2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
42 static int ext3_writepage_trans_blocks(struct inode *inode);
45 * Test whether an inode is a fast symlink.
47 static int ext3_inode_is_fast_symlink(struct inode *inode)
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
52 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
56 * The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
64 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
65 struct buffer_head *bh, ext3_fsblk_t blocknr)
71 BUFFER_TRACE(bh, "enter");
73 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
75 bh, is_metadata, inode->i_mode,
76 test_opt(inode->i_sb, DATA_FLAGS));
78 /* Never use the revoke function if we are doing full data
79 * journaling: there is no need to, and a V1 superblock won't
80 * support it. Otherwise, only skip the revoke on un-journaled
83 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
84 (!is_metadata && !ext3_should_journal_data(inode))) {
86 BUFFER_TRACE(bh, "call journal_forget");
87 return ext3_journal_forget(handle, bh);
93 * data!=journal && (is_metadata || should_journal_data(inode))
95 BUFFER_TRACE(bh, "call ext3_journal_revoke");
96 err = ext3_journal_revoke(handle, blocknr, bh);
98 ext3_abort(inode->i_sb, __func__,
99 "error %d when attempting revoke", err);
100 BUFFER_TRACE(bh, "exit");
105 * Work out how many blocks we need to proceed with the next chunk of a
106 * truncate transaction.
108 static unsigned long blocks_for_truncate(struct inode *inode)
110 unsigned long needed;
112 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
114 /* Give ourselves just enough room to cope with inodes in which
115 * i_blocks is corrupt: we've seen disk corruptions in the past
116 * which resulted in random data in an inode which looked enough
117 * like a regular file for ext3 to try to delete it. Things
118 * will go a bit crazy if that happens, but at least we should
119 * try not to panic the whole kernel. */
123 /* But we need to bound the transaction so we don't overflow the
125 if (needed > EXT3_MAX_TRANS_DATA)
126 needed = EXT3_MAX_TRANS_DATA;
128 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
132 * Truncate transactions can be complex and absolutely huge. So we need to
133 * be able to restart the transaction at a conventient checkpoint to make
134 * sure we don't overflow the journal.
136 * start_transaction gets us a new handle for a truncate transaction,
137 * and extend_transaction tries to extend the existing one a bit. If
138 * extend fails, we need to propagate the failure up and restart the
139 * transaction in the top-level truncate loop. --sct
141 static handle_t *start_transaction(struct inode *inode)
145 result = ext3_journal_start(inode, blocks_for_truncate(inode));
149 ext3_std_error(inode->i_sb, PTR_ERR(result));
154 * Try to extend this transaction for the purposes of truncation.
156 * Returns 0 if we managed to create more room. If we can't create more
157 * room, and the transaction must be restarted we return 1.
159 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
161 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
163 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
169 * Restart the transaction associated with *handle. This does a commit,
170 * so before we call here everything must be consistently dirtied against
173 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
175 jbd_debug(2, "restarting handle %p\n", handle);
176 return ext3_journal_restart(handle, blocks_for_truncate(inode));
180 * Called at the last iput() if i_nlink is zero.
182 void ext3_delete_inode (struct inode * inode)
186 truncate_inode_pages(&inode->i_data, 0);
188 if (is_bad_inode(inode))
191 handle = start_transaction(inode);
192 if (IS_ERR(handle)) {
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
198 ext3_orphan_del(NULL, inode);
206 ext3_truncate(inode);
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
215 ext3_orphan_del(handle, inode);
216 EXT3_I(inode)->i_dtime = get_seconds();
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
225 if (ext3_mark_inode_dirty(handle, inode))
226 /* If that failed, just do the required in-core inode clear. */
229 ext3_free_inode(handle, inode);
230 ext3_journal_stop(handle);
233 clear_inode(inode); /* We must guarantee clearing of inode... */
239 struct buffer_head *bh;
242 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
244 p->key = *(p->p = v);
248 static int verify_chain(Indirect *from, Indirect *to)
250 while (from <= to && from->key == *from->p)
256 * ext3_block_to_path - parse the block number into array of offsets
257 * @inode: inode in question (we are only interested in its superblock)
258 * @i_block: block number to be parsed
259 * @offsets: array to store the offsets in
260 * @boundary: set this non-zero if the referred-to block is likely to be
261 * followed (on disk) by an indirect block.
263 * To store the locations of file's data ext3 uses a data structure common
264 * for UNIX filesystems - tree of pointers anchored in the inode, with
265 * data blocks at leaves and indirect blocks in intermediate nodes.
266 * This function translates the block number into path in that tree -
267 * return value is the path length and @offsets[n] is the offset of
268 * pointer to (n+1)th node in the nth one. If @block is out of range
269 * (negative or too large) warning is printed and zero returned.
271 * Note: function doesn't find node addresses, so no IO is needed. All
272 * we need to know is the capacity of indirect blocks (taken from the
277 * Portability note: the last comparison (check that we fit into triple
278 * indirect block) is spelled differently, because otherwise on an
279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280 * if our filesystem had 8Kb blocks. We might use long long, but that would
281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282 * i_block would have to be negative in the very beginning, so we would not
286 static int ext3_block_to_path(struct inode *inode,
287 long i_block, int offsets[4], int *boundary)
289 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
290 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
291 const long direct_blocks = EXT3_NDIR_BLOCKS,
292 indirect_blocks = ptrs,
293 double_blocks = (1 << (ptrs_bits * 2));
298 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
299 } else if (i_block < direct_blocks) {
300 offsets[n++] = i_block;
301 final = direct_blocks;
302 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
303 offsets[n++] = EXT3_IND_BLOCK;
304 offsets[n++] = i_block;
306 } else if ((i_block -= indirect_blocks) < double_blocks) {
307 offsets[n++] = EXT3_DIND_BLOCK;
308 offsets[n++] = i_block >> ptrs_bits;
309 offsets[n++] = i_block & (ptrs - 1);
311 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
312 offsets[n++] = EXT3_TIND_BLOCK;
313 offsets[n++] = i_block >> (ptrs_bits * 2);
314 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
315 offsets[n++] = i_block & (ptrs - 1);
318 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
321 *boundary = final - 1 - (i_block & (ptrs - 1));
326 * ext3_get_branch - read the chain of indirect blocks leading to data
327 * @inode: inode in question
328 * @depth: depth of the chain (1 - direct pointer, etc.)
329 * @offsets: offsets of pointers in inode/indirect blocks
330 * @chain: place to store the result
331 * @err: here we store the error value
333 * Function fills the array of triples <key, p, bh> and returns %NULL
334 * if everything went OK or the pointer to the last filled triple
335 * (incomplete one) otherwise. Upon the return chain[i].key contains
336 * the number of (i+1)-th block in the chain (as it is stored in memory,
337 * i.e. little-endian 32-bit), chain[i].p contains the address of that
338 * number (it points into struct inode for i==0 and into the bh->b_data
339 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340 * block for i>0 and NULL for i==0. In other words, it holds the block
341 * numbers of the chain, addresses they were taken from (and where we can
342 * verify that chain did not change) and buffer_heads hosting these
345 * Function stops when it stumbles upon zero pointer (absent block)
346 * (pointer to last triple returned, *@err == 0)
347 * or when it gets an IO error reading an indirect block
348 * (ditto, *@err == -EIO)
349 * or when it notices that chain had been changed while it was reading
350 * (ditto, *@err == -EAGAIN)
351 * or when it reads all @depth-1 indirect blocks successfully and finds
352 * the whole chain, all way to the data (returns %NULL, *err == 0).
354 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
355 Indirect chain[4], int *err)
357 struct super_block *sb = inode->i_sb;
359 struct buffer_head *bh;
362 /* i_data is not going away, no lock needed */
363 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
367 bh = sb_bread(sb, le32_to_cpu(p->key));
370 /* Reader: pointers */
371 if (!verify_chain(chain, p))
373 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
391 * ext3_find_near - find a place for allocation with sufficient locality
393 * @ind: descriptor of indirect block.
395 * This function returns the preferred place for block allocation.
396 * It is used when heuristic for sequential allocation fails.
398 * + if there is a block to the left of our position - allocate near it.
399 * + if pointer will live in indirect block - allocate near that block.
400 * + if pointer will live in inode - allocate in the same
403 * In the latter case we colour the starting block by the callers PID to
404 * prevent it from clashing with concurrent allocations for a different inode
405 * in the same block group. The PID is used here so that functionally related
406 * files will be close-by on-disk.
408 * Caller must make sure that @ind is valid and will stay that way.
410 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
412 struct ext3_inode_info *ei = EXT3_I(inode);
413 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
415 ext3_fsblk_t bg_start;
416 ext3_grpblk_t colour;
418 /* Try to find previous block */
419 for (p = ind->p - 1; p >= start; p--) {
421 return le32_to_cpu(*p);
424 /* No such thing, so let's try location of indirect block */
426 return ind->bh->b_blocknr;
429 * It is going to be referred to from the inode itself? OK, just put it
430 * into the same cylinder group then.
432 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
433 colour = (current->pid % 16) *
434 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
435 return bg_start + colour;
439 * ext3_find_goal - find a preferred place for allocation.
441 * @block: block we want
442 * @partial: pointer to the last triple within a chain
444 * Normally this function find the preferred place for block allocation,
448 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
451 struct ext3_block_alloc_info *block_i;
453 block_i = EXT3_I(inode)->i_block_alloc_info;
456 * try the heuristic for sequential allocation,
457 * failing that at least try to get decent locality.
459 if (block_i && (block == block_i->last_alloc_logical_block + 1)
460 && (block_i->last_alloc_physical_block != 0)) {
461 return block_i->last_alloc_physical_block + 1;
464 return ext3_find_near(inode, partial);
468 * ext3_blks_to_allocate: Look up the block map and count the number
469 * of direct blocks need to be allocated for the given branch.
471 * @branch: chain of indirect blocks
472 * @k: number of blocks need for indirect blocks
473 * @blks: number of data blocks to be mapped.
474 * @blocks_to_boundary: the offset in the indirect block
476 * return the total number of blocks to be allocate, including the
477 * direct and indirect blocks.
479 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
480 int blocks_to_boundary)
482 unsigned long count = 0;
485 * Simple case, [t,d]Indirect block(s) has not allocated yet
486 * then it's clear blocks on that path have not allocated
489 /* right now we don't handle cross boundary allocation */
490 if (blks < blocks_to_boundary + 1)
493 count += blocks_to_boundary + 1;
498 while (count < blks && count <= blocks_to_boundary &&
499 le32_to_cpu(*(branch[0].p + count)) == 0) {
506 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
507 * @indirect_blks: the number of blocks need to allocate for indirect
510 * @new_blocks: on return it will store the new block numbers for
511 * the indirect blocks(if needed) and the first direct block,
512 * @blks: on return it will store the total number of allocated
515 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
516 ext3_fsblk_t goal, int indirect_blks, int blks,
517 ext3_fsblk_t new_blocks[4], int *err)
520 unsigned long count = 0;
522 ext3_fsblk_t current_block = 0;
526 * Here we try to allocate the requested multiple blocks at once,
527 * on a best-effort basis.
528 * To build a branch, we should allocate blocks for
529 * the indirect blocks(if not allocated yet), and at least
530 * the first direct block of this branch. That's the
531 * minimum number of blocks need to allocate(required)
533 target = blks + indirect_blks;
537 /* allocating blocks for indirect blocks and direct blocks */
538 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
543 /* allocate blocks for indirect blocks */
544 while (index < indirect_blks && count) {
545 new_blocks[index++] = current_block++;
553 /* save the new block number for the first direct block */
554 new_blocks[index] = current_block;
556 /* total number of blocks allocated for direct blocks */
561 for (i = 0; i <index; i++)
562 ext3_free_blocks(handle, inode, new_blocks[i], 1);
567 * ext3_alloc_branch - allocate and set up a chain of blocks.
569 * @indirect_blks: number of allocated indirect blocks
570 * @blks: number of allocated direct blocks
571 * @offsets: offsets (in the blocks) to store the pointers to next.
572 * @branch: place to store the chain in.
574 * This function allocates blocks, zeroes out all but the last one,
575 * links them into chain and (if we are synchronous) writes them to disk.
576 * In other words, it prepares a branch that can be spliced onto the
577 * inode. It stores the information about that chain in the branch[], in
578 * the same format as ext3_get_branch() would do. We are calling it after
579 * we had read the existing part of chain and partial points to the last
580 * triple of that (one with zero ->key). Upon the exit we have the same
581 * picture as after the successful ext3_get_block(), except that in one
582 * place chain is disconnected - *branch->p is still zero (we did not
583 * set the last link), but branch->key contains the number that should
584 * be placed into *branch->p to fill that gap.
586 * If allocation fails we free all blocks we've allocated (and forget
587 * their buffer_heads) and return the error value the from failed
588 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 * as described above and return 0.
591 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
592 int indirect_blks, int *blks, ext3_fsblk_t goal,
593 int *offsets, Indirect *branch)
595 int blocksize = inode->i_sb->s_blocksize;
598 struct buffer_head *bh;
600 ext3_fsblk_t new_blocks[4];
601 ext3_fsblk_t current_block;
603 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
604 *blks, new_blocks, &err);
608 branch[0].key = cpu_to_le32(new_blocks[0]);
610 * metadata blocks and data blocks are allocated.
612 for (n = 1; n <= indirect_blks; n++) {
614 * Get buffer_head for parent block, zero it out
615 * and set the pointer to new one, then send
618 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621 BUFFER_TRACE(bh, "call get_create_access");
622 err = ext3_journal_get_create_access(handle, bh);
629 memset(bh->b_data, 0, blocksize);
630 branch[n].p = (__le32 *) bh->b_data + offsets[n];
631 branch[n].key = cpu_to_le32(new_blocks[n]);
632 *branch[n].p = branch[n].key;
633 if ( n == indirect_blks) {
634 current_block = new_blocks[n];
636 * End of chain, update the last new metablock of
637 * the chain to point to the new allocated
638 * data blocks numbers
640 for (i=1; i < num; i++)
641 *(branch[n].p + i) = cpu_to_le32(++current_block);
643 BUFFER_TRACE(bh, "marking uptodate");
644 set_buffer_uptodate(bh);
647 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
648 err = ext3_journal_dirty_metadata(handle, bh);
655 /* Allocation failed, free what we already allocated */
656 for (i = 1; i <= n ; i++) {
657 BUFFER_TRACE(branch[i].bh, "call journal_forget");
658 ext3_journal_forget(handle, branch[i].bh);
660 for (i = 0; i <indirect_blks; i++)
661 ext3_free_blocks(handle, inode, new_blocks[i], 1);
663 ext3_free_blocks(handle, inode, new_blocks[i], num);
669 * ext3_splice_branch - splice the allocated branch onto inode.
671 * @block: (logical) number of block we are adding
672 * @chain: chain of indirect blocks (with a missing link - see
674 * @where: location of missing link
675 * @num: number of indirect blocks we are adding
676 * @blks: number of direct blocks we are adding
678 * This function fills the missing link and does all housekeeping needed in
679 * inode (->i_blocks, etc.). In case of success we end up with the full
680 * chain to new block and return 0.
682 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
683 long block, Indirect *where, int num, int blks)
687 struct ext3_block_alloc_info *block_i;
688 ext3_fsblk_t current_block;
690 block_i = EXT3_I(inode)->i_block_alloc_info;
692 * If we're splicing into a [td]indirect block (as opposed to the
693 * inode) then we need to get write access to the [td]indirect block
697 BUFFER_TRACE(where->bh, "get_write_access");
698 err = ext3_journal_get_write_access(handle, where->bh);
704 *where->p = where->key;
707 * Update the host buffer_head or inode to point to more just allocated
708 * direct blocks blocks
710 if (num == 0 && blks > 1) {
711 current_block = le32_to_cpu(where->key) + 1;
712 for (i = 1; i < blks; i++)
713 *(where->p + i ) = cpu_to_le32(current_block++);
717 * update the most recently allocated logical & physical block
718 * in i_block_alloc_info, to assist find the proper goal block for next
722 block_i->last_alloc_logical_block = block + blks - 1;
723 block_i->last_alloc_physical_block =
724 le32_to_cpu(where[num].key) + blks - 1;
727 /* We are done with atomic stuff, now do the rest of housekeeping */
729 inode->i_ctime = CURRENT_TIME_SEC;
730 ext3_mark_inode_dirty(handle, inode);
732 /* had we spliced it onto indirect block? */
735 * If we spliced it onto an indirect block, we haven't
736 * altered the inode. Note however that if it is being spliced
737 * onto an indirect block at the very end of the file (the
738 * file is growing) then we *will* alter the inode to reflect
739 * the new i_size. But that is not done here - it is done in
740 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
742 jbd_debug(5, "splicing indirect only\n");
743 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
744 err = ext3_journal_dirty_metadata(handle, where->bh);
749 * OK, we spliced it into the inode itself on a direct block.
750 * Inode was dirtied above.
752 jbd_debug(5, "splicing direct\n");
757 for (i = 1; i <= num; i++) {
758 BUFFER_TRACE(where[i].bh, "call journal_forget");
759 ext3_journal_forget(handle, where[i].bh);
760 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
762 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
768 * Allocation strategy is simple: if we have to allocate something, we will
769 * have to go the whole way to leaf. So let's do it before attaching anything
770 * to tree, set linkage between the newborn blocks, write them if sync is
771 * required, recheck the path, free and repeat if check fails, otherwise
772 * set the last missing link (that will protect us from any truncate-generated
773 * removals - all blocks on the path are immune now) and possibly force the
774 * write on the parent block.
775 * That has a nice additional property: no special recovery from the failed
776 * allocations is needed - we simply release blocks and do not touch anything
777 * reachable from inode.
779 * `handle' can be NULL if create == 0.
781 * The BKL may not be held on entry here. Be sure to take it early.
782 * return > 0, # of blocks mapped or allocated.
783 * return = 0, if plain lookup failed.
784 * return < 0, error case.
786 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
787 sector_t iblock, unsigned long maxblocks,
788 struct buffer_head *bh_result,
789 int create, int extend_disksize)
797 int blocks_to_boundary = 0;
799 struct ext3_inode_info *ei = EXT3_I(inode);
801 ext3_fsblk_t first_block = 0;
804 J_ASSERT(handle != NULL || create == 0);
805 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
810 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
812 /* Simplest case - block found, no allocation needed */
814 first_block = le32_to_cpu(chain[depth - 1].key);
815 clear_buffer_new(bh_result);
818 while (count < maxblocks && count <= blocks_to_boundary) {
821 if (!verify_chain(chain, partial)) {
823 * Indirect block might be removed by
824 * truncate while we were reading it.
825 * Handling of that case: forget what we've
826 * got now. Flag the err as EAGAIN, so it
833 blk = le32_to_cpu(*(chain[depth-1].p + count));
835 if (blk == first_block + count)
844 /* Next simple case - plain lookup or failed read of indirect block */
845 if (!create || err == -EIO)
848 mutex_lock(&ei->truncate_mutex);
851 * If the indirect block is missing while we are reading
852 * the chain(ext3_get_branch() returns -EAGAIN err), or
853 * if the chain has been changed after we grab the semaphore,
854 * (either because another process truncated this branch, or
855 * another get_block allocated this branch) re-grab the chain to see if
856 * the request block has been allocated or not.
858 * Since we already block the truncate/other get_block
859 * at this point, we will have the current copy of the chain when we
860 * splice the branch into the tree.
862 if (err == -EAGAIN || !verify_chain(chain, partial)) {
863 while (partial > chain) {
867 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
870 mutex_unlock(&ei->truncate_mutex);
873 clear_buffer_new(bh_result);
879 * Okay, we need to do block allocation. Lazily initialize the block
880 * allocation info here if necessary
882 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
883 ext3_init_block_alloc_info(inode);
885 goal = ext3_find_goal(inode, iblock, partial);
887 /* the number of blocks need to allocate for [d,t]indirect blocks */
888 indirect_blks = (chain + depth) - partial - 1;
891 * Next look up the indirect map to count the totoal number of
892 * direct blocks to allocate for this branch.
894 count = ext3_blks_to_allocate(partial, indirect_blks,
895 maxblocks, blocks_to_boundary);
897 * Block out ext3_truncate while we alter the tree
899 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
900 offsets + (partial - chain), partial);
903 * The ext3_splice_branch call will free and forget any buffers
904 * on the new chain if there is a failure, but that risks using
905 * up transaction credits, especially for bitmaps where the
906 * credits cannot be returned. Can we handle this somehow? We
907 * may need to return -EAGAIN upwards in the worst case. --sct
910 err = ext3_splice_branch(handle, inode, iblock,
911 partial, indirect_blks, count);
913 * i_disksize growing is protected by truncate_mutex. Don't forget to
914 * protect it if you're about to implement concurrent
915 * ext3_get_block() -bzzz
917 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
918 ei->i_disksize = inode->i_size;
919 mutex_unlock(&ei->truncate_mutex);
923 set_buffer_new(bh_result);
925 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
926 if (count > blocks_to_boundary)
927 set_buffer_boundary(bh_result);
929 /* Clean up and exit */
930 partial = chain + depth - 1; /* the whole chain */
932 while (partial > chain) {
933 BUFFER_TRACE(partial->bh, "call brelse");
937 BUFFER_TRACE(bh_result, "returned");
942 /* Maximum number of blocks we map for direct IO at once. */
943 #define DIO_MAX_BLOCKS 4096
945 * Number of credits we need for writing DIO_MAX_BLOCKS:
946 * We need sb + group descriptor + bitmap + inode -> 4
947 * For B blocks with A block pointers per block we need:
948 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
949 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
951 #define DIO_CREDITS 25
953 static int ext3_get_block(struct inode *inode, sector_t iblock,
954 struct buffer_head *bh_result, int create)
956 handle_t *handle = ext3_journal_current_handle();
957 int ret = 0, started = 0;
958 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
960 if (create && !handle) { /* Direct IO write... */
961 if (max_blocks > DIO_MAX_BLOCKS)
962 max_blocks = DIO_MAX_BLOCKS;
963 handle = ext3_journal_start(inode, DIO_CREDITS +
964 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
965 if (IS_ERR(handle)) {
966 ret = PTR_ERR(handle);
972 ret = ext3_get_blocks_handle(handle, inode, iblock,
973 max_blocks, bh_result, create, 0);
975 bh_result->b_size = (ret << inode->i_blkbits);
979 ext3_journal_stop(handle);
985 * `handle' can be NULL if create is zero
987 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
988 long block, int create, int *errp)
990 struct buffer_head dummy;
993 J_ASSERT(handle != NULL || create == 0);
996 dummy.b_blocknr = -1000;
997 buffer_trace_init(&dummy.b_history);
998 err = ext3_get_blocks_handle(handle, inode, block, 1,
1001 * ext3_get_blocks_handle() returns number of blocks
1002 * mapped. 0 in case of a HOLE.
1010 if (!err && buffer_mapped(&dummy)) {
1011 struct buffer_head *bh;
1012 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1017 if (buffer_new(&dummy)) {
1018 J_ASSERT(create != 0);
1019 J_ASSERT(handle != NULL);
1022 * Now that we do not always journal data, we should
1023 * keep in mind whether this should always journal the
1024 * new buffer as metadata. For now, regular file
1025 * writes use ext3_get_block instead, so it's not a
1029 BUFFER_TRACE(bh, "call get_create_access");
1030 fatal = ext3_journal_get_create_access(handle, bh);
1031 if (!fatal && !buffer_uptodate(bh)) {
1032 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1033 set_buffer_uptodate(bh);
1036 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1037 err = ext3_journal_dirty_metadata(handle, bh);
1041 BUFFER_TRACE(bh, "not a new buffer");
1054 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1055 int block, int create, int *err)
1057 struct buffer_head * bh;
1059 bh = ext3_getblk(handle, inode, block, create, err);
1062 if (buffer_uptodate(bh))
1064 ll_rw_block(READ_META, 1, &bh);
1066 if (buffer_uptodate(bh))
1073 static int walk_page_buffers( handle_t *handle,
1074 struct buffer_head *head,
1078 int (*fn)( handle_t *handle,
1079 struct buffer_head *bh))
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1085 struct buffer_head *next;
1087 for ( bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next)
1091 next = bh->b_this_page;
1092 block_end = block_start + blocksize;
1093 if (block_end <= from || block_start >= to) {
1094 if (partial && !buffer_uptodate(bh))
1098 err = (*fn)(handle, bh);
1106 * To preserve ordering, it is essential that the hole instantiation and
1107 * the data write be encapsulated in a single transaction. We cannot
1108 * close off a transaction and start a new one between the ext3_get_block()
1109 * and the commit_write(). So doing the journal_start at the start of
1110 * prepare_write() is the right place.
1112 * Also, this function can nest inside ext3_writepage() ->
1113 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1114 * has generated enough buffer credits to do the whole page. So we won't
1115 * block on the journal in that case, which is good, because the caller may
1118 * By accident, ext3 can be reentered when a transaction is open via
1119 * quota file writes. If we were to commit the transaction while thus
1120 * reentered, there can be a deadlock - we would be holding a quota
1121 * lock, and the commit would never complete if another thread had a
1122 * transaction open and was blocking on the quota lock - a ranking
1125 * So what we do is to rely on the fact that journal_stop/journal_start
1126 * will _not_ run commit under these circumstances because handle->h_ref
1127 * is elevated. We'll still have enough credits for the tiny quotafile
1130 static int do_journal_get_write_access(handle_t *handle,
1131 struct buffer_head *bh)
1133 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return ext3_journal_get_write_access(handle, bh);
1138 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1139 loff_t pos, unsigned len, unsigned flags,
1140 struct page **pagep, void **fsdata)
1142 struct inode *inode = mapping->host;
1143 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1150 index = pos >> PAGE_CACHE_SHIFT;
1151 from = pos & (PAGE_CACHE_SIZE - 1);
1155 page = __grab_cache_page(mapping, index);
1160 handle = ext3_journal_start(inode, needed_blocks);
1161 if (IS_ERR(handle)) {
1163 page_cache_release(page);
1164 ret = PTR_ERR(handle);
1167 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1170 goto write_begin_failed;
1172 if (ext3_should_journal_data(inode)) {
1173 ret = walk_page_buffers(handle, page_buffers(page),
1174 from, to, NULL, do_journal_get_write_access);
1178 ext3_journal_stop(handle);
1180 page_cache_release(page);
1182 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1189 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1191 int err = journal_dirty_data(handle, bh);
1193 ext3_journal_abort_handle(__func__, __func__,
1198 /* For write_end() in data=journal mode */
1199 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1201 if (!buffer_mapped(bh) || buffer_freed(bh))
1203 set_buffer_uptodate(bh);
1204 return ext3_journal_dirty_metadata(handle, bh);
1208 * Generic write_end handler for ordered and writeback ext3 journal modes.
1209 * We can't use generic_write_end, because that unlocks the page and we need to
1210 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1211 * after block_write_end.
1213 static int ext3_generic_write_end(struct file *file,
1214 struct address_space *mapping,
1215 loff_t pos, unsigned len, unsigned copied,
1216 struct page *page, void *fsdata)
1218 struct inode *inode = file->f_mapping->host;
1220 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1222 if (pos+copied > inode->i_size) {
1223 i_size_write(inode, pos+copied);
1224 mark_inode_dirty(inode);
1231 * We need to pick up the new inode size which generic_commit_write gave us
1232 * `file' can be NULL - eg, when called from page_symlink().
1234 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1235 * buffers are managed internally.
1237 static int ext3_ordered_write_end(struct file *file,
1238 struct address_space *mapping,
1239 loff_t pos, unsigned len, unsigned copied,
1240 struct page *page, void *fsdata)
1242 handle_t *handle = ext3_journal_current_handle();
1243 struct inode *inode = file->f_mapping->host;
1247 from = pos & (PAGE_CACHE_SIZE - 1);
1250 ret = walk_page_buffers(handle, page_buffers(page),
1251 from, to, NULL, ext3_journal_dirty_data);
1255 * generic_write_end() will run mark_inode_dirty() if i_size
1256 * changes. So let's piggyback the i_disksize mark_inode_dirty
1261 new_i_size = pos + copied;
1262 if (new_i_size > EXT3_I(inode)->i_disksize)
1263 EXT3_I(inode)->i_disksize = new_i_size;
1264 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
1270 ret2 = ext3_journal_stop(handle);
1274 page_cache_release(page);
1276 return ret ? ret : copied;
1279 static int ext3_writeback_write_end(struct file *file,
1280 struct address_space *mapping,
1281 loff_t pos, unsigned len, unsigned copied,
1282 struct page *page, void *fsdata)
1284 handle_t *handle = ext3_journal_current_handle();
1285 struct inode *inode = file->f_mapping->host;
1289 new_i_size = pos + copied;
1290 if (new_i_size > EXT3_I(inode)->i_disksize)
1291 EXT3_I(inode)->i_disksize = new_i_size;
1293 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
1299 ret2 = ext3_journal_stop(handle);
1303 page_cache_release(page);
1305 return ret ? ret : copied;
1308 static int ext3_journalled_write_end(struct file *file,
1309 struct address_space *mapping,
1310 loff_t pos, unsigned len, unsigned copied,
1311 struct page *page, void *fsdata)
1313 handle_t *handle = ext3_journal_current_handle();
1314 struct inode *inode = mapping->host;
1319 from = pos & (PAGE_CACHE_SIZE - 1);
1323 if (!PageUptodate(page))
1325 page_zero_new_buffers(page, from+copied, to);
1328 ret = walk_page_buffers(handle, page_buffers(page), from,
1329 to, &partial, write_end_fn);
1331 SetPageUptodate(page);
1332 if (pos+copied > inode->i_size)
1333 i_size_write(inode, pos+copied);
1334 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1335 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1336 EXT3_I(inode)->i_disksize = inode->i_size;
1337 ret2 = ext3_mark_inode_dirty(handle, inode);
1342 ret2 = ext3_journal_stop(handle);
1346 page_cache_release(page);
1348 return ret ? ret : copied;
1352 * bmap() is special. It gets used by applications such as lilo and by
1353 * the swapper to find the on-disk block of a specific piece of data.
1355 * Naturally, this is dangerous if the block concerned is still in the
1356 * journal. If somebody makes a swapfile on an ext3 data-journaling
1357 * filesystem and enables swap, then they may get a nasty shock when the
1358 * data getting swapped to that swapfile suddenly gets overwritten by
1359 * the original zero's written out previously to the journal and
1360 * awaiting writeback in the kernel's buffer cache.
1362 * So, if we see any bmap calls here on a modified, data-journaled file,
1363 * take extra steps to flush any blocks which might be in the cache.
1365 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1367 struct inode *inode = mapping->host;
1371 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1373 * This is a REALLY heavyweight approach, but the use of
1374 * bmap on dirty files is expected to be extremely rare:
1375 * only if we run lilo or swapon on a freshly made file
1376 * do we expect this to happen.
1378 * (bmap requires CAP_SYS_RAWIO so this does not
1379 * represent an unprivileged user DOS attack --- we'd be
1380 * in trouble if mortal users could trigger this path at
1383 * NB. EXT3_STATE_JDATA is not set on files other than
1384 * regular files. If somebody wants to bmap a directory
1385 * or symlink and gets confused because the buffer
1386 * hasn't yet been flushed to disk, they deserve
1387 * everything they get.
1390 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1391 journal = EXT3_JOURNAL(inode);
1392 journal_lock_updates(journal);
1393 err = journal_flush(journal);
1394 journal_unlock_updates(journal);
1400 return generic_block_bmap(mapping,block,ext3_get_block);
1403 static int bget_one(handle_t *handle, struct buffer_head *bh)
1409 static int bput_one(handle_t *handle, struct buffer_head *bh)
1415 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1417 if (buffer_mapped(bh))
1418 return ext3_journal_dirty_data(handle, bh);
1423 * Note that we always start a transaction even if we're not journalling
1424 * data. This is to preserve ordering: any hole instantiation within
1425 * __block_write_full_page -> ext3_get_block() should be journalled
1426 * along with the data so we don't crash and then get metadata which
1427 * refers to old data.
1429 * In all journalling modes block_write_full_page() will start the I/O.
1433 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1438 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1440 * Same applies to ext3_get_block(). We will deadlock on various things like
1441 * lock_journal and i_truncate_mutex.
1443 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1446 * 16May01: If we're reentered then journal_current_handle() will be
1447 * non-zero. We simply *return*.
1449 * 1 July 2001: @@@ FIXME:
1450 * In journalled data mode, a data buffer may be metadata against the
1451 * current transaction. But the same file is part of a shared mapping
1452 * and someone does a writepage() on it.
1454 * We will move the buffer onto the async_data list, but *after* it has
1455 * been dirtied. So there's a small window where we have dirty data on
1458 * Note that this only applies to the last partial page in the file. The
1459 * bit which block_write_full_page() uses prepare/commit for. (That's
1460 * broken code anyway: it's wrong for msync()).
1462 * It's a rare case: affects the final partial page, for journalled data
1463 * where the file is subject to bith write() and writepage() in the same
1464 * transction. To fix it we'll need a custom block_write_full_page().
1465 * We'll probably need that anyway for journalling writepage() output.
1467 * We don't honour synchronous mounts for writepage(). That would be
1468 * disastrous. Any write() or metadata operation will sync the fs for
1471 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1472 * we don't need to open a transaction here.
1474 static int ext3_ordered_writepage(struct page *page,
1475 struct writeback_control *wbc)
1477 struct inode *inode = page->mapping->host;
1478 struct buffer_head *page_bufs;
1479 handle_t *handle = NULL;
1483 J_ASSERT(PageLocked(page));
1486 * We give up here if we're reentered, because it might be for a
1487 * different filesystem.
1489 if (ext3_journal_current_handle())
1492 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1494 if (IS_ERR(handle)) {
1495 ret = PTR_ERR(handle);
1499 if (!page_has_buffers(page)) {
1500 create_empty_buffers(page, inode->i_sb->s_blocksize,
1501 (1 << BH_Dirty)|(1 << BH_Uptodate));
1503 page_bufs = page_buffers(page);
1504 walk_page_buffers(handle, page_bufs, 0,
1505 PAGE_CACHE_SIZE, NULL, bget_one);
1507 ret = block_write_full_page(page, ext3_get_block, wbc);
1510 * The page can become unlocked at any point now, and
1511 * truncate can then come in and change things. So we
1512 * can't touch *page from now on. But *page_bufs is
1513 * safe due to elevated refcount.
1517 * And attach them to the current transaction. But only if
1518 * block_write_full_page() succeeded. Otherwise they are unmapped,
1519 * and generally junk.
1522 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1523 NULL, journal_dirty_data_fn);
1527 walk_page_buffers(handle, page_bufs, 0,
1528 PAGE_CACHE_SIZE, NULL, bput_one);
1529 err = ext3_journal_stop(handle);
1535 redirty_page_for_writepage(wbc, page);
1540 static int ext3_writeback_writepage(struct page *page,
1541 struct writeback_control *wbc)
1543 struct inode *inode = page->mapping->host;
1544 handle_t *handle = NULL;
1548 if (ext3_journal_current_handle())
1551 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1552 if (IS_ERR(handle)) {
1553 ret = PTR_ERR(handle);
1557 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1558 ret = nobh_writepage(page, ext3_get_block, wbc);
1560 ret = block_write_full_page(page, ext3_get_block, wbc);
1562 err = ext3_journal_stop(handle);
1568 redirty_page_for_writepage(wbc, page);
1573 static int ext3_journalled_writepage(struct page *page,
1574 struct writeback_control *wbc)
1576 struct inode *inode = page->mapping->host;
1577 handle_t *handle = NULL;
1581 if (ext3_journal_current_handle())
1584 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1585 if (IS_ERR(handle)) {
1586 ret = PTR_ERR(handle);
1590 if (!page_has_buffers(page) || PageChecked(page)) {
1592 * It's mmapped pagecache. Add buffers and journal it. There
1593 * doesn't seem much point in redirtying the page here.
1595 ClearPageChecked(page);
1596 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1599 ext3_journal_stop(handle);
1602 ret = walk_page_buffers(handle, page_buffers(page), 0,
1603 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1605 err = walk_page_buffers(handle, page_buffers(page), 0,
1606 PAGE_CACHE_SIZE, NULL, write_end_fn);
1609 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1613 * It may be a page full of checkpoint-mode buffers. We don't
1614 * really know unless we go poke around in the buffer_heads.
1615 * But block_write_full_page will do the right thing.
1617 ret = block_write_full_page(page, ext3_get_block, wbc);
1619 err = ext3_journal_stop(handle);
1626 redirty_page_for_writepage(wbc, page);
1632 static int ext3_readpage(struct file *file, struct page *page)
1634 return mpage_readpage(page, ext3_get_block);
1638 ext3_readpages(struct file *file, struct address_space *mapping,
1639 struct list_head *pages, unsigned nr_pages)
1641 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1644 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1646 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1649 * If it's a full truncate we just forget about the pending dirtying
1652 ClearPageChecked(page);
1654 journal_invalidatepage(journal, page, offset);
1657 static int ext3_releasepage(struct page *page, gfp_t wait)
1659 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1661 WARN_ON(PageChecked(page));
1662 if (!page_has_buffers(page))
1664 return journal_try_to_free_buffers(journal, page, wait);
1668 * If the O_DIRECT write will extend the file then add this inode to the
1669 * orphan list. So recovery will truncate it back to the original size
1670 * if the machine crashes during the write.
1672 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1673 * crashes then stale disk data _may_ be exposed inside the file. But current
1674 * VFS code falls back into buffered path in that case so we are safe.
1676 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1677 const struct iovec *iov, loff_t offset,
1678 unsigned long nr_segs)
1680 struct file *file = iocb->ki_filp;
1681 struct inode *inode = file->f_mapping->host;
1682 struct ext3_inode_info *ei = EXT3_I(inode);
1686 size_t count = iov_length(iov, nr_segs);
1689 loff_t final_size = offset + count;
1691 if (final_size > inode->i_size) {
1692 /* Credits for sb + inode write */
1693 handle = ext3_journal_start(inode, 2);
1694 if (IS_ERR(handle)) {
1695 ret = PTR_ERR(handle);
1698 ret = ext3_orphan_add(handle, inode);
1700 ext3_journal_stop(handle);
1704 ei->i_disksize = inode->i_size;
1705 ext3_journal_stop(handle);
1709 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1711 ext3_get_block, NULL);
1716 /* Credits for sb + inode write */
1717 handle = ext3_journal_start(inode, 2);
1718 if (IS_ERR(handle)) {
1719 /* This is really bad luck. We've written the data
1720 * but cannot extend i_size. Bail out and pretend
1721 * the write failed... */
1722 ret = PTR_ERR(handle);
1726 ext3_orphan_del(handle, inode);
1728 loff_t end = offset + ret;
1729 if (end > inode->i_size) {
1730 ei->i_disksize = end;
1731 i_size_write(inode, end);
1733 * We're going to return a positive `ret'
1734 * here due to non-zero-length I/O, so there's
1735 * no way of reporting error returns from
1736 * ext3_mark_inode_dirty() to userspace. So
1739 ext3_mark_inode_dirty(handle, inode);
1742 err = ext3_journal_stop(handle);
1751 * Pages can be marked dirty completely asynchronously from ext3's journalling
1752 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1753 * much here because ->set_page_dirty is called under VFS locks. The page is
1754 * not necessarily locked.
1756 * We cannot just dirty the page and leave attached buffers clean, because the
1757 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1758 * or jbddirty because all the journalling code will explode.
1760 * So what we do is to mark the page "pending dirty" and next time writepage
1761 * is called, propagate that into the buffers appropriately.
1763 static int ext3_journalled_set_page_dirty(struct page *page)
1765 SetPageChecked(page);
1766 return __set_page_dirty_nobuffers(page);
1769 static const struct address_space_operations ext3_ordered_aops = {
1770 .readpage = ext3_readpage,
1771 .readpages = ext3_readpages,
1772 .writepage = ext3_ordered_writepage,
1773 .sync_page = block_sync_page,
1774 .write_begin = ext3_write_begin,
1775 .write_end = ext3_ordered_write_end,
1777 .invalidatepage = ext3_invalidatepage,
1778 .releasepage = ext3_releasepage,
1779 .direct_IO = ext3_direct_IO,
1780 .migratepage = buffer_migrate_page,
1781 .is_partially_uptodate = block_is_partially_uptodate,
1784 static const struct address_space_operations ext3_writeback_aops = {
1785 .readpage = ext3_readpage,
1786 .readpages = ext3_readpages,
1787 .writepage = ext3_writeback_writepage,
1788 .sync_page = block_sync_page,
1789 .write_begin = ext3_write_begin,
1790 .write_end = ext3_writeback_write_end,
1792 .invalidatepage = ext3_invalidatepage,
1793 .releasepage = ext3_releasepage,
1794 .direct_IO = ext3_direct_IO,
1795 .migratepage = buffer_migrate_page,
1796 .is_partially_uptodate = block_is_partially_uptodate,
1799 static const struct address_space_operations ext3_journalled_aops = {
1800 .readpage = ext3_readpage,
1801 .readpages = ext3_readpages,
1802 .writepage = ext3_journalled_writepage,
1803 .sync_page = block_sync_page,
1804 .write_begin = ext3_write_begin,
1805 .write_end = ext3_journalled_write_end,
1806 .set_page_dirty = ext3_journalled_set_page_dirty,
1808 .invalidatepage = ext3_invalidatepage,
1809 .releasepage = ext3_releasepage,
1810 .is_partially_uptodate = block_is_partially_uptodate,
1813 void ext3_set_aops(struct inode *inode)
1815 if (ext3_should_order_data(inode))
1816 inode->i_mapping->a_ops = &ext3_ordered_aops;
1817 else if (ext3_should_writeback_data(inode))
1818 inode->i_mapping->a_ops = &ext3_writeback_aops;
1820 inode->i_mapping->a_ops = &ext3_journalled_aops;
1824 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1825 * up to the end of the block which corresponds to `from'.
1826 * This required during truncate. We need to physically zero the tail end
1827 * of that block so it doesn't yield old data if the file is later grown.
1829 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1830 struct address_space *mapping, loff_t from)
1832 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1833 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1834 unsigned blocksize, iblock, length, pos;
1835 struct inode *inode = mapping->host;
1836 struct buffer_head *bh;
1839 blocksize = inode->i_sb->s_blocksize;
1840 length = blocksize - (offset & (blocksize - 1));
1841 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1844 * For "nobh" option, we can only work if we don't need to
1845 * read-in the page - otherwise we create buffers to do the IO.
1847 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1848 ext3_should_writeback_data(inode) && PageUptodate(page)) {
1849 zero_user(page, offset, length);
1850 set_page_dirty(page);
1854 if (!page_has_buffers(page))
1855 create_empty_buffers(page, blocksize, 0);
1857 /* Find the buffer that contains "offset" */
1858 bh = page_buffers(page);
1860 while (offset >= pos) {
1861 bh = bh->b_this_page;
1867 if (buffer_freed(bh)) {
1868 BUFFER_TRACE(bh, "freed: skip");
1872 if (!buffer_mapped(bh)) {
1873 BUFFER_TRACE(bh, "unmapped");
1874 ext3_get_block(inode, iblock, bh, 0);
1875 /* unmapped? It's a hole - nothing to do */
1876 if (!buffer_mapped(bh)) {
1877 BUFFER_TRACE(bh, "still unmapped");
1882 /* Ok, it's mapped. Make sure it's up-to-date */
1883 if (PageUptodate(page))
1884 set_buffer_uptodate(bh);
1886 if (!buffer_uptodate(bh)) {
1888 ll_rw_block(READ, 1, &bh);
1890 /* Uhhuh. Read error. Complain and punt. */
1891 if (!buffer_uptodate(bh))
1895 if (ext3_should_journal_data(inode)) {
1896 BUFFER_TRACE(bh, "get write access");
1897 err = ext3_journal_get_write_access(handle, bh);
1902 zero_user(page, offset, length);
1903 BUFFER_TRACE(bh, "zeroed end of block");
1906 if (ext3_should_journal_data(inode)) {
1907 err = ext3_journal_dirty_metadata(handle, bh);
1909 if (ext3_should_order_data(inode))
1910 err = ext3_journal_dirty_data(handle, bh);
1911 mark_buffer_dirty(bh);
1916 page_cache_release(page);
1921 * Probably it should be a library function... search for first non-zero word
1922 * or memcmp with zero_page, whatever is better for particular architecture.
1925 static inline int all_zeroes(__le32 *p, __le32 *q)
1934 * ext3_find_shared - find the indirect blocks for partial truncation.
1935 * @inode: inode in question
1936 * @depth: depth of the affected branch
1937 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1938 * @chain: place to store the pointers to partial indirect blocks
1939 * @top: place to the (detached) top of branch
1941 * This is a helper function used by ext3_truncate().
1943 * When we do truncate() we may have to clean the ends of several
1944 * indirect blocks but leave the blocks themselves alive. Block is
1945 * partially truncated if some data below the new i_size is refered
1946 * from it (and it is on the path to the first completely truncated
1947 * data block, indeed). We have to free the top of that path along
1948 * with everything to the right of the path. Since no allocation
1949 * past the truncation point is possible until ext3_truncate()
1950 * finishes, we may safely do the latter, but top of branch may
1951 * require special attention - pageout below the truncation point
1952 * might try to populate it.
1954 * We atomically detach the top of branch from the tree, store the
1955 * block number of its root in *@top, pointers to buffer_heads of
1956 * partially truncated blocks - in @chain[].bh and pointers to
1957 * their last elements that should not be removed - in
1958 * @chain[].p. Return value is the pointer to last filled element
1961 * The work left to caller to do the actual freeing of subtrees:
1962 * a) free the subtree starting from *@top
1963 * b) free the subtrees whose roots are stored in
1964 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1965 * c) free the subtrees growing from the inode past the @chain[0].
1966 * (no partially truncated stuff there). */
1968 static Indirect *ext3_find_shared(struct inode *inode, int depth,
1969 int offsets[4], Indirect chain[4], __le32 *top)
1971 Indirect *partial, *p;
1975 /* Make k index the deepest non-null offest + 1 */
1976 for (k = depth; k > 1 && !offsets[k-1]; k--)
1978 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1979 /* Writer: pointers */
1981 partial = chain + k-1;
1983 * If the branch acquired continuation since we've looked at it -
1984 * fine, it should all survive and (new) top doesn't belong to us.
1986 if (!partial->key && *partial->p)
1989 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1992 * OK, we've found the last block that must survive. The rest of our
1993 * branch should be detached before unlocking. However, if that rest
1994 * of branch is all ours and does not grow immediately from the inode
1995 * it's easier to cheat and just decrement partial->p.
1997 if (p == chain + k - 1 && p > chain) {
2001 /* Nope, don't do this in ext3. Must leave the tree intact */
2008 while(partial > p) {
2009 brelse(partial->bh);
2017 * Zero a number of block pointers in either an inode or an indirect block.
2018 * If we restart the transaction we must again get write access to the
2019 * indirect block for further modification.
2021 * We release `count' blocks on disk, but (last - first) may be greater
2022 * than `count' because there can be holes in there.
2024 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2025 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2026 unsigned long count, __le32 *first, __le32 *last)
2029 if (try_to_extend_transaction(handle, inode)) {
2031 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2032 ext3_journal_dirty_metadata(handle, bh);
2034 ext3_mark_inode_dirty(handle, inode);
2035 ext3_journal_test_restart(handle, inode);
2037 BUFFER_TRACE(bh, "retaking write access");
2038 ext3_journal_get_write_access(handle, bh);
2043 * Any buffers which are on the journal will be in memory. We find
2044 * them on the hash table so journal_revoke() will run journal_forget()
2045 * on them. We've already detached each block from the file, so
2046 * bforget() in journal_forget() should be safe.
2048 * AKPM: turn on bforget in journal_forget()!!!
2050 for (p = first; p < last; p++) {
2051 u32 nr = le32_to_cpu(*p);
2053 struct buffer_head *bh;
2056 bh = sb_find_get_block(inode->i_sb, nr);
2057 ext3_forget(handle, 0, inode, bh, nr);
2061 ext3_free_blocks(handle, inode, block_to_free, count);
2065 * ext3_free_data - free a list of data blocks
2066 * @handle: handle for this transaction
2067 * @inode: inode we are dealing with
2068 * @this_bh: indirect buffer_head which contains *@first and *@last
2069 * @first: array of block numbers
2070 * @last: points immediately past the end of array
2072 * We are freeing all blocks refered from that array (numbers are stored as
2073 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2075 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2076 * blocks are contiguous then releasing them at one time will only affect one
2077 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2078 * actually use a lot of journal space.
2080 * @this_bh will be %NULL if @first and @last point into the inode's direct
2083 static void ext3_free_data(handle_t *handle, struct inode *inode,
2084 struct buffer_head *this_bh,
2085 __le32 *first, __le32 *last)
2087 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2088 unsigned long count = 0; /* Number of blocks in the run */
2089 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2092 ext3_fsblk_t nr; /* Current block # */
2093 __le32 *p; /* Pointer into inode/ind
2094 for current block */
2097 if (this_bh) { /* For indirect block */
2098 BUFFER_TRACE(this_bh, "get_write_access");
2099 err = ext3_journal_get_write_access(handle, this_bh);
2100 /* Important: if we can't update the indirect pointers
2101 * to the blocks, we can't free them. */
2106 for (p = first; p < last; p++) {
2107 nr = le32_to_cpu(*p);
2109 /* accumulate blocks to free if they're contiguous */
2112 block_to_free_p = p;
2114 } else if (nr == block_to_free + count) {
2117 ext3_clear_blocks(handle, inode, this_bh,
2119 count, block_to_free_p, p);
2121 block_to_free_p = p;
2128 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2129 count, block_to_free_p, p);
2132 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2135 * The buffer head should have an attached journal head at this
2136 * point. However, if the data is corrupted and an indirect
2137 * block pointed to itself, it would have been detached when
2138 * the block was cleared. Check for this instead of OOPSing.
2141 ext3_journal_dirty_metadata(handle, this_bh);
2143 ext3_error(inode->i_sb, "ext3_free_data",
2144 "circular indirect block detected, "
2145 "inode=%lu, block=%llu",
2147 (unsigned long long)this_bh->b_blocknr);
2152 * ext3_free_branches - free an array of branches
2153 * @handle: JBD handle for this transaction
2154 * @inode: inode we are dealing with
2155 * @parent_bh: the buffer_head which contains *@first and *@last
2156 * @first: array of block numbers
2157 * @last: pointer immediately past the end of array
2158 * @depth: depth of the branches to free
2160 * We are freeing all blocks refered from these branches (numbers are
2161 * stored as little-endian 32-bit) and updating @inode->i_blocks
2164 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2165 struct buffer_head *parent_bh,
2166 __le32 *first, __le32 *last, int depth)
2171 if (is_handle_aborted(handle))
2175 struct buffer_head *bh;
2176 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2178 while (--p >= first) {
2179 nr = le32_to_cpu(*p);
2181 continue; /* A hole */
2183 /* Go read the buffer for the next level down */
2184 bh = sb_bread(inode->i_sb, nr);
2187 * A read failure? Report error and clear slot
2191 ext3_error(inode->i_sb, "ext3_free_branches",
2192 "Read failure, inode=%lu, block="E3FSBLK,
2197 /* This zaps the entire block. Bottom up. */
2198 BUFFER_TRACE(bh, "free child branches");
2199 ext3_free_branches(handle, inode, bh,
2200 (__le32*)bh->b_data,
2201 (__le32*)bh->b_data + addr_per_block,
2205 * We've probably journalled the indirect block several
2206 * times during the truncate. But it's no longer
2207 * needed and we now drop it from the transaction via
2210 * That's easy if it's exclusively part of this
2211 * transaction. But if it's part of the committing
2212 * transaction then journal_forget() will simply
2213 * brelse() it. That means that if the underlying
2214 * block is reallocated in ext3_get_block(),
2215 * unmap_underlying_metadata() will find this block
2216 * and will try to get rid of it. damn, damn.
2218 * If this block has already been committed to the
2219 * journal, a revoke record will be written. And
2220 * revoke records must be emitted *before* clearing
2221 * this block's bit in the bitmaps.
2223 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2226 * Everything below this this pointer has been
2227 * released. Now let this top-of-subtree go.
2229 * We want the freeing of this indirect block to be
2230 * atomic in the journal with the updating of the
2231 * bitmap block which owns it. So make some room in
2234 * We zero the parent pointer *after* freeing its
2235 * pointee in the bitmaps, so if extend_transaction()
2236 * for some reason fails to put the bitmap changes and
2237 * the release into the same transaction, recovery
2238 * will merely complain about releasing a free block,
2239 * rather than leaking blocks.
2241 if (is_handle_aborted(handle))
2243 if (try_to_extend_transaction(handle, inode)) {
2244 ext3_mark_inode_dirty(handle, inode);
2245 ext3_journal_test_restart(handle, inode);
2248 ext3_free_blocks(handle, inode, nr, 1);
2252 * The block which we have just freed is
2253 * pointed to by an indirect block: journal it
2255 BUFFER_TRACE(parent_bh, "get_write_access");
2256 if (!ext3_journal_get_write_access(handle,
2259 BUFFER_TRACE(parent_bh,
2260 "call ext3_journal_dirty_metadata");
2261 ext3_journal_dirty_metadata(handle,
2267 /* We have reached the bottom of the tree. */
2268 BUFFER_TRACE(parent_bh, "free data blocks");
2269 ext3_free_data(handle, inode, parent_bh, first, last);
2273 int ext3_can_truncate(struct inode *inode)
2275 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2277 if (S_ISREG(inode->i_mode))
2279 if (S_ISDIR(inode->i_mode))
2281 if (S_ISLNK(inode->i_mode))
2282 return !ext3_inode_is_fast_symlink(inode);
2289 * We block out ext3_get_block() block instantiations across the entire
2290 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2291 * simultaneously on behalf of the same inode.
2293 * As we work through the truncate and commmit bits of it to the journal there
2294 * is one core, guiding principle: the file's tree must always be consistent on
2295 * disk. We must be able to restart the truncate after a crash.
2297 * The file's tree may be transiently inconsistent in memory (although it
2298 * probably isn't), but whenever we close off and commit a journal transaction,
2299 * the contents of (the filesystem + the journal) must be consistent and
2300 * restartable. It's pretty simple, really: bottom up, right to left (although
2301 * left-to-right works OK too).
2303 * Note that at recovery time, journal replay occurs *before* the restart of
2304 * truncate against the orphan inode list.
2306 * The committed inode has the new, desired i_size (which is the same as
2307 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2308 * that this inode's truncate did not complete and it will again call
2309 * ext3_truncate() to have another go. So there will be instantiated blocks
2310 * to the right of the truncation point in a crashed ext3 filesystem. But
2311 * that's fine - as long as they are linked from the inode, the post-crash
2312 * ext3_truncate() run will find them and release them.
2314 void ext3_truncate(struct inode *inode)
2317 struct ext3_inode_info *ei = EXT3_I(inode);
2318 __le32 *i_data = ei->i_data;
2319 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2320 struct address_space *mapping = inode->i_mapping;
2327 unsigned blocksize = inode->i_sb->s_blocksize;
2330 if (!ext3_can_truncate(inode))
2334 * We have to lock the EOF page here, because lock_page() nests
2335 * outside journal_start().
2337 if ((inode->i_size & (blocksize - 1)) == 0) {
2338 /* Block boundary? Nothing to do */
2341 page = grab_cache_page(mapping,
2342 inode->i_size >> PAGE_CACHE_SHIFT);
2347 handle = start_transaction(inode);
2348 if (IS_ERR(handle)) {
2350 clear_highpage(page);
2351 flush_dcache_page(page);
2353 page_cache_release(page);
2355 return; /* AKPM: return what? */
2358 last_block = (inode->i_size + blocksize-1)
2359 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2362 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2364 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2366 goto out_stop; /* error */
2369 * OK. This truncate is going to happen. We add the inode to the
2370 * orphan list, so that if this truncate spans multiple transactions,
2371 * and we crash, we will resume the truncate when the filesystem
2372 * recovers. It also marks the inode dirty, to catch the new size.
2374 * Implication: the file must always be in a sane, consistent
2375 * truncatable state while each transaction commits.
2377 if (ext3_orphan_add(handle, inode))
2381 * The orphan list entry will now protect us from any crash which
2382 * occurs before the truncate completes, so it is now safe to propagate
2383 * the new, shorter inode size (held for now in i_size) into the
2384 * on-disk inode. We do this via i_disksize, which is the value which
2385 * ext3 *really* writes onto the disk inode.
2387 ei->i_disksize = inode->i_size;
2390 * From here we block out all ext3_get_block() callers who want to
2391 * modify the block allocation tree.
2393 mutex_lock(&ei->truncate_mutex);
2395 if (n == 1) { /* direct blocks */
2396 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2397 i_data + EXT3_NDIR_BLOCKS);
2401 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2402 /* Kill the top of shared branch (not detached) */
2404 if (partial == chain) {
2405 /* Shared branch grows from the inode */
2406 ext3_free_branches(handle, inode, NULL,
2407 &nr, &nr+1, (chain+n-1) - partial);
2410 * We mark the inode dirty prior to restart,
2411 * and prior to stop. No need for it here.
2414 /* Shared branch grows from an indirect block */
2415 BUFFER_TRACE(partial->bh, "get_write_access");
2416 ext3_free_branches(handle, inode, partial->bh,
2418 partial->p+1, (chain+n-1) - partial);
2421 /* Clear the ends of indirect blocks on the shared branch */
2422 while (partial > chain) {
2423 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2424 (__le32*)partial->bh->b_data+addr_per_block,
2425 (chain+n-1) - partial);
2426 BUFFER_TRACE(partial->bh, "call brelse");
2427 brelse (partial->bh);
2431 /* Kill the remaining (whole) subtrees */
2432 switch (offsets[0]) {
2434 nr = i_data[EXT3_IND_BLOCK];
2436 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2437 i_data[EXT3_IND_BLOCK] = 0;
2439 case EXT3_IND_BLOCK:
2440 nr = i_data[EXT3_DIND_BLOCK];
2442 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2443 i_data[EXT3_DIND_BLOCK] = 0;
2445 case EXT3_DIND_BLOCK:
2446 nr = i_data[EXT3_TIND_BLOCK];
2448 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2449 i_data[EXT3_TIND_BLOCK] = 0;
2451 case EXT3_TIND_BLOCK:
2455 ext3_discard_reservation(inode);
2457 mutex_unlock(&ei->truncate_mutex);
2458 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2459 ext3_mark_inode_dirty(handle, inode);
2462 * In a multi-transaction truncate, we only make the final transaction
2469 * If this was a simple ftruncate(), and the file will remain alive
2470 * then we need to clear up the orphan record which we created above.
2471 * However, if this was a real unlink then we were called by
2472 * ext3_delete_inode(), and we allow that function to clean up the
2473 * orphan info for us.
2476 ext3_orphan_del(handle, inode);
2478 ext3_journal_stop(handle);
2481 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2482 unsigned long ino, struct ext3_iloc *iloc)
2484 unsigned long block_group;
2485 unsigned long offset;
2487 struct ext3_group_desc *gdp;
2489 if (!ext3_valid_inum(sb, ino)) {
2491 * This error is already checked for in namei.c unless we are
2492 * looking at an NFS filehandle, in which case no error
2498 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2499 gdp = ext3_get_group_desc(sb, block_group, NULL);
2503 * Figure out the offset within the block group inode table
2505 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2506 EXT3_INODE_SIZE(sb);
2507 block = le32_to_cpu(gdp->bg_inode_table) +
2508 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2510 iloc->block_group = block_group;
2511 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2516 * ext3_get_inode_loc returns with an extra refcount against the inode's
2517 * underlying buffer_head on success. If 'in_mem' is true, we have all
2518 * data in memory that is needed to recreate the on-disk version of this
2521 static int __ext3_get_inode_loc(struct inode *inode,
2522 struct ext3_iloc *iloc, int in_mem)
2525 struct buffer_head *bh;
2527 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2531 bh = sb_getblk(inode->i_sb, block);
2533 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2534 "unable to read inode block - "
2535 "inode=%lu, block="E3FSBLK,
2536 inode->i_ino, block);
2539 if (!buffer_uptodate(bh)) {
2543 * If the buffer has the write error flag, we have failed
2544 * to write out another inode in the same block. In this
2545 * case, we don't have to read the block because we may
2546 * read the old inode data successfully.
2548 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2549 set_buffer_uptodate(bh);
2551 if (buffer_uptodate(bh)) {
2552 /* someone brought it uptodate while we waited */
2558 * If we have all information of the inode in memory and this
2559 * is the only valid inode in the block, we need not read the
2563 struct buffer_head *bitmap_bh;
2564 struct ext3_group_desc *desc;
2565 int inodes_per_buffer;
2566 int inode_offset, i;
2570 block_group = (inode->i_ino - 1) /
2571 EXT3_INODES_PER_GROUP(inode->i_sb);
2572 inodes_per_buffer = bh->b_size /
2573 EXT3_INODE_SIZE(inode->i_sb);
2574 inode_offset = ((inode->i_ino - 1) %
2575 EXT3_INODES_PER_GROUP(inode->i_sb));
2576 start = inode_offset & ~(inodes_per_buffer - 1);
2578 /* Is the inode bitmap in cache? */
2579 desc = ext3_get_group_desc(inode->i_sb,
2584 bitmap_bh = sb_getblk(inode->i_sb,
2585 le32_to_cpu(desc->bg_inode_bitmap));
2590 * If the inode bitmap isn't in cache then the
2591 * optimisation may end up performing two reads instead
2592 * of one, so skip it.
2594 if (!buffer_uptodate(bitmap_bh)) {
2598 for (i = start; i < start + inodes_per_buffer; i++) {
2599 if (i == inode_offset)
2601 if (ext3_test_bit(i, bitmap_bh->b_data))
2605 if (i == start + inodes_per_buffer) {
2606 /* all other inodes are free, so skip I/O */
2607 memset(bh->b_data, 0, bh->b_size);
2608 set_buffer_uptodate(bh);
2616 * There are other valid inodes in the buffer, this inode
2617 * has in-inode xattrs, or we don't have this inode in memory.
2618 * Read the block from disk.
2621 bh->b_end_io = end_buffer_read_sync;
2622 submit_bh(READ_META, bh);
2624 if (!buffer_uptodate(bh)) {
2625 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2626 "unable to read inode block - "
2627 "inode=%lu, block="E3FSBLK,
2628 inode->i_ino, block);
2638 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2640 /* We have all inode data except xattrs in memory here. */
2641 return __ext3_get_inode_loc(inode, iloc,
2642 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2645 void ext3_set_inode_flags(struct inode *inode)
2647 unsigned int flags = EXT3_I(inode)->i_flags;
2649 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2650 if (flags & EXT3_SYNC_FL)
2651 inode->i_flags |= S_SYNC;
2652 if (flags & EXT3_APPEND_FL)
2653 inode->i_flags |= S_APPEND;
2654 if (flags & EXT3_IMMUTABLE_FL)
2655 inode->i_flags |= S_IMMUTABLE;
2656 if (flags & EXT3_NOATIME_FL)
2657 inode->i_flags |= S_NOATIME;
2658 if (flags & EXT3_DIRSYNC_FL)
2659 inode->i_flags |= S_DIRSYNC;
2662 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2663 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2665 unsigned int flags = ei->vfs_inode.i_flags;
2667 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2668 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2670 ei->i_flags |= EXT3_SYNC_FL;
2671 if (flags & S_APPEND)
2672 ei->i_flags |= EXT3_APPEND_FL;
2673 if (flags & S_IMMUTABLE)
2674 ei->i_flags |= EXT3_IMMUTABLE_FL;
2675 if (flags & S_NOATIME)
2676 ei->i_flags |= EXT3_NOATIME_FL;
2677 if (flags & S_DIRSYNC)
2678 ei->i_flags |= EXT3_DIRSYNC_FL;
2681 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2683 struct ext3_iloc iloc;
2684 struct ext3_inode *raw_inode;
2685 struct ext3_inode_info *ei;
2686 struct buffer_head *bh;
2687 struct inode *inode;
2691 inode = iget_locked(sb, ino);
2693 return ERR_PTR(-ENOMEM);
2694 if (!(inode->i_state & I_NEW))
2698 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2699 ei->i_acl = EXT3_ACL_NOT_CACHED;
2700 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2702 ei->i_block_alloc_info = NULL;
2704 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2708 raw_inode = ext3_raw_inode(&iloc);
2709 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2710 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2711 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2712 if(!(test_opt (inode->i_sb, NO_UID32))) {
2713 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2714 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2716 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2717 inode->i_size = le32_to_cpu(raw_inode->i_size);
2718 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2719 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2720 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2721 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2724 ei->i_dir_start_lookup = 0;
2725 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2726 /* We now have enough fields to check if the inode was active or not.
2727 * This is needed because nfsd might try to access dead inodes
2728 * the test is that same one that e2fsck uses
2729 * NeilBrown 1999oct15
2731 if (inode->i_nlink == 0) {
2732 if (inode->i_mode == 0 ||
2733 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2734 /* this inode is deleted */
2739 /* The only unlinked inodes we let through here have
2740 * valid i_mode and are being read by the orphan
2741 * recovery code: that's fine, we're about to complete
2742 * the process of deleting those. */
2744 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2745 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2746 #ifdef EXT3_FRAGMENTS
2747 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2748 ei->i_frag_no = raw_inode->i_frag;
2749 ei->i_frag_size = raw_inode->i_fsize;
2751 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2752 if (!S_ISREG(inode->i_mode)) {
2753 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2756 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2758 ei->i_disksize = inode->i_size;
2759 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2760 ei->i_block_group = iloc.block_group;
2762 * NOTE! The in-memory inode i_data array is in little-endian order
2763 * even on big-endian machines: we do NOT byteswap the block numbers!
2765 for (block = 0; block < EXT3_N_BLOCKS; block++)
2766 ei->i_data[block] = raw_inode->i_block[block];
2767 INIT_LIST_HEAD(&ei->i_orphan);
2769 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2770 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2772 * When mke2fs creates big inodes it does not zero out
2773 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2774 * so ignore those first few inodes.
2776 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2777 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2778 EXT3_INODE_SIZE(inode->i_sb)) {
2783 if (ei->i_extra_isize == 0) {
2784 /* The extra space is currently unused. Use it. */
2785 ei->i_extra_isize = sizeof(struct ext3_inode) -
2786 EXT3_GOOD_OLD_INODE_SIZE;
2788 __le32 *magic = (void *)raw_inode +
2789 EXT3_GOOD_OLD_INODE_SIZE +
2791 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2792 ei->i_state |= EXT3_STATE_XATTR;
2795 ei->i_extra_isize = 0;
2797 if (S_ISREG(inode->i_mode)) {
2798 inode->i_op = &ext3_file_inode_operations;
2799 inode->i_fop = &ext3_file_operations;
2800 ext3_set_aops(inode);
2801 } else if (S_ISDIR(inode->i_mode)) {
2802 inode->i_op = &ext3_dir_inode_operations;
2803 inode->i_fop = &ext3_dir_operations;
2804 } else if (S_ISLNK(inode->i_mode)) {
2805 if (ext3_inode_is_fast_symlink(inode))
2806 inode->i_op = &ext3_fast_symlink_inode_operations;
2808 inode->i_op = &ext3_symlink_inode_operations;
2809 ext3_set_aops(inode);
2812 inode->i_op = &ext3_special_inode_operations;
2813 if (raw_inode->i_block[0])
2814 init_special_inode(inode, inode->i_mode,
2815 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2817 init_special_inode(inode, inode->i_mode,
2818 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2821 ext3_set_inode_flags(inode);
2822 unlock_new_inode(inode);
2827 return ERR_PTR(ret);
2831 * Post the struct inode info into an on-disk inode location in the
2832 * buffer-cache. This gobbles the caller's reference to the
2833 * buffer_head in the inode location struct.
2835 * The caller must have write access to iloc->bh.
2837 static int ext3_do_update_inode(handle_t *handle,
2838 struct inode *inode,
2839 struct ext3_iloc *iloc)
2841 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2842 struct ext3_inode_info *ei = EXT3_I(inode);
2843 struct buffer_head *bh = iloc->bh;
2844 int err = 0, rc, block;
2846 /* For fields not not tracking in the in-memory inode,
2847 * initialise them to zero for new inodes. */
2848 if (ei->i_state & EXT3_STATE_NEW)
2849 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2851 ext3_get_inode_flags(ei);
2852 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2853 if(!(test_opt(inode->i_sb, NO_UID32))) {
2854 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2855 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2857 * Fix up interoperability with old kernels. Otherwise, old inodes get
2858 * re-used with the upper 16 bits of the uid/gid intact
2861 raw_inode->i_uid_high =
2862 cpu_to_le16(high_16_bits(inode->i_uid));
2863 raw_inode->i_gid_high =
2864 cpu_to_le16(high_16_bits(inode->i_gid));
2866 raw_inode->i_uid_high = 0;
2867 raw_inode->i_gid_high = 0;
2870 raw_inode->i_uid_low =
2871 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2872 raw_inode->i_gid_low =
2873 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2874 raw_inode->i_uid_high = 0;
2875 raw_inode->i_gid_high = 0;
2877 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2878 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2879 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2880 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2881 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2882 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2883 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2884 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2885 #ifdef EXT3_FRAGMENTS
2886 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2887 raw_inode->i_frag = ei->i_frag_no;
2888 raw_inode->i_fsize = ei->i_frag_size;
2890 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2891 if (!S_ISREG(inode->i_mode)) {
2892 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2894 raw_inode->i_size_high =
2895 cpu_to_le32(ei->i_disksize >> 32);
2896 if (ei->i_disksize > 0x7fffffffULL) {
2897 struct super_block *sb = inode->i_sb;
2898 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2899 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2900 EXT3_SB(sb)->s_es->s_rev_level ==
2901 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2902 /* If this is the first large file
2903 * created, add a flag to the superblock.
2905 err = ext3_journal_get_write_access(handle,
2906 EXT3_SB(sb)->s_sbh);
2909 ext3_update_dynamic_rev(sb);
2910 EXT3_SET_RO_COMPAT_FEATURE(sb,
2911 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2914 err = ext3_journal_dirty_metadata(handle,
2915 EXT3_SB(sb)->s_sbh);
2919 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2920 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2921 if (old_valid_dev(inode->i_rdev)) {
2922 raw_inode->i_block[0] =
2923 cpu_to_le32(old_encode_dev(inode->i_rdev));
2924 raw_inode->i_block[1] = 0;
2926 raw_inode->i_block[0] = 0;
2927 raw_inode->i_block[1] =
2928 cpu_to_le32(new_encode_dev(inode->i_rdev));
2929 raw_inode->i_block[2] = 0;
2931 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2932 raw_inode->i_block[block] = ei->i_data[block];
2934 if (ei->i_extra_isize)
2935 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2937 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2938 rc = ext3_journal_dirty_metadata(handle, bh);
2941 ei->i_state &= ~EXT3_STATE_NEW;
2945 ext3_std_error(inode->i_sb, err);
2950 * ext3_write_inode()
2952 * We are called from a few places:
2954 * - Within generic_file_write() for O_SYNC files.
2955 * Here, there will be no transaction running. We wait for any running
2956 * trasnaction to commit.
2958 * - Within sys_sync(), kupdate and such.
2959 * We wait on commit, if tol to.
2961 * - Within prune_icache() (PF_MEMALLOC == true)
2962 * Here we simply return. We can't afford to block kswapd on the
2965 * In all cases it is actually safe for us to return without doing anything,
2966 * because the inode has been copied into a raw inode buffer in
2967 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2970 * Note that we are absolutely dependent upon all inode dirtiers doing the
2971 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2972 * which we are interested.
2974 * It would be a bug for them to not do this. The code:
2976 * mark_inode_dirty(inode)
2978 * inode->i_size = expr;
2980 * is in error because a kswapd-driven write_inode() could occur while
2981 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2982 * will no longer be on the superblock's dirty inode list.
2984 int ext3_write_inode(struct inode *inode, int wait)
2986 if (current->flags & PF_MEMALLOC)
2989 if (ext3_journal_current_handle()) {
2990 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2998 return ext3_force_commit(inode->i_sb);
3004 * Called from notify_change.
3006 * We want to trap VFS attempts to truncate the file as soon as
3007 * possible. In particular, we want to make sure that when the VFS
3008 * shrinks i_size, we put the inode on the orphan list and modify
3009 * i_disksize immediately, so that during the subsequent flushing of
3010 * dirty pages and freeing of disk blocks, we can guarantee that any
3011 * commit will leave the blocks being flushed in an unused state on
3012 * disk. (On recovery, the inode will get truncated and the blocks will
3013 * be freed, so we have a strong guarantee that no future commit will
3014 * leave these blocks visible to the user.)
3016 * Called with inode->sem down.
3018 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3020 struct inode *inode = dentry->d_inode;
3022 const unsigned int ia_valid = attr->ia_valid;
3024 error = inode_change_ok(inode, attr);
3028 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3029 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3032 /* (user+group)*(old+new) structure, inode write (sb,
3033 * inode block, ? - but truncate inode update has it) */
3034 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3035 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3036 if (IS_ERR(handle)) {
3037 error = PTR_ERR(handle);
3040 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3042 ext3_journal_stop(handle);
3045 /* Update corresponding info in inode so that everything is in
3046 * one transaction */
3047 if (attr->ia_valid & ATTR_UID)
3048 inode->i_uid = attr->ia_uid;
3049 if (attr->ia_valid & ATTR_GID)
3050 inode->i_gid = attr->ia_gid;
3051 error = ext3_mark_inode_dirty(handle, inode);
3052 ext3_journal_stop(handle);
3055 if (S_ISREG(inode->i_mode) &&
3056 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3059 handle = ext3_journal_start(inode, 3);
3060 if (IS_ERR(handle)) {
3061 error = PTR_ERR(handle);
3065 error = ext3_orphan_add(handle, inode);
3066 EXT3_I(inode)->i_disksize = attr->ia_size;
3067 rc = ext3_mark_inode_dirty(handle, inode);
3070 ext3_journal_stop(handle);
3073 rc = inode_setattr(inode, attr);
3075 /* If inode_setattr's call to ext3_truncate failed to get a
3076 * transaction handle at all, we need to clean up the in-core
3077 * orphan list manually. */
3079 ext3_orphan_del(NULL, inode);
3081 if (!rc && (ia_valid & ATTR_MODE))
3082 rc = ext3_acl_chmod(inode);
3085 ext3_std_error(inode->i_sb, error);
3093 * How many blocks doth make a writepage()?
3095 * With N blocks per page, it may be:
3100 * N+5 bitmap blocks (from the above)
3101 * N+5 group descriptor summary blocks
3104 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3106 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3108 * With ordered or writeback data it's the same, less the N data blocks.
3110 * If the inode's direct blocks can hold an integral number of pages then a
3111 * page cannot straddle two indirect blocks, and we can only touch one indirect
3112 * and dindirect block, and the "5" above becomes "3".
3114 * This still overestimates under most circumstances. If we were to pass the
3115 * start and end offsets in here as well we could do block_to_path() on each
3116 * block and work out the exact number of indirects which are touched. Pah.
3119 static int ext3_writepage_trans_blocks(struct inode *inode)
3121 int bpp = ext3_journal_blocks_per_page(inode);
3122 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3125 if (ext3_should_journal_data(inode))
3126 ret = 3 * (bpp + indirects) + 2;
3128 ret = 2 * (bpp + indirects) + 2;
3131 /* We know that structure was already allocated during DQUOT_INIT so
3132 * we will be updating only the data blocks + inodes */
3133 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3140 * The caller must have previously called ext3_reserve_inode_write().
3141 * Give this, we know that the caller already has write access to iloc->bh.
3143 int ext3_mark_iloc_dirty(handle_t *handle,
3144 struct inode *inode, struct ext3_iloc *iloc)
3148 /* the do_update_inode consumes one bh->b_count */
3151 /* ext3_do_update_inode() does journal_dirty_metadata */
3152 err = ext3_do_update_inode(handle, inode, iloc);
3158 * On success, We end up with an outstanding reference count against
3159 * iloc->bh. This _must_ be cleaned up later.
3163 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3164 struct ext3_iloc *iloc)
3168 err = ext3_get_inode_loc(inode, iloc);
3170 BUFFER_TRACE(iloc->bh, "get_write_access");
3171 err = ext3_journal_get_write_access(handle, iloc->bh);
3178 ext3_std_error(inode->i_sb, err);
3183 * What we do here is to mark the in-core inode as clean with respect to inode
3184 * dirtiness (it may still be data-dirty).
3185 * This means that the in-core inode may be reaped by prune_icache
3186 * without having to perform any I/O. This is a very good thing,
3187 * because *any* task may call prune_icache - even ones which
3188 * have a transaction open against a different journal.
3190 * Is this cheating? Not really. Sure, we haven't written the
3191 * inode out, but prune_icache isn't a user-visible syncing function.
3192 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3193 * we start and wait on commits.
3195 * Is this efficient/effective? Well, we're being nice to the system
3196 * by cleaning up our inodes proactively so they can be reaped
3197 * without I/O. But we are potentially leaving up to five seconds'
3198 * worth of inodes floating about which prune_icache wants us to
3199 * write out. One way to fix that would be to get prune_icache()
3200 * to do a write_super() to free up some memory. It has the desired
3203 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3205 struct ext3_iloc iloc;
3209 err = ext3_reserve_inode_write(handle, inode, &iloc);
3211 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3216 * ext3_dirty_inode() is called from __mark_inode_dirty()
3218 * We're really interested in the case where a file is being extended.
3219 * i_size has been changed by generic_commit_write() and we thus need
3220 * to include the updated inode in the current transaction.
3222 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3223 * are allocated to the file.
3225 * If the inode is marked synchronous, we don't honour that here - doing
3226 * so would cause a commit on atime updates, which we don't bother doing.
3227 * We handle synchronous inodes at the highest possible level.
3229 void ext3_dirty_inode(struct inode *inode)
3231 handle_t *current_handle = ext3_journal_current_handle();
3234 handle = ext3_journal_start(inode, 2);
3237 if (current_handle &&
3238 current_handle->h_transaction != handle->h_transaction) {
3239 /* This task has a transaction open against a different fs */
3240 printk(KERN_EMERG "%s: transactions do not match!\n",
3243 jbd_debug(5, "marking dirty. outer handle=%p\n",
3245 ext3_mark_inode_dirty(handle, inode);
3247 ext3_journal_stop(handle);
3254 * Bind an inode's backing buffer_head into this transaction, to prevent
3255 * it from being flushed to disk early. Unlike
3256 * ext3_reserve_inode_write, this leaves behind no bh reference and
3257 * returns no iloc structure, so the caller needs to repeat the iloc
3258 * lookup to mark the inode dirty later.
3260 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3262 struct ext3_iloc iloc;
3266 err = ext3_get_inode_loc(inode, &iloc);
3268 BUFFER_TRACE(iloc.bh, "get_write_access");
3269 err = journal_get_write_access(handle, iloc.bh);
3271 err = ext3_journal_dirty_metadata(handle,
3276 ext3_std_error(inode->i_sb, err);
3281 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3288 * We have to be very careful here: changing a data block's
3289 * journaling status dynamically is dangerous. If we write a
3290 * data block to the journal, change the status and then delete
3291 * that block, we risk forgetting to revoke the old log record
3292 * from the journal and so a subsequent replay can corrupt data.
3293 * So, first we make sure that the journal is empty and that
3294 * nobody is changing anything.
3297 journal = EXT3_JOURNAL(inode);
3298 if (is_journal_aborted(journal))
3301 journal_lock_updates(journal);
3302 journal_flush(journal);
3305 * OK, there are no updates running now, and all cached data is
3306 * synced to disk. We are now in a completely consistent state
3307 * which doesn't have anything in the journal, and we know that
3308 * no filesystem updates are running, so it is safe to modify
3309 * the inode's in-core data-journaling state flag now.
3313 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3315 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3316 ext3_set_aops(inode);
3318 journal_unlock_updates(journal);
3320 /* Finally we can mark the inode as dirty. */
3322 handle = ext3_journal_start(inode, 1);
3324 return PTR_ERR(handle);
3326 err = ext3_mark_inode_dirty(handle, inode);
3328 ext3_journal_stop(handle);
3329 ext3_std_error(inode->i_sb, err);