Merge commit 'v2.6.29-rc1' into irq/urgent
[linux-2.6] / kernel / async.c
1 /*
2  * async.c: Asynchronous function calls for boot performance
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Arjan van de Ven <arjan@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13
14 /*
15
16 Goals and Theory of Operation
17
18 The primary goal of this feature is to reduce the kernel boot time,
19 by doing various independent hardware delays and discovery operations
20 decoupled and not strictly serialized.
21
22 More specifically, the asynchronous function call concept allows
23 certain operations (primarily during system boot) to happen
24 asynchronously, out of order, while these operations still
25 have their externally visible parts happen sequentially and in-order.
26 (not unlike how out-of-order CPUs retire their instructions in order)
27
28 Key to the asynchronous function call implementation is the concept of
29 a "sequence cookie" (which, although it has an abstracted type, can be
30 thought of as a monotonically incrementing number).
31
32 The async core will assign each scheduled event such a sequence cookie and
33 pass this to the called functions.
34
35 The asynchronously called function should before doing a globally visible
36 operation, such as registering device numbers, call the
37 async_synchronize_cookie() function and pass in its own cookie. The
38 async_synchronize_cookie() function will make sure that all asynchronous
39 operations that were scheduled prior to the operation corresponding with the
40 cookie have completed.
41
42 Subsystem/driver initialization code that scheduled asynchronous probe
43 functions, but which shares global resources with other drivers/subsystems
44 that do not use the asynchronous call feature, need to do a full
45 synchronization with the async_synchronize_full() function, before returning
46 from their init function. This is to maintain strict ordering between the
47 asynchronous and synchronous parts of the kernel.
48
49 */
50
51 #include <linux/async.h>
52 #include <linux/module.h>
53 #include <linux/wait.h>
54 #include <linux/sched.h>
55 #include <linux/init.h>
56 #include <linux/kthread.h>
57 #include <asm/atomic.h>
58
59 static async_cookie_t next_cookie = 1;
60
61 #define MAX_THREADS     256
62 #define MAX_WORK        32768
63
64 static LIST_HEAD(async_pending);
65 static LIST_HEAD(async_running);
66 static DEFINE_SPINLOCK(async_lock);
67
68 static int async_enabled = 0;
69
70 struct async_entry {
71         struct list_head list;
72         async_cookie_t   cookie;
73         async_func_ptr   *func;
74         void             *data;
75         struct list_head *running;
76 };
77
78 static DECLARE_WAIT_QUEUE_HEAD(async_done);
79 static DECLARE_WAIT_QUEUE_HEAD(async_new);
80
81 static atomic_t entry_count;
82 static atomic_t thread_count;
83
84 extern int initcall_debug;
85
86
87 /*
88  * MUST be called with the lock held!
89  */
90 static async_cookie_t  __lowest_in_progress(struct list_head *running)
91 {
92         struct async_entry *entry;
93         if (!list_empty(&async_pending)) {
94                 entry = list_first_entry(&async_pending,
95                         struct async_entry, list);
96                 return entry->cookie;
97         } else if (!list_empty(running)) {
98                 entry = list_first_entry(running,
99                         struct async_entry, list);
100                 return entry->cookie;
101         } else {
102                 /* nothing in progress... next_cookie is "infinity" */
103                 return next_cookie;
104         }
105
106 }
107 /*
108  * pick the first pending entry and run it
109  */
110 static void run_one_entry(void)
111 {
112         unsigned long flags;
113         struct async_entry *entry;
114         ktime_t calltime, delta, rettime;
115
116         /* 1) pick one task from the pending queue */
117
118         spin_lock_irqsave(&async_lock, flags);
119         if (list_empty(&async_pending))
120                 goto out;
121         entry = list_first_entry(&async_pending, struct async_entry, list);
122
123         /* 2) move it to the running queue */
124         list_del(&entry->list);
125         list_add_tail(&entry->list, &async_running);
126         spin_unlock_irqrestore(&async_lock, flags);
127
128         /* 3) run it (and print duration)*/
129         if (initcall_debug && system_state == SYSTEM_BOOTING) {
130                 printk("calling  %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current));
131                 calltime = ktime_get();
132         }
133         entry->func(entry->data, entry->cookie);
134         if (initcall_debug && system_state == SYSTEM_BOOTING) {
135                 rettime = ktime_get();
136                 delta = ktime_sub(rettime, calltime);
137                 printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie,
138                         entry->func, ktime_to_ns(delta) >> 10);
139         }
140
141         /* 4) remove it from the running queue */
142         spin_lock_irqsave(&async_lock, flags);
143         list_del(&entry->list);
144
145         /* 5) free the entry  */
146         kfree(entry);
147         atomic_dec(&entry_count);
148
149         spin_unlock_irqrestore(&async_lock, flags);
150
151         /* 6) wake up any waiters. */
152         wake_up(&async_done);
153         return;
154
155 out:
156         spin_unlock_irqrestore(&async_lock, flags);
157 }
158
159
160 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
161 {
162         struct async_entry *entry;
163         unsigned long flags;
164         async_cookie_t newcookie;
165         
166
167         /* allow irq-off callers */
168         entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
169
170         /*
171          * If we're out of memory or if there's too much work
172          * pending already, we execute synchronously.
173          */
174         if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) {
175                 kfree(entry);
176                 spin_lock_irqsave(&async_lock, flags);
177                 newcookie = next_cookie++;
178                 spin_unlock_irqrestore(&async_lock, flags);
179
180                 /* low on memory.. run synchronously */
181                 ptr(data, newcookie);
182                 return newcookie;
183         }
184         entry->func = ptr;
185         entry->data = data;
186         entry->running = running;
187
188         spin_lock_irqsave(&async_lock, flags);
189         newcookie = entry->cookie = next_cookie++;
190         list_add_tail(&entry->list, &async_pending);
191         atomic_inc(&entry_count);
192         spin_unlock_irqrestore(&async_lock, flags);
193         wake_up(&async_new);
194         return newcookie;
195 }
196
197 async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
198 {
199         return __async_schedule(ptr, data, &async_pending);
200 }
201 EXPORT_SYMBOL_GPL(async_schedule);
202
203 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running)
204 {
205         return __async_schedule(ptr, data, running);
206 }
207 EXPORT_SYMBOL_GPL(async_schedule_special);
208
209 void async_synchronize_full(void)
210 {
211         do {
212                 async_synchronize_cookie(next_cookie);
213         } while (!list_empty(&async_running) || !list_empty(&async_pending));
214 }
215 EXPORT_SYMBOL_GPL(async_synchronize_full);
216
217 void async_synchronize_full_special(struct list_head *list)
218 {
219         async_synchronize_cookie_special(next_cookie, list);
220 }
221 EXPORT_SYMBOL_GPL(async_synchronize_full_special);
222
223 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running)
224 {
225         ktime_t starttime, delta, endtime;
226
227         if (initcall_debug && system_state == SYSTEM_BOOTING) {
228                 printk("async_waiting @ %i\n", task_pid_nr(current));
229                 starttime = ktime_get();
230         }
231
232         wait_event(async_done, __lowest_in_progress(running) >= cookie);
233
234         if (initcall_debug && system_state == SYSTEM_BOOTING) {
235                 endtime = ktime_get();
236                 delta = ktime_sub(endtime, starttime);
237
238                 printk("async_continuing @ %i after %lli usec\n",
239                         task_pid_nr(current), ktime_to_ns(delta) >> 10);
240         }
241 }
242 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special);
243
244 void async_synchronize_cookie(async_cookie_t cookie)
245 {
246         async_synchronize_cookie_special(cookie, &async_running);
247 }
248 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
249
250
251 static int async_thread(void *unused)
252 {
253         DECLARE_WAITQUEUE(wq, current);
254         add_wait_queue(&async_new, &wq);
255
256         while (!kthread_should_stop()) {
257                 int ret = HZ;
258                 set_current_state(TASK_INTERRUPTIBLE);
259                 /*
260                  * check the list head without lock.. false positives
261                  * are dealt with inside run_one_entry() while holding
262                  * the lock.
263                  */
264                 rmb();
265                 if (!list_empty(&async_pending))
266                         run_one_entry();
267                 else
268                         ret = schedule_timeout(HZ);
269
270                 if (ret == 0) {
271                         /*
272                          * we timed out, this means we as thread are redundant.
273                          * we sign off and die, but we to avoid any races there
274                          * is a last-straw check to see if work snuck in.
275                          */
276                         atomic_dec(&thread_count);
277                         wmb(); /* manager must see our departure first */
278                         if (list_empty(&async_pending))
279                                 break;
280                         /*
281                          * woops work came in between us timing out and us
282                          * signing off; we need to stay alive and keep working.
283                          */
284                         atomic_inc(&thread_count);
285                 }
286         }
287         remove_wait_queue(&async_new, &wq);
288
289         return 0;
290 }
291
292 static int async_manager_thread(void *unused)
293 {
294         DECLARE_WAITQUEUE(wq, current);
295         add_wait_queue(&async_new, &wq);
296
297         while (!kthread_should_stop()) {
298                 int tc, ec;
299
300                 set_current_state(TASK_INTERRUPTIBLE);
301
302                 tc = atomic_read(&thread_count);
303                 rmb();
304                 ec = atomic_read(&entry_count);
305
306                 while (tc < ec && tc < MAX_THREADS) {
307                         kthread_run(async_thread, NULL, "async/%i", tc);
308                         atomic_inc(&thread_count);
309                         tc++;
310                 }
311
312                 schedule();
313         }
314         remove_wait_queue(&async_new, &wq);
315
316         return 0;
317 }
318
319 static int __init async_init(void)
320 {
321         if (async_enabled)
322                 kthread_run(async_manager_thread, NULL, "async/mgr");
323         return 0;
324 }
325
326 static int __init setup_async(char *str)
327 {
328         async_enabled = 1;
329         return 1;
330 }
331
332 __setup("fastboot", setup_async);
333
334
335 core_initcall(async_init);