2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
41 #include <asm/processor.h>
44 #include <asm/machdep.h>
46 #include <asm/syscalls.h>
48 #include <asm/firmware.h>
50 #include <linux/kprobes.h>
51 #include <linux/kdebug.h>
53 extern unsigned long _get_SP(void);
56 struct task_struct *last_task_used_math = NULL;
57 struct task_struct *last_task_used_altivec = NULL;
58 struct task_struct *last_task_used_vsx = NULL;
59 struct task_struct *last_task_used_spe = NULL;
63 * Make sure the floating-point register state in the
64 * the thread_struct is up to date for task tsk.
66 void flush_fp_to_thread(struct task_struct *tsk)
68 if (tsk->thread.regs) {
70 * We need to disable preemption here because if we didn't,
71 * another process could get scheduled after the regs->msr
72 * test but before we have finished saving the FP registers
73 * to the thread_struct. That process could take over the
74 * FPU, and then when we get scheduled again we would store
75 * bogus values for the remaining FP registers.
78 if (tsk->thread.regs->msr & MSR_FP) {
81 * This should only ever be called for current or
82 * for a stopped child process. Since we save away
83 * the FP register state on context switch on SMP,
84 * there is something wrong if a stopped child appears
85 * to still have its FP state in the CPU registers.
87 BUG_ON(tsk != current);
95 void enable_kernel_fp(void)
97 WARN_ON(preemptible());
100 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
103 giveup_fpu(NULL); /* just enables FP for kernel */
105 giveup_fpu(last_task_used_math);
106 #endif /* CONFIG_SMP */
108 EXPORT_SYMBOL(enable_kernel_fp);
110 #ifdef CONFIG_ALTIVEC
111 void enable_kernel_altivec(void)
113 WARN_ON(preemptible());
116 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
117 giveup_altivec(current);
119 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
121 giveup_altivec(last_task_used_altivec);
122 #endif /* CONFIG_SMP */
124 EXPORT_SYMBOL(enable_kernel_altivec);
127 * Make sure the VMX/Altivec register state in the
128 * the thread_struct is up to date for task tsk.
130 void flush_altivec_to_thread(struct task_struct *tsk)
132 if (tsk->thread.regs) {
134 if (tsk->thread.regs->msr & MSR_VEC) {
136 BUG_ON(tsk != current);
143 #endif /* CONFIG_ALTIVEC */
147 /* not currently used, but some crazy RAID module might want to later */
148 void enable_kernel_vsx(void)
150 WARN_ON(preemptible());
153 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
156 giveup_vsx(NULL); /* just enable vsx for kernel - force */
158 giveup_vsx(last_task_used_vsx);
159 #endif /* CONFIG_SMP */
161 EXPORT_SYMBOL(enable_kernel_vsx);
164 void giveup_vsx(struct task_struct *tsk)
171 void flush_vsx_to_thread(struct task_struct *tsk)
173 if (tsk->thread.regs) {
175 if (tsk->thread.regs->msr & MSR_VSX) {
177 BUG_ON(tsk != current);
184 #endif /* CONFIG_VSX */
188 void enable_kernel_spe(void)
190 WARN_ON(preemptible());
193 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
196 giveup_spe(NULL); /* just enable SPE for kernel - force */
198 giveup_spe(last_task_used_spe);
199 #endif /* __SMP __ */
201 EXPORT_SYMBOL(enable_kernel_spe);
203 void flush_spe_to_thread(struct task_struct *tsk)
205 if (tsk->thread.regs) {
207 if (tsk->thread.regs->msr & MSR_SPE) {
209 BUG_ON(tsk != current);
216 #endif /* CONFIG_SPE */
220 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
221 * and the current task has some state, discard it.
223 void discard_lazy_cpu_state(void)
226 if (last_task_used_math == current)
227 last_task_used_math = NULL;
228 #ifdef CONFIG_ALTIVEC
229 if (last_task_used_altivec == current)
230 last_task_used_altivec = NULL;
231 #endif /* CONFIG_ALTIVEC */
233 if (last_task_used_vsx == current)
234 last_task_used_vsx = NULL;
235 #endif /* CONFIG_VSX */
237 if (last_task_used_spe == current)
238 last_task_used_spe = NULL;
242 #endif /* CONFIG_SMP */
244 void do_dabr(struct pt_regs *regs, unsigned long address,
245 unsigned long error_code)
249 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
250 11, SIGSEGV) == NOTIFY_STOP)
253 if (debugger_dabr_match(regs))
256 /* Clear the DAC and struct entries. One shot trigger */
257 #if defined(CONFIG_BOOKE)
258 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
265 /* Deliver the signal to userspace */
266 info.si_signo = SIGTRAP;
268 info.si_code = TRAP_HWBKPT;
269 info.si_addr = (void __user *)address;
270 force_sig_info(SIGTRAP, &info, current);
273 static DEFINE_PER_CPU(unsigned long, current_dabr);
275 int set_dabr(unsigned long dabr)
277 __get_cpu_var(current_dabr) = dabr;
280 return ppc_md.set_dabr(dabr);
282 /* XXX should we have a CPU_FTR_HAS_DABR ? */
283 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
284 mtspr(SPRN_DABR, dabr);
287 #if defined(CONFIG_BOOKE)
288 mtspr(SPRN_DAC1, dabr);
295 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
298 struct task_struct *__switch_to(struct task_struct *prev,
299 struct task_struct *new)
301 struct thread_struct *new_thread, *old_thread;
303 struct task_struct *last;
306 /* avoid complexity of lazy save/restore of fpu
307 * by just saving it every time we switch out if
308 * this task used the fpu during the last quantum.
310 * If it tries to use the fpu again, it'll trap and
311 * reload its fp regs. So we don't have to do a restore
312 * every switch, just a save.
315 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
317 #ifdef CONFIG_ALTIVEC
319 * If the previous thread used altivec in the last quantum
320 * (thus changing altivec regs) then save them.
321 * We used to check the VRSAVE register but not all apps
322 * set it, so we don't rely on it now (and in fact we need
323 * to save & restore VSCR even if VRSAVE == 0). -- paulus
325 * On SMP we always save/restore altivec regs just to avoid the
326 * complexity of changing processors.
329 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
330 giveup_altivec(prev);
331 #endif /* CONFIG_ALTIVEC */
333 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
334 /* VMX and FPU registers are already save here */
336 #endif /* CONFIG_VSX */
339 * If the previous thread used spe in the last quantum
340 * (thus changing spe regs) then save them.
342 * On SMP we always save/restore spe regs just to avoid the
343 * complexity of changing processors.
345 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
347 #endif /* CONFIG_SPE */
349 #else /* CONFIG_SMP */
350 #ifdef CONFIG_ALTIVEC
351 /* Avoid the trap. On smp this this never happens since
352 * we don't set last_task_used_altivec -- Cort
354 if (new->thread.regs && last_task_used_altivec == new)
355 new->thread.regs->msr |= MSR_VEC;
356 #endif /* CONFIG_ALTIVEC */
358 if (new->thread.regs && last_task_used_vsx == new)
359 new->thread.regs->msr |= MSR_VSX;
360 #endif /* CONFIG_VSX */
362 /* Avoid the trap. On smp this this never happens since
363 * we don't set last_task_used_spe
365 if (new->thread.regs && last_task_used_spe == new)
366 new->thread.regs->msr |= MSR_SPE;
367 #endif /* CONFIG_SPE */
369 #endif /* CONFIG_SMP */
371 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
372 set_dabr(new->thread.dabr);
374 #if defined(CONFIG_BOOKE)
375 /* If new thread DAC (HW breakpoint) is the same then leave it */
376 if (new->thread.dabr)
377 set_dabr(new->thread.dabr);
380 new_thread = &new->thread;
381 old_thread = ¤t->thread;
385 * Collect processor utilization data per process
387 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
388 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
389 long unsigned start_tb, current_tb;
390 start_tb = old_thread->start_tb;
391 cu->current_tb = current_tb = mfspr(SPRN_PURR);
392 old_thread->accum_tb += (current_tb - start_tb);
393 new_thread->start_tb = current_tb;
397 local_irq_save(flags);
399 account_system_vtime(current);
400 account_process_vtime(current);
401 calculate_steal_time();
404 * We can't take a PMU exception inside _switch() since there is a
405 * window where the kernel stack SLB and the kernel stack are out
406 * of sync. Hard disable here.
409 last = _switch(old_thread, new_thread);
411 local_irq_restore(flags);
416 static int instructions_to_print = 16;
418 static void show_instructions(struct pt_regs *regs)
421 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
424 printk("Instruction dump:");
426 for (i = 0; i < instructions_to_print; i++) {
432 #if !defined(CONFIG_BOOKE)
433 /* If executing with the IMMU off, adjust pc rather
434 * than print XXXXXXXX.
436 if (!(regs->msr & MSR_IR))
437 pc = (unsigned long)phys_to_virt(pc);
440 /* We use __get_user here *only* to avoid an OOPS on a
441 * bad address because the pc *should* only be a
444 if (!__kernel_text_address(pc) ||
445 __get_user(instr, (unsigned int __user *)pc)) {
449 printk("<%08x> ", instr);
451 printk("%08x ", instr);
460 static struct regbit {
475 static void printbits(unsigned long val, struct regbit *bits)
477 const char *sep = "";
480 for (; bits->bit; ++bits)
481 if (val & bits->bit) {
482 printk("%s%s", sep, bits->name);
490 #define REGS_PER_LINE 4
491 #define LAST_VOLATILE 13
494 #define REGS_PER_LINE 8
495 #define LAST_VOLATILE 12
498 void show_regs(struct pt_regs * regs)
502 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
503 regs->nip, regs->link, regs->ctr);
504 printk("REGS: %p TRAP: %04lx %s (%s)\n",
505 regs, regs->trap, print_tainted(), init_utsname()->release);
506 printk("MSR: "REG" ", regs->msr);
507 printbits(regs->msr, msr_bits);
508 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
510 if (trap == 0x300 || trap == 0x600)
511 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
512 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
514 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
516 printk("TASK = %p[%d] '%s' THREAD: %p",
517 current, task_pid_nr(current), current->comm, task_thread_info(current));
520 printk(" CPU: %d", raw_smp_processor_id());
521 #endif /* CONFIG_SMP */
523 for (i = 0; i < 32; i++) {
524 if ((i % REGS_PER_LINE) == 0)
525 printk("\n" KERN_INFO "GPR%02d: ", i);
526 printk(REG " ", regs->gpr[i]);
527 if (i == LAST_VOLATILE && !FULL_REGS(regs))
531 #ifdef CONFIG_KALLSYMS
533 * Lookup NIP late so we have the best change of getting the
534 * above info out without failing
536 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
537 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
539 show_stack(current, (unsigned long *) regs->gpr[1]);
540 if (!user_mode(regs))
541 show_instructions(regs);
544 void exit_thread(void)
546 discard_lazy_cpu_state();
549 void flush_thread(void)
552 struct thread_info *t = current_thread_info();
554 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
555 clear_ti_thread_flag(t, TIF_ABI_PENDING);
556 if (test_ti_thread_flag(t, TIF_32BIT))
557 clear_ti_thread_flag(t, TIF_32BIT);
559 set_ti_thread_flag(t, TIF_32BIT);
563 discard_lazy_cpu_state();
565 if (current->thread.dabr) {
566 current->thread.dabr = 0;
569 #if defined(CONFIG_BOOKE)
570 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
576 release_thread(struct task_struct *t)
581 * This gets called before we allocate a new thread and copy
582 * the current task into it.
584 void prepare_to_copy(struct task_struct *tsk)
586 flush_fp_to_thread(current);
587 flush_altivec_to_thread(current);
588 flush_vsx_to_thread(current);
589 flush_spe_to_thread(current);
595 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
596 unsigned long unused, struct task_struct *p,
597 struct pt_regs *regs)
599 struct pt_regs *childregs, *kregs;
600 extern void ret_from_fork(void);
601 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
603 CHECK_FULL_REGS(regs);
605 sp -= sizeof(struct pt_regs);
606 childregs = (struct pt_regs *) sp;
608 if ((childregs->msr & MSR_PR) == 0) {
609 /* for kernel thread, set `current' and stackptr in new task */
610 childregs->gpr[1] = sp + sizeof(struct pt_regs);
612 childregs->gpr[2] = (unsigned long) p;
614 clear_tsk_thread_flag(p, TIF_32BIT);
616 p->thread.regs = NULL; /* no user register state */
618 childregs->gpr[1] = usp;
619 p->thread.regs = childregs;
620 if (clone_flags & CLONE_SETTLS) {
622 if (!test_thread_flag(TIF_32BIT))
623 childregs->gpr[13] = childregs->gpr[6];
626 childregs->gpr[2] = childregs->gpr[6];
629 childregs->gpr[3] = 0; /* Result from fork() */
630 sp -= STACK_FRAME_OVERHEAD;
633 * The way this works is that at some point in the future
634 * some task will call _switch to switch to the new task.
635 * That will pop off the stack frame created below and start
636 * the new task running at ret_from_fork. The new task will
637 * do some house keeping and then return from the fork or clone
638 * system call, using the stack frame created above.
640 sp -= sizeof(struct pt_regs);
641 kregs = (struct pt_regs *) sp;
642 sp -= STACK_FRAME_OVERHEAD;
644 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
645 _ALIGN_UP(sizeof(struct thread_info), 16);
648 if (cpu_has_feature(CPU_FTR_SLB)) {
649 unsigned long sp_vsid;
650 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
652 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
653 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
654 << SLB_VSID_SHIFT_1T;
656 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
658 sp_vsid |= SLB_VSID_KERNEL | llp;
659 p->thread.ksp_vsid = sp_vsid;
663 * The PPC64 ABI makes use of a TOC to contain function
664 * pointers. The function (ret_from_except) is actually a pointer
665 * to the TOC entry. The first entry is a pointer to the actual
668 kregs->nip = *((unsigned long *)ret_from_fork);
670 kregs->nip = (unsigned long)ret_from_fork;
677 * Set up a thread for executing a new program
679 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
682 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
688 * If we exec out of a kernel thread then thread.regs will not be
691 if (!current->thread.regs) {
692 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
693 current->thread.regs = regs - 1;
696 memset(regs->gpr, 0, sizeof(regs->gpr));
704 * We have just cleared all the nonvolatile GPRs, so make
705 * FULL_REGS(regs) return true. This is necessary to allow
706 * ptrace to examine the thread immediately after exec.
713 regs->msr = MSR_USER;
715 if (!test_thread_flag(TIF_32BIT)) {
716 unsigned long entry, toc;
718 /* start is a relocated pointer to the function descriptor for
719 * the elf _start routine. The first entry in the function
720 * descriptor is the entry address of _start and the second
721 * entry is the TOC value we need to use.
723 __get_user(entry, (unsigned long __user *)start);
724 __get_user(toc, (unsigned long __user *)start+1);
726 /* Check whether the e_entry function descriptor entries
727 * need to be relocated before we can use them.
729 if (load_addr != 0) {
735 regs->msr = MSR_USER64;
739 regs->msr = MSR_USER32;
743 discard_lazy_cpu_state();
745 current->thread.used_vsr = 0;
747 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
748 current->thread.fpscr.val = 0;
749 #ifdef CONFIG_ALTIVEC
750 memset(current->thread.vr, 0, sizeof(current->thread.vr));
751 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr));
752 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
753 current->thread.vrsave = 0;
754 current->thread.used_vr = 0;
755 #endif /* CONFIG_ALTIVEC */
757 memset(current->thread.evr, 0, sizeof(current->thread.evr));
758 current->thread.acc = 0;
759 current->thread.spefscr = 0;
760 current->thread.used_spe = 0;
761 #endif /* CONFIG_SPE */
764 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
765 | PR_FP_EXC_RES | PR_FP_EXC_INV)
767 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
769 struct pt_regs *regs = tsk->thread.regs;
771 /* This is a bit hairy. If we are an SPE enabled processor
772 * (have embedded fp) we store the IEEE exception enable flags in
773 * fpexc_mode. fpexc_mode is also used for setting FP exception
774 * mode (asyn, precise, disabled) for 'Classic' FP. */
775 if (val & PR_FP_EXC_SW_ENABLE) {
777 if (cpu_has_feature(CPU_FTR_SPE)) {
778 tsk->thread.fpexc_mode = val &
779 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
789 /* on a CONFIG_SPE this does not hurt us. The bits that
790 * __pack_fe01 use do not overlap with bits used for
791 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
792 * on CONFIG_SPE implementations are reserved so writing to
793 * them does not change anything */
794 if (val > PR_FP_EXC_PRECISE)
796 tsk->thread.fpexc_mode = __pack_fe01(val);
797 if (regs != NULL && (regs->msr & MSR_FP) != 0)
798 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
799 | tsk->thread.fpexc_mode;
803 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
807 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
809 if (cpu_has_feature(CPU_FTR_SPE))
810 val = tsk->thread.fpexc_mode;
817 val = __unpack_fe01(tsk->thread.fpexc_mode);
818 return put_user(val, (unsigned int __user *) adr);
821 int set_endian(struct task_struct *tsk, unsigned int val)
823 struct pt_regs *regs = tsk->thread.regs;
825 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
826 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
832 if (val == PR_ENDIAN_BIG)
833 regs->msr &= ~MSR_LE;
834 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
842 int get_endian(struct task_struct *tsk, unsigned long adr)
844 struct pt_regs *regs = tsk->thread.regs;
847 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
848 !cpu_has_feature(CPU_FTR_REAL_LE))
854 if (regs->msr & MSR_LE) {
855 if (cpu_has_feature(CPU_FTR_REAL_LE))
856 val = PR_ENDIAN_LITTLE;
858 val = PR_ENDIAN_PPC_LITTLE;
862 return put_user(val, (unsigned int __user *)adr);
865 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
867 tsk->thread.align_ctl = val;
871 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
873 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
876 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
878 int sys_clone(unsigned long clone_flags, unsigned long usp,
879 int __user *parent_tidp, void __user *child_threadptr,
880 int __user *child_tidp, int p6,
881 struct pt_regs *regs)
883 CHECK_FULL_REGS(regs);
885 usp = regs->gpr[1]; /* stack pointer for child */
887 if (test_thread_flag(TIF_32BIT)) {
888 parent_tidp = TRUNC_PTR(parent_tidp);
889 child_tidp = TRUNC_PTR(child_tidp);
892 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
895 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
896 unsigned long p4, unsigned long p5, unsigned long p6,
897 struct pt_regs *regs)
899 CHECK_FULL_REGS(regs);
900 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
903 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
904 unsigned long p4, unsigned long p5, unsigned long p6,
905 struct pt_regs *regs)
907 CHECK_FULL_REGS(regs);
908 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
909 regs, 0, NULL, NULL);
912 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
913 unsigned long a3, unsigned long a4, unsigned long a5,
914 struct pt_regs *regs)
919 filename = getname((char __user *) a0);
920 error = PTR_ERR(filename);
921 if (IS_ERR(filename))
923 flush_fp_to_thread(current);
924 flush_altivec_to_thread(current);
925 flush_spe_to_thread(current);
926 error = do_execve(filename, (char __user * __user *) a1,
927 (char __user * __user *) a2, regs);
933 #ifdef CONFIG_IRQSTACKS
934 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
935 unsigned long nbytes)
937 unsigned long stack_page;
938 unsigned long cpu = task_cpu(p);
941 * Avoid crashing if the stack has overflowed and corrupted
942 * task_cpu(p), which is in the thread_info struct.
944 if (cpu < NR_CPUS && cpu_possible(cpu)) {
945 stack_page = (unsigned long) hardirq_ctx[cpu];
946 if (sp >= stack_page + sizeof(struct thread_struct)
947 && sp <= stack_page + THREAD_SIZE - nbytes)
950 stack_page = (unsigned long) softirq_ctx[cpu];
951 if (sp >= stack_page + sizeof(struct thread_struct)
952 && sp <= stack_page + THREAD_SIZE - nbytes)
959 #define valid_irq_stack(sp, p, nb) 0
960 #endif /* CONFIG_IRQSTACKS */
962 int validate_sp(unsigned long sp, struct task_struct *p,
963 unsigned long nbytes)
965 unsigned long stack_page = (unsigned long)task_stack_page(p);
967 if (sp >= stack_page + sizeof(struct thread_struct)
968 && sp <= stack_page + THREAD_SIZE - nbytes)
971 return valid_irq_stack(sp, p, nbytes);
974 EXPORT_SYMBOL(validate_sp);
976 unsigned long get_wchan(struct task_struct *p)
978 unsigned long ip, sp;
981 if (!p || p == current || p->state == TASK_RUNNING)
985 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
989 sp = *(unsigned long *)sp;
990 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
993 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
994 if (!in_sched_functions(ip))
997 } while (count++ < 16);
1001 static int kstack_depth_to_print = 64;
1003 void show_stack(struct task_struct *tsk, unsigned long *stack)
1005 unsigned long sp, ip, lr, newsp;
1009 sp = (unsigned long) stack;
1014 asm("mr %0,1" : "=r" (sp));
1016 sp = tsk->thread.ksp;
1020 printk("Call Trace:\n");
1022 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1025 stack = (unsigned long *) sp;
1027 ip = stack[STACK_FRAME_LR_SAVE];
1028 if (!firstframe || ip != lr) {
1029 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1031 printk(" (unreliable)");
1037 * See if this is an exception frame.
1038 * We look for the "regshere" marker in the current frame.
1040 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1041 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1042 struct pt_regs *regs = (struct pt_regs *)
1043 (sp + STACK_FRAME_OVERHEAD);
1045 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1046 regs->trap, (void *)regs->nip, (void *)lr);
1051 } while (count++ < kstack_depth_to_print);
1054 void dump_stack(void)
1056 show_stack(current, NULL);
1058 EXPORT_SYMBOL(dump_stack);
1061 void ppc64_runlatch_on(void)
1065 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1068 ctrl = mfspr(SPRN_CTRLF);
1069 ctrl |= CTRL_RUNLATCH;
1070 mtspr(SPRN_CTRLT, ctrl);
1072 set_thread_flag(TIF_RUNLATCH);
1076 void ppc64_runlatch_off(void)
1080 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1083 clear_thread_flag(TIF_RUNLATCH);
1085 ctrl = mfspr(SPRN_CTRLF);
1086 ctrl &= ~CTRL_RUNLATCH;
1087 mtspr(SPRN_CTRLT, ctrl);
1092 #if THREAD_SHIFT < PAGE_SHIFT
1094 static struct kmem_cache *thread_info_cache;
1096 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1098 struct thread_info *ti;
1100 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1101 if (unlikely(ti == NULL))
1103 #ifdef CONFIG_DEBUG_STACK_USAGE
1104 memset(ti, 0, THREAD_SIZE);
1109 void free_thread_info(struct thread_info *ti)
1111 kmem_cache_free(thread_info_cache, ti);
1114 void thread_info_cache_init(void)
1116 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1117 THREAD_SIZE, 0, NULL);
1118 BUG_ON(thread_info_cache == NULL);
1121 #endif /* THREAD_SHIFT < PAGE_SHIFT */