapping;
1648         int ret = 0, err, nr_pages, i;
1649         unsigned long index, end;
1650         struct pagevec pvec;
1651         long pages_skipped;
1652
1653         BUG_ON(mpd->next_page <= mpd->first_page);
1654         pagevec_init(&pvec, 0);
1655         index = mpd->first_page;
1656         end = mpd->next_page - 1;
1657
1658         while (index <= end) {
1659                 /*
1660                  * We can use PAGECACHE_TAG_DIRTY lookup here because
1661                  * even though we have cleared the dirty flag on the page
1662                  * We still keep the page in the radix tree with tag
1663                  * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1664                  * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1665                  * which is called via the below writepage callback.
1666                  */
1667                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1668                                         PAGECACHE_TAG_DIRTY,
1669                                         min(end - index,
1670                                         (pgoff_t)PAGEVEC_SIZE-1) + 1);
1671                 if (nr_pages == 0)
1672                         break;
1673                 for (i = 0; i < nr_pages; i++) {
1674                         struct page *page = pvec.pages[i];
1675
1676                         pages_skipped = mpd->wbc->pages_skipped;
1677                         err = mapping->a_ops->writepage(page, mpd->wbc);
1678                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1679                                 /*
1680                                  * have successfully written the page
1681                                  * without skipping the same
1682                                  */
1683                                 mpd->pages_written++;
1684                         /*
1685                          * In error case, we have to continue because
1686                          * remaining pages are still locked
1687                          * XXX: unlock and re-dirty them?
1688                          */
1689                         if (ret == 0)
1690                                 ret = err;
1691                 }
1692                 pagevec_release(&pvec);
1693         }
1694         return ret;
1695 }
1696
1697 /*
1698  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1699  *
1700  * @mpd->inode - inode to walk through
1701  * @exbh->b_blocknr - first block on a disk
1702  * @exbh->b_size - amount of space in bytes
1703  * @logical - first logical block to start assignment with
1704  *
1705  * the function goes through all passed space and put actual disk
1706  * block numbers into buffer heads, dropping BH_Delay
1707  */
1708 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1709                                  struct buffer_head *exbh)
1710 {
1711         struct inode *inode = mpd->inode;
1712         struct address_space *mapping = inode->i_mapping;
1713         int blocks = exbh->b_size >> inode->i_blkbits;
1714         sector_t pblock = exbh->b_blocknr, cur_logical;
1715         struct buffer_head *head, *bh;
1716         pgoff_t index, end;
1717         struct pagevec pvec;
1718         int nr_pages, i;
1719
1720         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1723
1724         pagevec_init(&pvec, 0);
1725
1726         while (index <= end) {
1727                 /* XXX: optimize tail */
1728                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1729                 if (nr_pages == 0)
1730                         break;
1731                 for (i = 0; i < nr_pages; i++) {
1732                         struct page *page = pvec.pages[i];
1733
1734                         index = page->index;
1735                         if (index > end)
1736                                 break;
1737                         index++;
1738
1739                         BUG_ON(!PageLocked(page));
1740                         BUG_ON(PageWriteback(page));
1741                         BUG_ON(!page_has_buffers(page));
1742
1743                         bh = page_buffers(page);
1744                         head = bh;
1745
1746                         /* skip blocks out of the range */
1747                         do {
1748                                 if (cur_logical >= logical)
1749                                         break;
1750                                 cur_logical++;
1751                         } while ((bh = bh->b_this_page) != head);
1752
1753                         do {
1754                                 if (cur_logical >= logical + blocks)
1755                                         break;
1756                                 if (buffer_delay(bh)) {
1757                                         bh->b_blocknr = pblock;
1758                                         clear_buffer_delay(bh);
1759                                         bh->b_bdev = inode->i_sb->s_bdev;
1760                                 } else if (buffer_unwritten(bh)) {
1761                                         bh->b_blocknr = pblock;
1762                                         clear_buffer_unwritten(bh);
1763                                         set_buffer_mapped(bh);
1764                                         set_buffer_new(bh);
1765                                         bh->b_bdev = inode->i_sb->s_bdev;
1766                                 } else if (buffer_mapped(bh))
1767                                         BUG_ON(bh->b_blocknr != pblock);
1768
1769                                 cur_logical++;
1770                                 pblock++;
1771                         } while ((bh = bh->b_this_page) != head);
1772                 }
1773                 pagevec_release(&pvec);
1774         }
1775 }
1776
1777
1778 /*
1779  * __unmap_underlying_blocks - just a helper function to unmap
1780  * set of blocks described by @bh
1781  */
1782 static inline void __unmap_underlying_blocks(struct inode *inode,
1783                                              struct buffer_head *bh)
1784 {
1785         struct block_device *bdev = inode->i_sb->s_bdev;
1786         int blocks, i;
1787
1788         blocks = bh->b_size >> inode->i_blkbits;
1789         for (i = 0; i < blocks; i++)
1790                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1791 }
1792
1793 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1794                                         sector_t logical, long blk_cnt)
1795 {
1796         int nr_pages, i;
1797         pgoff_t index, end;
1798         struct pagevec pvec;
1799         struct inode *inode = mpd->inode;
1800         struct address_space *mapping = inode->i_mapping;
1801
1802         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1803         end   = (logical + blk_cnt - 1) >>
1804                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1805         while (index <= end) {
1806                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1807                 if (nr_pages == 0)
1808                         break;
1809                 for (i = 0; i < nr_pages; i++) {
1810                         struct page *page = pvec.pages[i];
1811                         index = page->index;
1812                         if (index > end)
1813                                 break;
1814                         index++;
1815
1816                         BUG_ON(!PageLocked(page));
1817                         BUG_ON(PageWriteback(page));
1818                         block_invalidatepage(page, 0);
1819                         ClearPageUptodate(page);
1820                         unlock_page(page);
1821                 }
1822         }
1823         return;
1824 }
1825
1826 static void ext4_print_free_blocks(struct inode *inode)
1827 {
1828         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1829         printk(KERN_EMERG "Total free blocks count %lld\n",
1830                         ext4_count_free_blocks(inode->i_sb));
1831         printk(KERN_EMERG "Free/Dirty block details\n");
1832         printk(KERN_EMERG "free_blocks=%lld\n",
1833                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1834         printk(KERN_EMERG "dirty_blocks=%lld\n",
1835                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1836         printk(KERN_EMERG "Block reservation details\n");
1837         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1838                         EXT4_I(inode)->i_reserved_data_blocks);
1839         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1840                         EXT4_I(inode)->i_reserved_meta_blocks);
1841         return;
1842 }
1843
1844 /*
1845  * mpage_da_map_blocks - go through given space
1846  *
1847  * @mpd->lbh - bh describing space
1848  * @mpd->get_block - the filesystem's block mapper function
1849  *
1850  * The function skips space we know is already mapped to disk blocks.
1851  *
1852  */
1853 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1854 {
1855         int err = 0;
1856         struct buffer_head new;
1857         struct buffer_head *lbh = &mpd->lbh;
1858         sector_t next;
1859
1860         /*
1861          * We consider only non-mapped and non-allocated blocks
1862          */
1863         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1864                 return 0;
1865         new.b_state = lbh->b_state;
1866         new.b_blocknr = 0;
1867         new.b_size = lbh->b_size;
1868         next = lbh->b_blocknr;
1869         /*
1870          * If we didn't accumulate anything
1871          * to write simply return
1872          */
1873         if (!new.b_size)
1874                 return 0;
1875         err = mpd->get_block(mpd->inode, next, &new, 1);
1876         if (err) {
1877
1878                 /* If get block returns with error
1879                  * we simply return. Later writepage
1880                  * will redirty the page and writepages
1881                  * will find the dirty page again
1882                  */
1883                 if (err == -EAGAIN)
1884                         return 0;
1885
1886                 if (err == -ENOSPC &&
1887                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1888                         mpd->retval = err;
1889                         return 0;
1890                 }
1891
1892                 /*
1893                  * get block failure will cause us
1894                  * to loop in writepages. Because
1895                  * a_ops->writepage won't be able to
1896                  * make progress. The page will be redirtied
1897                  * by writepage and writepages will again
1898                  * try to write the same.
1899                  */
1900                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1901                                   "at logical offset %llu with max blocks "
1902                                   "%zd with error %d\n",
1903                                   __func__, mpd->inode->i_ino,
1904                                   (unsigned long long)next,
1905                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1906                 printk(KERN_EMERG "This should not happen.!! "
1907                                         "Data will be lost\n");
1908                 if (err == -ENOSPC) {
1909                         ext4_print_free_blocks(mpd->inode);
1910                 }
1911                 /* invlaidate all the pages */
1912                 ext4_da_block_invalidatepages(mpd, next,
1913                                 lbh->b_size >> mpd->inode->i_blkbits);
1914                 return err;
1915         }
1916         BUG_ON(new.b_size == 0);
1917
1918         if (buffer_new(&new))
1919                 __unmap_underlying_blocks(mpd->inode, &new);
1920
1921         /*
1922          * If blocks are delayed marked, we need to
1923          * put actual blocknr and drop delayed bit
1924          */
1925         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1926                 mpage_put_bnr_to_bhs(mpd, next, &new);
1927
1928         return 0;
1929 }
1930
1931 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1932                 (1 << BH_Delay) | (1 << BH_Unwritten))
1933
1934 /*
1935  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1936  *
1937  * @mpd->lbh - extent of blocks
1938  * @logical - logical number of the block in the file
1939  * @bh - bh of the block (used to access block's state)
1940  *
1941  * the function is used to collect contig. blocks in same state
1942  */
1943 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1944                                    sector_t logical, struct buffer_head *bh)
1945 {
1946         sector_t next;
1947         size_t b_size = bh->b_size;
1948         struct buffer_head *lbh = &mpd->lbh;
1949         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1950
1951         /* check if thereserved journal credits might overflow */
1952         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1953                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1954                         /*
1955                          * With non-extent format we are limited by the journal
1956                          * credit available.  Total credit needed to insert
1957                          * nrblocks contiguous blocks is dependent on the
1958                          * nrblocks.  So limit nrblocks.
1959                          */
1960                         goto flush_it;
1961                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1962                                 EXT4_MAX_TRANS_DATA) {
1963                         /*
1964                          * Adding the new buffer_head would make it cross the
1965                          * allowed limit for which we have journal credit
1966                          * reserved. So limit the new bh->b_size
1967                          */
1968                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1969                                                 mpd->inode->i_blkbits;
1970                         /* we will do mpage_da_submit_io in the next loop */
1971                 }
1972         }
1973         /*
1974          * First block in the extent
1975          */
1976         if (lbh->b_size == 0) {
1977                 lbh->b_blocknr = logical;
1978                 lbh->b_size = b_size;
1979                 lbh->b_state = bh->b_state & BH_FLAGS;
1980                 return;
1981         }
1982
1983         next = lbh->b_blocknr + nrblocks;
1984         /*
1985          * Can we merge the block to our big extent?
1986          */
1987         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1988                 lbh->b_size += b_size;
1989                 return;
1990         }
1991
1992 flush_it:
1993         /*
1994          * We couldn't merge the block to our extent, so we
1995          * need to flush current  extent and start new one
1996          */
1997         if (mpage_da_map_blocks(mpd) == 0)
1998                 mpage_da_submit_io(mpd);
1999         mpd->io_done = 1;
2000         return;
2001 }
2002
2003 /*
2004  * __mpage_da_writepage - finds extent of pages and blocks
2005  *
2006  * @page: page to consider
2007  * @wbc: not used, we just follow rules
2008  * @data: context
2009  *
2010  * The function finds extents of pages and scan them for all blocks.
2011  */
2012 static int __mpage_da_writepage(struct page *page,
2013                                 struct writeback_control *wbc, void *data)
2014 {
2015         struct mpage_da_data *mpd = data;
2016         struct inode *inode = mpd->inode;
2017         struct buffer_head *bh, *head, fake;
2018         sector_t logical;
2019
2020         if (mpd->io_done) {
2021                 /*
2022                  * Rest of the page in the page_vec
2023                  * redirty then and skip then. We will
2024                  * try to to write them again after
2025                  * starting a new transaction
2026                  */
2027                 redirty_page_for_writepage(wbc, page);
2028                 unlock_page(page);
2029                 return MPAGE_DA_EXTENT_TAIL;
2030         }
2031         /*
2032          * Can we merge this page to current extent?
2033          */
2034         if (mpd->next_page != page->index) {
2035                 /*
2036                  * Nope, we can't. So, we map non-allocated blocks
2037                  * and start IO on them using writepage()
2038                  */
2039                 if (mpd->next_page != mpd->first_page) {
2040                         if (mpage_da_map_blocks(mpd) == 0)
2041                                 mpage_da_submit_io(mpd);
2042                         /*
2043                          * skip rest of the page in the page_vec
2044                          */
2045                         mpd->io_done = 1;
2046                         redirty_page_for_writepage(wbc, page);
2047                         unlock_page(page);
2048                         return MPAGE_DA_EXTENT_TAIL;
2049                 }
2050
2051                 /*
2052                  * Start next extent of pages ...
2053                  */
2054                 mpd->first_page = page->index;
2055
2056                 /*
2057                  * ... and blocks
2058                  */
2059                 mpd->lbh.b_size = 0;
2060                 mpd->lbh.b_state = 0;
2061                 mpd->lbh.b_blocknr = 0;
2062         }
2063
2064         mpd->next_page = page->index + 1;
2065         logical = (sector_t) page->index <<
2066                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067
2068         if (!page_has_buffers(page)) {
2069                 /*
2070                  * There is no attached buffer heads yet (mmap?)
2071                  * we treat the page asfull of dirty blocks
2072                  */
2073                 bh = &fake;
2074                 bh->b_size = PAGE_CACHE_SIZE;
2075                 bh->b_state = 0;
2076                 set_buffer_dirty(bh);
2077                 set_buffer_uptodate(bh);
2078                 mpage_add_bh_to_extent(mpd, logical, bh);
2079                 if (mpd->io_done)
2080                         return MPAGE_DA_EXTENT_TAIL;
2081         } else {
2082                 /*
2083                  * Page with regular buffer heads, just add all dirty ones
2084                  */
2085                 head = page_buffers(page);
2086                 bh = head;
2087                 do {
2088                         BUG_ON(buffer_locked(bh));
2089                         if (buffer_dirty(bh) &&
2090                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2091                                 mpage_add_bh_to_extent(mpd, logical, bh);
2092                                 if (mpd->io_done)
2093                                         return MPAGE_DA_EXTENT_TAIL;
2094                         }
2095                         logical++;
2096                 } while ((bh = bh->b_this_page) != head);
2097         }
2098
2099         return 0;
2100 }
2101
2102 /*
2103  * mpage_da_writepages - walk the list of dirty pages of the given
2104  * address space, allocates non-allocated blocks, maps newly-allocated
2105  * blocks to existing bhs and issue IO them
2106  *
2107  * @mapping: address space structure to write
2108  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2109  * @get_block: the filesystem's block mapper function.
2110  *
2111  * This is a library function, which implements the writepages()
2112  * address_space_operation.
2113  */
2114 static int mpage_da_writepages(struct address_space *mapping,
2115                                struct writeback_control *wbc,
2116                                struct mpage_da_data *mpd)
2117 {
2118         int ret;
2119
2120         if (!mpd->get_block)
2121                 return generic_writepages(mapping, wbc);
2122
2123         mpd->lbh.b_size = 0;
2124         mpd->lbh.b_state = 0;
2125         mpd->lbh.b_blocknr = 0;
2126         mpd->first_page = 0;
2127         mpd->next_page = 0;
2128         mpd->io_done = 0;
2129         mpd->pages_written = 0;
2130         mpd->retval = 0;
2131
2132         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2133         /*
2134          * Handle last extent of pages
2135          */
2136         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2137                 if (mpage_da_map_blocks(mpd) == 0)
2138                         mpage_da_submit_io(mpd);
2139
2140                 mpd->io_done = 1;
2141                 ret = MPAGE_DA_EXTENT_TAIL;
2142         }
2143         wbc->nr_to_write -= mpd->pages_written;
2144         return ret;
2145 }
2146
2147 /*
2148  * this is a special callback for ->write_begin() only
2149  * it's intention is to return mapped block or reserve space
2150  */
2151 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2152                                   struct buffer_head *bh_result, int create)
2153 {
2154         int ret = 0;
2155
2156         BUG_ON(create == 0);
2157         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2158
2159         /*
2160          * first, we need to know whether the block is allocated already
2161          * preallocated blocks are unmapped but should treated
2162          * the same as allocated blocks.
2163          */
2164         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2165         if ((ret == 0) && !buffer_delay(bh_result)) {
2166                 /* the block isn't (pre)allocated yet, let's reserve space */
2167                 /*
2168                  * XXX: __block_prepare_write() unmaps passed block,
2169                  * is it OK?
2170                  */
2171                 ret = ext4_da_reserve_space(inode, 1);
2172                 if (ret)
2173                         /* not enough space to reserve */
2174                         return ret;
2175
2176                 map_bh(bh_result, inode->i_sb, 0);
2177                 set_buffer_new(bh_result);
2178                 set_buffer_delay(bh_result);
2179         } else if (ret > 0) {
2180                 bh_result->b_size = (ret << inode->i_blkbits);
2181                 ret = 0;
2182         }
2183
2184         return ret;
2185 }
2186 #define         EXT4_DELALLOC_RSVED     1
2187 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2188                                    struct buffer_head *bh_result, int create)
2189 {
2190         int ret;
2191         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2192         loff_t disksize = EXT4_I(inode)->i_disksize;
2193         handle_t *handle = NULL;
2194
2195         handle = ext4_journal_current_handle();
2196         BUG_ON(!handle);
2197         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2198                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2199         if (ret > 0) {
2200
2201                 bh_result->b_size = (ret << inode->i_blkbits);
2202
2203                 if (ext4_should_order_data(inode)) {
2204                         int retval;
2205                         retval = ext4_jbd2_file_inode(handle, inode);
2206                         if (retval)
2207                                 /*
2208                                  * Failed to add inode for ordered
2209                                  * mode. Don't update file size
2210                                  */
2211                                 return retval;
2212                 }
2213
2214                 /*
2215                  * Update on-disk size along with block allocation
2216                  * we don't use 'extend_disksize' as size may change
2217                  * within already allocated block -bzzz
2218                  */
2219                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2220                 if (disksize > i_size_read(inode))
2221                         disksize = i_size_read(inode);
2222                 if (disksize > EXT4_I(inode)->i_disksize) {
2223                         ext4_update_i_disksize(inode, disksize);
2224                         ret = ext4_mark_inode_dirty(handle, inode);
2225                         return ret;
2226                 }
2227                 ret = 0;
2228         }
2229         return ret;
2230 }
2231
2232 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2233 {
2234         /*
2235          * unmapped buffer is possible for holes.
2236          * delay buffer is possible with delayed allocation
2237          */
2238         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2239 }
2240
2241 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2242                                    struct buffer_head *bh_result, int create)
2243 {
2244         int ret = 0;
2245         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2246
2247         /*
2248          * we don't want to do block allocation in writepage
2249          * so call get_block_wrap with create = 0
2250          */
2251         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2252                                    bh_result, 0, 0, 0);
2253         if (ret > 0) {
2254                 bh_result->b_size = (ret << inode->i_blkbits);
2255                 ret = 0;
2256         }
2257         return ret;
2258 }
2259
2260 /*
2261  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2262  * get called via journal_submit_inode_data_buffers (no journal handle)
2263  * get called via shrink_page_list via pdflush (no journal handle)
2264  * or grab_page_cache when doing write_begin (have journal handle)
2265  */
2266 static int ext4_da_writepage(struct page *page,
2267                                 struct writeback_control *wbc)
2268 {
2269         int ret = 0;
2270         loff_t size;
2271         unsigned long len;
2272         struct buffer_head *page_bufs;
2273         struct inode *inode = page->mapping->host;
2274
2275         size = i_size_read(inode);
2276         if (page->index == size >> PAGE_CACHE_SHIFT)
2277                 len = size & ~PAGE_CACHE_MASK;
2278         else
2279                 len = PAGE_CACHE_SIZE;
2280
2281         if (page_has_buffers(page)) {
2282                 page_bufs = page_buffers(page);
2283                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2284                                         ext4_bh_unmapped_or_delay)) {
2285                         /*
2286                          * We don't want to do  block allocation
2287                          * So redirty the page and return
2288                          * We may reach here when we do a journal commit
2289                          * via journal_submit_inode_data_buffers.
2290                          * If we don't have mapping block we just ignore
2291                          * them. We can also reach here via shrink_page_list
2292                          */
2293                         redirty_page_for_writepage(wbc, page);
2294                         unlock_page(page);
2295                         return 0;
2296                 }
2297         } else {
2298                 /*
2299                  * The test for page_has_buffers() is subtle:
2300                  * We know the page is dirty but it lost buffers. That means
2301                  * that at some moment in time after write_begin()/write_end()
2302                  * has been called all buffers have been clean and thus they
2303                  * must have been written at least once. So they are all
2304                  * mapped and we can happily proceed with mapping them
2305                  * and writing the page.
2306                  *
2307                  * Try to initialize the buffer_heads and check whether
2308                  * all are mapped and non delay. We don't want to
2309                  * do block allocation here.
2310                  */
2311                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2312                                                 ext4_normal_get_block_write);
2313                 if (!ret) {
2314                         page_bufs = page_buffers(page);
2315                         /* check whether all are mapped and non delay */
2316                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2317                                                 ext4_bh_unmapped_or_delay)) {
2318                                 redirty_page_for_writepage(wbc, page);
2319                                 unlock_page(page);
2320                                 return 0;
2321                         }
2322                 } else {
2323                         /*
2324                          * We can't do block allocation here
2325                          * so just redity the page and unlock
2326                          * and return
2327                          */
2328                         redirty_page_for_writepage(wbc, page);
2329                         unlock_page(page);
2330                         return 0;
2331                 }
2332         }
2333
2334         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2335                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2336         else
2337                 ret = block_write_full_page(page,
2338                                                 ext4_normal_get_block_write,
2339                                                 wbc);
2340
2341         return ret;
2342 }
2343
2344 /*
2345  * This is called via ext4_da_writepages() to
2346  * calulate the total number of credits to reserve to fit
2347  * a single extent allocation into a single transaction,
2348  * ext4_da_writpeages() will loop calling this before
2349  * the block allocation.
2350  */
2351
2352 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2353 {
2354         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2355
2356         /*
2357          * With non-extent format the journal credit needed to
2358          * insert nrblocks contiguous block is dependent on
2359          * number of contiguous block. So we will limit
2360          * number of contiguous block to a sane value
2361          */
2362         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2363             (max_blocks > EXT4_MAX_TRANS_DATA))
2364                 max_blocks = EXT4_MAX_TRANS_DATA;
2365
2366         return ext4_chunk_trans_blocks(inode, max_blocks);
2367 }
2368
2369 static int ext4_da_writepages(struct address_space *mapping,
2370                               struct writeback_control *wbc)
2371 {
2372         pgoff_t index;
2373         int range_whole = 0;
2374         handle_t *handle = NULL;
2375         struct mpage_da_data mpd;
2376         struct inode *inode = mapping->host;
2377         int no_nrwrite_index_update;
2378         long pages_written = 0, pages_skipped;
2379         int needed_blocks, ret = 0, nr_to_writebump = 0;
2380         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2381
2382         /*
2383          * No pages to write? This is mainly a kludge to avoid starting
2384          * a transaction for special inodes like journal inode on last iput()
2385          * because that could violate lock ordering on umount
2386          */
2387         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2388                 return 0;
2389         /*
2390          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2391          * This make sure small files blocks are allocated in
2392          * single attempt. This ensure that small files
2393          * get less fragmented.
2394          */
2395         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2396                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2397                 wbc->nr_to_write = sbi->s_mb_stream_request;
2398         }
2399         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2400                 range_whole = 1;
2401
2402         if (wbc->range_cyclic)
2403                 index = mapping->writeback_index;
2404         else
2405                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2406
2407         mpd.wbc = wbc;
2408         mpd.inode = mapping->host;
2409
2410         /*
2411          * we don't want write_cache_pages to update
2412          * nr_to_write and writeback_index
2413          */
2414         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2415         wbc->no_nrwrite_index_update = 1;
2416         pages_skipped = wbc->pages_skipped;
2417
2418         while (!ret && wbc->nr_to_write > 0) {
2419
2420                 /*
2421                  * we  insert one extent at a time. So we need
2422                  * credit needed for single extent allocation.
2423                  * journalled mode is currently not supported
2424                  * by delalloc
2425                  */
2426                 BUG_ON(ext4_should_journal_data(inode));
2427                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2428
2429                 /* start a new transaction*/
2430                 handle = ext4_journal_start(inode, needed_blocks);
2431                 if (IS_ERR(handle)) {
2432                         ret = PTR_ERR(handle);
2433                         printk(KERN_EMERG "%s: jbd2_start: "
2434                                "%ld pages, ino %lu; err %d\n", __func__,
2435                                 wbc->nr_to_write, inode->i_ino, ret);
2436                         dump_stack();
2437                         goto out_writepages;
2438                 }
2439                 mpd.get_block = ext4_da_get_block_write;
2440                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2441
2442                 ext4_journal_stop(handle);
2443
2444                 if (mpd.retval == -ENOSPC) {
2445                         /* commit the transaction which would
2446                          * free blocks released in the transaction
2447                          * and try again
2448                          */
2449                         jbd2_journal_force_commit_nested(sbi->s_journal);
2450                         wbc->pages_skipped = pages_skipped;
2451                         ret = 0;
2452                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2453                         /*
2454                          * got one extent now try with
2455                          * rest of the pages
2456                          */
2457                         pages_written += mpd.pages_written;
2458                         wbc->pages_skipped = pages_skipped;
2459                         ret = 0;
2460                 } else if (wbc->nr_to_write)
2461                         /*
2462                          * There is no more writeout needed
2463                          * or we requested for a noblocking writeout
2464                          * and we found the device congested
2465                          */
2466                         break;
2467         }
2468         if (pages_skipped != wbc->pages_skipped)
2469                 printk(KERN_EMERG "This should not happen leaving %s "
2470                                 "with nr_to_write = %ld ret = %d\n",
2471                                 __func__, wbc->nr_to_write, ret);
2472
2473         /* Update index */
2474         index += pages_written;
2475         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2476                 /*
2477                  * set the writeback_index so that range_cyclic
2478                  * mode will write it back later
2479                  */
2480                 mapping->writeback_index = index;
2481
2482 out_writepages:
2483         if (!no_nrwrite_index_update)
2484                 wbc->no_nrwrite_index_update = 0;
2485         wbc->nr_to_write -= nr_to_writebump;
2486         return ret;
2487 }
2488
2489 #define FALL_BACK_TO_NONDELALLOC 1
2490 static int ext4_nonda_switch(struct super_block *sb)
2491 {
2492         s64 free_blocks, dirty_blocks;
2493         struct ext4_sb_info *sbi = EXT4_SB(sb);
2494
2495         /*
2496          * switch to non delalloc mode if we are running low
2497          * on free block. The free block accounting via percpu
2498          * counters can get slightly wrong with FBC_BATCH getting
2499          * accumulated on each CPU without updating global counters
2500          * Delalloc need an accurate free block accounting. So switch
2501          * to non delalloc when we are near to error range.
2502          */
2503         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2504         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2505         if (2 * free_blocks < 3 * dirty_blocks ||
2506                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2507                 /*
2508                  * free block count is less that 150% of dirty blocks
2509                  * or free blocks is less that watermark
2510                  */
2511                 return 1;
2512         }
2513         return 0;
2514 }
2515
2516 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2517                                 loff_t pos, unsigned len, unsigned flags,
2518                                 struct page **pagep, void **fsdata)
2519 {
2520         int ret, retries = 0;
2521         struct page *page;
2522         pgoff_t index;
2523         unsigned from, to;
2524         struct inode *inode = mapping->host;
2525         handle_t *handle;
2526
2527         index = pos >> PAGE_CACHE_SHIFT;
2528         from = pos & (PAGE_CACHE_SIZE - 1);
2529         to = from + len;
2530
2531         if (ext4_nonda_switch(inode->i_sb)) {
2532                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2533                 return ext4_write_begin(file, mapping, pos,
2534                                         len, flags, pagep, fsdata);
2535         }
2536         *fsdata = (void *)0;
2537 retry:
2538         /*
2539          * With delayed allocation, we don't log the i_disksize update
2540          * if there is delayed block allocation. But we still need
2541          * to journalling the i_disksize update if writes to the end
2542          * of file which has an already mapped buffer.
2543          */
2544         handle = ext4_journal_start(inode, 1);
2545         if (IS_ERR(handle)) {
2546                 ret = PTR_ERR(handle);
2547                 goto out;
2548         }
2549
2550         page = __grab_cache_page(mapping, index);
2551         if (!page) {
2552                 ext4_journal_stop(handle);
2553                 ret = -ENOMEM;
2554                 goto out;
2555         }
2556         *pagep = page;
2557
2558         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2559                                                         ext4_da_get_block_prep);
2560         if (ret < 0) {
2561                 unlock_page(page);
2562                 ext4_journal_stop(handle);
2563                 page_cache_release(page);
2564                 /*
2565                  * block_write_begin may have instantiated a few blocks
2566                  * outside i_size.  Trim these off again. Don't need
2567                  * i_size_read because we hold i_mutex.
2568                  */
2569                 if (pos + len > inode->i_size)
2570                         vmtruncate(inode, inode->i_size);
2571         }
2572
2573         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2574                 goto retry;
2575 out:
2576         return ret;
2577 }
2578
2579 /*
2580  * Check if we should update i_disksize
2581  * when write to the end of file but not require block allocation
2582  */
2583 static int ext4_da_should_update_i_disksize(struct page *page,
2584                                          unsigned long offset)
2585 {
2586         struct buffer_head *bh;
2587         struct inode *inode = page->mapping->host;
2588         unsigned int idx;
2589         int i;
2590
2591         bh = page_buffers(page);
2592         idx = offset >> inode->i_blkbits;
2593
2594         for (i = 0; i < idx; i++)
2595                 bh = bh->b_this_page;
2596
2597         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2598                 return 0;
2599         return 1;
2600 }
2601
2602 static int ext4_da_write_end(struct file *file,
2603                                 struct address_space *mapping,
2604                                 loff_t pos, unsigned len, unsigned copied,
2605                                 struct page *page, void *fsdata)
2606 {
2607         struct inode *inode = mapping->host;
2608         int ret = 0, ret2;
2609         handle_t *handle = ext4_journal_current_handle();
2610         loff_t new_i_size;
2611         unsigned long start, end;
2612         int write_mode = (int)(unsigned long)fsdata;
2613
2614         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2615                 if (ext4_should_order_data(inode)) {
2616                         return ext4_ordered_write_end(file, mapping, pos,
2617                                         len, copied, page, fsdata);
2618                 } else if (ext4_should_writeback_data(inode)) {
2619                         return ext4_writeback_write_end(file, mapping, pos,
2620                                         len, copied, page, fsdata);
2621                 } else {
2622                         BUG();
2623                 }
2624         }
2625
2626         start = pos & (PAGE_CACHE_SIZE - 1);
2627         end = start + copied - 1;
2628
2629         /*
2630          * generic_write_end() will run mark_inode_dirty() if i_size
2631          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2632          * into that.
2633          */
2634
2635         new_i_size = pos + copied;
2636         if (new_i_size > EXT4_I(inode)->i_disksize) {
2637                 if (ext4_da_should_update_i_disksize(page, end)) {
2638                         down_write(&EXT4_I(inode)->i_data_sem);
2639                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2640                                 /*
2641                                  * Updating i_disksize when extending file
2642                                  * without needing block allocation
2643                                  */
2644                                 if (ext4_should_order_data(inode))
2645                                         ret = ext4_jbd2_file_inode(handle,
2646                                                                    inode);
2647
2648                                 EXT4_I(inode)->i_disksize = new_i_size;
2649                         }
2650                         up_write(&EXT4_I(inode)->i_data_sem);
2651                         /* We need to mark inode dirty even if
2652                          * new_i_size is less that inode->i_size
2653                          * bu greater than i_disksize.(hint delalloc)
2654                          */
2655                         ext4_mark_inode_dirty(handle, inode);
2656                 }
2657         }
2658         ret2 = generic_write_end(file, mapping, pos, len, copied,
2659                                                         page, fsdata);
2660         copied = ret2;
2661         if (ret2 < 0)
2662                 ret = ret2;
2663         ret2 = ext4_journal_stop(handle);
2664         if (!ret)
2665                 ret = ret2;
2666
2667         return ret ? ret : copied;
2668 }
2669
2670 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2671 {
2672         /*
2673          * Drop reserved blocks
2674          */
2675         BUG_ON(!PageLocked(page));
2676         if (!page_has_buffers(page))
2677                 goto out;
2678
2679         ext4_da_page_release_reservation(page, offset);
2680
2681 out:
2682         ext4_invalidatepage(page, offset);
2683
2684         return;
2685 }
2686
2687
2688 /*
2689  * bmap() is special.  It gets used by applications such as lilo and by
2690  * the swapper to find the on-disk block of a specific piece of data.
2691  *
2692  * Naturally, this is dangerous if the block concerned is still in the
2693  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2694  * filesystem and enables swap, then they may get a nasty shock when the
2695  * data getting swapped to that swapfile suddenly gets overwritten by
2696  * the original zero's written out previously to the journal and
2697  * awaiting writeback in the kernel's buffer cache.
2698  *
2699  * So, if we see any bmap calls here on a modified, data-journaled file,
2700  * take extra steps to flush any blocks which might be in the cache.
2701  */
2702 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2703 {
2704         struct inode *inode = mapping->host;
2705         journal_t *journal;
2706         int err;
2707
2708         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2709                         test_opt(inode->i_sb, DELALLOC)) {
2710                 /*
2711                  * With delalloc we want to sync the file
2712                  * so that we can make sure we allocate
2713                  * blocks for file
2714                  */
2715                 filemap_write_and_wait(mapping);
2716         }
2717
2718         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2719                 /*
2720                  * This is a REALLY heavyweight approach, but the use of
2721                  * bmap on dirty files is expected to be extremely rare:
2722                  * only if we run lilo or swapon on a freshly made file
2723                  * do we expect this to happen.
2724                  *
2725                  * (bmap requires CAP_SYS_RAWIO so this does not
2726                  * represent an unprivileged user DOS attack --- we'd be
2727                  * in trouble if mortal users could trigger this path at
2728                  * will.)
2729                  *
2730                  * NB. EXT4_STATE_JDATA is not set on files other than
2731                  * regular files.  If somebody wants to bmap a directory
2732                  * or symlink and gets confused because the buffer
2733                  * hasn't yet been flushed to disk, they deserve
2734                  * everything they get.
2735                  */
2736
2737                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2738                 journal = EXT4_JOURNAL(inode);
2739                 jbd2_journal_lock_updates(journal);
2740                 err = jbd2_journal_flush(journal);
2741                 jbd2_journal_unlock_updates(journal);
2742
2743                 if (err)
2744                         return 0;
2745         }
2746
2747         return generic_block_bmap(mapping, block, ext4_get_block);
2748 }
2749
2750 static int bget_one(handle_t *handle, struct buffer_head *bh)
2751 {
2752         get_bh(bh);
2753         return 0;
2754 }
2755
2756 static int bput_one(handle_t *handle, struct buffer_head *bh)
2757 {
2758         put_bh(bh);
2759         return 0;
2760 }
2761
2762 /*
2763  * Note that we don't need to start a transaction unless we're journaling data
2764  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2765  * need to file the inode to the transaction's list in ordered mode because if
2766  * we are writing back data added by write(), the inode is already there and if
2767  * we are writing back data modified via mmap(), noone guarantees in which
2768  * transaction the data will hit the disk. In case we are journaling data, we
2769  * cannot start transaction directly because transaction start ranks above page
2770  * lock so we have to do some magic.
2771  *
2772  * In all journaling modes block_write_full_page() will start the I/O.
2773  *
2774  * Problem:
2775  *
2776  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2777  *              ext4_writepage()
2778  *
2779  * Similar for:
2780  *
2781  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2782  *
2783  * Same applies to ext4_get_block().  We will deadlock on various things like
2784  * lock_journal and i_data_sem
2785  *
2786  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2787  * allocations fail.
2788  *
2789  * 16May01: If we're reentered then journal_current_handle() will be
2790  *          non-zero. We simply *return*.
2791  *
2792  * 1 July 2001: @@@ FIXME:
2793  *   In journalled data mode, a data buffer may be metadata against the
2794  *   current transaction.  But the same file is part of a shared mapping
2795  *   and someone does a writepage() on it.
2796  *
2797  *   We will move the buffer onto the async_data list, but *after* it has
2798  *   been dirtied. So there's a small window where we have dirty data on
2799  *   BJ_Metadata.
2800  *
2801  *   Note that this only applies to the last partial page in the file.  The
2802  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2803  *   broken code anyway: it's wrong for msync()).
2804  *
2805  *   It's a rare case: affects the final partial page, for journalled data
2806  *   where the file is subject to bith write() and writepage() in the same
2807  *   transction.  To fix it we'll need a custom block_write_full_page().
2808  *   We'll probably need that anyway for journalling writepage() output.
2809  *
2810  * We don't honour synchronous mounts for writepage().  That would be
2811  * disastrous.  Any write() or metadata operation will sync the fs for
2812  * us.
2813  *
2814  */
2815 static int __ext4_normal_writepage(struct page *page,
2816                                 struct writeback_control *wbc)
2817 {
2818         struct inode *inode = page->mapping->host;
2819
2820         if (test_opt(inode->i_sb, NOBH))
2821                 return nobh_writepage(page,
2822                                         ext4_normal_get_block_write, wbc);
2823         else
2824                 return block_write_full_page(page,
2825                                                 ext4_normal_get_block_write,
2826                                                 wbc);
2827 }
2828
2829 static int ext4_normal_writepage(struct page *page,
2830                                 struct writeback_control *wbc)
2831 {
2832         struct inode *inode = page->mapping->host;
2833         loff_t size = i_size_read(inode);
2834         loff_t len;
2835
2836         J_ASSERT(PageLocked(page));
2837         if (page->index == size >> PAGE_CACHE_SHIFT)
2838                 len = size & ~PAGE_CACHE_MASK;
2839         else
2840                 len = PAGE_CACHE_SIZE;
2841
2842         if (page_has_buffers(page)) {
2843                 /* if page has buffers it should all be mapped
2844                  * and allocated. If there are not buffers attached
2845                  * to the page we know the page is dirty but it lost
2846                  * buffers. That means that at some moment in time
2847                  * after write_begin() / write_end() has been called
2848                  * all buffers have been clean and thus they must have been
2849                  * written at least once. So they are all mapped and we can
2850                  * happily proceed with mapping them and writing the page.
2851                  */
2852                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2853                                         ext4_bh_unmapped_or_delay));
2854         }
2855
2856         if (!ext4_journal_current_handle())
2857                 return __ext4_normal_writepage(page, wbc);
2858
2859         redirty_page_for_writepage(wbc, page);
2860         unlock_page(page);
2861         return 0;
2862 }
2863
2864 static int __ext4_journalled_writepage(struct page *page,
2865                                 struct writeback_control *wbc)
2866 {
2867         struct address_space *mapping = page->mapping;
2868         struct inode *inode = mapping->host;
2869         struct buffer_head *page_bufs;
2870         handle_t *handle = NULL;
2871         int ret = 0;
2872         int err;
2873
2874         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2875                                         ext4_normal_get_block_write);
2876         if (ret != 0)
2877                 goto out_unlock;
2878
2879         page_bufs = page_buffers(page);
2880         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2881                                                                 bget_one);
2882         /* As soon as we unlock the page, it can go away, but we have
2883          * references to buffers so we are safe */
2884         unlock_page(page);
2885
2886         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2887         if (IS_ERR(handle)) {
2888                 ret = PTR_ERR(handle);
2889                 goto out;
2890         }
2891
2892         ret = walk_page_buffers(handle, page_bufs, 0,
2893                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2894
2895         err = walk_page_buffers(handle, page_bufs, 0,
2896                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2897         if (ret == 0)
2898                 ret = err;
2899         err = ext4_journal_stop(handle);
2900         if (!ret)
2901                 ret = err;
2902
2903         walk_page_buffers(handle, page_bufs, 0,
2904                                 PAGE_CACHE_SIZE, NULL, bput_one);
2905         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2906         goto out;
2907
2908 out_unlock:
2909         unlock_page(page);
2910 out:
2911         return ret;
2912 }
2913
2914 static int ext4_journalled_writepage(struct page *page,
2915                                 struct writeback_control *wbc)
2916 {
2917         struct inode *inode = page->mapping->host;
2918         loff_t size = i_size_read(inode);
2919         loff_t len;
2920
2921         J_ASSERT(PageLocked(page));
2922         if (page->index == size >> PAGE_CACHE_SHIFT)
2923                 len = size & ~PAGE_CACHE_MASK;
2924         else
2925                 len = PAGE_CACHE_SIZE;
2926
2927         if (page_has_buffers(page)) {
2928                 /* if page has buffers it should all be mapped
2929                  * and allocated. If there are not buffers attached
2930                  * to the page we know the page is dirty but it lost
2931                  * buffers. That means that at some moment in time
2932                  * after write_begin() / write_end() has been called
2933                  * all buffers have been clean and thus they must have been
2934                  * written at least once. So they are all mapped and we can
2935                  * happily proceed with mapping them and writing the page.
2936                  */
2937                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2938                                         ext4_bh_unmapped_or_delay));
2939         }
2940
2941         if (ext4_journal_current_handle())
2942                 goto no_write;
2943
2944         if (PageChecked(page)) {
2945                 /*
2946                  * It's mmapped pagecache.  Add buffers and journal it.  There
2947                  * doesn't seem much point in redirtying the page here.
2948                  */
2949                 ClearPageChecked(page);
2950                 return __ext4_journalled_writepage(page, wbc);
2951         } else {
2952                 /*
2953                  * It may be a page full of checkpoint-mode buffers.  We don't
2954                  * really know unless we go poke around in the buffer_heads.
2955                  * But block_write_full_page will do the right thing.
2956                  */
2957                 return block_write_full_page(page,
2958                                                 ext4_normal_get_block_write,
2959                                                 wbc);
2960         }
2961 no_write:
2962         redirty_page_for_writepage(wbc, page);
2963         unlock_page(page);
2964         return 0;
2965 }
2966
2967 static int ext4_readpage(struct file *file, struct page *page)
2968 {
2969         return mpage_readpage(page, ext4_get_block);
2970 }
2971
2972 static int
2973 ext4_readpages(struct file *file, struct address_space *mapping,
2974                 struct list_head *pages, unsigned nr_pages)
2975 {
2976         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2977 }
2978
2979 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2980 {
2981         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2982
2983         /*
2984          * If it's a full truncate we just forget about the pending dirtying
2985          */
2986         if (offset == 0)
2987                 ClearPageChecked(page);
2988
2989         jbd2_journal_invalidatepage(journal, page, offset);
2990 }
2991
2992 static int ext4_releasepage(struct page *page, gfp_t wait)
2993 {
2994         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2995
2996         WARN_ON(PageChecked(page));
2997         if (!page_has_buffers(page))
2998                 return 0;
2999         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3000 }
3001
3002 /*
3003  * If the O_DIRECT write will extend the file then add this inode to the
3004  * orphan list.  So recovery will truncate it back to the original size
3005  * if the machine crashes during the write.
3006  *
3007  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3008  * crashes then stale disk data _may_ be exposed inside the file. But current
3009  * VFS code falls back into buffered path in that case so we are safe.
3010  */
3011 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3012                         const struct iovec *iov, loff_t offset,
3013                         unsigned long nr_segs)
3014 {
3015         struct file *file = iocb->ki_filp;
3016         struct inode *inode = file->f_mapping->host;
3017         struct ext4_inode_info *ei = EXT4_I(inode);
3018         handle_t *handle;
3019         ssize_t ret;
3020         int orphan = 0;
3021         size_t count = iov_length(iov, nr_segs);
3022
3023         if (rw == WRITE) {
3024                 loff_t final_size = offset + count;
3025
3026                 if (final_size > inode->i_size) {
3027                         /* Credits for sb + inode write */
3028                         handle = ext4_journal_start(inode, 2);
3029                         if (IS_ERR(handle)) {
3030                                 ret = PTR_ERR(handle);
3031                                 goto out;
3032                         }
3033                         ret = ext4_orphan_add(handle, inode);
3034                         if (ret) {
3035                                 ext4_journal_stop(handle);
3036                                 goto out;
3037                         }
3038                         orphan = 1;
3039                         ei->i_disksize = inode->i_size;
3040                         ext4_journal_stop(handle);
3041                 }
3042         }
3043
3044         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3045                                  offset, nr_segs,
3046                                  ext4_get_block, NULL);
3047
3048         if (orphan) {
3049                 int err;
3050
3051                 /* Credits for sb + inode write */
3052                 handle = ext4_journal_start(inode, 2);
3053                 if (IS_ERR(handle)) {
3054                         /* This is really bad luck. We've written the data
3055                          * but cannot extend i_size. Bail out and pretend
3056                          * the write failed... */
3057                         ret = PTR_ERR(handle);
3058                         goto out;
3059                 }
3060                 if (inode->i_nlink)
3061                         ext4_orphan_del(handle, inode);
3062                 if (ret > 0) {
3063                         loff_t end = offset + ret;
3064                         if (end > inode->i_size) {
3065                                 ei->i_disksize = end;
3066                                 i_size_write(inode, end);
3067                                 /*
3068                                  * We're going to return a positive `ret'
3069                                  * here due to non-zero-length I/O, so there's
3070                                  * no way of reporting error returns from
3071                                  * ext4_mark_inode_dirty() to userspace.  So
3072                                  * ignore it.
3073                                  */
3074                                 ext4_mark_inode_dirty(handle, inode);
3075                         }
3076                 }
3077                 err = ext4_journal_stop(handle);
3078                 if (ret == 0)
3079                         ret = err;
3080         }
3081 out:
3082         return ret;
3083 }
3084
3085 /*
3086  * Pages can be marked dirty completely asynchronously from ext4's journalling
3087  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3088  * much here because ->set_page_dirty is called under VFS locks.  The page is
3089  * not necessarily locked.
3090  *
3091  * We cannot just dirty the page and leave attached buffers clean, because the
3092  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3093  * or jbddirty because all the journalling code will explode.
3094  *
3095  * So what we do is to mark the page "pending dirty" and next time writepage
3096  * is called, propagate that into the buffers appropriately.
3097  */
3098 static int ext4_journalled_set_page_dirty(struct page *page)
3099 {
3100         SetPageChecked(page);
3101         return __set_page_dirty_nobuffers(page);
3102 }
3103
3104 static const struct address_space_operations ext4_ordered_aops = {
3105         .readpage               = ext4_readpage,
3106         .readpages              = ext4_readpages,
3107         .writepage              = ext4_normal_writepage,
3108         .sync_page              = block_sync_page,
3109         .write_begin            = ext4_write_begin,
3110         .write_end              = ext4_ordered_write_end,
3111         .bmap                   = ext4_bmap,
3112         .invalidatepage         = ext4_invalidatepage,
3113         .releasepage            = ext4_releasepage,
3114         .direct_IO              = ext4_direct_IO,
3115         .migratepage            = buffer_migrate_page,
3116         .is_partially_uptodate  = block_is_partially_uptodate,
3117 };
3118
3119 static const struct address_space_operations ext4_writeback_aops = {
3120         .readpage               = ext4_readpage,
3121         .readpages              = ext4_readpages,
3122         .writepage              = ext4_normal_writepage,
3123         .sync_page              = block_sync_page,
3124         .write_begin            = ext4_write_begin,
3125         .write_end              = ext4_writeback_write_end,
3126         .bmap                   = ext4_bmap,
3127         .invalidatepage         = ext4_invalidatepage,
3128         .releasepage            = ext4_releasepage,
3129         .direct_IO              = ext4_direct_IO,
3130         .migratepage            = buffer_migrate_page,
3131         .is_partially_uptodate  = block_is_partially_uptodate,
3132 };
3133
3134 static const struct address_space_operations ext4_journalled_aops = {
3135         .readpage               = ext4_readpage,
3136         .readpages              = ext4_readpages,
3137         .writepage              = ext4_journalled_writepage,
3138         .sync_page              = block_sync_page,
3139         .write_begin            = ext4_write_begin,
3140         .write_end              = ext4_journalled_write_end,
3141         .set_page_dirty         = ext4_journalled_set_page_dirty,
3142         .bmap                   = ext4_bmap,
3143         .invalidatepage         = ext4_invalidatepage,
3144         .releasepage            = ext4_releasepage,
3145         .is_partially_uptodate  = block_is_partially_uptodate,
3146 };
3147
3148 static const struct address_space_operations ext4_da_aops = {
3149         .readpage               = ext4_readpage,
3150         .readpages              = ext4_readpages,
3151         .writepage              = ext4_da_writepage,
3152         .writepages             = ext4_da_writepages,
3153         .sync_page              = block_sync_page,
3154         .write_begin            = ext4_da_write_begin,
3155         .write_end              = ext4_da_write_end,
3156         .bmap                   = ext4_bmap,
3157         .invalidatepage         = ext4_da_invalidatepage,
3158         .releasepage            = ext4_releasepage,
3159         .direct_IO              = ext4_direct_IO,
3160         .migratepage            = buffer_migrate_page,
3161         .is_partially_uptodate  = block_is_partially_uptodate,
3162 };
3163
3164 void ext4_set_aops(struct inode *inode)
3165 {
3166         if (ext4_should_order_data(inode) &&
3167                 test_opt(inode->i_sb, DELALLOC))
3168                 inode->i_mapping->a_ops = &ext4_da_aops;
3169         else if (ext4_should_order_data(inode))
3170                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3171         else if (ext4_should_writeback_data(inode) &&
3172                  test_opt(inode->i_sb, DELALLOC))
3173                 inode->i_mapping->a_ops = &ext4_da_aops;
3174         else if (ext4_should_writeback_data(inode))
3175                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3176         else
3177                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3178 }
3179
3180 /*
3181  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3182  * up to the end of the block which corresponds to `from'.
3183  * This required during truncate. We need to physically zero the tail end
3184  * of that block so it doesn't yield old data if the file is later grown.
3185  */
3186 int ext4_block_truncate_page(handle_t *handle,
3187                 struct address_space *mapping, loff_t from)
3188 {
3189         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3190         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3191         unsigned blocksize, length, pos;
3192         ext4_lblk_t iblock;
3193         struct inode *inode = mapping->host;
3194         struct buffer_head *bh;
3195         struct page *page;
3196         int err = 0;
3197
3198         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3199         if (!page)
3200                 return -EINVAL;
3201
3202         blocksize = inode->i_sb->s_blocksize;
3203         length = blocksize - (offset & (blocksize - 1));
3204         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3205
3206         /*
3207          * For "nobh" option,  we can only work if we don't need to
3208          * read-in the page - otherwise we create buffers to do the IO.
3209          */
3210         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3211              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3212                 zero_user(page, offset, length);
3213                 set_page_dirty(page);
3214                 goto unlock;
3215         }
3216
3217         if (!page_has_buffers(page))
3218                 create_empty_buffers(page, blocksize, 0);
3219
3220         /* Find the buffer that contains "offset" */
3221         bh = page_buffers(page);
3222         pos = blocksize;
3223         while (offset >= pos) {
3224                 bh = bh->b_this_page;
3225                 iblock++;
3226                 pos += blocksize;
3227         }
3228
3229         err = 0;
3230         if (buffer_freed(bh)) {
3231                 BUFFER_TRACE(bh, "freed: skip");
3232                 goto unlock;
3233         }
3234
3235         if (!buffer_mapped(bh)) {
3236                 BUFFER_TRACE(bh, "unmapped");
3237                 ext4_get_block(inode, iblock, bh, 0);
3238                 /* unmapped? It's a hole - nothing to do */
3239                 if (!buffer_mapped(bh)) {
3240                         BUFFER_TRACE(bh, "still unmapped");
3241                         goto unlock;
3242                 }
3243         }
3244
3245         /* Ok, it's mapped. Make sure it's up-to-date */
3246         if (PageUptodate(page))
3247                 set_buffer_uptodate(bh);
3248
3249         if (!buffer_uptodate(bh)) {
3250                 err = -EIO;
3251                 ll_rw_block(READ, 1, &bh);
3252                 wait_on_buffer(bh);
3253                 /* Uhhuh. Read error. Complain and punt. */
3254                 if (!buffer_uptodate(bh))
3255                         goto unlock;
3256         }
3257
3258         if (ext4_should_journal_data(inode)) {
3259                 BUFFER_TRACE(bh, "get write access");
3260                 err = ext4_journal_get_write_access(handle, bh);
3261                 if (err)
3262                         goto unlock;
3263         }
3264
3265         zero_user(page, offset, length);
3266
3267         BUFFER_TRACE(bh, "zeroed end of block");
3268
3269         err = 0;
3270         if (ext4_should_journal_data(inode)) {
3271                 err = ext4_journal_dirty_metadata(handle, bh);
3272         } else {
3273                 if (ext4_should_order_data(inode))
3274                         err = ext4_jbd2_file_inode(handle, inode);
3275                 mark_buffer_dirty(bh);
3276         }
3277
3278 unlock:
3279         unlock_page(page);
3280         page_cache_release(page);
3281         return err;
3282 }
3283
3284 /*
3285  * Probably it should be a library function... search for first non-zero word
3286  * or memcmp with zero_page, whatever is better for particular architecture.
3287  * Linus?
3288  */
3289 static inline int all_zeroes(__le32 *p, __le32 *q)
3290 {
3291         while (p < q)
3292                 if (*p++)
3293                         return 0;
3294         return 1;
3295 }
3296
3297 /**
3298  *      ext4_find_shared - find the indirect blocks for partial truncation.
3299  *      @inode:   inode in question
3300  *      @depth:   depth of the affected branch
3301  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3302  *      @chain:   place to store the pointers to partial indirect blocks
3303  *      @top:     place to the (detached) top of branch
3304  *
3305  *      This is a helper function used by ext4_truncate().
3306  *
3307  *      When we do truncate() we may have to clean the ends of several
3308  *      indirect blocks but leave the blocks themselves alive. Block is
3309  *      partially truncated if some data below the new i_size is refered
3310  *      from it (and it is on the path to the first completely truncated
3311  *      data block, indeed).  We have to free the top of that path along
3312  *      with everything to the right of the path. Since no allocation
3313  *      past the truncation point is possible until ext4_truncate()
3314  *      finishes, we may safely do the latter, but top of branch may
3315  *      require special attention - pageout below the truncation point
3316  *      might try to populate it.
3317  *
3318  *      We atomically detach the top of branch from the tree, store the
3319  *      block number of its root in *@top, pointers to buffer_heads of
3320  *      partially truncated blocks - in @chain[].bh and pointers to
3321  *      their last elements that should not be removed - in
3322  *      @chain[].p. Return value is the pointer to last filled element
3323  *      of @chain.
3324  *
3325  *      The work left to caller to do the actual freeing of subtrees:
3326  *              a) free the subtree starting from *@top
3327  *              b) free the subtrees whose roots are stored in
3328  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3329  *              c) free the subtrees growing from the inode past the @chain[0].
3330  *                      (no partially truncated stuff there).  */
3331
3332 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3333                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3334 {
3335         Indirect *partial, *p;
3336         int k, err;
3337
3338         *top = 0;
3339         /* Make k index the deepest non-null offest + 1 */
3340         for (k = depth; k > 1 && !offsets[k-1]; k--)
3341                 ;
3342         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3343         /* Writer: pointers */
3344         if (!partial)
3345                 partial = chain + k-1;
3346         /*
3347          * If the branch acquired continuation since we've looked at it -
3348          * fine, it should all survive and (new) top doesn't belong to us.
3349          */
3350         if (!partial->key && *partial->p)
3351                 /* Writer: end */
3352                 goto no_top;
3353         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3354                 ;
3355         /*
3356          * OK, we've found the last block that must survive. The rest of our
3357          * branch should be detached before unlocking. However, if that rest
3358          * of branch is all ours and does not grow immediately from the inode
3359          * it's easier to cheat and just decrement partial->p.
3360          */
3361         if (p == chain + k - 1 && p > chain) {
3362                 p->p--;
3363         } else {
3364                 *top = *p->p;
3365                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3366 #if 0
3367                 *p->p = 0;
3368 #endif
3369         }
3370         /* Writer: end */
3371
3372         while (partial > p) {
3373                 brelse(partial->bh);
3374                 partial--;
3375         }
3376 no_top:
3377         return partial;
3378 }
3379
3380 /*
3381  * Zero a number of block pointers in either an inode or an indirect block.
3382  * If we restart the transaction we must again get write access to the
3383  * indirect block for further modification.
3384  *
3385  * We release `count' blocks on disk, but (last - first) may be greater
3386  * than `count' because there can be holes in there.
3387  */
3388 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3389                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3390                 unsigned long count, __le32 *first, __le32 *last)
3391 {
3392         __le32 *p;
3393         if (try_to_extend_transaction(handle, inode)) {
3394                 if (bh) {
3395                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3396                         ext4_journal_dirty_metadata(handle, bh);
3397                 }
3398                 ext4_mark_inode_dirty(handle, inode);
3399                 ext4_journal_test_restart(handle, inode);
3400                 if (bh) {
3401                         BUFFER_TRACE(bh, "retaking write access");
3402                         ext4_journal_get_write_access(handle, bh);
3403                 }
3404         }
3405
3406         /*
3407          * Any buffers which are on the journal will be in memory. We find
3408          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3409          * on them.  We've already detached each block from the file, so
3410          * bforget() in jbd2_journal_forget() should be safe.
3411          *
3412          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3413          */
3414         for (p = first; p < last; p++) {
3415                 u32 nr = le32_to_cpu(*p);
3416                 if (nr) {
3417                         struct buffer_head *tbh;
3418
3419                         *p = 0;
3420                         tbh = sb_find_get_block(inode->i_sb, nr);
3421                         ext4_forget(handle, 0, inode, tbh, nr);
3422                 }
3423         }
3424
3425         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3426 }
3427
3428 /**
3429  * ext4_free_data - free a list of data blocks
3430  * @handle:     handle for this transaction
3431  * @inode:      inode we are dealing with
3432  * @this_bh:    indirect buffer_head which contains *@first and *@last
3433  * @first:      array of block numbers
3434  * @last:       points immediately past the end of array
3435  *
3436  * We are freeing all blocks refered from that array (numbers are stored as
3437  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3438  *
3439  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3440  * blocks are contiguous then releasing them at one time will only affect one
3441  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3442  * actually use a lot of journal space.
3443  *
3444  * @this_bh will be %NULL if @first and @last point into the inode's direct
3445  * block pointers.
3446  */
3447 static void ext4_free_data(handle_t *handle, struct inode *inode,
3448                            struct buffer_head *this_bh,
3449                            __le32 *first, __le32 *last)
3450 {
3451         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3452         unsigned long count = 0;            /* Number of blocks in the run */
3453         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3454                                                corresponding to
3455                                                block_to_free */
3456         ext4_fsblk_t nr;                    /* Current block # */
3457         __le32 *p;                          /* Pointer into inode/ind
3458                                                for current block */
3459         int err;
3460
3461         if (this_bh) {                          /* For indirect block */
3462                 BUFFER_TRACE(this_bh, "get_write_access");
3463                 err = ext4_journal_get_write_access(handle, this_bh);
3464                 /* Important: if we can't update the indirect pointers
3465                  * to the blocks, we can't free them. */
3466                 if (err)
3467                         return;
3468         }
3469
3470         for (p = first; p < last; p++) {
3471                 nr = le32_to_cpu(*p);
3472                 if (nr) {
3473                         /* accumulate blocks to free if they're contiguous */
3474                         if (count == 0) {
3475                                 block_to_free = nr;
3476                                 block_to_free_p = p;
3477                                 count = 1;
3478                         } else if (nr == block_to_free + count) {
3479                                 count++;
3480                         } else {
3481                                 ext4_clear_blocks(handle, inode, this_bh,
3482                                                   block_to_free,
3483                                                   count, block_to_free_p, p);
3484                                 block_to_free = nr;
3485                                 block_to_free_p = p;
3486                                 count = 1;
3487                         }
3488                 }
3489         }
3490
3491         if (count > 0)
3492                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3493                                   count, block_to_free_p, p);
3494
3495         if (this_bh) {
3496                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3497
3498                 /*
3499                  * The buffer head should have an attached journal head at this
3500                  * point. However, if the data is corrupted and an indirect
3501                  * block pointed to itself, it would have been detached when
3502                  * the block was cleared. Check for this instead of OOPSing.
3503                  */
3504                 if (bh2jh(this_bh))
3505                         ext4_journal_dirty_metadata(handle, this_bh);
3506                 else
3507                         ext4_error(inode->i_sb, __func__,
3508                                    "circular indirect block detected, "
3509                                    "inode=%lu, block=%llu",
3510                                    inode->i_ino,
3511                                    (unsigned long long) this_bh->b_blocknr);
3512         }
3513 }
3514
3515 /**
3516  *      ext4_free_branches - free an array of branches
3517  *      @handle: JBD handle for this transaction
3518  *      @inode: inode we are dealing with
3519  *      @parent_bh: the buffer_head which contains *@first and *@last
3520  *      @first: array of block numbers
3521  *      @last:  pointer immediately past the end of array
3522  *      @depth: depth of the branches to free
3523  *
3524  *      We are freeing all blocks refered from these branches (numbers are
3525  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3526  *      appropriately.
3527  */
3528 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3529                                struct buffer_head *parent_bh,
3530                                __le32 *first, __le32 *last, int depth)
3531 {
3532         ext4_fsblk_t nr;
3533         __le32 *p;
3534
3535         if (is_handle_aborted(handle))
3536                 return;
3537
3538         if (depth--) {
3539                 struct buffer_head *bh;
3540                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3541                 p = last;
3542                 while (--p >= first) {
3543                         nr = le32_to_cpu(*p);
3544                         if (!nr)
3545                                 continue;               /* A hole */
3546
3547                         /* Go read the buffer for the next level down */
3548                         bh = sb_bread(inode->i_sb, nr);
3549
3550                         /*
3551                          * A read failure? Report error and clear slot
3552                          * (should be rare).
3553                          */
3554                         if (!bh) {
3555                                 ext4_error(inode->i_sb, "ext4_free_branches",
3556                                            "Read failure, inode=%lu, block=%llu",
3557                                            inode->i_ino, nr);
3558                                 continue;
3559                         }
3560
3561                         /* This zaps the entire block.  Bottom up. */
3562                         BUFFER_TRACE(bh, "free child branches");
3563                         ext4_free_branches(handle, inode, bh,
3564                                         (__le32 *) bh->b_data,
3565                                         (__le32 *) bh->b_data + addr_per_block,
3566                                         depth);
3567
3568                         /*
3569                          * We've probably journalled the indirect block several
3570                          * times during the truncate.  But it's no longer
3571                          * needed and we now drop it from the transaction via
3572                          * jbd2_journal_revoke().
3573                          *
3574                          * That's easy if it's exclusively part of this
3575                          * transaction.  But if it's part of the committing
3576                          * transaction then jbd2_journal_forget() will simply
3577                          * brelse() it.  That means that if the underlying
3578                          * block is reallocated in ext4_get_block(),
3579                          * unmap_underlying_metadata() will find this block
3580                          * and will try to get rid of it.  damn, damn.
3581                          *
3582                          * If this block has already been committed to the
3583                          * journal, a revoke record will be written.  And
3584                          * revoke records must be emitted *before* clearing
3585                          * this block's bit in the bitmaps.
3586                          */
3587                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3588
3589                         /*
3590                          * Everything below this this pointer has been
3591                          * released.  Now let this top-of-subtree go.
3592                          *
3593                          * We want the freeing of this indirect block to be
3594                          * atomic in the journal with the updating of the
3595                          * bitmap block which owns it.  So make some room in
3596                          * the journal.
3597                          *
3598                          * We zero the parent pointer *after* freeing its
3599                          * pointee in the bitmaps, so if extend_transaction()
3600                          * for some reason fails to put the bitmap changes and
3601                          * the release into the same transaction, recovery
3602                          * will merely complain about releasing a free block,
3603                          * rather than leaking blocks.
3604                          */
3605                         if (is_handle_aborted(handle))
3606                                 return;
3607                         if (try_to_extend_transaction(handle, inode)) {
3608                                 ext4_mark_inode_dirty(handle, inode);
3609                                 ext4_journal_test_restart(handle, inode);
3610                         }
3611
3612                         ext4_free_blocks(handle, inode, nr, 1, 1);
3613
3614                         if (parent_bh) {
3615                                 /*
3616                                  * The block which we have just freed is
3617                                  * pointed to by an indirect block: journal it
3618                                  */
3619                                 BUFFER_TRACE(parent_bh, "get_write_access");
3620                                 if (!ext4_journal_get_write_access(handle,
3621                                                                    parent_bh)){
3622                                         *p = 0;
3623                                         BUFFER_TRACE(parent_bh,
3624                                         "call ext4_journal_dirty_metadata");
3625                                         ext4_journal_dirty_metadata(handle,
3626                                                                     parent_bh);
3627                                 }
3628                         }
3629                 }
3630         } else {
3631                 /* We have reached the bottom of the tree. */
3632                 BUFFER_TRACE(parent_bh, "free data blocks");
3633                 ext4_free_data(handle, inode, parent_bh, first, last);
3634         }
3635 }
3636
3637 int ext4_can_truncate(struct inode *inode)
3638 {
3639         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3640                 return 0;
3641         if (S_ISREG(inode->i_mode))
3642                 return 1;
3643         if (S_ISDIR(inode->i_mode))
3644                 return 1;
3645         if (S_ISLNK(inode->i_mode))
3646                 return !ext4_inode_is_fast_symlink(inode);
3647         return 0;
3648 }
3649
3650 /*
3651  * ext4_truncate()
3652  *
3653  * We block out ext4_get_block() block instantiations across the entire
3654  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3655  * simultaneously on behalf of the same inode.
3656  *
3657  * As we work through the truncate and commmit bits of it to the journal there
3658  * is one core, guiding principle: the file's tree must always be consistent on
3659  * disk.  We must be able to restart the truncate after a crash.
3660  *
3661  * The file's tree may be transiently inconsistent in memory (although it
3662  * probably isn't), but whenever we close off and commit a journal transaction,
3663  * the contents of (the filesystem + the journal) must be consistent and
3664  * restartable.  It's pretty simple, really: bottom up, right to left (although
3665  * left-to-right works OK too).
3666  *
3667  * Note that at recovery time, journal replay occurs *before* the restart of
3668  * truncate against the orphan inode list.
3669  *
3670  * The committed inode has the new, desired i_size (which is the same as
3671  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3672  * that this inode's truncate did not complete and it will again call
3673  * ext4_truncate() to have another go.  So there will be instantiated blocks
3674  * to the right of the truncation point in a crashed ext4 filesystem.  But
3675  * that's fine - as long as they are linked from the inode, the post-crash
3676  * ext4_truncate() run will find them and release them.
3677  */
3678 void ext4_truncate(struct inode *inode)
3679 {
3680         handle_t *handle;
3681         struct ext4_inode_info *ei = EXT4_I(inode);
3682         __le32 *i_data = ei->i_data;
3683         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3684         struct address_space *mapping = inode->i_mapping;
3685         ext4_lblk_t offsets[4];
3686         Indirect chain[4];
3687         Indirect *partial;
3688         __le32 nr = 0;
3689         int n;
3690         ext4_lblk_t last_block;
3691         unsigned blocksize = inode->i_sb->s_blocksize;
3692
3693         if (!ext4_can_truncate(inode))
3694                 return;
3695
3696         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3697                 ext4_ext_truncate(inode);
3698                 return;
3699         }
3700
3701         handle = start_transaction(inode);
3702         if (IS_ERR(handle))
3703                 return;         /* AKPM: return what? */
3704
3705         last_block = (inode->i_size + blocksize-1)
3706                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3707
3708         if (inode->i_size & (blocksize - 1))
3709                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3710                         goto out_stop;
3711
3712         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3713         if (n == 0)
3714                 goto out_stop;  /* error */
3715
3716         /*
3717          * OK.  This truncate is going to happen.  We add the inode to the
3718          * orphan list, so that if this truncate spans multiple transactions,
3719          * and we crash, we will resume the truncate when the filesystem
3720          * recovers.  It also marks the inode dirty, to catch the new size.
3721          *
3722          * Implication: the file must always be in a sane, consistent
3723          * truncatable state while each transaction commits.
3724          */
3725         if (ext4_orphan_add(handle, inode))
3726                 goto out_stop;
3727
3728         /*
3729          * From here we block out all ext4_get_block() callers who want to
3730          * modify the block allocation tree.
3731          */
3732         down_write(&ei->i_data_sem);
3733
3734         ext4_discard_preallocations(inode);
3735
3736         /*
3737          * The orphan list entry will now protect us from any crash which
3738          * occurs before the truncate completes, so it is now safe to propagate
3739          * the new, shorter inode size (held for now in i_size) into the
3740          * on-disk inode. We do this via i_disksize, which is the value which
3741          * ext4 *really* writes onto the disk inode.
3742          */
3743         ei->i_disksize = inode->i_size;
3744
3745         if (n == 1) {           /* direct blocks */
3746                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3747                                i_data + EXT4_NDIR_BLOCKS);
3748                 goto do_indirects;
3749         }
3750
3751         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3752         /* Kill the top of shared branch (not detached) */
3753         if (nr) {
3754                 if (partial == chain) {
3755                         /* Shared branch grows from the inode */
3756                         ext4_free_branches(handle, inode, NULL,
3757                                            &nr, &nr+1, (chain+n-1) - partial);
3758                         *partial->p = 0;
3759                         /*
3760                          * We mark the inode dirty prior to restart,
3761                          * and prior to stop.  No need for it here.
3762                          */
3763                 } else {
3764                         /* Shared branch grows from an indirect block */
3765                         BUFFER_TRACE(partial->bh, "get_write_access");
3766                         ext4_free_branches(handle, inode, partial->bh,
3767                                         partial->p,
3768                                         partial->p+1, (chain+n-1) - partial);
3769                 }
3770         }
3771         /* Clear the ends of indirect blocks on the shared branch */
3772         while (partial > chain) {
3773                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3774                                    (__le32*)partial->bh->b_data+addr_per_block,
3775                                    (chain+n-1) - partial);
3776                 BUFFER_TRACE(partial->bh, "call brelse");
3777                 brelse (partial->bh);
3778                 partial--;
3779         }
3780 do_indirects:
3781         /* Kill the remaining (whole) subtrees */
3782         switch (offsets[0]) {
3783         default:
3784                 nr = i_data[EXT4_IND_BLOCK];
3785                 if (nr) {
3786                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3787                         i_data[EXT4_IND_BLOCK] = 0;
3788                 }
3789         case EXT4_IND_BLOCK:
3790                 nr = i_data[EXT4_DIND_BLOCK];
3791                 if (nr) {
3792                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3793                         i_data[EXT4_DIND_BLOCK] = 0;
3794                 }
3795         case EXT4_DIND_BLOCK:
3796                 nr = i_data[EXT4_TIND_BLOCK];
3797                 if (nr) {
3798                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3799                         i_data[EXT4_TIND_BLOCK] = 0;
3800                 }
3801         case EXT4_TIND_BLOCK:
3802                 ;
3803         }
3804
3805         up_write(&ei->i_data_sem);
3806         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3807         ext4_mark_inode_dirty(handle, inode);
3808
3809         /*
3810          * In a multi-transaction truncate, we only make the final transaction
3811          * synchronous
3812          */
3813         if (IS_SYNC(inode))
3814                 handle->h_sync = 1;
3815 out_stop:
3816         /*
3817          * If this was a simple ftruncate(), and the file will remain alive
3818          * then we need to clear up the orphan record which we created above.
3819          * However, if this was a real unlink then we were called by
3820          * ext4_delete_inode(), and we allow that function to clean up the
3821          * orphan info for us.
3822          */
3823         if (inode->i_nlink)
3824                 ext4_orphan_del(handle, inode);
3825
3826         ext4_journal_stop(handle);
3827 }
3828
3829 /*
3830  * ext4_get_inode_loc returns with an extra refcount against the inode's
3831  * underlying buffer_head on success. If 'in_mem' is true, we have all
3832  * data in memory that is needed to recreate the on-disk version of this
3833  * inode.
3834  */
3835 static int __ext4_get_inode_loc(struct inode *inode,
3836                                 struct ext4_iloc *iloc, int in_mem)
3837 {
3838         struct ext4_group_desc  *gdp;
3839         struct buffer_head      *bh;
3840         struct super_block      *sb = inode->i_sb;
3841         ext4_fsblk_t            block;
3842         int                     inodes_per_block, inode_offset;
3843
3844         iloc->bh = 0;
3845         if (!ext4_valid_inum(sb, inode->i_ino))
3846                 return -EIO;
3847
3848         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3849         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3850         if (!gdp)
3851                 return -EIO;
3852
3853         /*
3854          * Figure out the offset within the block group inode table
3855          */
3856         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3857         inode_offset = ((inode->i_ino - 1) %
3858                         EXT4_INODES_PER_GROUP(sb));
3859         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3860         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3861
3862         bh = sb_getblk(sb, block);
3863         if (!bh) {
3864                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3865                            "inode block - inode=%lu, block=%llu",
3866                            inode->i_ino, block);
3867                 return -EIO;
3868         }
3869         if (!buffer_uptodate(bh)) {
3870                 lock_buffer(bh);
3871
3872                 /*
3873                  * If the buffer has the write error flag, we have failed
3874                  * to write out another inode in the same block.  In this
3875                  * case, we don't have to read the block because we may
3876                  * read the old inode data successfully.
3877                  */
3878                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3879                         set_buffer_uptodate(bh);
3880
3881                 if (buffer_uptodate(bh)) {
3882                         /* someone brought it uptodate while we waited */
3883                         unlock_buffer(bh);
3884                         goto has_buffer;
3885                 }
3886
3887                 /*
3888                  * If we have all information of the inode in memory and this
3889                  * is the only valid inode in the block, we need not read the
3890                  * block.
3891                  */
3892                 if (in_mem) {
3893                         struct buffer_head *bitmap_bh;
3894                         int i, start;
3895
3896                         start = inode_offset & ~(inodes_per_block - 1);
3897
3898                         /* Is the inode bitmap in cache? */
3899                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3900                         if (!bitmap_bh)
3901                                 goto make_io;
3902
3903                         /*
3904                          * If the inode bitmap isn't in cache then the
3905                          * optimisation may end up performing two reads instead
3906                          * of one, so skip it.
3907                          */
3908                         if (!buffer_uptodate(bitmap_bh)) {
3909                                 brelse(bitmap_bh);
3910                                 goto make_io;
3911                         }
3912                         for (i = start; i < start + inodes_per_block; i++) {
3913                                 if (i == inode_offset)
3914                                         continue;
3915                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3916                                         break;
3917                         }
3918                         brelse(bitmap_bh);
3919                         if (i == start + inodes_per_block) {
3920                                 /* all other inodes are free, so skip I/O */
3921                                 memset(bh->b_data, 0, bh->b_size);
3922                                 set_buffer_uptodate(bh);
3923                                 unlock_buffer(bh);
3924                                 goto has_buffer;
3925                         }
3926                 }
3927
3928 make_io:
3929                 /*
3930                  * If we need to do any I/O, try to pre-readahead extra
3931                  * blocks from the inode table.
3932                  */
3933                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3934                         ext4_fsblk_t b, end, table;
3935                         unsigned num;
3936
3937                         table = ext4_inode_table(sb, gdp);
3938                         /* Make sure s_inode_readahead_blks is a power of 2 */
3939                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3940                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3941                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3942                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3943                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3944                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3945                         if (table > b)
3946                                 b = table;
3947                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3948                         num = EXT4_INODES_PER_GROUP(sb);
3949                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3950                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3951                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3952                         table += num / inodes_per_block;
3953                         if (end > table)
3954                                 end = table;
3955                         while (b <= end)
3956                                 sb_breadahead(sb, b++);
3957                 }
3958
3959                 /*
3960                  * There are other valid inodes in the buffer, this inode
3961                  * has in-inode xattrs, or we don't have this inode in memory.
3962                  * Read the block from disk.
3963                  */
3964                 get_bh(bh);
3965                 bh->b_end_io = end_buffer_read_sync;
3966                 submit_bh(READ_META, bh);
3967                 wait_on_buffer(bh);
3968                 if (!buffer_uptodate(bh)) {
3969                         ext4_error(sb, __func__,
3970                                    "unable to read inode block - inode=%lu, "
3971                                    "block=%llu", inode->i_ino, block);
3972                         brelse(bh);
3973                         return -EIO;
3974                 }
3975         }
3976 has_buffer:
3977         iloc->bh = bh;
3978         return 0;
3979 }
3980
3981 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3982 {
3983         /* We have all inode data except xattrs in memory here. */
3984         return __ext4_get_inode_loc(inode, iloc,
3985                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3986 }
3987
3988 void ext4_set_inode_flags(struct inode *inode)
3989 {
3990         unsigned int flags = EXT4_I(inode)->i_flags;
3991
3992         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3993         if (flags & EXT4_SYNC_FL)
3994                 inode->i_flags |= S_SYNC;
3995         if (flags & EXT4_APPEND_FL)
3996                 inode->i_flags |= S_APPEND;
3997         if (flags & EXT4_IMMUTABLE_FL)
3998                 inode->i_flags |= S_IMMUTABLE;
3999         if (flags & EXT4_NOATIME_FL)
4000                 inode->i_flags |= S_NOATIME;
4001         if (flags & EXT4_DIRSYNC_FL)
4002                 inode->i_flags |= S_DIRSYNC;
4003 }
4004
4005 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4006 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4007 {
4008         unsigned int flags = ei->vfs_inode.i_flags;
4009
4010         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4011                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4012         if (flags & S_SYNC)
4013                 ei->i_flags |= EXT4_SYNC_FL;
4014         if (flags & S_APPEND)
4015                 ei->i_flags |= EXT4_APPEND_FL;
4016         if (flags & S_IMMUTABLE)
4017                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4018         if (flags & S_NOATIME)
4019                 ei->i_flags |= EXT4_NOATIME_FL;
4020         if (flags & S_DIRSYNC)
4021                 ei->i_flags |= EXT4_DIRSYNC_FL;
4022 }
4023 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4024                                         struct ext4_inode_info *ei)
4025 {
4026         blkcnt_t i_blocks ;
4027         struct inode *inode = &(ei->vfs_inode);
4028         struct super_block *sb = inode->i_sb;
4029
4030         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4031                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4032                 /* we are using combined 48 bit field */
4033                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4034                                         le32_to_cpu(raw_inode->i_blocks_lo);
4035                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4036                         /* i_blocks represent file system block size */
4037                         return i_blocks  << (inode->i_blkbits - 9);
4038                 } else {
4039                         return i_blocks;
4040                 }
4041         } else {
4042                 return le32_to_cpu(raw_inode->i_blocks_lo);
4043         }
4044 }
4045
4046 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4047 {
4048         struct ext4_iloc iloc;
4049         struct ext4_inode *raw_inode;
4050         struct ext4_inode_info *ei;
4051         struct buffer_head *bh;
4052         struct inode *inode;
4053         long ret;
4054         int block;
4055
4056         inode = iget_locked(sb, ino);
4057         if (!inode)
4058                 return ERR_PTR(-ENOMEM);
4059         if (!(inode->i_state & I_NEW))
4060                 return inode;
4061
4062         ei = EXT4_I(inode);
4063 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4064         ei->i_acl = EXT4_ACL_NOT_CACHED;
4065         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4066 #endif
4067
4068         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4069         if (ret < 0)
4070                 goto bad_inode;
4071         bh = iloc.bh;
4072         raw_inode = ext4_raw_inode(&iloc);
4073         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4074         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4075         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4076         if (!(test_opt(inode->i_sb, NO_UID32))) {
4077                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4078                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4079         }
4080         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4081
4082         ei->i_state = 0;
4083         ei->i_dir_start_lookup = 0;
4084         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4085         /* We now have enough fields to check if the inode was active or not.
4086          * This is needed because nfsd might try to access dead inodes
4087          * the test is that same one that e2fsck uses
4088          * NeilBrown 1999oct15
4089          */
4090         if (inode->i_nlink == 0) {
4091                 if (inode->i_mode == 0 ||
4092                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4093                         /* this inode is deleted */
4094                         brelse(bh);
4095                         ret = -ESTALE;
4096                         goto bad_inode;
4097                 }
4098                 /* The only unlinked inodes we let through here have
4099                  * valid i_mode and are being read by the orphan
4100                  * recovery code: that's fine, we're about to complete
4101                  * the process of deleting those. */
4102         }
4103         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4104         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4105         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4107             cpu_to_le32(EXT4_OS_HURD)) {
4108                 ei->i_file_acl |=
4109                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4110         }
4111         inode->i_size = ext4_isize(raw_inode);
4112         ei->i_disksize = inode->i_size;
4113         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4114         ei->i_block_group = iloc.block_group;
4115         /*
4116          * NOTE! The in-memory inode i_data array is in little-endian order
4117          * even on big-endian machines: we do NOT byteswap the block numbers!
4118          */
4119         for (block = 0; block < EXT4_N_BLOCKS; block++)
4120                 ei->i_data[block] = raw_inode->i_block[block];
4121         INIT_LIST_HEAD(&ei->i_orphan);
4122
4123         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4124                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4125                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4126                     EXT4_INODE_SIZE(inode->i_sb)) {
4127                         brelse(bh);
4128                         ret = -EIO;
4129                         goto bad_inode;
4130                 }
4131                 if (ei->i_extra_isize == 0) {
4132                         /* The extra space is currently unused. Use it. */
4133                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4134                                             EXT4_GOOD_OLD_INODE_SIZE;
4135                 } else {
4136                         __le32 *magic = (void *)raw_inode +
4137                                         EXT4_GOOD_OLD_INODE_SIZE +
4138                                         ei->i_extra_isize;
4139                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4140                                  ei->i_state |= EXT4_STATE_XATTR;
4141                 }
4142         } else
4143                 ei->i_extra_isize = 0;
4144
4145         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4146         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4147         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4148         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4149
4150         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4151         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4152                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4153                         inode->i_version |=
4154                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4155         }
4156
4157         if (S_ISREG(inode->i_mode)) {
4158                 inode->i_op = &ext4_file_inode_operations;
4159                 inode->i_fop = &ext4_file_operations;
4160                 ext4_set_aops(inode);
4161         } else if (S_ISDIR(inode->i_mode)) {
4162                 inode->i_op = &ext4_dir_inode_operations;
4163                 inode->i_fop = &ext4_dir_operations;
4164         } else if (S_ISLNK(inode->i_mode)) {
4165                 if (ext4_inode_is_fast_symlink(inode))
4166                         inode->i_op = &ext4_fast_symlink_inode_operations;
4167                 else {
4168                         inode->i_op = &ext4_symlink_inode_operations;
4169                         ext4_set_aops(inode);
4170                 }
4171         } else {
4172                 inode->i_op = &ext4_special_inode_operations;
4173                 if (raw_inode->i_block[0])
4174                         init_special_inode(inode, inode->i_mode,
4175                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4176                 else
4177                         init_special_inode(inode, inode->i_mode,
4178                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4179         }
4180         brelse(iloc.bh);
4181         ext4_set_inode_flags(inode);
4182         unlock_new_inode(inode);
4183         return inode;
4184
4185 bad_inode:
4186         iget_failed(inode);
4187         return ERR_PTR(ret);
4188 }
4189
4190 static int ext4_inode_blocks_set(handle_t *handle,
4191                                 struct ext4_inode *raw_inode,
4192                                 struct ext4_inode_info *ei)
4193 {
4194         struct inode *inode = &(ei->vfs_inode);
4195         u64 i_blocks = inode->i_blocks;
4196         struct super_block *sb = inode->i_sb;
4197
4198         if (i_blocks <= ~0U) {
4199                 /*
4200                  * i_blocks can be represnted in a 32 bit variable
4201                  * as multiple of 512 bytes
4202                  */
4203                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4204                 raw_inode->i_blocks_high = 0;
4205                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4206                 return 0;
4207         }
4208         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4209                 return -EFBIG;
4210
4211         if (i_blocks <= 0xffffffffffffULL) {
4212                 /*
4213                  * i_blocks can be represented in a 48 bit variable
4214                  * as multiple of 512 bytes
4215                  */
4216                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4217                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4218                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4219         } else {
4220                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4221                 /* i_block is stored in file system block size */
4222                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4223                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4224                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4225         }
4226         return 0;
4227 }
4228
4229 /*
4230  * Post the struct inode info into an on-disk inode location in the
4231  * buffer-cache.  This gobbles the caller's reference to the
4232  * buffer_head in the inode location struct.
4233  *
4234  * The caller must have write access to iloc->bh.
4235  */
4236 static int ext4_do_update_inode(handle_t *handle,
4237                                 struct inode *inode,
4238                                 struct ext4_iloc *iloc)
4239 {
4240         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4241         struct ext4_inode_info *ei = EXT4_I(inode);
4242         struct buffer_head *bh = iloc->bh;
4243         int err = 0, rc, block;
4244
4245         /* For fields not not tracking in the in-memory inode,
4246          * initialise them to zero for new inodes. */
4247         if (ei->i_state & EXT4_STATE_NEW)
4248                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4249
4250         ext4_get_inode_flags(ei);
4251         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4252         if (!(test_opt(inode->i_sb, NO_UID32))) {
4253                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4254                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4255 /*
4256  * Fix up interoperability with old kernels. Otherwise, old inodes get
4257  * re-used with the upper 16 bits of the uid/gid intact
4258  */
4259                 if (!ei->i_dtime) {
4260                         raw_inode->i_uid_high =
4261                                 cpu_to_le16(high_16_bits(inode->i_uid));
4262                         raw_inode->i_gid_high =
4263                                 cpu_to_le16(high_16_bits(inode->i_gid));
4264                 } else {
4265                         raw_inode->i_uid_high = 0;
4266                         raw_inode->i_gid_high = 0;
4267                 }
4268         } else {
4269                 raw_inode->i_uid_low =
4270                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4271                 raw_inode->i_gid_low =
4272                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4273                 raw_inode->i_uid_high = 0;
4274                 raw_inode->i_gid_high = 0;
4275         }
4276         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4277
4278         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4279         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4280         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4281         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4282
4283         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4284                 goto out_brelse;
4285         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4286         /* clear the migrate flag in the raw_inode */
4287         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4288         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4289             cpu_to_le32(EXT4_OS_HURD))
4290                 raw_inode->i_file_acl_high =
4291                         cpu_to_le16(ei->i_file_acl >> 32);
4292         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4293         ext4_isize_set(raw_inode, ei->i_disksize);
4294         if (ei->i_disksize > 0x7fffffffULL) {
4295                 struct super_block *sb = inode->i_sb;
4296                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4298                                 EXT4_SB(sb)->s_es->s_rev_level ==
4299                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4300                         /* If this is the first large file
4301                          * created, add a flag to the superblock.
4302                          */
4303                         err = ext4_journal_get_write_access(handle,
4304                                         EXT4_SB(sb)->s_sbh);
4305                         if (err)
4306                                 goto out_brelse;
4307                         ext4_update_dynamic_rev(sb);
4308                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4309                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4310                         sb->s_dirt = 1;
4311                         handle->h_sync = 1;
4312                         err = ext4_journal_dirty_metadata(handle,
4313                                         EXT4_SB(sb)->s_sbh);
4314                 }
4315         }
4316         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4317         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4318                 if (old_valid_dev(inode->i_rdev)) {
4319                         raw_inode->i_block[0] =
4320                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4321                         raw_inode->i_block[1] = 0;
4322                 } else {
4323                         raw_inode->i_block[0] = 0;
4324                         raw_inode->i_block[1] =
4325                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4326                         raw_inode->i_block[2] = 0;
4327                 }
4328         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4329                 raw_inode->i_block[block] = ei->i_data[block];
4330
4331         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4332         if (ei->i_extra_isize) {
4333                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334                         raw_inode->i_version_hi =
4335                         cpu_to_le32(inode->i_version >> 32);
4336                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4337         }
4338
4339
4340         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4341         rc = ext4_journal_dirty_metadata(handle, bh);
4342         if (!err)
4343                 err = rc;
4344         ei->i_state &= ~EXT4_STATE_NEW;
4345
4346 out_brelse:
4347         brelse(bh);
4348         ext4_std_error(inode->i_sb, err);
4349         return err;
4350 }
4351
4352 /*
4353  * ext4_write_inode()
4354  *
4355  * We are called from a few places:
4356  *
4357  * - Within generic_file_write() for O_SYNC files.
4358  *   Here, there will be no transaction running. We wait for any running
4359  *   trasnaction to commit.
4360  *
4361  * - Within sys_sync(), kupdate and such.
4362  *   We wait on commit, if tol to.
4363  *
4364  * - Within prune_icache() (PF_MEMALLOC == true)
4365  *   Here we simply return.  We can't afford to block kswapd on the
4366  *   journal commit.
4367  *
4368  * In all cases it is actually safe for us to return without doing anything,
4369  * because the inode has been copied into a raw inode buffer in
4370  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4371  * knfsd.
4372  *
4373  * Note that we are absolutely dependent upon all inode dirtiers doing the
4374  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4375  * which we are interested.
4376  *
4377  * It would be a bug for them to not do this.  The code:
4378  *
4379  *      mark_inode_dirty(inode)
4380  *      stuff();
4381  *      inode->i_size = expr;
4382  *
4383  * is in error because a kswapd-driven write_inode() could occur while
4384  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4385  * will no longer be on the superblock's dirty inode list.
4386  */
4387 int ext4_write_inode(struct inode *inode, int wait)
4388 {
4389         if (current->flags & PF_MEMALLOC)
4390                 return 0;
4391
4392         if (ext4_journal_current_handle()) {
4393                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4394                 dump_stack();
4395                 return -EIO;
4396         }
4397
4398         if (!wait)
4399                 return 0;
4400
4401         return ext4_force_commit(inode->i_sb);
4402 }
4403
4404 /*
4405  * ext4_setattr()
4406  *
4407  * Called from notify_change.
4408  *
4409  * We want to trap VFS attempts to truncate the file as soon as
4410  * possible.  In particular, we want to make sure that when the VFS
4411  * shrinks i_size, we put the inode on the orphan list and modify
4412  * i_disksize immediately, so that during the subsequent flushing of
4413  * dirty pages and freeing of disk blocks, we can guarantee that any
4414  * commit will leave the blocks being flushed in an unused state on
4415  * disk.  (On recovery, the inode will get truncated and the blocks will
4416  * be freed, so we have a strong guarantee that no future commit will
4417  * leave these blocks visible to the user.)
4418  *
4419  * Another thing we have to assure is that if we are in ordered mode
4420  * and inode is still attached to the committing transaction, we must
4421  * we start writeout of all the dirty pages which are being truncated.
4422  * This way we are sure that all the data written in the previous
4423  * transaction are already on disk (truncate waits for pages under
4424  * writeback).
4425  *
4426  * Called with inode->i_mutex down.
4427  */
4428 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4429 {
4430         struct inode *inode = dentry->d_inode;
4431         int error, rc = 0;
4432         const unsigned int ia_valid = attr->ia_valid;
4433
4434         error = inode_change_ok(inode, attr);
4435         if (error)
4436                 return error;
4437
4438         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4439                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4440                 handle_t *handle;
4441
4442                 /* (user+group)*(old+new) structure, inode write (sb,
4443                  * inode block, ? - but truncate inode update has it) */
4444                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4445                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4446                 if (IS_ERR(handle)) {
4447                         error = PTR_ERR(handle);
4448                         goto err_out;
4449                 }
4450                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4451                 if (error) {
4452                         ext4_journal_stop(handle);
4453                         return error;
4454                 }
4455                 /* Update corresponding info in inode so that everything is in
4456                  * one transaction */
4457                 if (attr->ia_valid & ATTR_UID)
4458                         inode->i_uid = attr->ia_uid;
4459                 if (attr->ia_valid & ATTR_GID)
4460                         inode->i_gid = attr->ia_gid;
4461                 error = ext4_mark_inode_dirty(handle, inode);
4462                 ext4_journal_stop(handle);
4463         }
4464
4465         if (attr->ia_valid & ATTR_SIZE) {
4466                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4467                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4468
4469                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4470                                 error = -EFBIG;
4471                                 goto err_out;
4472                         }
4473                 }
4474         }
4475
4476         if (S_ISREG(inode->i_mode) &&
4477             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4478                 handle_t *handle;
4479
4480                 handle = ext4_journal_start(inode, 3);
4481                 if (IS_ERR(handle)) {
4482                         error = PTR_ERR(handle);
4483                         goto err_out;
4484                 }
4485
4486                 error = ext4_orphan_add(handle, inode);
4487                 EXT4_I(inode)->i_disksize = attr->ia_size;
4488                 rc = ext4_mark_inode_dirty(handle, inode);
4489                 if (!error)
4490                         error = rc;
4491                 ext4_journal_stop(handle);
4492
4493                 if (ext4_should_order_data(inode)) {
4494                         error = ext4_begin_ordered_truncate(inode,
4495                                                             attr->ia_size);
4496                         if (error) {
4497                                 /* Do as much error cleanup as possible */
4498                                 handle = ext4_journal_start(inode, 3);
4499                                 if (IS_ERR(handle)) {
4500                                         ext4_orphan_del(NULL, inode);
4501                                         goto err_out;
4502                                 }
4503                                 ext4_orphan_del(handle, inode);
4504                                 ext4_journal_stop(handle);
4505                                 goto err_out;
4506                         }
4507                 }
4508         }
4509
4510         rc = inode_setattr(inode, attr);
4511
4512         /* If inode_setattr's call to ext4_truncate failed to get a
4513          * transaction handle at all, we need to clean up the in-core
4514          * orphan list manually. */
4515         if (inode->i_nlink)
4516                 ext4_orphan_del(NULL, inode);
4517
4518         if (!rc && (ia_valid & ATTR_MODE))
4519                 rc = ext4_acl_chmod(inode);
4520
4521 err_out:
4522         ext4_std_error(inode->i_sb, error);
4523         if (!error)
4524                 error = rc;
4525         return error;
4526 }
4527
4528 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4529                  struct kstat *stat)
4530 {
4531         struct inode *inode;
4532         unsigned long delalloc_blocks;
4533
4534         inode = dentry->d_inode;
4535         generic_fillattr(inode, stat);
4536
4537         /*
4538          * We can't update i_blocks if the block allocation is delayed
4539          * otherwise in the case of system crash before the real block
4540          * allocation is done, we will have i_blocks inconsistent with
4541          * on-disk file blocks.
4542          * We always keep i_blocks updated together with real
4543          * allocation. But to not confuse with user, stat
4544          * will return the blocks that include the delayed allocation
4545          * blocks for this file.
4546          */
4547         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4548         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4549         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4550
4551         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4552         return 0;
4553 }
4554
4555 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4556                                       int chunk)
4557 {
4558         int indirects;
4559
4560         /* if nrblocks are contiguous */
4561         if (chunk) {
4562                 /*
4563                  * With N contiguous data blocks, it need at most
4564                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4565                  * 2 dindirect blocks
4566                  * 1 tindirect block
4567                  */
4568                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4569                 return indirects + 3;
4570         }
4571         /*
4572          * if nrblocks are not contiguous, worse case, each block touch
4573          * a indirect block, and each indirect block touch a double indirect
4574          * block, plus a triple indirect block
4575          */
4576         indirects = nrblocks * 2 + 1;
4577         return indirects;
4578 }
4579
4580 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4581 {
4582         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4583                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4584         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4585 }
4586 /*
4587  * Account for index blocks, block groups bitmaps and block group
4588  * descriptor blocks if modify datablocks and index blocks
4589  * worse case, the indexs blocks spread over different block groups
4590  *
4591  * If datablocks are discontiguous, they are possible to spread over
4592  * different block groups too. If they are contiugous, with flexbg,
4593  * they could still across block group boundary.
4594  *
4595  * Also account for superblock, inode, quota and xattr blocks
4596  */
4597 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4598 {
4599         int groups, gdpblocks;
4600         int idxblocks;
4601         int ret = 0;
4602
4603         /*
4604          * How many index blocks need to touch to modify nrblocks?
4605          * The "Chunk" flag indicating whether the nrblocks is
4606          * physically contiguous on disk
4607          *
4608          * For Direct IO and fallocate, they calls get_block to allocate
4609          * one single extent at a time, so they could set the "Chunk" flag
4610          */
4611         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4612
4613         ret = idxblocks;
4614
4615         /*
4616          * Now let's see how many group bitmaps and group descriptors need
4617          * to account
4618          */
4619         groups = idxblocks;
4620         if (chunk)
4621                 groups += 1;
4622         else
4623                 groups += nrblocks;
4624
4625         gdpblocks = groups;
4626         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4627                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4628         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4629                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4630
4631         /* bitmaps and block group descriptor blocks */
4632         ret += groups + gdpblocks;
4633
4634         /* Blocks for super block, inode, quota and xattr blocks */
4635         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4636
4637         return ret;
4638 }
4639
4640 /*
4641  * Calulate the total number of credits to reserve to fit
4642  * the modification of a single pages into a single transaction,
4643  * which may include multiple chunks of block allocations.
4644  *
4645  * This could be called via ext4_write_begin()
4646  *
4647  * We need to consider the worse case, when
4648  * one new block per extent.
4649  */
4650 int ext4_writepage_trans_blocks(struct inode *inode)
4651 {
4652         int bpp = ext4_journal_blocks_per_page(inode);
4653         int ret;
4654
4655         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4656
4657         /* Account for data blocks for journalled mode */
4658         if (ext4_should_journal_data(inode))
4659                 ret += bpp;
4660         return ret;
4661 }
4662
4663 /*
4664  * Calculate the journal credits for a chunk of data modification.
4665  *
4666  * This is called from DIO, fallocate or whoever calling
4667  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4668  *
4669  * journal buffers for data blocks are not included here, as DIO
4670  * and fallocate do no need to journal data buffers.
4671  */
4672 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4673 {
4674         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4675 }
4676
4677 /*
4678  * The caller must have previously called ext4_reserve_inode_write().
4679  * Give this, we know that the caller already has write access to iloc->bh.
4680  */
4681 int ext4_mark_iloc_dirty(handle_t *handle,
4682                 struct inode *inode, struct ext4_iloc *iloc)
4683 {
4684         int err = 0;
4685
4686         if (test_opt(inode->i_sb, I_VERSION))
4687                 inode_inc_iversion(inode);
4688
4689         /* the do_update_inode consumes one bh->b_count */
4690         get_bh(iloc->bh);
4691
4692         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4693         err = ext4_do_update_inode(handle, inode, iloc);
4694         put_bh(iloc->bh);
4695         return err;
4696 }
4697
4698 /*
4699  * On success, We end up with an outstanding reference count against
4700  * iloc->bh.  This _must_ be cleaned up later.
4701  */
4702
4703 int
4704 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4705                          struct ext4_iloc *iloc)
4706 {
4707         int err = 0;
4708         if (handle) {
4709                 err = ext4_get_inode_loc(inode, iloc);
4710                 if (!err) {
4711                         BUFFER_TRACE(iloc->bh, "get_write_access");
4712                         err = ext4_journal_get_write_access(handle, iloc->bh);
4713                         if (err) {
4714                                 brelse(iloc->bh);
4715                                 iloc->bh = NULL;
4716                         }
4717                 }
4718         }
4719         ext4_std_error(inode->i_sb, err);
4720         return err;
4721 }
4722
4723 /*
4724  * Expand an inode by new_extra_isize bytes.
4725  * Returns 0 on success or negative error number on failure.
4726  */
4727 static int ext4_expand_extra_isize(struct inode *inode,
4728                                    unsigned int new_extra_isize,
4729                                    struct ext4_iloc iloc,
4730                                    handle_t *handle)
4731 {
4732         struct ext4_inode *raw_inode;
4733         struct ext4_xattr_ibody_header *header;
4734         struct ext4_xattr_entry *entry;
4735
4736         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4737                 return 0;
4738
4739         raw_inode = ext4_raw_inode(&iloc);
4740
4741         header = IHDR(inode, raw_inode);
4742         entry = IFIRST(header);
4743
4744         /* No extended attributes present */
4745         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4746                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4747                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4748                         new_extra_isize);
4749                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4750                 return 0;
4751         }
4752
4753         /* try to expand with EAs present */
4754         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4755                                           raw_inode, handle);
4756 }
4757
4758 /*
4759  * What we do here is to mark the in-core inode as clean with respect to inode
4760  * dirtiness (it may still be data-dirty).
4761  * This means that the in-core inode may be reaped by prune_icache
4762  * without having to perform any I/O.  This is a very good thing,
4763  * because *any* task may call prune_icache - even ones which
4764  * have a transaction open against a different journal.
4765  *
4766  * Is this cheating?  Not really.  Sure, we haven't written the
4767  * inode out, but prune_icache isn't a user-visible syncing function.
4768  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4769  * we start and wait on commits.
4770  *
4771  * Is this efficient/effective?  Well, we're being nice to the system
4772  * by cleaning up our inodes proactively so they can be reaped
4773  * without I/O.  But we are potentially leaving up to five seconds'
4774  * worth of inodes floating about which prune_icache wants us to
4775  * write out.  One way to fix that would be to get prune_icache()
4776  * to do a write_super() to free up some memory.  It has the desired
4777  * effect.
4778  */
4779 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4780 {
4781         struct ext4_iloc iloc;
4782         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4783         static unsigned int mnt_count;
4784         int err, ret;
4785
4786         might_sleep();
4787         err = ext4_reserve_inode_write(handle, inode, &iloc);
4788         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4789             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4790                 /*
4791                  * We need extra buffer credits since we may write into EA block
4792                  * with this same handle. If journal_extend fails, then it will
4793                  * only result in a minor loss of functionality for that inode.
4794                  * If this is felt to be critical, then e2fsck should be run to
4795                  * force a large enough s_min_extra_isize.
4796                  */
4797                 if ((jbd2_journal_extend(handle,
4798                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4799                         ret = ext4_expand_extra_isize(inode,
4800                                                       sbi->s_want_extra_isize,
4801                                                       iloc, handle);
4802                         if (ret) {
4803                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4804                                 if (mnt_count !=
4805                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4806                                         ext4_warning(inode->i_sb, __func__,
4807                                         "Unable to expand inode %lu. Delete"
4808                                         " some EAs or run e2fsck.",
4809                                         inode->i_ino);
4810                                         mnt_count =
4811                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4812                                 }
4813                         }
4814                 }
4815         }
4816         if (!err)
4817                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4818         return err;
4819 }
4820
4821 /*
4822  * ext4_dirty_inode() is called from __mark_inode_dirty()
4823  *
4824  * We're really interested in the case where a file is being extended.
4825  * i_size has been changed by generic_commit_write() and we thus need
4826  * to include the updated inode in the current transaction.
4827  *
4828  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4829  * are allocated to the file.
4830  *
4831  * If the inode is marked synchronous, we don't honour that here - doing
4832  * so would cause a commit on atime updates, which we don't bother doing.
4833  * We handle synchronous inodes at the highest possible level.
4834  */
4835 void ext4_dirty_inode(struct inode *inode)
4836 {
4837         handle_t *current_handle = ext4_journal_current_handle();
4838         handle_t *handle;
4839
4840         handle = ext4_journal_start(inode, 2);
4841         if (IS_ERR(handle))
4842                 goto out;
4843         if (current_handle &&
4844                 current_handle->h_transaction != handle->h_transaction) {
4845                 /* This task has a transaction open against a different fs */
4846                 printk(KERN_EMERG "%s: transactions do not match!\n",
4847                        __func__);
4848         } else {
4849                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4850                                 current_handle);
4851                 ext4_mark_inode_dirty(handle, inode);
4852         }
4853         ext4_journal_stop(handle);
4854 out:
4855         return;
4856 }
4857
4858 #if 0
4859 /*
4860  * Bind an inode's backing buffer_head into this transaction, to prevent
4861  * it from being flushed to disk early.  Unlike
4862  * ext4_reserve_inode_write, this leaves behind no bh reference and
4863  * returns no iloc structure, so the caller needs to repeat the iloc
4864  * lookup to mark the inode dirty later.
4865  */
4866 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4867 {
4868         struct ext4_iloc iloc;
4869
4870         int err = 0;
4871         if (handle) {
4872                 err = ext4_get_inode_loc(inode, &iloc);
4873                 if (!err) {
4874                         BUFFER_TRACE(iloc.bh, "get_write_access");
4875                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4876                         if (!err)
4877                                 err = ext4_journal_dirty_metadata(handle,
4878                                                                   iloc.bh);
4879                         brelse(iloc.bh);
4880                 }
4881         }
4882         ext4_std_error(inode->i_sb, err);
4883         return err;
4884 }
4885 #endif
4886
4887 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4888 {
4889         journal_t *journal;
4890         handle_t *handle;
4891         int err;
4892
4893         /*
4894          * We have to be very careful here: changing a data block's
4895          * journaling status dynamically is dangerous.  If we write a
4896          * data block to the journal, change the status and then delete
4897          * that block, we risk forgetting to revoke the old log record
4898          * from the journal and so a subsequent replay can corrupt data.
4899          * So, first we make sure that the journal is empty and that
4900          * nobody is changing anything.
4901          */
4902
4903         journal = EXT4_JOURNAL(inode);
4904         if (is_journal_aborted(journal))
4905                 return -EROFS;
4906
4907         jbd2_journal_lock_updates(journal);
4908         jbd2_journal_flush(journal);
4909
4910         /*
4911          * OK, there are no updates running now, and all cached data is
4912          * synced to disk.  We are now in a completely consistent state
4913          * which doesn't have anything in the journal, and we know that
4914          * no filesystem updates are running, so it is safe to modify
4915          * the inode's in-core data-journaling state flag now.
4916          */
4917
4918         if (val)
4919                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4920         else
4921                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4922         ext4_set_aops(inode);
4923
4924         jbd2_journal_unlock_updates(journal);
4925
4926         /* Finally we can mark the inode as dirty. */
4927
4928         handle = ext4_journal_start(inode, 1);
4929         if (IS_ERR(handle))
4930                 return PTR_ERR(handle);
4931
4932         err = ext4_mark_inode_dirty(handle, inode);
4933         handle->h_sync = 1;
4934         ext4_journal_stop(handle);
4935         ext4_std_error(inode->i_sb, err);
4936
4937         return err;
4938 }
4939
4940 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4941 {
4942         return !buffer_mapped(bh);
4943 }
4944
4945 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4946 {
4947         loff_t size;
4948         unsigned long len;
4949         int ret = -EINVAL;
4950         void *fsdata;
4951         struct file *file = vma->vm_file;
4952         struct inode *inode = file->f_path.dentry->d_inode;
4953         struct address_space *mapping = inode->i_mapping;
4954
4955         /*
4956          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4957          * get i_mutex because we are already holding mmap_sem.
4958          */
4959         down_read(&inode->i_alloc_sem);
4960         size = i_size_read(inode);
4961         if (page->mapping != mapping || size <= page_offset(page)
4962             || !PageUptodate(page)) {
4963                 /* page got truncated from under us? */
4964                 goto out_unlock;
4965         }
4966         ret = 0;
4967         if (PageMappedToDisk(page))
4968                 goto out_unlock;
4969
4970         if (page->index == size >> PAGE_CACHE_SHIFT)
4971                 len = size & ~PAGE_CACHE_MASK;
4972         else
4973                 len = PAGE_CACHE_SIZE;
4974
4975         if (page_has_buffers(page)) {
4976                 /* return if we have all the buffers mapped */
4977                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4978                                        ext4_bh_unmapped))
4979                         goto out_unlock;
4980         }
4981         /*
4982          * OK, we need to fill the hole... Do write_begin write_end
4983          * to do block allocation/reservation.We are not holding
4984          * inode.i__mutex here. That allow * parallel write_begin,
4985          * write_end call. lock_page prevent this from happening
4986          * on the same page though
4987          */
4988         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4989                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4990         if (ret < 0)
4991                 goto out_unlock;
4992         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4993                         len, len, page, fsdata);
4994         if (ret < 0)
4995                 goto out_unlock;
4996         ret = 0;
4997 out_unlock:
4998         up_read(&inode->i_alloc_sem);
4999         return ret;
5000 }