Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2  *
3  * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Written by: Michael Chan  (mchan@broadcom.com)
10  */
11
12 #include <linux/config.h>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <asm/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
40 #define BCM_VLAN 1
41 #endif
42 #ifdef NETIF_F_TSO
43 #include <net/ip.h>
44 #include <net/tcp.h>
45 #include <net/checksum.h>
46 #define BCM_TSO 1
47 #endif
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/prefetch.h>
51 #include <linux/cache.h>
52
53 #include "bnx2.h"
54 #include "bnx2_fw.h"
55
56 #define DRV_MODULE_NAME         "bnx2"
57 #define PFX DRV_MODULE_NAME     ": "
58 #define DRV_MODULE_VERSION      "1.4.39"
59 #define DRV_MODULE_RELDATE      "March 22, 2006"
60
61 #define RUN_AT(x) (jiffies + (x))
62
63 /* Time in jiffies before concluding the transmitter is hung. */
64 #define TX_TIMEOUT  (5*HZ)
65
66 static char version[] __devinitdata =
67         "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
68
69 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
70 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73
74 static int disable_msi = 0;
75
76 module_param(disable_msi, int, 0);
77 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
78
79 typedef enum {
80         BCM5706 = 0,
81         NC370T,
82         NC370I,
83         BCM5706S,
84         NC370F,
85         BCM5708,
86         BCM5708S,
87 } board_t;
88
89 /* indexed by board_t, above */
90 static const struct {
91         char *name;
92 } board_info[] __devinitdata = {
93         { "Broadcom NetXtreme II BCM5706 1000Base-T" },
94         { "HP NC370T Multifunction Gigabit Server Adapter" },
95         { "HP NC370i Multifunction Gigabit Server Adapter" },
96         { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
97         { "HP NC370F Multifunction Gigabit Server Adapter" },
98         { "Broadcom NetXtreme II BCM5708 1000Base-T" },
99         { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
100         };
101
102 static struct pci_device_id bnx2_pci_tbl[] = {
103         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
104           PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
105         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
106           PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
107         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
108           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
109         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
110           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
111         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
112           PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
113         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
114           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
115         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
116           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
117         { 0, }
118 };
119
120 static struct flash_spec flash_table[] =
121 {
122         /* Slow EEPROM */
123         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
124          1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
125          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
126          "EEPROM - slow"},
127         /* Expansion entry 0001 */
128         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
129          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
130          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
131          "Entry 0001"},
132         /* Saifun SA25F010 (non-buffered flash) */
133         /* strap, cfg1, & write1 need updates */
134         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
135          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
136          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
137          "Non-buffered flash (128kB)"},
138         /* Saifun SA25F020 (non-buffered flash) */
139         /* strap, cfg1, & write1 need updates */
140         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
141          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
142          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
143          "Non-buffered flash (256kB)"},
144         /* Expansion entry 0100 */
145         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
146          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
147          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
148          "Entry 0100"},
149         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
150         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,        
151          0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
152          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
153          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
154         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
155         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
156          0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
157          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
158          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
159         /* Saifun SA25F005 (non-buffered flash) */
160         /* strap, cfg1, & write1 need updates */
161         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
162          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
163          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
164          "Non-buffered flash (64kB)"},
165         /* Fast EEPROM */
166         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
167          1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
168          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
169          "EEPROM - fast"},
170         /* Expansion entry 1001 */
171         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
172          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
173          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
174          "Entry 1001"},
175         /* Expansion entry 1010 */
176         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
177          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
178          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
179          "Entry 1010"},
180         /* ATMEL AT45DB011B (buffered flash) */
181         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
182          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
183          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
184          "Buffered flash (128kB)"},
185         /* Expansion entry 1100 */
186         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
187          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
188          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
189          "Entry 1100"},
190         /* Expansion entry 1101 */
191         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
192          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
194          "Entry 1101"},
195         /* Ateml Expansion entry 1110 */
196         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
197          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
198          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
199          "Entry 1110 (Atmel)"},
200         /* ATMEL AT45DB021B (buffered flash) */
201         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
202          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
203          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
204          "Buffered flash (256kB)"},
205 };
206
207 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
208
209 static inline u32 bnx2_tx_avail(struct bnx2 *bp)
210 {
211         u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
212
213         if (diff > MAX_TX_DESC_CNT)
214                 diff = (diff & MAX_TX_DESC_CNT) - 1;
215         return (bp->tx_ring_size - diff);
216 }
217
218 static u32
219 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
220 {
221         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
222         return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
223 }
224
225 static void
226 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
227 {
228         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
229         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
230 }
231
232 static void
233 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
234 {
235         offset += cid_addr;
236         REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
237         REG_WR(bp, BNX2_CTX_DATA, val);
238 }
239
240 static int
241 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
242 {
243         u32 val1;
244         int i, ret;
245
246         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
247                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
248                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
249
250                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
251                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
252
253                 udelay(40);
254         }
255
256         val1 = (bp->phy_addr << 21) | (reg << 16) |
257                 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
258                 BNX2_EMAC_MDIO_COMM_START_BUSY;
259         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
260
261         for (i = 0; i < 50; i++) {
262                 udelay(10);
263
264                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
265                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
266                         udelay(5);
267
268                         val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
269                         val1 &= BNX2_EMAC_MDIO_COMM_DATA;
270
271                         break;
272                 }
273         }
274
275         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
276                 *val = 0x0;
277                 ret = -EBUSY;
278         }
279         else {
280                 *val = val1;
281                 ret = 0;
282         }
283
284         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
285                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
286                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
287
288                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
289                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
290
291                 udelay(40);
292         }
293
294         return ret;
295 }
296
297 static int
298 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
299 {
300         u32 val1;
301         int i, ret;
302
303         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
304                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
305                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
306
307                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
308                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
309
310                 udelay(40);
311         }
312
313         val1 = (bp->phy_addr << 21) | (reg << 16) | val |
314                 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
315                 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
316         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
317     
318         for (i = 0; i < 50; i++) {
319                 udelay(10);
320
321                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
322                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
323                         udelay(5);
324                         break;
325                 }
326         }
327
328         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
329                 ret = -EBUSY;
330         else
331                 ret = 0;
332
333         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
334                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
335                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
336
337                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
338                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
339
340                 udelay(40);
341         }
342
343         return ret;
344 }
345
346 static void
347 bnx2_disable_int(struct bnx2 *bp)
348 {
349         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
350                BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
351         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
352 }
353
354 static void
355 bnx2_enable_int(struct bnx2 *bp)
356 {
357         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
358                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
359                BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
360
361         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
362                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
363
364         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
365 }
366
367 static void
368 bnx2_disable_int_sync(struct bnx2 *bp)
369 {
370         atomic_inc(&bp->intr_sem);
371         bnx2_disable_int(bp);
372         synchronize_irq(bp->pdev->irq);
373 }
374
375 static void
376 bnx2_netif_stop(struct bnx2 *bp)
377 {
378         bnx2_disable_int_sync(bp);
379         if (netif_running(bp->dev)) {
380                 netif_poll_disable(bp->dev);
381                 netif_tx_disable(bp->dev);
382                 bp->dev->trans_start = jiffies; /* prevent tx timeout */
383         }
384 }
385
386 static void
387 bnx2_netif_start(struct bnx2 *bp)
388 {
389         if (atomic_dec_and_test(&bp->intr_sem)) {
390                 if (netif_running(bp->dev)) {
391                         netif_wake_queue(bp->dev);
392                         netif_poll_enable(bp->dev);
393                         bnx2_enable_int(bp);
394                 }
395         }
396 }
397
398 static void
399 bnx2_free_mem(struct bnx2 *bp)
400 {
401         int i;
402
403         if (bp->status_blk) {
404                 pci_free_consistent(bp->pdev, bp->status_stats_size,
405                                     bp->status_blk, bp->status_blk_mapping);
406                 bp->status_blk = NULL;
407                 bp->stats_blk = NULL;
408         }
409         if (bp->tx_desc_ring) {
410                 pci_free_consistent(bp->pdev,
411                                     sizeof(struct tx_bd) * TX_DESC_CNT,
412                                     bp->tx_desc_ring, bp->tx_desc_mapping);
413                 bp->tx_desc_ring = NULL;
414         }
415         kfree(bp->tx_buf_ring);
416         bp->tx_buf_ring = NULL;
417         for (i = 0; i < bp->rx_max_ring; i++) {
418                 if (bp->rx_desc_ring[i])
419                         pci_free_consistent(bp->pdev,
420                                             sizeof(struct rx_bd) * RX_DESC_CNT,
421                                             bp->rx_desc_ring[i],
422                                             bp->rx_desc_mapping[i]);
423                 bp->rx_desc_ring[i] = NULL;
424         }
425         vfree(bp->rx_buf_ring);
426         bp->rx_buf_ring = NULL;
427 }
428
429 static int
430 bnx2_alloc_mem(struct bnx2 *bp)
431 {
432         int i, status_blk_size;
433
434         bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
435                                   GFP_KERNEL);
436         if (bp->tx_buf_ring == NULL)
437                 return -ENOMEM;
438
439         bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
440                                                 sizeof(struct tx_bd) *
441                                                 TX_DESC_CNT,
442                                                 &bp->tx_desc_mapping);
443         if (bp->tx_desc_ring == NULL)
444                 goto alloc_mem_err;
445
446         bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
447                                   bp->rx_max_ring);
448         if (bp->rx_buf_ring == NULL)
449                 goto alloc_mem_err;
450
451         memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
452                                    bp->rx_max_ring);
453
454         for (i = 0; i < bp->rx_max_ring; i++) {
455                 bp->rx_desc_ring[i] =
456                         pci_alloc_consistent(bp->pdev,
457                                              sizeof(struct rx_bd) * RX_DESC_CNT,
458                                              &bp->rx_desc_mapping[i]);
459                 if (bp->rx_desc_ring[i] == NULL)
460                         goto alloc_mem_err;
461
462         }
463
464         /* Combine status and statistics blocks into one allocation. */
465         status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
466         bp->status_stats_size = status_blk_size +
467                                 sizeof(struct statistics_block);
468
469         bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
470                                               &bp->status_blk_mapping);
471         if (bp->status_blk == NULL)
472                 goto alloc_mem_err;
473
474         memset(bp->status_blk, 0, bp->status_stats_size);
475
476         bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
477                                   status_blk_size);
478
479         bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
480
481         return 0;
482
483 alloc_mem_err:
484         bnx2_free_mem(bp);
485         return -ENOMEM;
486 }
487
488 static void
489 bnx2_report_fw_link(struct bnx2 *bp)
490 {
491         u32 fw_link_status = 0;
492
493         if (bp->link_up) {
494                 u32 bmsr;
495
496                 switch (bp->line_speed) {
497                 case SPEED_10:
498                         if (bp->duplex == DUPLEX_HALF)
499                                 fw_link_status = BNX2_LINK_STATUS_10HALF;
500                         else
501                                 fw_link_status = BNX2_LINK_STATUS_10FULL;
502                         break;
503                 case SPEED_100:
504                         if (bp->duplex == DUPLEX_HALF)
505                                 fw_link_status = BNX2_LINK_STATUS_100HALF;
506                         else
507                                 fw_link_status = BNX2_LINK_STATUS_100FULL;
508                         break;
509                 case SPEED_1000:
510                         if (bp->duplex == DUPLEX_HALF)
511                                 fw_link_status = BNX2_LINK_STATUS_1000HALF;
512                         else
513                                 fw_link_status = BNX2_LINK_STATUS_1000FULL;
514                         break;
515                 case SPEED_2500:
516                         if (bp->duplex == DUPLEX_HALF)
517                                 fw_link_status = BNX2_LINK_STATUS_2500HALF;
518                         else
519                                 fw_link_status = BNX2_LINK_STATUS_2500FULL;
520                         break;
521                 }
522
523                 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
524
525                 if (bp->autoneg) {
526                         fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
527
528                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
529                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
530
531                         if (!(bmsr & BMSR_ANEGCOMPLETE) ||
532                             bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
533                                 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
534                         else
535                                 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
536                 }
537         }
538         else
539                 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
540
541         REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
542 }
543
544 static void
545 bnx2_report_link(struct bnx2 *bp)
546 {
547         if (bp->link_up) {
548                 netif_carrier_on(bp->dev);
549                 printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
550
551                 printk("%d Mbps ", bp->line_speed);
552
553                 if (bp->duplex == DUPLEX_FULL)
554                         printk("full duplex");
555                 else
556                         printk("half duplex");
557
558                 if (bp->flow_ctrl) {
559                         if (bp->flow_ctrl & FLOW_CTRL_RX) {
560                                 printk(", receive ");
561                                 if (bp->flow_ctrl & FLOW_CTRL_TX)
562                                         printk("& transmit ");
563                         }
564                         else {
565                                 printk(", transmit ");
566                         }
567                         printk("flow control ON");
568                 }
569                 printk("\n");
570         }
571         else {
572                 netif_carrier_off(bp->dev);
573                 printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
574         }
575
576         bnx2_report_fw_link(bp);
577 }
578
579 static void
580 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
581 {
582         u32 local_adv, remote_adv;
583
584         bp->flow_ctrl = 0;
585         if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != 
586                 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
587
588                 if (bp->duplex == DUPLEX_FULL) {
589                         bp->flow_ctrl = bp->req_flow_ctrl;
590                 }
591                 return;
592         }
593
594         if (bp->duplex != DUPLEX_FULL) {
595                 return;
596         }
597
598         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
599             (CHIP_NUM(bp) == CHIP_NUM_5708)) {
600                 u32 val;
601
602                 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
603                 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
604                         bp->flow_ctrl |= FLOW_CTRL_TX;
605                 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
606                         bp->flow_ctrl |= FLOW_CTRL_RX;
607                 return;
608         }
609
610         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
611         bnx2_read_phy(bp, MII_LPA, &remote_adv);
612
613         if (bp->phy_flags & PHY_SERDES_FLAG) {
614                 u32 new_local_adv = 0;
615                 u32 new_remote_adv = 0;
616
617                 if (local_adv & ADVERTISE_1000XPAUSE)
618                         new_local_adv |= ADVERTISE_PAUSE_CAP;
619                 if (local_adv & ADVERTISE_1000XPSE_ASYM)
620                         new_local_adv |= ADVERTISE_PAUSE_ASYM;
621                 if (remote_adv & ADVERTISE_1000XPAUSE)
622                         new_remote_adv |= ADVERTISE_PAUSE_CAP;
623                 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
624                         new_remote_adv |= ADVERTISE_PAUSE_ASYM;
625
626                 local_adv = new_local_adv;
627                 remote_adv = new_remote_adv;
628         }
629
630         /* See Table 28B-3 of 802.3ab-1999 spec. */
631         if (local_adv & ADVERTISE_PAUSE_CAP) {
632                 if(local_adv & ADVERTISE_PAUSE_ASYM) {
633                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
634                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
635                         }
636                         else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
637                                 bp->flow_ctrl = FLOW_CTRL_RX;
638                         }
639                 }
640                 else {
641                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
642                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
643                         }
644                 }
645         }
646         else if (local_adv & ADVERTISE_PAUSE_ASYM) {
647                 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
648                         (remote_adv & ADVERTISE_PAUSE_ASYM)) {
649
650                         bp->flow_ctrl = FLOW_CTRL_TX;
651                 }
652         }
653 }
654
655 static int
656 bnx2_5708s_linkup(struct bnx2 *bp)
657 {
658         u32 val;
659
660         bp->link_up = 1;
661         bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
662         switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
663                 case BCM5708S_1000X_STAT1_SPEED_10:
664                         bp->line_speed = SPEED_10;
665                         break;
666                 case BCM5708S_1000X_STAT1_SPEED_100:
667                         bp->line_speed = SPEED_100;
668                         break;
669                 case BCM5708S_1000X_STAT1_SPEED_1G:
670                         bp->line_speed = SPEED_1000;
671                         break;
672                 case BCM5708S_1000X_STAT1_SPEED_2G5:
673                         bp->line_speed = SPEED_2500;
674                         break;
675         }
676         if (val & BCM5708S_1000X_STAT1_FD)
677                 bp->duplex = DUPLEX_FULL;
678         else
679                 bp->duplex = DUPLEX_HALF;
680
681         return 0;
682 }
683
684 static int
685 bnx2_5706s_linkup(struct bnx2 *bp)
686 {
687         u32 bmcr, local_adv, remote_adv, common;
688
689         bp->link_up = 1;
690         bp->line_speed = SPEED_1000;
691
692         bnx2_read_phy(bp, MII_BMCR, &bmcr);
693         if (bmcr & BMCR_FULLDPLX) {
694                 bp->duplex = DUPLEX_FULL;
695         }
696         else {
697                 bp->duplex = DUPLEX_HALF;
698         }
699
700         if (!(bmcr & BMCR_ANENABLE)) {
701                 return 0;
702         }
703
704         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
705         bnx2_read_phy(bp, MII_LPA, &remote_adv);
706
707         common = local_adv & remote_adv;
708         if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
709
710                 if (common & ADVERTISE_1000XFULL) {
711                         bp->duplex = DUPLEX_FULL;
712                 }
713                 else {
714                         bp->duplex = DUPLEX_HALF;
715                 }
716         }
717
718         return 0;
719 }
720
721 static int
722 bnx2_copper_linkup(struct bnx2 *bp)
723 {
724         u32 bmcr;
725
726         bnx2_read_phy(bp, MII_BMCR, &bmcr);
727         if (bmcr & BMCR_ANENABLE) {
728                 u32 local_adv, remote_adv, common;
729
730                 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
731                 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
732
733                 common = local_adv & (remote_adv >> 2);
734                 if (common & ADVERTISE_1000FULL) {
735                         bp->line_speed = SPEED_1000;
736                         bp->duplex = DUPLEX_FULL;
737                 }
738                 else if (common & ADVERTISE_1000HALF) {
739                         bp->line_speed = SPEED_1000;
740                         bp->duplex = DUPLEX_HALF;
741                 }
742                 else {
743                         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
744                         bnx2_read_phy(bp, MII_LPA, &remote_adv);
745
746                         common = local_adv & remote_adv;
747                         if (common & ADVERTISE_100FULL) {
748                                 bp->line_speed = SPEED_100;
749                                 bp->duplex = DUPLEX_FULL;
750                         }
751                         else if (common & ADVERTISE_100HALF) {
752                                 bp->line_speed = SPEED_100;
753                                 bp->duplex = DUPLEX_HALF;
754                         }
755                         else if (common & ADVERTISE_10FULL) {
756                                 bp->line_speed = SPEED_10;
757                                 bp->duplex = DUPLEX_FULL;
758                         }
759                         else if (common & ADVERTISE_10HALF) {
760                                 bp->line_speed = SPEED_10;
761                                 bp->duplex = DUPLEX_HALF;
762                         }
763                         else {
764                                 bp->line_speed = 0;
765                                 bp->link_up = 0;
766                         }
767                 }
768         }
769         else {
770                 if (bmcr & BMCR_SPEED100) {
771                         bp->line_speed = SPEED_100;
772                 }
773                 else {
774                         bp->line_speed = SPEED_10;
775                 }
776                 if (bmcr & BMCR_FULLDPLX) {
777                         bp->duplex = DUPLEX_FULL;
778                 }
779                 else {
780                         bp->duplex = DUPLEX_HALF;
781                 }
782         }
783
784         return 0;
785 }
786
787 static int
788 bnx2_set_mac_link(struct bnx2 *bp)
789 {
790         u32 val;
791
792         REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
793         if (bp->link_up && (bp->line_speed == SPEED_1000) &&
794                 (bp->duplex == DUPLEX_HALF)) {
795                 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
796         }
797
798         /* Configure the EMAC mode register. */
799         val = REG_RD(bp, BNX2_EMAC_MODE);
800
801         val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
802                 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
803                 BNX2_EMAC_MODE_25G);
804
805         if (bp->link_up) {
806                 switch (bp->line_speed) {
807                         case SPEED_10:
808                                 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
809                                         val |= BNX2_EMAC_MODE_PORT_MII_10;
810                                         break;
811                                 }
812                                 /* fall through */
813                         case SPEED_100:
814                                 val |= BNX2_EMAC_MODE_PORT_MII;
815                                 break;
816                         case SPEED_2500:
817                                 val |= BNX2_EMAC_MODE_25G;
818                                 /* fall through */
819                         case SPEED_1000:
820                                 val |= BNX2_EMAC_MODE_PORT_GMII;
821                                 break;
822                 }
823         }
824         else {
825                 val |= BNX2_EMAC_MODE_PORT_GMII;
826         }
827
828         /* Set the MAC to operate in the appropriate duplex mode. */
829         if (bp->duplex == DUPLEX_HALF)
830                 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
831         REG_WR(bp, BNX2_EMAC_MODE, val);
832
833         /* Enable/disable rx PAUSE. */
834         bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
835
836         if (bp->flow_ctrl & FLOW_CTRL_RX)
837                 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
838         REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
839
840         /* Enable/disable tx PAUSE. */
841         val = REG_RD(bp, BNX2_EMAC_TX_MODE);
842         val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
843
844         if (bp->flow_ctrl & FLOW_CTRL_TX)
845                 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
846         REG_WR(bp, BNX2_EMAC_TX_MODE, val);
847
848         /* Acknowledge the interrupt. */
849         REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
850
851         return 0;
852 }
853
854 static int
855 bnx2_set_link(struct bnx2 *bp)
856 {
857         u32 bmsr;
858         u8 link_up;
859
860         if (bp->loopback == MAC_LOOPBACK) {
861                 bp->link_up = 1;
862                 return 0;
863         }
864
865         link_up = bp->link_up;
866
867         bnx2_read_phy(bp, MII_BMSR, &bmsr);
868         bnx2_read_phy(bp, MII_BMSR, &bmsr);
869
870         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
871             (CHIP_NUM(bp) == CHIP_NUM_5706)) {
872                 u32 val;
873
874                 val = REG_RD(bp, BNX2_EMAC_STATUS);
875                 if (val & BNX2_EMAC_STATUS_LINK)
876                         bmsr |= BMSR_LSTATUS;
877                 else
878                         bmsr &= ~BMSR_LSTATUS;
879         }
880
881         if (bmsr & BMSR_LSTATUS) {
882                 bp->link_up = 1;
883
884                 if (bp->phy_flags & PHY_SERDES_FLAG) {
885                         if (CHIP_NUM(bp) == CHIP_NUM_5706)
886                                 bnx2_5706s_linkup(bp);
887                         else if (CHIP_NUM(bp) == CHIP_NUM_5708)
888                                 bnx2_5708s_linkup(bp);
889                 }
890                 else {
891                         bnx2_copper_linkup(bp);
892                 }
893                 bnx2_resolve_flow_ctrl(bp);
894         }
895         else {
896                 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
897                         (bp->autoneg & AUTONEG_SPEED)) {
898
899                         u32 bmcr;
900
901                         bnx2_read_phy(bp, MII_BMCR, &bmcr);
902                         if (!(bmcr & BMCR_ANENABLE)) {
903                                 bnx2_write_phy(bp, MII_BMCR, bmcr |
904                                         BMCR_ANENABLE);
905                         }
906                 }
907                 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
908                 bp->link_up = 0;
909         }
910
911         if (bp->link_up != link_up) {
912                 bnx2_report_link(bp);
913         }
914
915         bnx2_set_mac_link(bp);
916
917         return 0;
918 }
919
920 static int
921 bnx2_reset_phy(struct bnx2 *bp)
922 {
923         int i;
924         u32 reg;
925
926         bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
927
928 #define PHY_RESET_MAX_WAIT 100
929         for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
930                 udelay(10);
931
932                 bnx2_read_phy(bp, MII_BMCR, &reg);
933                 if (!(reg & BMCR_RESET)) {
934                         udelay(20);
935                         break;
936                 }
937         }
938         if (i == PHY_RESET_MAX_WAIT) {
939                 return -EBUSY;
940         }
941         return 0;
942 }
943
944 static u32
945 bnx2_phy_get_pause_adv(struct bnx2 *bp)
946 {
947         u32 adv = 0;
948
949         if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
950                 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
951
952                 if (bp->phy_flags & PHY_SERDES_FLAG) {
953                         adv = ADVERTISE_1000XPAUSE;
954                 }
955                 else {
956                         adv = ADVERTISE_PAUSE_CAP;
957                 }
958         }
959         else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
960                 if (bp->phy_flags & PHY_SERDES_FLAG) {
961                         adv = ADVERTISE_1000XPSE_ASYM;
962                 }
963                 else {
964                         adv = ADVERTISE_PAUSE_ASYM;
965                 }
966         }
967         else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
968                 if (bp->phy_flags & PHY_SERDES_FLAG) {
969                         adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
970                 }
971                 else {
972                         adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
973                 }
974         }
975         return adv;
976 }
977
978 static int
979 bnx2_setup_serdes_phy(struct bnx2 *bp)
980 {
981         u32 adv, bmcr, up1;
982         u32 new_adv = 0;
983
984         if (!(bp->autoneg & AUTONEG_SPEED)) {
985                 u32 new_bmcr;
986                 int force_link_down = 0;
987
988                 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
989                         bnx2_read_phy(bp, BCM5708S_UP1, &up1);
990                         if (up1 & BCM5708S_UP1_2G5) {
991                                 up1 &= ~BCM5708S_UP1_2G5;
992                                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
993                                 force_link_down = 1;
994                         }
995                 }
996
997                 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
998                 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
999
1000                 bnx2_read_phy(bp, MII_BMCR, &bmcr);
1001                 new_bmcr = bmcr & ~BMCR_ANENABLE;
1002                 new_bmcr |= BMCR_SPEED1000;
1003                 if (bp->req_duplex == DUPLEX_FULL) {
1004                         adv |= ADVERTISE_1000XFULL;
1005                         new_bmcr |= BMCR_FULLDPLX;
1006                 }
1007                 else {
1008                         adv |= ADVERTISE_1000XHALF;
1009                         new_bmcr &= ~BMCR_FULLDPLX;
1010                 }
1011                 if ((new_bmcr != bmcr) || (force_link_down)) {
1012                         /* Force a link down visible on the other side */
1013                         if (bp->link_up) {
1014                                 bnx2_write_phy(bp, MII_ADVERTISE, adv &
1015                                                ~(ADVERTISE_1000XFULL |
1016                                                  ADVERTISE_1000XHALF));
1017                                 bnx2_write_phy(bp, MII_BMCR, bmcr |
1018                                         BMCR_ANRESTART | BMCR_ANENABLE);
1019
1020                                 bp->link_up = 0;
1021                                 netif_carrier_off(bp->dev);
1022                                 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1023                         }
1024                         bnx2_write_phy(bp, MII_ADVERTISE, adv);
1025                         bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1026                 }
1027                 return 0;
1028         }
1029
1030         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1031                 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1032                 up1 |= BCM5708S_UP1_2G5;
1033                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1034         }
1035
1036         if (bp->advertising & ADVERTISED_1000baseT_Full)
1037                 new_adv |= ADVERTISE_1000XFULL;
1038
1039         new_adv |= bnx2_phy_get_pause_adv(bp);
1040
1041         bnx2_read_phy(bp, MII_ADVERTISE, &adv);
1042         bnx2_read_phy(bp, MII_BMCR, &bmcr);
1043
1044         bp->serdes_an_pending = 0;
1045         if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1046                 /* Force a link down visible on the other side */
1047                 if (bp->link_up) {
1048                         int i;
1049
1050                         bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1051                         for (i = 0; i < 110; i++) {
1052                                 udelay(100);
1053                         }
1054                 }
1055
1056                 bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
1057                 bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
1058                         BMCR_ANENABLE);
1059                 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
1060                         /* Speed up link-up time when the link partner
1061                          * does not autonegotiate which is very common
1062                          * in blade servers. Some blade servers use
1063                          * IPMI for kerboard input and it's important
1064                          * to minimize link disruptions. Autoneg. involves
1065                          * exchanging base pages plus 3 next pages and
1066                          * normally completes in about 120 msec.
1067                          */
1068                         bp->current_interval = SERDES_AN_TIMEOUT;
1069                         bp->serdes_an_pending = 1;
1070                         mod_timer(&bp->timer, jiffies + bp->current_interval);
1071                 }
1072         }
1073
1074         return 0;
1075 }
1076
1077 #define ETHTOOL_ALL_FIBRE_SPEED                                         \
1078         (ADVERTISED_1000baseT_Full)
1079
1080 #define ETHTOOL_ALL_COPPER_SPEED                                        \
1081         (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |            \
1082         ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |           \
1083         ADVERTISED_1000baseT_Full)
1084
1085 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1086         ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1087         
1088 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1089
1090 static int
1091 bnx2_setup_copper_phy(struct bnx2 *bp)
1092 {
1093         u32 bmcr;
1094         u32 new_bmcr;
1095
1096         bnx2_read_phy(bp, MII_BMCR, &bmcr);
1097
1098         if (bp->autoneg & AUTONEG_SPEED) {
1099                 u32 adv_reg, adv1000_reg;
1100                 u32 new_adv_reg = 0;
1101                 u32 new_adv1000_reg = 0;
1102
1103                 bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
1104                 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1105                         ADVERTISE_PAUSE_ASYM);
1106
1107                 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1108                 adv1000_reg &= PHY_ALL_1000_SPEED;
1109
1110                 if (bp->advertising & ADVERTISED_10baseT_Half)
1111                         new_adv_reg |= ADVERTISE_10HALF;
1112                 if (bp->advertising & ADVERTISED_10baseT_Full)
1113                         new_adv_reg |= ADVERTISE_10FULL;
1114                 if (bp->advertising & ADVERTISED_100baseT_Half)
1115                         new_adv_reg |= ADVERTISE_100HALF;
1116                 if (bp->advertising & ADVERTISED_100baseT_Full)
1117                         new_adv_reg |= ADVERTISE_100FULL;
1118                 if (bp->advertising & ADVERTISED_1000baseT_Full)
1119                         new_adv1000_reg |= ADVERTISE_1000FULL;
1120                 
1121                 new_adv_reg |= ADVERTISE_CSMA;
1122
1123                 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1124
1125                 if ((adv1000_reg != new_adv1000_reg) ||
1126                         (adv_reg != new_adv_reg) ||
1127                         ((bmcr & BMCR_ANENABLE) == 0)) {
1128
1129                         bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
1130                         bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1131                         bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
1132                                 BMCR_ANENABLE);
1133                 }
1134                 else if (bp->link_up) {
1135                         /* Flow ctrl may have changed from auto to forced */
1136                         /* or vice-versa. */
1137
1138                         bnx2_resolve_flow_ctrl(bp);
1139                         bnx2_set_mac_link(bp);
1140                 }
1141                 return 0;
1142         }
1143
1144         new_bmcr = 0;
1145         if (bp->req_line_speed == SPEED_100) {
1146                 new_bmcr |= BMCR_SPEED100;
1147         }
1148         if (bp->req_duplex == DUPLEX_FULL) {
1149                 new_bmcr |= BMCR_FULLDPLX;
1150         }
1151         if (new_bmcr != bmcr) {
1152                 u32 bmsr;
1153                 int i = 0;
1154
1155                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1156                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1157                 
1158                 if (bmsr & BMSR_LSTATUS) {
1159                         /* Force link down */
1160                         bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1161                         do {
1162                                 udelay(100);
1163                                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1164                                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1165                                 i++;
1166                         } while ((bmsr & BMSR_LSTATUS) && (i < 620));
1167                 }
1168
1169                 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1170
1171                 /* Normally, the new speed is setup after the link has
1172                  * gone down and up again. In some cases, link will not go
1173                  * down so we need to set up the new speed here.
1174                  */
1175                 if (bmsr & BMSR_LSTATUS) {
1176                         bp->line_speed = bp->req_line_speed;
1177                         bp->duplex = bp->req_duplex;
1178                         bnx2_resolve_flow_ctrl(bp);
1179                         bnx2_set_mac_link(bp);
1180                 }
1181         }
1182         return 0;
1183 }
1184
1185 static int
1186 bnx2_setup_phy(struct bnx2 *bp)
1187 {
1188         if (bp->loopback == MAC_LOOPBACK)
1189                 return 0;
1190
1191         if (bp->phy_flags & PHY_SERDES_FLAG) {
1192                 return (bnx2_setup_serdes_phy(bp));
1193         }
1194         else {
1195                 return (bnx2_setup_copper_phy(bp));
1196         }
1197 }
1198
1199 static int
1200 bnx2_init_5708s_phy(struct bnx2 *bp)
1201 {
1202         u32 val;
1203
1204         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
1205         bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
1206         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1207
1208         bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
1209         val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
1210         bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
1211
1212         bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
1213         val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
1214         bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
1215
1216         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1217                 bnx2_read_phy(bp, BCM5708S_UP1, &val);
1218                 val |= BCM5708S_UP1_2G5;
1219                 bnx2_write_phy(bp, BCM5708S_UP1, val);
1220         }
1221
1222         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
1223             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
1224             (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
1225                 /* increase tx signal amplitude */
1226                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1227                                BCM5708S_BLK_ADDR_TX_MISC);
1228                 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
1229                 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
1230                 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
1231                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1232         }
1233
1234         val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
1235               BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
1236
1237         if (val) {
1238                 u32 is_backplane;
1239
1240                 is_backplane = REG_RD_IND(bp, bp->shmem_base +
1241                                           BNX2_SHARED_HW_CFG_CONFIG);
1242                 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
1243                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1244                                        BCM5708S_BLK_ADDR_TX_MISC);
1245                         bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
1246                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1247                                        BCM5708S_BLK_ADDR_DIG);
1248                 }
1249         }
1250         return 0;
1251 }
1252
1253 static int
1254 bnx2_init_5706s_phy(struct bnx2 *bp)
1255 {
1256         bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1257
1258         if (CHIP_NUM(bp) == CHIP_NUM_5706) {
1259                 REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
1260         }
1261
1262         if (bp->dev->mtu > 1500) {
1263                 u32 val;
1264
1265                 /* Set extended packet length bit */
1266                 bnx2_write_phy(bp, 0x18, 0x7);
1267                 bnx2_read_phy(bp, 0x18, &val);
1268                 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
1269
1270                 bnx2_write_phy(bp, 0x1c, 0x6c00);
1271                 bnx2_read_phy(bp, 0x1c, &val);
1272                 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
1273         }
1274         else {
1275                 u32 val;
1276
1277                 bnx2_write_phy(bp, 0x18, 0x7);
1278                 bnx2_read_phy(bp, 0x18, &val);
1279                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1280
1281                 bnx2_write_phy(bp, 0x1c, 0x6c00);
1282                 bnx2_read_phy(bp, 0x1c, &val);
1283                 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
1284         }
1285
1286         return 0;
1287 }
1288
1289 static int
1290 bnx2_init_copper_phy(struct bnx2 *bp)
1291 {
1292         u32 val;
1293
1294         bp->phy_flags |= PHY_CRC_FIX_FLAG;
1295
1296         if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
1297                 bnx2_write_phy(bp, 0x18, 0x0c00);
1298                 bnx2_write_phy(bp, 0x17, 0x000a);
1299                 bnx2_write_phy(bp, 0x15, 0x310b);
1300                 bnx2_write_phy(bp, 0x17, 0x201f);
1301                 bnx2_write_phy(bp, 0x15, 0x9506);
1302                 bnx2_write_phy(bp, 0x17, 0x401f);
1303                 bnx2_write_phy(bp, 0x15, 0x14e2);
1304                 bnx2_write_phy(bp, 0x18, 0x0400);
1305         }
1306
1307         if (bp->dev->mtu > 1500) {
1308                 /* Set extended packet length bit */
1309                 bnx2_write_phy(bp, 0x18, 0x7);
1310                 bnx2_read_phy(bp, 0x18, &val);
1311                 bnx2_write_phy(bp, 0x18, val | 0x4000);
1312
1313                 bnx2_read_phy(bp, 0x10, &val);
1314                 bnx2_write_phy(bp, 0x10, val | 0x1);
1315         }
1316         else {
1317                 bnx2_write_phy(bp, 0x18, 0x7);
1318                 bnx2_read_phy(bp, 0x18, &val);
1319                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1320
1321                 bnx2_read_phy(bp, 0x10, &val);
1322                 bnx2_write_phy(bp, 0x10, val & ~0x1);
1323         }
1324
1325         /* ethernet@wirespeed */
1326         bnx2_write_phy(bp, 0x18, 0x7007);
1327         bnx2_read_phy(bp, 0x18, &val);
1328         bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
1329         return 0;
1330 }
1331
1332
1333 static int
1334 bnx2_init_phy(struct bnx2 *bp)
1335 {
1336         u32 val;
1337         int rc = 0;
1338
1339         bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
1340         bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
1341
1342         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1343
1344         bnx2_reset_phy(bp);
1345
1346         bnx2_read_phy(bp, MII_PHYSID1, &val);
1347         bp->phy_id = val << 16;
1348         bnx2_read_phy(bp, MII_PHYSID2, &val);
1349         bp->phy_id |= val & 0xffff;
1350
1351         if (bp->phy_flags & PHY_SERDES_FLAG) {
1352                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1353                         rc = bnx2_init_5706s_phy(bp);
1354                 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1355                         rc = bnx2_init_5708s_phy(bp);
1356         }
1357         else {
1358                 rc = bnx2_init_copper_phy(bp);
1359         }
1360
1361         bnx2_setup_phy(bp);
1362
1363         return rc;
1364 }
1365
1366 static int
1367 bnx2_set_mac_loopback(struct bnx2 *bp)
1368 {
1369         u32 mac_mode;
1370
1371         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1372         mac_mode &= ~BNX2_EMAC_MODE_PORT;
1373         mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
1374         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1375         bp->link_up = 1;
1376         return 0;
1377 }
1378
1379 static int bnx2_test_link(struct bnx2 *);
1380
1381 static int
1382 bnx2_set_phy_loopback(struct bnx2 *bp)
1383 {
1384         u32 mac_mode;
1385         int rc, i;
1386
1387         spin_lock_bh(&bp->phy_lock);
1388         rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
1389                             BMCR_SPEED1000);
1390         spin_unlock_bh(&bp->phy_lock);
1391         if (rc)
1392                 return rc;
1393
1394         for (i = 0; i < 10; i++) {
1395                 if (bnx2_test_link(bp) == 0)
1396                         break;
1397                 udelay(10);
1398         }
1399
1400         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1401         mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1402                       BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1403                       BNX2_EMAC_MODE_25G);
1404
1405         mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
1406         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1407         bp->link_up = 1;
1408         return 0;
1409 }
1410
1411 static int
1412 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
1413 {
1414         int i;
1415         u32 val;
1416
1417         bp->fw_wr_seq++;
1418         msg_data |= bp->fw_wr_seq;
1419
1420         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1421
1422         /* wait for an acknowledgement. */
1423         for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
1424                 msleep(10);
1425
1426                 val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
1427
1428                 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
1429                         break;
1430         }
1431         if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
1432                 return 0;
1433
1434         /* If we timed out, inform the firmware that this is the case. */
1435         if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
1436                 if (!silent)
1437                         printk(KERN_ERR PFX "fw sync timeout, reset code = "
1438                                             "%x\n", msg_data);
1439
1440                 msg_data &= ~BNX2_DRV_MSG_CODE;
1441                 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
1442
1443                 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1444
1445                 return -EBUSY;
1446         }
1447
1448         if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
1449                 return -EIO;
1450
1451         return 0;
1452 }
1453
1454 static void
1455 bnx2_init_context(struct bnx2 *bp)
1456 {
1457         u32 vcid;
1458
1459         vcid = 96;
1460         while (vcid) {
1461                 u32 vcid_addr, pcid_addr, offset;
1462
1463                 vcid--;
1464
1465                 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1466                         u32 new_vcid;
1467
1468                         vcid_addr = GET_PCID_ADDR(vcid);
1469                         if (vcid & 0x8) {
1470                                 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
1471                         }
1472                         else {
1473                                 new_vcid = vcid;
1474                         }
1475                         pcid_addr = GET_PCID_ADDR(new_vcid);
1476                 }
1477                 else {
1478                         vcid_addr = GET_CID_ADDR(vcid);
1479                         pcid_addr = vcid_addr;
1480                 }
1481
1482                 REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
1483                 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1484
1485                 /* Zero out the context. */
1486                 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
1487                         CTX_WR(bp, 0x00, offset, 0);
1488                 }
1489
1490                 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
1491                 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1492         }
1493 }
1494
1495 static int
1496 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
1497 {
1498         u16 *good_mbuf;
1499         u32 good_mbuf_cnt;
1500         u32 val;
1501
1502         good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
1503         if (good_mbuf == NULL) {
1504                 printk(KERN_ERR PFX "Failed to allocate memory in "
1505                                     "bnx2_alloc_bad_rbuf\n");
1506                 return -ENOMEM;
1507         }
1508
1509         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
1510                 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
1511
1512         good_mbuf_cnt = 0;
1513
1514         /* Allocate a bunch of mbufs and save the good ones in an array. */
1515         val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1516         while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
1517                 REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
1518
1519                 val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
1520
1521                 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
1522
1523                 /* The addresses with Bit 9 set are bad memory blocks. */
1524                 if (!(val & (1 << 9))) {
1525                         good_mbuf[good_mbuf_cnt] = (u16) val;
1526                         good_mbuf_cnt++;
1527                 }
1528
1529                 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1530         }
1531
1532         /* Free the good ones back to the mbuf pool thus discarding
1533          * all the bad ones. */
1534         while (good_mbuf_cnt) {
1535                 good_mbuf_cnt--;
1536
1537                 val = good_mbuf[good_mbuf_cnt];
1538                 val = (val << 9) | val | 1;
1539
1540                 REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
1541         }
1542         kfree(good_mbuf);
1543         return 0;
1544 }
1545
1546 static void
1547 bnx2_set_mac_addr(struct bnx2 *bp) 
1548 {
1549         u32 val;
1550         u8 *mac_addr = bp->dev->dev_addr;
1551
1552         val = (mac_addr[0] << 8) | mac_addr[1];
1553
1554         REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
1555
1556         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 
1557                 (mac_addr[4] << 8) | mac_addr[5];
1558
1559         REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
1560 }
1561
1562 static inline int
1563 bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
1564 {
1565         struct sk_buff *skb;
1566         struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
1567         dma_addr_t mapping;
1568         struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
1569         unsigned long align;
1570
1571         skb = dev_alloc_skb(bp->rx_buf_size);
1572         if (skb == NULL) {
1573                 return -ENOMEM;
1574         }
1575
1576         if (unlikely((align = (unsigned long) skb->data & 0x7))) {
1577                 skb_reserve(skb, 8 - align);
1578         }
1579
1580         skb->dev = bp->dev;
1581         mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
1582                 PCI_DMA_FROMDEVICE);
1583
1584         rx_buf->skb = skb;
1585         pci_unmap_addr_set(rx_buf, mapping, mapping);
1586
1587         rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
1588         rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
1589
1590         bp->rx_prod_bseq += bp->rx_buf_use_size;
1591
1592         return 0;
1593 }
1594
1595 static void
1596 bnx2_phy_int(struct bnx2 *bp)
1597 {
1598         u32 new_link_state, old_link_state;
1599
1600         new_link_state = bp->status_blk->status_attn_bits &
1601                 STATUS_ATTN_BITS_LINK_STATE;
1602         old_link_state = bp->status_blk->status_attn_bits_ack &
1603                 STATUS_ATTN_BITS_LINK_STATE;
1604         if (new_link_state != old_link_state) {
1605                 if (new_link_state) {
1606                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
1607                                 STATUS_ATTN_BITS_LINK_STATE);
1608                 }
1609                 else {
1610                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
1611                                 STATUS_ATTN_BITS_LINK_STATE);
1612                 }
1613                 bnx2_set_link(bp);
1614         }
1615 }
1616
1617 static void
1618 bnx2_tx_int(struct bnx2 *bp)
1619 {
1620         struct status_block *sblk = bp->status_blk;
1621         u16 hw_cons, sw_cons, sw_ring_cons;
1622         int tx_free_bd = 0;
1623
1624         hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
1625         if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1626                 hw_cons++;
1627         }
1628         sw_cons = bp->tx_cons;
1629
1630         while (sw_cons != hw_cons) {
1631                 struct sw_bd *tx_buf;
1632                 struct sk_buff *skb;
1633                 int i, last;
1634
1635                 sw_ring_cons = TX_RING_IDX(sw_cons);
1636
1637                 tx_buf = &bp->tx_buf_ring[sw_ring_cons];
1638                 skb = tx_buf->skb;
1639 #ifdef BCM_TSO 
1640                 /* partial BD completions possible with TSO packets */
1641                 if (skb_shinfo(skb)->tso_size) {
1642                         u16 last_idx, last_ring_idx;
1643
1644                         last_idx = sw_cons +
1645                                 skb_shinfo(skb)->nr_frags + 1;
1646                         last_ring_idx = sw_ring_cons +
1647                                 skb_shinfo(skb)->nr_frags + 1;
1648                         if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
1649                                 last_idx++;
1650                         }
1651                         if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
1652                                 break;
1653                         }
1654                 }
1655 #endif
1656                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
1657                         skb_headlen(skb), PCI_DMA_TODEVICE);
1658
1659                 tx_buf->skb = NULL;
1660                 last = skb_shinfo(skb)->nr_frags;
1661
1662                 for (i = 0; i < last; i++) {
1663                         sw_cons = NEXT_TX_BD(sw_cons);
1664
1665                         pci_unmap_page(bp->pdev,
1666                                 pci_unmap_addr(
1667                                         &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
1668                                         mapping),
1669                                 skb_shinfo(skb)->frags[i].size,
1670                                 PCI_DMA_TODEVICE);
1671                 }
1672
1673                 sw_cons = NEXT_TX_BD(sw_cons);
1674
1675                 tx_free_bd += last + 1;
1676
1677                 dev_kfree_skb_irq(skb);
1678
1679                 hw_cons = bp->hw_tx_cons =
1680                         sblk->status_tx_quick_consumer_index0;
1681
1682                 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1683                         hw_cons++;
1684                 }
1685         }
1686
1687         bp->tx_cons = sw_cons;
1688
1689         if (unlikely(netif_queue_stopped(bp->dev))) {
1690                 spin_lock(&bp->tx_lock);
1691                 if ((netif_queue_stopped(bp->dev)) &&
1692                     (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) {
1693
1694                         netif_wake_queue(bp->dev);
1695                 }
1696                 spin_unlock(&bp->tx_lock);
1697         }
1698 }
1699
1700 static inline void
1701 bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
1702         u16 cons, u16 prod)
1703 {
1704         struct sw_bd *cons_rx_buf, *prod_rx_buf;
1705         struct rx_bd *cons_bd, *prod_bd;
1706
1707         cons_rx_buf = &bp->rx_buf_ring[cons];
1708         prod_rx_buf = &bp->rx_buf_ring[prod];
1709
1710         pci_dma_sync_single_for_device(bp->pdev,
1711                 pci_unmap_addr(cons_rx_buf, mapping),
1712                 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1713
1714         bp->rx_prod_bseq += bp->rx_buf_use_size;
1715
1716         prod_rx_buf->skb = skb;
1717
1718         if (cons == prod)
1719                 return;
1720
1721         pci_unmap_addr_set(prod_rx_buf, mapping,
1722                         pci_unmap_addr(cons_rx_buf, mapping));
1723
1724         cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
1725         prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1726         prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
1727         prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
1728 }
1729
1730 static int
1731 bnx2_rx_int(struct bnx2 *bp, int budget)
1732 {
1733         struct status_block *sblk = bp->status_blk;
1734         u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
1735         struct l2_fhdr *rx_hdr;
1736         int rx_pkt = 0;
1737
1738         hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
1739         if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
1740                 hw_cons++;
1741         }
1742         sw_cons = bp->rx_cons;
1743         sw_prod = bp->rx_prod;
1744
1745         /* Memory barrier necessary as speculative reads of the rx
1746          * buffer can be ahead of the index in the status block
1747          */
1748         rmb();
1749         while (sw_cons != hw_cons) {
1750                 unsigned int len;
1751                 u32 status;
1752                 struct sw_bd *rx_buf;
1753                 struct sk_buff *skb;
1754                 dma_addr_t dma_addr;
1755
1756                 sw_ring_cons = RX_RING_IDX(sw_cons);
1757                 sw_ring_prod = RX_RING_IDX(sw_prod);
1758
1759                 rx_buf = &bp->rx_buf_ring[sw_ring_cons];
1760                 skb = rx_buf->skb;
1761
1762                 rx_buf->skb = NULL;
1763
1764                 dma_addr = pci_unmap_addr(rx_buf, mapping);
1765
1766                 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
1767                         bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1768
1769                 rx_hdr = (struct l2_fhdr *) skb->data;
1770                 len = rx_hdr->l2_fhdr_pkt_len - 4;
1771
1772                 if ((status = rx_hdr->l2_fhdr_status) &
1773                         (L2_FHDR_ERRORS_BAD_CRC |
1774                         L2_FHDR_ERRORS_PHY_DECODE |
1775                         L2_FHDR_ERRORS_ALIGNMENT |
1776                         L2_FHDR_ERRORS_TOO_SHORT |
1777                         L2_FHDR_ERRORS_GIANT_FRAME)) {
1778
1779                         goto reuse_rx;
1780                 }
1781
1782                 /* Since we don't have a jumbo ring, copy small packets
1783                  * if mtu > 1500
1784                  */
1785                 if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
1786                         struct sk_buff *new_skb;
1787
1788                         new_skb = dev_alloc_skb(len + 2);
1789                         if (new_skb == NULL)
1790                                 goto reuse_rx;
1791
1792                         /* aligned copy */
1793                         memcpy(new_skb->data,
1794                                 skb->data + bp->rx_offset - 2,
1795                                 len + 2);
1796
1797                         skb_reserve(new_skb, 2);
1798                         skb_put(new_skb, len);
1799                         new_skb->dev = bp->dev;
1800
1801                         bnx2_reuse_rx_skb(bp, skb,
1802                                 sw_ring_cons, sw_ring_prod);
1803
1804                         skb = new_skb;
1805                 }
1806                 else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
1807                         pci_unmap_single(bp->pdev, dma_addr,
1808                                 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
1809
1810                         skb_reserve(skb, bp->rx_offset);
1811                         skb_put(skb, len);
1812                 }
1813                 else {
1814 reuse_rx:
1815                         bnx2_reuse_rx_skb(bp, skb,
1816                                 sw_ring_cons, sw_ring_prod);
1817                         goto next_rx;
1818                 }
1819
1820                 skb->protocol = eth_type_trans(skb, bp->dev);
1821
1822                 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
1823                         (htons(skb->protocol) != 0x8100)) {
1824
1825                         dev_kfree_skb_irq(skb);
1826                         goto next_rx;
1827
1828                 }
1829
1830                 skb->ip_summed = CHECKSUM_NONE;
1831                 if (bp->rx_csum &&
1832                         (status & (L2_FHDR_STATUS_TCP_SEGMENT |
1833                         L2_FHDR_STATUS_UDP_DATAGRAM))) {
1834
1835                         if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
1836                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0))
1837                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1838                 }
1839
1840 #ifdef BCM_VLAN
1841                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
1842                         vlan_hwaccel_receive_skb(skb, bp->vlgrp,
1843                                 rx_hdr->l2_fhdr_vlan_tag);
1844                 }
1845                 else
1846 #endif
1847                         netif_receive_skb(skb);
1848
1849                 bp->dev->last_rx = jiffies;
1850                 rx_pkt++;
1851
1852 next_rx:
1853                 sw_cons = NEXT_RX_BD(sw_cons);
1854                 sw_prod = NEXT_RX_BD(sw_prod);
1855
1856                 if ((rx_pkt == budget))
1857                         break;
1858
1859                 /* Refresh hw_cons to see if there is new work */
1860                 if (sw_cons == hw_cons) {
1861                         hw_cons = bp->hw_rx_cons =
1862                                 sblk->status_rx_quick_consumer_index0;
1863                         if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
1864                                 hw_cons++;
1865                         rmb();
1866                 }
1867         }
1868         bp->rx_cons = sw_cons;
1869         bp->rx_prod = sw_prod;
1870
1871         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
1872
1873         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
1874
1875         mmiowb();
1876
1877         return rx_pkt;
1878
1879 }
1880
1881 /* MSI ISR - The only difference between this and the INTx ISR
1882  * is that the MSI interrupt is always serviced.
1883  */
1884 static irqreturn_t
1885 bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs)
1886 {
1887         struct net_device *dev = dev_instance;
1888         struct bnx2 *bp = netdev_priv(dev);
1889
1890         prefetch(bp->status_blk);
1891         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1892                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
1893                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1894
1895         /* Return here if interrupt is disabled. */
1896         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1897                 return IRQ_HANDLED;
1898
1899         netif_rx_schedule(dev);
1900
1901         return IRQ_HANDLED;
1902 }
1903
1904 static irqreturn_t
1905 bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
1906 {
1907         struct net_device *dev = dev_instance;
1908         struct bnx2 *bp = netdev_priv(dev);
1909
1910         /* When using INTx, it is possible for the interrupt to arrive
1911          * at the CPU before the status block posted prior to the
1912          * interrupt. Reading a register will flush the status block.
1913          * When using MSI, the MSI message will always complete after
1914          * the status block write.
1915          */
1916         if ((bp->status_blk->status_idx == bp->last_status_idx) &&
1917             (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
1918              BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
1919                 return IRQ_NONE;
1920
1921         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1922                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
1923                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1924
1925         /* Return here if interrupt is shared and is disabled. */
1926         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1927                 return IRQ_HANDLED;
1928
1929         netif_rx_schedule(dev);
1930
1931         return IRQ_HANDLED;
1932 }
1933
1934 static inline int
1935 bnx2_has_work(struct bnx2 *bp)
1936 {
1937         struct status_block *sblk = bp->status_blk;
1938
1939         if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
1940             (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
1941                 return 1;
1942
1943         if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
1944             bp->link_up)
1945                 return 1;
1946
1947         return 0;
1948 }
1949
1950 static int
1951 bnx2_poll(struct net_device *dev, int *budget)
1952 {
1953         struct bnx2 *bp = netdev_priv(dev);
1954
1955         if ((bp->status_blk->status_attn_bits &
1956                 STATUS_ATTN_BITS_LINK_STATE) !=
1957                 (bp->status_blk->status_attn_bits_ack &
1958                 STATUS_ATTN_BITS_LINK_STATE)) {
1959
1960                 spin_lock(&bp->phy_lock);
1961                 bnx2_phy_int(bp);
1962                 spin_unlock(&bp->phy_lock);
1963
1964                 /* This is needed to take care of transient status
1965                  * during link changes.
1966                  */
1967                 REG_WR(bp, BNX2_HC_COMMAND,
1968                        bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
1969                 REG_RD(bp, BNX2_HC_COMMAND);
1970         }
1971
1972         if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
1973                 bnx2_tx_int(bp);
1974
1975         if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
1976                 int orig_budget = *budget;
1977                 int work_done;
1978
1979                 if (orig_budget > dev->quota)
1980                         orig_budget = dev->quota;
1981                 
1982                 work_done = bnx2_rx_int(bp, orig_budget);
1983                 *budget -= work_done;
1984                 dev->quota -= work_done;
1985         }
1986         
1987         bp->last_status_idx = bp->status_blk->status_idx;
1988         rmb();
1989
1990         if (!bnx2_has_work(bp)) {
1991                 netif_rx_complete(dev);
1992                 if (likely(bp->flags & USING_MSI_FLAG)) {
1993                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1994                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
1995                                bp->last_status_idx);
1996                         return 0;
1997                 }
1998                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1999                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2000                        BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
2001                        bp->last_status_idx);
2002
2003                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2004                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2005                        bp->last_status_idx);
2006                 return 0;
2007         }
2008
2009         return 1;
2010 }
2011
2012 /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
2013  * from set_multicast.
2014  */
2015 static void
2016 bnx2_set_rx_mode(struct net_device *dev)
2017 {
2018         struct bnx2 *bp = netdev_priv(dev);
2019         u32 rx_mode, sort_mode;
2020         int i;
2021
2022         spin_lock_bh(&bp->phy_lock);
2023
2024         rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
2025                                   BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
2026         sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
2027 #ifdef BCM_VLAN
2028         if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
2029                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2030 #else
2031         if (!(bp->flags & ASF_ENABLE_FLAG))
2032                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2033 #endif
2034         if (dev->flags & IFF_PROMISC) {
2035                 /* Promiscuous mode. */
2036                 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
2037                 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN;
2038         }
2039         else if (dev->flags & IFF_ALLMULTI) {
2040                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2041                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2042                                0xffffffff);
2043                 }
2044                 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
2045         }
2046         else {
2047                 /* Accept one or more multicast(s). */
2048                 struct dev_mc_list *mclist;
2049                 u32 mc_filter[NUM_MC_HASH_REGISTERS];
2050                 u32 regidx;
2051                 u32 bit;
2052                 u32 crc;
2053
2054                 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
2055
2056                 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2057                      i++, mclist = mclist->next) {
2058
2059                         crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
2060                         bit = crc & 0xff;
2061                         regidx = (bit & 0xe0) >> 5;
2062                         bit &= 0x1f;
2063                         mc_filter[regidx] |= (1 << bit);
2064                 }
2065
2066                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2067                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2068                                mc_filter[i]);
2069                 }
2070
2071                 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
2072         }
2073
2074         if (rx_mode != bp->rx_mode) {
2075                 bp->rx_mode = rx_mode;
2076                 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
2077         }
2078
2079         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2080         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
2081         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
2082
2083         spin_unlock_bh(&bp->phy_lock);
2084 }
2085
2086 static void
2087 load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
2088         u32 rv2p_proc)
2089 {
2090         int i;
2091         u32 val;
2092
2093
2094         for (i = 0; i < rv2p_code_len; i += 8) {
2095                 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code);
2096                 rv2p_code++;
2097                 REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code);
2098                 rv2p_code++;
2099
2100                 if (rv2p_proc == RV2P_PROC1) {
2101                         val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
2102                         REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
2103                 }
2104                 else {
2105                         val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
2106                         REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
2107                 }
2108         }
2109
2110         /* Reset the processor, un-stall is done later. */
2111         if (rv2p_proc == RV2P_PROC1) {
2112                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
2113         }
2114         else {
2115                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
2116         }
2117 }
2118
2119 static void
2120 load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
2121 {
2122         u32 offset;
2123         u32 val;
2124
2125         /* Halt the CPU. */
2126         val = REG_RD_IND(bp, cpu_reg->mode);
2127         val |= cpu_reg->mode_value_halt;
2128         REG_WR_IND(bp, cpu_reg->mode, val);
2129         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2130
2131         /* Load the Text area. */
2132         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2133         if (fw->text) {
2134                 int j;
2135
2136                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
2137                         REG_WR_IND(bp, offset, fw->text[j]);
2138                 }
2139         }
2140
2141         /* Load the Data area. */
2142         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2143         if (fw->data) {
2144                 int j;
2145
2146                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
2147                         REG_WR_IND(bp, offset, fw->data[j]);
2148                 }
2149         }
2150
2151         /* Load the SBSS area. */
2152         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2153         if (fw->sbss) {
2154                 int j;
2155
2156                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
2157                         REG_WR_IND(bp, offset, fw->sbss[j]);
2158                 }
2159         }
2160
2161         /* Load the BSS area. */
2162         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2163         if (fw->bss) {
2164                 int j;
2165
2166                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
2167                         REG_WR_IND(bp, offset, fw->bss[j]);
2168                 }
2169         }
2170
2171         /* Load the Read-Only area. */
2172         offset = cpu_reg->spad_base +
2173                 (fw->rodata_addr - cpu_reg->mips_view_base);
2174         if (fw->rodata) {
2175                 int j;
2176
2177                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
2178                         REG_WR_IND(bp, offset, fw->rodata[j]);
2179                 }
2180         }
2181
2182         /* Clear the pre-fetch instruction. */
2183         REG_WR_IND(bp, cpu_reg->inst, 0);
2184         REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
2185
2186         /* Start the CPU. */
2187         val = REG_RD_IND(bp, cpu_reg->mode);
2188         val &= ~cpu_reg->mode_value_halt;
2189         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2190         REG_WR_IND(bp, cpu_reg->mode, val);
2191 }
2192
2193 static void
2194 bnx2_init_cpus(struct bnx2 *bp)
2195 {
2196         struct cpu_reg cpu_reg;
2197         struct fw_info fw;
2198
2199         /* Initialize the RV2P processor. */
2200         load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1);
2201         load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2);
2202
2203         /* Initialize the RX Processor. */
2204         cpu_reg.mode = BNX2_RXP_CPU_MODE;
2205         cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
2206         cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
2207         cpu_reg.state = BNX2_RXP_CPU_STATE;
2208         cpu_reg.state_value_clear = 0xffffff;
2209         cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
2210         cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
2211         cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
2212         cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
2213         cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
2214         cpu_reg.spad_base = BNX2_RXP_SCRATCH;
2215         cpu_reg.mips_view_base = 0x8000000;
2216     
2217         fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
2218         fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
2219         fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
2220         fw.start_addr = bnx2_RXP_b06FwStartAddr;
2221
2222         fw.text_addr = bnx2_RXP_b06FwTextAddr;
2223         fw.text_len = bnx2_RXP_b06FwTextLen;
2224         fw.text_index = 0;
2225         fw.text = bnx2_RXP_b06FwText;
2226
2227         fw.data_addr = bnx2_RXP_b06FwDataAddr;
2228         fw.data_len = bnx2_RXP_b06FwDataLen;
2229         fw.data_index = 0;
2230         fw.data = bnx2_RXP_b06FwData;
2231
2232         fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
2233         fw.sbss_len = bnx2_RXP_b06FwSbssLen;
2234         fw.sbss_index = 0;
2235         fw.sbss = bnx2_RXP_b06FwSbss;
2236
2237         fw.bss_addr = bnx2_RXP_b06FwBssAddr;
2238         fw.bss_len = bnx2_RXP_b06FwBssLen;
2239         fw.bss_index = 0;
2240         fw.bss = bnx2_RXP_b06FwBss;
2241
2242         fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
2243         fw.rodata_len = bnx2_RXP_b06FwRodataLen;
2244         fw.rodata_index = 0;
2245         fw.rodata = bnx2_RXP_b06FwRodata;
2246
2247         load_cpu_fw(bp, &cpu_reg, &fw);
2248
2249         /* Initialize the TX Processor. */
2250         cpu_reg.mode = BNX2_TXP_CPU_MODE;
2251         cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
2252         cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
2253         cpu_reg.state = BNX2_TXP_CPU_STATE;
2254         cpu_reg.state_value_clear = 0xffffff;
2255         cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
2256         cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
2257         cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
2258         cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
2259         cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
2260         cpu_reg.spad_base = BNX2_TXP_SCRATCH;
2261         cpu_reg.mips_view_base = 0x8000000;
2262     
2263         fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
2264         fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
2265         fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
2266         fw.start_addr = bnx2_TXP_b06FwStartAddr;
2267
2268         fw.text_addr = bnx2_TXP_b06FwTextAddr;
2269         fw.text_len = bnx2_TXP_b06FwTextLen;
2270         fw.text_index = 0;
2271         fw.text = bnx2_TXP_b06FwText;
2272
2273         fw.data_addr = bnx2_TXP_b06FwDataAddr;
2274         fw.data_len = bnx2_TXP_b06FwDataLen;
2275         fw.data_index = 0;
2276         fw.data = bnx2_TXP_b06FwData;
2277
2278         fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
2279         fw.sbss_len = bnx2_TXP_b06FwSbssLen;
2280         fw.sbss_index = 0;
2281         fw.sbss = bnx2_TXP_b06FwSbss;
2282
2283         fw.bss_addr = bnx2_TXP_b06FwBssAddr;
2284         fw.bss_len = bnx2_TXP_b06FwBssLen;
2285         fw.bss_index = 0;
2286         fw.bss = bnx2_TXP_b06FwBss;
2287
2288         fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
2289         fw.rodata_len = bnx2_TXP_b06FwRodataLen;
2290         fw.rodata_index = 0;
2291         fw.rodata = bnx2_TXP_b06FwRodata;
2292
2293         load_cpu_fw(bp, &cpu_reg, &fw);
2294
2295         /* Initialize the TX Patch-up Processor. */
2296         cpu_reg.mode = BNX2_TPAT_CPU_MODE;
2297         cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
2298         cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
2299         cpu_reg.state = BNX2_TPAT_CPU_STATE;
2300         cpu_reg.state_value_clear = 0xffffff;
2301         cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
2302         cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
2303         cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
2304         cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
2305         cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
2306         cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
2307         cpu_reg.mips_view_base = 0x8000000;
2308     
2309         fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
2310         fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
2311         fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
2312         fw.start_addr = bnx2_TPAT_b06FwStartAddr;
2313
2314         fw.text_addr = bnx2_TPAT_b06FwTextAddr;
2315         fw.text_len = bnx2_TPAT_b06FwTextLen;
2316         fw.text_index = 0;
2317         fw.text = bnx2_TPAT_b06FwText;
2318
2319         fw.data_addr = bnx2_TPAT_b06FwDataAddr;
2320         fw.data_len = bnx2_TPAT_b06FwDataLen;
2321         fw.data_index = 0;
2322         fw.data = bnx2_TPAT_b06FwData;
2323
2324         fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
2325         fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
2326         fw.sbss_index = 0;
2327         fw.sbss = bnx2_TPAT_b06FwSbss;
2328
2329         fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
2330         fw.bss_len = bnx2_TPAT_b06FwBssLen;
2331         fw.bss_index = 0;
2332         fw.bss = bnx2_TPAT_b06FwBss;
2333
2334         fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
2335         fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
2336         fw.rodata_index = 0;
2337         fw.rodata = bnx2_TPAT_b06FwRodata;
2338
2339         load_cpu_fw(bp, &cpu_reg, &fw);
2340
2341         /* Initialize the Completion Processor. */
2342         cpu_reg.mode = BNX2_COM_CPU_MODE;
2343         cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
2344         cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
2345         cpu_reg.state = BNX2_COM_CPU_STATE;
2346         cpu_reg.state_value_clear = 0xffffff;
2347         cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
2348         cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
2349         cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
2350         cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
2351         cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
2352         cpu_reg.spad_base = BNX2_COM_SCRATCH;
2353         cpu_reg.mips_view_base = 0x8000000;
2354     
2355         fw.ver_major = bnx2_COM_b06FwReleaseMajor;
2356         fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
2357         fw.ver_fix = bnx2_COM_b06FwReleaseFix;
2358         fw.start_addr = bnx2_COM_b06FwStartAddr;
2359
2360         fw.text_addr = bnx2_COM_b06FwTextAddr;
2361         fw.text_len = bnx2_COM_b06FwTextLen;
2362         fw.text_index = 0;
2363         fw.text = bnx2_COM_b06FwText;
2364
2365         fw.data_addr = bnx2_COM_b06FwDataAddr;
2366         fw.data_len = bnx2_COM_b06FwDataLen;
2367         fw.data_index = 0;
2368         fw.data = bnx2_COM_b06FwData;
2369
2370         fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
2371         fw.sbss_len = bnx2_COM_b06FwSbssLen;
2372         fw.sbss_index = 0;
2373         fw.sbss = bnx2_COM_b06FwSbss;
2374
2375         fw.bss_addr = bnx2_COM_b06FwBssAddr;
2376         fw.bss_len = bnx2_COM_b06FwBssLen;
2377         fw.bss_index = 0;
2378         fw.bss = bnx2_COM_b06FwBss;
2379
2380         fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
2381         fw.rodata_len = bnx2_COM_b06FwRodataLen;
2382         fw.rodata_index = 0;
2383         fw.rodata = bnx2_COM_b06FwRodata;
2384
2385         load_cpu_fw(bp, &cpu_reg, &fw);
2386
2387 }
2388
2389 static int
2390 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
2391 {
2392         u16 pmcsr;
2393
2394         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2395
2396         switch (state) {
2397         case PCI_D0: {
2398                 u32 val;
2399
2400                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2401                         (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2402                         PCI_PM_CTRL_PME_STATUS);
2403
2404                 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2405                         /* delay required during transition out of D3hot */
2406                         msleep(20);
2407
2408                 val = REG_RD(bp, BNX2_EMAC_MODE);
2409                 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
2410                 val &= ~BNX2_EMAC_MODE_MPKT;
2411                 REG_WR(bp, BNX2_EMAC_MODE, val);
2412
2413                 val = REG_RD(bp, BNX2_RPM_CONFIG);
2414                 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2415                 REG_WR(bp, BNX2_RPM_CONFIG, val);
2416                 break;
2417         }
2418         case PCI_D3hot: {
2419                 int i;
2420                 u32 val, wol_msg;
2421
2422                 if (bp->wol) {
2423                         u32 advertising;
2424                         u8 autoneg;
2425
2426                         autoneg = bp->autoneg;
2427                         advertising = bp->advertising;
2428
2429                         bp->autoneg = AUTONEG_SPEED;
2430                         bp->advertising = ADVERTISED_10baseT_Half |
2431                                 ADVERTISED_10baseT_Full |
2432                                 ADVERTISED_100baseT_Half |
2433                                 ADVERTISED_100baseT_Full |
2434                                 ADVERTISED_Autoneg;
2435
2436                         bnx2_setup_copper_phy(bp);
2437
2438                         bp->autoneg = autoneg;
2439                         bp->advertising = advertising;
2440
2441                         bnx2_set_mac_addr(bp);
2442
2443                         val = REG_RD(bp, BNX2_EMAC_MODE);
2444
2445                         /* Enable port mode. */
2446                         val &= ~BNX2_EMAC_MODE_PORT;
2447                         val |= BNX2_EMAC_MODE_PORT_MII |
2448                                BNX2_EMAC_MODE_MPKT_RCVD |
2449                                BNX2_EMAC_MODE_ACPI_RCVD |
2450                                BNX2_EMAC_MODE_MPKT;
2451
2452                         REG_WR(bp, BNX2_EMAC_MODE, val);
2453
2454                         /* receive all multicast */
2455                         for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2456                                 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2457                                        0xffffffff);
2458                         }
2459                         REG_WR(bp, BNX2_EMAC_RX_MODE,
2460                                BNX2_EMAC_RX_MODE_SORT_MODE);
2461
2462                         val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
2463                               BNX2_RPM_SORT_USER0_MC_EN;
2464                         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2465                         REG_WR(bp, BNX2_RPM_SORT_USER0, val);
2466                         REG_WR(bp, BNX2_RPM_SORT_USER0, val |
2467                                BNX2_RPM_SORT_USER0_ENA);
2468
2469                         /* Need to enable EMAC and RPM for WOL. */
2470                         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2471                                BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
2472                                BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
2473                                BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
2474
2475                         val = REG_RD(bp, BNX2_RPM_CONFIG);
2476                         val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2477                         REG_WR(bp, BNX2_RPM_CONFIG, val);
2478
2479                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
2480                 }
2481                 else {
2482                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
2483                 }
2484
2485                 if (!(bp->flags & NO_WOL_FLAG))
2486                         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
2487
2488                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2489                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
2490                     (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
2491
2492                         if (bp->wol)
2493                                 pmcsr |= 3;
2494                 }
2495                 else {
2496                         pmcsr |= 3;
2497                 }
2498                 if (bp->wol) {
2499                         pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2500                 }
2501                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2502                                       pmcsr);
2503
2504                 /* No more memory access after this point until
2505                  * device is brought back to D0.
2506                  */
2507                 udelay(50);
2508                 break;
2509         }
2510         default:
2511                 return -EINVAL;
2512         }
2513         return 0;
2514 }
2515
2516 static int
2517 bnx2_acquire_nvram_lock(struct bnx2 *bp)
2518 {
2519         u32 val;
2520         int j;
2521
2522         /* Request access to the flash interface. */
2523         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
2524         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2525                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2526                 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
2527                         break;
2528
2529                 udelay(5);
2530         }
2531
2532         if (j >= NVRAM_TIMEOUT_COUNT)
2533                 return -EBUSY;
2534
2535         return 0;
2536 }
2537
2538 static int
2539 bnx2_release_nvram_lock(struct bnx2 *bp)
2540 {
2541         int j;
2542         u32 val;
2543
2544         /* Relinquish nvram interface. */
2545         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
2546
2547         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2548                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2549                 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
2550                         break;
2551
2552                 udelay(5);
2553         }
2554
2555         if (j >= NVRAM_TIMEOUT_COUNT)
2556                 return -EBUSY;
2557
2558         return 0;
2559 }
2560
2561
2562 static int
2563 bnx2_enable_nvram_write(struct bnx2 *bp)
2564 {
2565         u32 val;
2566
2567         val = REG_RD(bp, BNX2_MISC_CFG);
2568         REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
2569
2570         if (!bp->flash_info->buffered) {
2571                 int j;
2572
2573                 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2574                 REG_WR(bp, BNX2_NVM_COMMAND,
2575                        BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
2576
2577                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2578                         udelay(5);
2579
2580                         val = REG_RD(bp, BNX2_NVM_COMMAND);
2581                         if (val & BNX2_NVM_COMMAND_DONE)
2582                                 break;
2583                 }
2584
2585                 if (j >= NVRAM_TIMEOUT_COUNT)
2586                         return -EBUSY;
2587         }
2588         return 0;
2589 }
2590
2591 static void
2592 bnx2_disable_nvram_write(struct bnx2 *bp)
2593 {
2594         u32 val;
2595
2596         val = REG_RD(bp, BNX2_MISC_CFG);
2597         REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
2598 }
2599
2600
2601 static void
2602 bnx2_enable_nvram_access(struct bnx2 *bp)
2603 {
2604         u32 val;
2605
2606         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2607         /* Enable both bits, even on read. */
2608         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, 
2609                val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
2610 }
2611
2612 static void
2613 bnx2_disable_nvram_access(struct bnx2 *bp)
2614 {
2615         u32 val;
2616
2617         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2618         /* Disable both bits, even after read. */
2619         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, 
2620                 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
2621                         BNX2_NVM_ACCESS_ENABLE_WR_EN));
2622 }
2623
2624 static int
2625 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
2626 {
2627         u32 cmd;
2628         int j;
2629
2630         if (bp->flash_info->buffered)
2631                 /* Buffered flash, no erase needed */
2632                 return 0;
2633
2634         /* Build an erase command */
2635         cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
2636               BNX2_NVM_COMMAND_DOIT;
2637
2638         /* Need to clear DONE bit separately. */
2639         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2640
2641         /* Address of the NVRAM to read from. */
2642         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2643
2644         /* Issue an erase command. */
2645         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2646
2647         /* Wait for completion. */
2648         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2649                 u32 val;
2650
2651                 udelay(5);
2652
2653                 val = REG_RD(bp, BNX2_NVM_COMMAND);
2654                 if (val & BNX2_NVM_COMMAND_DONE)
2655                         break;
2656         }
2657
2658         if (j >= NVRAM_TIMEOUT_COUNT)
2659                 return -EBUSY;
2660
2661         return 0;
2662 }
2663
2664 static int
2665 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
2666 {
2667         u32 cmd;
2668         int j;
2669
2670         /* Build the command word. */
2671         cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
2672
2673         /* Calculate an offset of a buffered flash. */
2674         if (bp->flash_info->buffered) {
2675                 offset = ((offset / bp->flash_info->page_size) <<
2676                            bp->flash_info->page_bits) +
2677                           (offset % bp->flash_info->page_size);
2678         }
2679
2680         /* Need to clear DONE bit separately. */
2681         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2682
2683         /* Address of the NVRAM to read from. */
2684         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2685
2686         /* Issue a read command. */
2687         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2688
2689         /* Wait for completion. */
2690         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2691                 u32 val;
2692
2693                 udelay(5);
2694
2695                 val = REG_RD(bp, BNX2_NVM_COMMAND);
2696                 if (val & BNX2_NVM_COMMAND_DONE) {
2697                         val = REG_RD(bp, BNX2_NVM_READ);
2698
2699                         val = be32_to_cpu(val);
2700                         memcpy(ret_val, &val, 4);
2701                         break;
2702                 }
2703         }
2704         if (j >= NVRAM_TIMEOUT_COUNT)
2705                 return -EBUSY;
2706
2707         return 0;
2708 }
2709
2710
2711 static int
2712 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
2713 {
2714         u32 cmd, val32;
2715         int j;
2716
2717         /* Build the command word. */
2718         cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
2719
2720         /* Calculate an offset of a buffered flash. */
2721         if (bp->flash_info->buffered) {
2722                 offset = ((offset / bp->flash_info->page_size) <<
2723                           bp->flash_info->page_bits) +
2724                          (offset % bp->flash_info->page_size);
2725         }
2726
2727         /* Need to clear DONE bit separately. */
2728         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2729
2730         memcpy(&val32, val, 4);
2731         val32 = cpu_to_be32(val32);
2732
2733         /* Write the data. */
2734         REG_WR(bp, BNX2_NVM_WRITE, val32);
2735
2736         /* Address of the NVRAM to write to. */
2737         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2738
2739         /* Issue the write command. */
2740         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2741
2742         /* Wait for completion. */
2743         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2744                 udelay(5);
2745
2746                 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
2747                         break;
2748         }
2749         if (j >= NVRAM_TIMEOUT_COUNT)
2750                 return -EBUSY;
2751
2752         return 0;
2753 }
2754
2755 static int
2756 bnx2_init_nvram(struct bnx2 *bp)
2757 {
2758         u32 val;
2759         int j, entry_count, rc;
2760         struct flash_spec *flash;
2761
2762         /* Determine the selected interface. */
2763         val = REG_RD(bp, BNX2_NVM_CFG1);
2764
2765         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2766
2767         rc = 0;
2768         if (val & 0x40000000) {
2769
2770                 /* Flash interface has been reconfigured */
2771                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2772                      j++, flash++) {
2773                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2774                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2775                                 bp->flash_info = flash;
2776                                 break;
2777                         }
2778                 }
2779         }
2780         else {
2781                 u32 mask;
2782                 /* Not yet been reconfigured */
2783
2784                 if (val & (1 << 23))
2785                         mask = FLASH_BACKUP_STRAP_MASK;
2786                 else
2787                         mask = FLASH_STRAP_MASK;
2788
2789                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2790                         j++, flash++) {
2791
2792                         if ((val & mask) == (flash->strapping & mask)) {
2793                                 bp->flash_info = flash;
2794
2795                                 /* Request access to the flash interface. */
2796                                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2797                                         return rc;
2798
2799                                 /* Enable access to flash interface */
2800                                 bnx2_enable_nvram_access(bp);
2801
2802                                 /* Reconfigure the flash interface */
2803                                 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
2804                                 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
2805                                 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
2806                                 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
2807
2808                                 /* Disable access to flash interface */
2809                                 bnx2_disable_nvram_access(bp);
2810                                 bnx2_release_nvram_lock(bp);
2811
2812                                 break;
2813                         }
2814                 }
2815         } /* if (val & 0x40000000) */
2816
2817         if (j == entry_count) {
2818                 bp->flash_info = NULL;
2819                 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
2820                 return -ENODEV;
2821         }
2822
2823         val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
2824         val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
2825         if (val)
2826                 bp->flash_size = val;
2827         else
2828                 bp->flash_size = bp->flash_info->total_size;
2829
2830         return rc;
2831 }
2832
2833 static int
2834 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
2835                 int buf_size)
2836 {
2837         int rc = 0;
2838         u32 cmd_flags, offset32, len32, extra;
2839
2840         if (buf_size == 0)
2841                 return 0;
2842
2843         /* Request access to the flash interface. */
2844         if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2845                 return rc;
2846
2847         /* Enable access to flash interface */
2848         bnx2_enable_nvram_access(bp);
2849
2850         len32 = buf_size;
2851         offset32 = offset;
2852         extra = 0;
2853
2854         cmd_flags = 0;
2855
2856         if (offset32 & 3) {
2857                 u8 buf[4];
2858                 u32 pre_len;
2859
2860                 offset32 &= ~3;
2861                 pre_len = 4 - (offset & 3);
2862
2863                 if (pre_len >= len32) {
2864                         pre_len = len32;
2865                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
2866                                     BNX2_NVM_COMMAND_LAST;
2867                 }
2868                 else {
2869                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
2870                 }
2871
2872                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
2873
2874                 if (rc)
2875                         return rc;
2876
2877                 memcpy(ret_buf, buf + (offset & 3), pre_len);
2878
2879                 offset32 += 4;
2880                 ret_buf += pre_len;
2881                 len32 -= pre_len;
2882         }
2883         if (len32 & 3) {
2884                 extra = 4 - (len32 & 3);
2885                 len32 = (len32 + 4) & ~3;
2886         }
2887
2888         if (len32 == 4) {
2889                 u8 buf[4];
2890
2891                 if (cmd_flags)
2892                         cmd_flags = BNX2_NVM_COMMAND_LAST;
2893                 else
2894                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
2895                                     BNX2_NVM_COMMAND_LAST;
2896
2897                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
2898
2899                 memcpy(ret_buf, buf, 4 - extra);
2900         }
2901         else if (len32 > 0) {
2902                 u8 buf[4];
2903
2904                 /* Read the first word. */
2905                 if (cmd_flags)
2906                         cmd_flags = 0;
2907                 else
2908                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
2909
2910                 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
2911
2912                 /* Advance to the next dword. */
2913                 offset32 += 4;
2914                 ret_buf += 4;
2915                 len32 -= 4;
2916
2917                 while (len32 > 4 && rc == 0) {
2918                         rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
2919
2920                         /* Advance to the next dword. */
2921                         offset32 += 4;
2922                         ret_buf += 4;
2923                         len32 -= 4;
2924                 }
2925
2926                 if (rc)
2927                         return rc;
2928
2929                 cmd_flags = BNX2_NVM_COMMAND_LAST;
2930                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
2931
2932                 memcpy(ret_buf, buf, 4 - extra);
2933         }
2934
2935         /* Disable access to flash interface */
2936         bnx2_disable_nvram_access(bp);
2937
2938         bnx2_release_nvram_lock(bp);
2939
2940         return rc;
2941 }
2942
2943 static int
2944 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
2945                 int buf_size)
2946 {
2947         u32 written, offset32, len32;
2948         u8 *buf, start[4], end[4];
2949         int rc = 0;
2950         int align_start, align_end;
2951
2952         buf = data_buf;
2953         offset32 = offset;
2954         len32 = buf_size;
2955         align_start = align_end = 0;
2956
2957         if ((align_start = (offset32 & 3))) {
2958                 offset32 &= ~3;
2959                 len32 += align_start;
2960                 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
2961                         return rc;
2962         }
2963
2964         if (len32 & 3) {
2965                 if ((len32 > 4) || !align_start) {
2966                         align_end = 4 - (len32 & 3);
2967                         len32 += align_end;
2968                         if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
2969                                 end, 4))) {
2970                                 return rc;
2971                         }
2972                 }
2973         }
2974
2975         if (align_start || align_end) {
2976                 buf = kmalloc(len32, GFP_KERNEL);
2977                 if (buf == 0)
2978                         return -ENOMEM;
2979                 if (align_start) {
2980                         memcpy(buf, start, 4);
2981                 }
2982                 if (align_end) {
2983                         memcpy(buf + len32 - 4, end, 4);
2984                 }
2985                 memcpy(buf + align_start, data_buf, buf_size);
2986         }
2987
2988         written = 0;
2989         while ((written < len32) && (rc == 0)) {
2990                 u32 page_start, page_end, data_start, data_end;
2991                 u32 addr, cmd_flags;
2992                 int i;
2993                 u8 flash_buffer[264];
2994
2995                 /* Find the page_start addr */
2996                 page_start = offset32 + written;
2997                 page_start -= (page_start % bp->flash_info->page_size);
2998                 /* Find the page_end addr */
2999                 page_end = page_start + bp->flash_info->page_size;
3000                 /* Find the data_start addr */
3001                 data_start = (written == 0) ? offset32 : page_start;
3002                 /* Find the data_end addr */
3003                 data_end = (page_end > offset32 + len32) ? 
3004                         (offset32 + len32) : page_end;
3005
3006                 /* Request access to the flash interface. */
3007                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3008                         goto nvram_write_end;
3009
3010                 /* Enable access to flash interface */
3011                 bnx2_enable_nvram_access(bp);
3012
3013                 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3014                 if (bp->flash_info->buffered == 0) {
3015                         int j;
3016
3017                         /* Read the whole page into the buffer
3018                          * (non-buffer flash only) */
3019                         for (j = 0; j < bp->flash_info->page_size; j += 4) {
3020                                 if (j == (bp->flash_info->page_size - 4)) {
3021                                         cmd_flags |= BNX2_NVM_COMMAND_LAST;
3022                                 }
3023                                 rc = bnx2_nvram_read_dword(bp,
3024                                         page_start + j, 
3025                                         &flash_buffer[j], 
3026                                         cmd_flags);
3027
3028                                 if (rc)
3029                                         goto nvram_write_end;
3030
3031                                 cmd_flags = 0;
3032                         }
3033                 }
3034
3035                 /* Enable writes to flash interface (unlock write-protect) */
3036                 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
3037                         goto nvram_write_end;
3038
3039                 /* Erase the page */
3040                 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
3041                         goto nvram_write_end;
3042
3043                 /* Re-enable the write again for the actual write */
3044                 bnx2_enable_nvram_write(bp);
3045
3046                 /* Loop to write back the buffer data from page_start to
3047                  * data_start */
3048                 i = 0;
3049                 if (bp->flash_info->buffered == 0) {
3050                         for (addr = page_start; addr < data_start;
3051                                 addr += 4, i += 4) {
3052                                 
3053                                 rc = bnx2_nvram_write_dword(bp, addr,
3054                                         &flash_buffer[i], cmd_flags);
3055
3056                                 if (rc != 0)
3057                                         goto nvram_write_end;
3058
3059                                 cmd_flags = 0;
3060                         }
3061                 }
3062
3063                 /* Loop to write the new data from data_start to data_end */
3064                 for (addr = data_start; addr < data_end; addr += 4, i++) {
3065                         if ((addr == page_end - 4) ||
3066                                 ((bp->flash_info->buffered) &&
3067                                  (addr == data_end - 4))) {
3068
3069                                 cmd_flags |= BNX2_NVM_COMMAND_LAST;
3070                         }
3071                         rc = bnx2_nvram_write_dword(bp, addr, buf,
3072                                 cmd_flags);
3073
3074                         if (rc != 0)
3075                                 goto nvram_write_end;
3076
3077                         cmd_flags = 0;
3078                         buf += 4;
3079                 }
3080
3081                 /* Loop to write back the buffer data from data_end
3082                  * to page_end */
3083                 if (bp->flash_info->buffered == 0) {
3084                         for (addr = data_end; addr < page_end;
3085                                 addr += 4, i += 4) {
3086                         
3087                                 if (addr == page_end-4) {
3088                                         cmd_flags = BNX2_NVM_COMMAND_LAST;
3089                                 }
3090                                 rc = bnx2_nvram_write_dword(bp, addr,
3091                                         &flash_buffer[i], cmd_flags);
3092
3093                                 if (rc != 0)
3094                                         goto nvram_write_end;
3095
3096                                 cmd_flags = 0;
3097                         }
3098                 }
3099
3100                 /* Disable writes to flash interface (lock write-protect) */
3101                 bnx2_disable_nvram_write(bp);
3102
3103                 /* Disable access to flash interface */
3104                 bnx2_disable_nvram_access(bp);
3105                 bnx2_release_nvram_lock(bp);
3106
3107                 /* Increment written */
3108                 written += data_end - data_start;
3109         }
3110
3111 nvram_write_end:
3112         if (align_start || align_end)
3113                 kfree(buf);
3114         return rc;
3115 }
3116
3117 static int
3118 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
3119 {
3120         u32 val;
3121         int i, rc = 0;
3122
3123         /* Wait for the current PCI transaction to complete before
3124          * issuing a reset. */
3125         REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
3126                BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3127                BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3128                BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3129                BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3130         val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
3131         udelay(5);
3132
3133         /* Wait for the firmware to tell us it is ok to issue a reset. */
3134         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
3135
3136         /* Deposit a driver reset signature so the firmware knows that
3137          * this is a soft reset. */
3138         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
3139                    BNX2_DRV_RESET_SIGNATURE_MAGIC);
3140
3141         /* Do a dummy read to force the chip to complete all current transaction
3142          * before we issue a reset. */
3143         val = REG_RD(bp, BNX2_MISC_ID);
3144
3145         val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3146               BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3147               BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3148
3149         /* Chip reset. */
3150         REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
3151
3152         if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3153             (CHIP_ID(bp) == CHIP_ID_5706_A1))
3154                 msleep(15);
3155
3156         /* Reset takes approximate 30 usec */
3157         for (i = 0; i < 10; i++) {
3158                 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
3159                 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3160                             BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3161                         break;
3162                 }
3163                 udelay(10);
3164         }
3165
3166         if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3167                    BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3168                 printk(KERN_ERR PFX "Chip reset did not complete\n");
3169                 return -EBUSY;
3170         }
3171
3172         /* Make sure byte swapping is properly configured. */
3173         val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
3174         if (val != 0x01020304) {
3175                 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
3176                 return -ENODEV;
3177         }
3178
3179         /* Wait for the firmware to finish its initialization. */
3180         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
3181         if (rc)
3182                 return rc;
3183
3184         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3185                 /* Adjust the voltage regular to two steps lower.  The default
3186                  * of this register is 0x0000000e. */
3187                 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
3188
3189                 /* Remove bad rbuf memory from the free pool. */
3190                 rc = bnx2_alloc_bad_rbuf(bp);
3191         }
3192
3193         return rc;
3194 }
3195
3196 static int
3197 bnx2_init_chip(struct bnx2 *bp)
3198 {
3199         u32 val;
3200         int rc;
3201
3202         /* Make sure the interrupt is not active. */
3203         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3204
3205         val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
3206               BNX2_DMA_CONFIG_DATA_WORD_SWAP |
3207 #ifdef __BIG_ENDIAN
3208               BNX2_DMA_CONFIG_CNTL_BYTE_SWAP | 
3209 #endif
3210               BNX2_DMA_CONFIG_CNTL_WORD_SWAP | 
3211               DMA_READ_CHANS << 12 |
3212               DMA_WRITE_CHANS << 16;
3213
3214         val |= (0x2 << 20) | (1 << 11);
3215
3216         if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
3217                 val |= (1 << 23);
3218
3219         if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
3220             (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
3221                 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
3222
3223         REG_WR(bp, BNX2_DMA_CONFIG, val);
3224
3225         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3226                 val = REG_RD(bp, BNX2_TDMA_CONFIG);
3227                 val |= BNX2_TDMA_CONFIG_ONE_DMA;
3228                 REG_WR(bp, BNX2_TDMA_CONFIG, val);
3229         }
3230
3231         if (bp->flags & PCIX_FLAG) {
3232                 u16 val16;
3233
3234                 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3235                                      &val16);
3236                 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3237                                       val16 & ~PCI_X_CMD_ERO);
3238         }
3239
3240         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3241                BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3242                BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3243                BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3244
3245         /* Initialize context mapping and zero out the quick contexts.  The
3246          * context block must have already been enabled. */
3247         bnx2_init_context(bp);
3248
3249         bnx2_init_cpus(bp);
3250         bnx2_init_nvram(bp);
3251
3252         bnx2_set_mac_addr(bp);
3253
3254         val = REG_RD(bp, BNX2_MQ_CONFIG);
3255         val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3256         val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3257         REG_WR(bp, BNX2_MQ_CONFIG, val);
3258
3259         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3260         REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
3261         REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
3262
3263         val = (BCM_PAGE_BITS - 8) << 24;
3264         REG_WR(bp, BNX2_RV2P_CONFIG, val);
3265
3266         /* Configure page size. */
3267         val = REG_RD(bp, BNX2_TBDR_CONFIG);
3268         val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
3269         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3270         REG_WR(bp, BNX2_TBDR_CONFIG, val);
3271
3272         val = bp->mac_addr[0] +
3273               (bp->mac_addr[1] << 8) +
3274               (bp->mac_addr[2] << 16) +
3275               bp->mac_addr[3] +
3276               (bp->mac_addr[4] << 8) +
3277               (bp->mac_addr[5] << 16);
3278         REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
3279
3280         /* Program the MTU.  Also include 4 bytes for CRC32. */
3281         val = bp->dev->mtu + ETH_HLEN + 4;
3282         if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
3283                 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
3284         REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
3285
3286         bp->last_status_idx = 0;
3287         bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
3288
3289         /* Set up how to generate a link change interrupt. */
3290         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
3291
3292         REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
3293                (u64) bp->status_blk_mapping & 0xffffffff);
3294         REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
3295
3296         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
3297                (u64) bp->stats_blk_mapping & 0xffffffff);
3298         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
3299                (u64) bp->stats_blk_mapping >> 32);
3300
3301         REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP, 
3302                (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
3303
3304         REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
3305                (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
3306
3307         REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
3308                (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
3309
3310         REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
3311
3312         REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
3313
3314         REG_WR(bp, BNX2_HC_COM_TICKS,
3315                (bp->com_ticks_int << 16) | bp->com_ticks);
3316
3317         REG_WR(bp, BNX2_HC_CMD_TICKS,
3318                (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
3319
3320         REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
3321         REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3322
3323         if (CHIP_ID(bp) == CHIP_ID_5706_A1)
3324                 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
3325         else {
3326                 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
3327                        BNX2_HC_CONFIG_TX_TMR_MODE |
3328                        BNX2_HC_CONFIG_COLLECT_STATS);
3329         }
3330
3331         /* Clear internal stats counters. */
3332         REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
3333
3334         REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3335
3336         if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
3337             BNX2_PORT_FEATURE_ASF_ENABLED)
3338                 bp->flags |= ASF_ENABLE_FLAG;
3339
3340         /* Initialize the receive filter. */
3341         bnx2_set_rx_mode(bp->dev);
3342
3343         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
3344                           0);
3345
3346         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
3347         REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
3348
3349         udelay(20);
3350
3351         bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
3352
3353         return rc;
3354 }
3355
3356
3357 static void
3358 bnx2_init_tx_ring(struct bnx2 *bp)
3359 {
3360         struct tx_bd *txbd;
3361         u32 val;
3362
3363         txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
3364                 
3365         txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
3366         txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
3367
3368         bp->tx_prod = 0;
3369         bp->tx_cons = 0;
3370         bp->hw_tx_cons = 0;
3371         bp->tx_prod_bseq = 0;
3372         
3373         val = BNX2_L2CTX_TYPE_TYPE_L2;
3374         val |= BNX2_L2CTX_TYPE_SIZE_L2;
3375         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
3376
3377         val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
3378         val |= 8 << 16;
3379         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
3380
3381         val = (u64) bp->tx_desc_mapping >> 32;
3382         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val);
3383
3384         val = (u64) bp->tx_desc_mapping & 0xffffffff;
3385         CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
3386 }
3387
3388 static void
3389 bnx2_init_rx_ring(struct bnx2 *bp)
3390 {
3391         struct rx_bd *rxbd;
3392         int i;
3393         u16 prod, ring_prod; 
3394         u32 val;
3395
3396         /* 8 for CRC and VLAN */
3397         bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
3398         /* 8 for alignment */
3399         bp->rx_buf_size = bp->rx_buf_use_size + 8;
3400
3401         ring_prod = prod = bp->rx_prod = 0;
3402         bp->rx_cons = 0;
3403         bp->hw_rx_cons = 0;
3404         bp->rx_prod_bseq = 0;
3405                 
3406         for (i = 0; i < bp->rx_max_ring; i++) {
3407                 int j;
3408
3409                 rxbd = &bp->rx_desc_ring[i][0];
3410                 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
3411                         rxbd->rx_bd_len = bp->rx_buf_use_size;
3412                         rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
3413                 }
3414                 if (i == (bp->rx_max_ring - 1))
3415                         j = 0;
3416                 else
3417                         j = i + 1;
3418                 rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
3419                 rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
3420                                        0xffffffff;
3421         }
3422
3423         val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3424         val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
3425         val |= 0x02 << 8;
3426         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
3427
3428         val = (u64) bp->rx_desc_mapping[0] >> 32;
3429         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
3430
3431         val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
3432         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
3433
3434         for (i = 0; i < bp->rx_ring_size; i++) {
3435                 if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
3436                         break;
3437                 }
3438                 prod = NEXT_RX_BD(prod);
3439                 ring_prod = RX_RING_IDX(prod);
3440         }
3441         bp->rx_prod = prod;
3442
3443         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
3444
3445         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
3446 }
3447
3448 static void
3449 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
3450 {
3451         u32 num_rings, max;
3452
3453         bp->rx_ring_size = size;
3454         num_rings = 1;
3455         while (size > MAX_RX_DESC_CNT) {
3456                 size -= MAX_RX_DESC_CNT;
3457                 num_rings++;
3458         }
3459         /* round to next power of 2 */
3460         max = MAX_RX_RINGS;
3461         while ((max & num_rings) == 0)
3462                 max >>= 1;
3463
3464         if (num_rings != max)
3465                 max <<= 1;
3466
3467         bp->rx_max_ring = max;
3468         bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
3469 }
3470
3471 static void
3472 bnx2_free_tx_skbs(struct bnx2 *bp)
3473 {
3474         int i;
3475
3476         if (bp->tx_buf_ring == NULL)
3477                 return;
3478
3479         for (i = 0; i < TX_DESC_CNT; ) {
3480                 struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
3481                 struct sk_buff *skb = tx_buf->skb;
3482                 int j, last;
3483
3484                 if (skb == NULL) {
3485                         i++;
3486                         continue;
3487                 }
3488
3489                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
3490                         skb_headlen(skb), PCI_DMA_TODEVICE);
3491
3492                 tx_buf->skb = NULL;
3493
3494                 last = skb_shinfo(skb)->nr_frags;
3495                 for (j = 0; j < last; j++) {
3496                         tx_buf = &bp->tx_buf_ring[i + j + 1];
3497                         pci_unmap_page(bp->pdev,
3498                                 pci_unmap_addr(tx_buf, mapping),
3499                                 skb_shinfo(skb)->frags[j].size,
3500                                 PCI_DMA_TODEVICE);
3501                 }
3502                 dev_kfree_skb_any(skb);
3503                 i += j + 1;
3504         }
3505
3506 }
3507
3508 static void
3509 bnx2_free_rx_skbs(struct bnx2 *bp)
3510 {
3511         int i;
3512
3513         if (bp->rx_buf_ring == NULL)
3514                 return;
3515
3516         for (i = 0; i < bp->rx_max_ring_idx; i++) {
3517                 struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
3518                 struct sk_buff *skb = rx_buf->skb;
3519
3520                 if (skb == NULL)
3521                         continue;
3522
3523                 pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
3524                         bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
3525
3526                 rx_buf->skb = NULL;
3527
3528                 dev_kfree_skb_any(skb);
3529         }
3530 }
3531
3532 static void
3533 bnx2_free_skbs(struct bnx2 *bp)
3534 {
3535         bnx2_free_tx_skbs(bp);
3536         bnx2_free_rx_skbs(bp);
3537 }
3538
3539 static int
3540 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
3541 {
3542         int rc;
3543
3544         rc = bnx2_reset_chip(bp, reset_code);
3545         bnx2_free_skbs(bp);
3546         if (rc)
3547                 return rc;
3548
3549         bnx2_init_chip(bp);
3550         bnx2_init_tx_ring(bp);
3551         bnx2_init_rx_ring(bp);
3552         return 0;
3553 }
3554
3555 static int
3556 bnx2_init_nic(struct bnx2 *bp)
3557 {
3558         int rc;
3559
3560         if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
3561                 return rc;
3562
3563         bnx2_init_phy(bp);
3564         bnx2_set_link(bp);
3565         return 0;
3566 }
3567
3568 static int
3569 bnx2_test_registers(struct bnx2 *bp)
3570 {
3571         int ret;
3572         int i;
3573         static const struct {
3574                 u16   offset;
3575                 u16   flags;
3576                 u32   rw_mask;
3577                 u32   ro_mask;
3578         } reg_tbl[] = {
3579                 { 0x006c, 0, 0x00000000, 0x0000003f },
3580                 { 0x0090, 0, 0xffffffff, 0x00000000 },
3581                 { 0x0094, 0, 0x00000000, 0x00000000 },
3582
3583                 { 0x0404, 0, 0x00003f00, 0x00000000 },
3584                 { 0x0418, 0, 0x00000000, 0xffffffff },
3585                 { 0x041c, 0, 0x00000000, 0xffffffff },
3586                 { 0x0420, 0, 0x00000000, 0x80ffffff },
3587                 { 0x0424, 0, 0x00000000, 0x00000000 },
3588                 { 0x0428, 0, 0x00000000, 0x00000001 },
3589                 { 0x0450, 0, 0x00000000, 0x0000ffff },
3590                 { 0x0454, 0, 0x00000000, 0xffffffff },
3591                 { 0x0458, 0, 0x00000000, 0xffffffff },
3592
3593                 { 0x0808, 0, 0x00000000, 0xffffffff },
3594                 { 0x0854, 0, 0x00000000, 0xffffffff },
3595                 { 0x0868, 0, 0x00000000, 0x77777777 },
3596                 { 0x086c, 0, 0x00000000, 0x77777777 },
3597                 { 0x0870, 0, 0x00000000, 0x77777777 },
3598                 { 0x0874, 0, 0x00000000, 0x77777777 },
3599
3600                 { 0x0c00, 0, 0x00000000, 0x00000001 },
3601                 { 0x0c04, 0, 0x00000000, 0x03ff0001 },
3602                 { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
3603
3604                 { 0x1000, 0, 0x00000000, 0x00000001 },
3605                 { 0x1004, 0, 0x00000000, 0x000f0001 },
3606
3607                 { 0x1408, 0, 0x01c00800, 0x00000000 },
3608                 { 0x149c, 0, 0x8000ffff, 0x00000000 },
3609                 { 0x14a8, 0, 0x00000000, 0x000001ff },
3610                 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
3611                 { 0x14b0, 0, 0x00000002, 0x00000001 },
3612                 { 0x14b8, 0, 0x00000000, 0x00000000 },
3613                 { 0x14c0, 0, 0x00000000, 0x00000009 },
3614                 { 0x14c4, 0, 0x00003fff, 0x00000000 },
3615                 { 0x14cc, 0, 0x00000000, 0x00000001 },
3616                 { 0x14d0, 0, 0xffffffff, 0x00000000 },
3617
3618                 { 0x1800, 0, 0x00000000, 0x00000001 },
3619                 { 0x1804, 0, 0x00000000, 0x00000003 },
3620
3621                 { 0x2800, 0, 0x00000000, 0x00000001 },
3622                 { 0x2804, 0, 0x00000000, 0x00003f01 },
3623                 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
3624                 { 0x2810, 0, 0xffff0000, 0x00000000 },
3625                 { 0x2814, 0, 0xffff0000, 0x00000000 },
3626                 { 0x2818, 0, 0xffff0000, 0x00000000 },
3627                 { 0x281c, 0, 0xffff0000, 0x00000000 },
3628                 { 0x2834, 0, 0xffffffff, 0x00000000 },
3629                 { 0x2840, 0, 0x00000000, 0xffffffff },
3630                 { 0x2844, 0, 0x00000000, 0xffffffff },
3631                 { 0x2848, 0, 0xffffffff, 0x00000000 },
3632                 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
3633
3634                 { 0x2c00, 0, 0x00000000, 0x00000011 },
3635                 { 0x2c04, 0, 0x00000000, 0x00030007 },
3636
3637                 { 0x3c00, 0, 0x00000000, 0x00000001 },
3638                 { 0x3c04, 0, 0x00000000, 0x00070000 },
3639                 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
3640                 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
3641                 { 0x3c10, 0, 0xffffffff, 0x00000000 },
3642                 { 0x3c14, 0, 0x00000000, 0xffffffff },
3643                 { 0x3c18, 0, 0x00000000, 0xffffffff },
3644                 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
3645                 { 0x3c20, 0, 0xffffff00, 0x00000000 },
3646
3647                 { 0x5004, 0, 0x00000000, 0x0000007f },
3648                 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
3649                 { 0x500c, 0, 0xf800f800, 0x07ff07ff },
3650
3651                 { 0x5c00, 0, 0x00000000, 0x00000001 },
3652                 { 0x5c04, 0, 0x00000000, 0x0003000f },
3653                 { 0x5c08, 0, 0x00000003, 0x00000000 },
3654                 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
3655                 { 0x5c10, 0, 0x00000000, 0xffffffff },
3656                 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
3657                 { 0x5c84, 0, 0x00000000, 0x0000f333 },
3658                 { 0x5c88, 0, 0x00000000, 0x00077373 },
3659                 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
3660
3661                 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
3662                 { 0x680c, 0, 0xffffffff, 0x00000000 },
3663                 { 0x6810, 0, 0xffffffff, 0x00000000 },
3664                 { 0x6814, 0, 0xffffffff, 0x00000000 },
3665                 { 0x6818, 0, 0xffffffff, 0x00000000 },
3666                 { 0x681c, 0, 0xffffffff, 0x00000000 },
3667                 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
3668                 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
3669                 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
3670                 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
3671                 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
3672                 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
3673                 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
3674                 { 0x683c, 0, 0x0000ffff, 0x00000000 },
3675                 { 0x6840, 0, 0x00000ff0, 0x00000000 },
3676                 { 0x6844, 0, 0x00ffff00, 0x00000000 },
3677                 { 0x684c, 0, 0xffffffff, 0x00000000 },
3678                 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
3679                 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
3680                 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
3681                 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
3682                 { 0x6908, 0, 0x00000000, 0x0001ff0f },
3683                 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
3684
3685                 { 0xffff, 0, 0x00000000, 0x00000000 },
3686         };
3687
3688         ret = 0;
3689         for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
3690                 u32 offset, rw_mask, ro_mask, save_val, val;
3691
3692                 offset = (u32) reg_tbl[i].offset;
3693                 rw_mask = reg_tbl[i].rw_mask;
3694                 ro_mask = reg_tbl[i].ro_mask;
3695
3696                 save_val = readl(bp->regview + offset);
3697
3698                 writel(0, bp->regview + offset);
3699
3700                 val = readl(bp->regview + offset);
3701                 if ((val & rw_mask) != 0) {
3702                         goto reg_test_err;
3703                 }
3704
3705                 if ((val & ro_mask) != (save_val & ro_mask)) {
3706                         goto reg_test_err;
3707                 }
3708
3709                 writel(0xffffffff, bp->regview + offset);
3710
3711                 val = readl(bp->regview + offset);
3712                 if ((val & rw_mask) != rw_mask) {
3713                         goto reg_test_err;
3714                 }
3715
3716                 if ((val & ro_mask) != (save_val & ro_mask)) {
3717                         goto reg_test_err;
3718                 }
3719
3720                 writel(save_val, bp->regview + offset);
3721                 continue;
3722
3723 reg_test_err:
3724                 writel(save_val, bp->regview + offset);
3725                 ret = -ENODEV;
3726                 break;
3727         }
3728         return ret;
3729 }
3730
3731 static int
3732 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
3733 {
3734         static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
3735                 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
3736         int i;
3737
3738         for (i = 0; i < sizeof(test_pattern) / 4; i++) {
3739                 u32 offset;
3740
3741                 for (offset = 0; offset < size; offset += 4) {
3742
3743                         REG_WR_IND(bp, start + offset, test_pattern[i]);
3744
3745                         if (REG_RD_IND(bp, start + offset) !=
3746                                 test_pattern[i]) {
3747                                 return -ENODEV;
3748                         }
3749                 }
3750         }
3751         return 0;
3752 }
3753
3754 static int
3755 bnx2_test_memory(struct bnx2 *bp)
3756 {
3757         int ret = 0;
3758         int i;
3759         static const struct {
3760                 u32   offset;
3761                 u32   len;
3762         } mem_tbl[] = {
3763                 { 0x60000,  0x4000 },
3764                 { 0xa0000,  0x3000 },
3765                 { 0xe0000,  0x4000 },
3766                 { 0x120000, 0x4000 },
3767                 { 0x1a0000, 0x4000 },
3768                 { 0x160000, 0x4000 },
3769                 { 0xffffffff, 0    },
3770         };
3771
3772         for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
3773                 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
3774                         mem_tbl[i].len)) != 0) {
3775                         return ret;
3776                 }
3777         }
3778         
3779         return ret;
3780 }
3781
3782 #define BNX2_MAC_LOOPBACK       0
3783 #define BNX2_PHY_LOOPBACK       1
3784
3785 static int
3786 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
3787 {
3788         unsigned int pkt_size, num_pkts, i;
3789         struct sk_buff *skb, *rx_skb;
3790         unsigned char *packet;
3791         u16 rx_start_idx, rx_idx;
3792         dma_addr_t map;
3793         struct tx_bd *txbd;
3794         struct sw_bd *rx_buf;
3795         struct l2_fhdr *rx_hdr;
3796         int ret = -ENODEV;
3797
3798         if (loopback_mode == BNX2_MAC_LOOPBACK) {
3799                 bp->loopback = MAC_LOOPBACK;
3800                 bnx2_set_mac_loopback(bp);
3801         }
3802         else if (loopback_mode == BNX2_PHY_LOOPBACK) {
3803                 bp->loopback = 0;
3804                 bnx2_set_phy_loopback(bp);
3805         }
3806         else
3807                 return -EINVAL;
3808
3809         pkt_size = 1514;
3810         skb = dev_alloc_skb(pkt_size);
3811         if (!skb)
3812                 return -ENOMEM;
3813         packet = skb_put(skb, pkt_size);
3814         memcpy(packet, bp->mac_addr, 6);
3815         memset(packet + 6, 0x0, 8);
3816         for (i = 14; i < pkt_size; i++)
3817                 packet[i] = (unsigned char) (i & 0xff);
3818
3819         map = pci_map_single(bp->pdev, skb->data, pkt_size,
3820                 PCI_DMA_TODEVICE);
3821
3822         REG_WR(bp, BNX2_HC_COMMAND,
3823                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3824
3825         REG_RD(bp, BNX2_HC_COMMAND);
3826
3827         udelay(5);
3828         rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
3829
3830         num_pkts = 0;
3831
3832         txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
3833
3834         txbd->tx_bd_haddr_hi = (u64) map >> 32;
3835         txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
3836         txbd->tx_bd_mss_nbytes = pkt_size;
3837         txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
3838
3839         num_pkts++;
3840         bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
3841         bp->tx_prod_bseq += pkt_size;
3842
3843         REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, bp->tx_prod);
3844         REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
3845
3846         udelay(100);
3847
3848         REG_WR(bp, BNX2_HC_COMMAND,
3849                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3850
3851         REG_RD(bp, BNX2_HC_COMMAND);
3852
3853         udelay(5);
3854
3855         pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
3856         dev_kfree_skb_irq(skb);
3857
3858         if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
3859                 goto loopback_test_done;
3860         }
3861
3862         rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
3863         if (rx_idx != rx_start_idx + num_pkts) {
3864                 goto loopback_test_done;
3865         }
3866
3867         rx_buf = &bp->rx_buf_ring[rx_start_idx];
3868         rx_skb = rx_buf->skb;
3869
3870         rx_hdr = (struct l2_fhdr *) rx_skb->data;
3871         skb_reserve(rx_skb, bp->rx_offset);
3872
3873         pci_dma_sync_single_for_cpu(bp->pdev,
3874                 pci_unmap_addr(rx_buf, mapping),
3875                 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
3876
3877         if (rx_hdr->l2_fhdr_status &
3878                 (L2_FHDR_ERRORS_BAD_CRC |
3879                 L2_FHDR_ERRORS_PHY_DECODE |
3880                 L2_FHDR_ERRORS_ALIGNMENT |
3881                 L2_FHDR_ERRORS_TOO_SHORT |
3882                 L2_FHDR_ERRORS_GIANT_FRAME)) {
3883
3884                 goto loopback_test_done;
3885         }
3886
3887         if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
3888                 goto loopback_test_done;
3889         }
3890
3891         for (i = 14; i < pkt_size; i++) {
3892                 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
3893                         goto loopback_test_done;
3894                 }
3895         }
3896
3897         ret = 0;
3898
3899 loopback_test_done:
3900         bp->loopback = 0;
3901         return ret;
3902 }
3903
3904 #define BNX2_MAC_LOOPBACK_FAILED        1
3905 #define BNX2_PHY_LOOPBACK_FAILED        2
3906 #define BNX2_LOOPBACK_FAILED            (BNX2_MAC_LOOPBACK_FAILED |     \
3907                                          BNX2_PHY_LOOPBACK_FAILED)
3908
3909 static int
3910 bnx2_test_loopback(struct bnx2 *bp)
3911 {
3912         int rc = 0;
3913
3914         if (!netif_running(bp->dev))
3915                 return BNX2_LOOPBACK_FAILED;
3916
3917         bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
3918         spin_lock_bh(&bp->phy_lock);
3919         bnx2_init_phy(bp);
3920         spin_unlock_bh(&bp->phy_lock);
3921         if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
3922                 rc |= BNX2_MAC_LOOPBACK_FAILED;
3923         if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
3924                 rc |= BNX2_PHY_LOOPBACK_FAILED;
3925         return rc;
3926 }
3927
3928 #define NVRAM_SIZE 0x200
3929 #define CRC32_RESIDUAL 0xdebb20e3
3930
3931 static int
3932 bnx2_test_nvram(struct bnx2 *bp)
3933 {
3934         u32 buf[NVRAM_SIZE / 4];
3935         u8 *data = (u8 *) buf;
3936         int rc = 0;
3937         u32 magic, csum;
3938
3939         if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
3940                 goto test_nvram_done;
3941
3942         magic = be32_to_cpu(buf[0]);
3943         if (magic != 0x669955aa) {
3944                 rc = -ENODEV;
3945                 goto test_nvram_done;
3946         }
3947
3948         if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
3949                 goto test_nvram_done;
3950
3951         csum = ether_crc_le(0x100, data);
3952         if (csum != CRC32_RESIDUAL) {
3953                 rc = -ENODEV;
3954                 goto test_nvram_done;
3955         }
3956
3957         csum = ether_crc_le(0x100, data + 0x100);
3958         if (csum != CRC32_RESIDUAL) {
3959                 rc = -ENODEV;
3960         }
3961
3962 test_nvram_done:
3963         return rc;
3964 }
3965
3966 static int
3967 bnx2_test_link(struct bnx2 *bp)
3968 {
3969         u32 bmsr;
3970
3971         spin_lock_bh(&bp->phy_lock);
3972         bnx2_read_phy(bp, MII_BMSR, &bmsr);
3973         bnx2_read_phy(bp, MII_BMSR, &bmsr);
3974         spin_unlock_bh(&bp->phy_lock);
3975                 
3976         if (bmsr & BMSR_LSTATUS) {
3977                 return 0;
3978         }
3979         return -ENODEV;
3980 }
3981
3982 static int
3983 bnx2_test_intr(struct bnx2 *bp)
3984 {
3985         int i;
3986         u16 status_idx;
3987
3988         if (!netif_running(bp->dev))
3989                 return -ENODEV;
3990
3991         status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
3992
3993         /* This register is not touched during run-time. */
3994         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
3995         REG_RD(bp, BNX2_HC_COMMAND);
3996
3997         for (i = 0; i < 10; i++) {
3998                 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
3999                         status_idx) {
4000
4001                         break;
4002                 }
4003
4004                 msleep_interruptible(10);
4005         }
4006         if (i < 10)
4007                 return 0;
4008
4009         return -ENODEV;
4010 }
4011
4012 static void
4013 bnx2_timer(unsigned long data)
4014 {
4015         struct bnx2 *bp = (struct bnx2 *) data;
4016         u32 msg;
4017
4018         if (!netif_running(bp->dev))
4019                 return;
4020
4021         if (atomic_read(&bp->intr_sem) != 0)
4022                 goto bnx2_restart_timer;
4023
4024         msg = (u32) ++bp->fw_drv_pulse_wr_seq;
4025         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
4026
4027         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
4028             (CHIP_NUM(bp) == CHIP_NUM_5706)) {
4029
4030                 spin_lock(&bp->phy_lock);
4031                 if (bp->serdes_an_pending) {
4032                         bp->serdes_an_pending--;
4033                 }
4034                 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4035                         u32 bmcr;
4036
4037                         bp->current_interval = bp->timer_interval;
4038
4039                         bnx2_read_phy(bp, MII_BMCR, &bmcr);
4040
4041                         if (bmcr & BMCR_ANENABLE) {
4042                                 u32 phy1, phy2;
4043
4044                                 bnx2_write_phy(bp, 0x1c, 0x7c00);
4045                                 bnx2_read_phy(bp, 0x1c, &phy1);
4046
4047                                 bnx2_write_phy(bp, 0x17, 0x0f01);
4048                                 bnx2_read_phy(bp, 0x15, &phy2);
4049                                 bnx2_write_phy(bp, 0x17, 0x0f01);
4050                                 bnx2_read_phy(bp, 0x15, &phy2);
4051
4052                                 if ((phy1 & 0x10) &&    /* SIGNAL DETECT */
4053                                         !(phy2 & 0x20)) {       /* no CONFIG */
4054
4055                                         bmcr &= ~BMCR_ANENABLE;
4056                                         bmcr |= BMCR_SPEED1000 |
4057                                                 BMCR_FULLDPLX;
4058                                         bnx2_write_phy(bp, MII_BMCR, bmcr);
4059                                         bp->phy_flags |=
4060                                                 PHY_PARALLEL_DETECT_FLAG;
4061                                 }
4062                         }
4063                 }
4064                 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
4065                         (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
4066                         u32 phy2;
4067
4068                         bnx2_write_phy(bp, 0x17, 0x0f01);
4069                         bnx2_read_phy(bp, 0x15, &phy2);
4070                         if (phy2 & 0x20) {
4071                                 u32 bmcr;
4072
4073                                 bnx2_read_phy(bp, MII_BMCR, &bmcr);
4074                                 bmcr |= BMCR_ANENABLE;
4075                                 bnx2_write_phy(bp, MII_BMCR, bmcr);
4076
4077                                 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
4078
4079                         }
4080                 }
4081                 else
4082                         bp->current_interval = bp->timer_interval;
4083
4084                 spin_unlock(&bp->phy_lock);
4085         }
4086
4087 bnx2_restart_timer:
4088         mod_timer(&bp->timer, jiffies + bp->current_interval);
4089 }
4090
4091 /* Called with rtnl_lock */
4092 static int
4093 bnx2_open(struct net_device *dev)
4094 {
4095         struct bnx2 *bp = netdev_priv(dev);
4096         int rc;
4097
4098         bnx2_set_power_state(bp, PCI_D0);
4099         bnx2_disable_int(bp);
4100
4101         rc = bnx2_alloc_mem(bp);
4102         if (rc)
4103                 return rc;
4104
4105         if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
4106                 (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
4107                 !disable_msi) {
4108
4109                 if (pci_enable_msi(bp->pdev) == 0) {
4110                         bp->flags |= USING_MSI_FLAG;
4111                         rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
4112                                         dev);
4113                 }
4114                 else {
4115                         rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4116                                         SA_SHIRQ, dev->name, dev);
4117                 }
4118         }
4119         else {
4120                 rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ,
4121                                 dev->name, dev);
4122         }
4123         if (rc) {
4124                 bnx2_free_mem(bp);
4125                 return rc;
4126         }
4127
4128         rc = bnx2_init_nic(bp);
4129
4130         if (rc) {
4131                 free_irq(bp->pdev->irq, dev);
4132                 if (bp->flags & USING_MSI_FLAG) {
4133                         pci_disable_msi(bp->pdev);
4134                         bp->flags &= ~USING_MSI_FLAG;
4135                 }
4136                 bnx2_free_skbs(bp);
4137                 bnx2_free_mem(bp);
4138                 return rc;
4139         }
4140         
4141         mod_timer(&bp->timer, jiffies + bp->current_interval);
4142
4143         atomic_set(&bp->intr_sem, 0);
4144
4145         bnx2_enable_int(bp);
4146
4147         if (bp->flags & USING_MSI_FLAG) {
4148                 /* Test MSI to make sure it is working
4149                  * If MSI test fails, go back to INTx mode
4150                  */
4151                 if (bnx2_test_intr(bp) != 0) {
4152                         printk(KERN_WARNING PFX "%s: No interrupt was generated"
4153                                " using MSI, switching to INTx mode. Please"
4154                                " report this failure to the PCI maintainer"
4155                                " and include system chipset information.\n",
4156                                bp->dev->name);
4157
4158                         bnx2_disable_int(bp);
4159                         free_irq(bp->pdev->irq, dev);
4160                         pci_disable_msi(bp->pdev);
4161                         bp->flags &= ~USING_MSI_FLAG;
4162
4163                         rc = bnx2_init_nic(bp);
4164
4165                         if (!rc) {
4166                                 rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4167                                         SA_SHIRQ, dev->name, dev);
4168                         }
4169                         if (rc) {
4170                                 bnx2_free_skbs(bp);
4171                                 bnx2_free_mem(bp);
4172                                 del_timer_sync(&bp->timer);
4173                                 return rc;
4174                         }
4175                         bnx2_enable_int(bp);
4176                 }
4177         }
4178         if (bp->flags & USING_MSI_FLAG) {
4179                 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
4180         }
4181
4182         netif_start_queue(dev);
4183
4184         return 0;
4185 }
4186
4187 static void
4188 bnx2_reset_task(void *data)
4189 {
4190         struct bnx2 *bp = data;
4191
4192         if (!netif_running(bp->dev))
4193                 return;
4194
4195         bp->in_reset_task = 1;
4196         bnx2_netif_stop(bp);
4197
4198         bnx2_init_nic(bp);
4199
4200         atomic_set(&bp->intr_sem, 1);
4201         bnx2_netif_start(bp);
4202         bp->in_reset_task = 0;
4203 }
4204
4205 static void
4206 bnx2_tx_timeout(struct net_device *dev)
4207 {
4208         struct bnx2 *bp = netdev_priv(dev);
4209
4210         /* This allows the netif to be shutdown gracefully before resetting */
4211         schedule_work(&bp->reset_task);
4212 }
4213
4214 #ifdef BCM_VLAN
4215 /* Called with rtnl_lock */
4216 static void
4217 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
4218 {
4219         struct bnx2 *bp = netdev_priv(dev);
4220
4221         bnx2_netif_stop(bp);
4222
4223         bp->vlgrp = vlgrp;
4224         bnx2_set_rx_mode(dev);
4225
4226         bnx2_netif_start(bp);
4227 }
4228
4229 /* Called with rtnl_lock */
4230 static void
4231 bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
4232 {
4233         struct bnx2 *bp = netdev_priv(dev);
4234
4235         bnx2_netif_stop(bp);
4236
4237         if (bp->vlgrp)
4238                 bp->vlgrp->vlan_devices[vid] = NULL;
4239         bnx2_set_rx_mode(dev);
4240
4241         bnx2_netif_start(bp);
4242 }
4243 #endif
4244
4245 /* Called with dev->xmit_lock.
4246  * hard_start_xmit is pseudo-lockless - a lock is only required when
4247  * the tx queue is full. This way, we get the benefit of lockless
4248  * operations most of the time without the complexities to handle
4249  * netif_stop_queue/wake_queue race conditions.
4250  */
4251 static int
4252 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
4253 {
4254         struct bnx2 *bp = netdev_priv(dev);
4255         dma_addr_t mapping;
4256         struct tx_bd *txbd;
4257         struct sw_bd *tx_buf;
4258         u32 len, vlan_tag_flags, last_frag, mss;
4259         u16 prod, ring_prod;
4260         int i;
4261
4262         if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
4263                 netif_stop_queue(dev);
4264                 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
4265                         dev->name);
4266
4267                 return NETDEV_TX_BUSY;
4268         }
4269         len = skb_headlen(skb);
4270         prod = bp->tx_prod;
4271         ring_prod = TX_RING_IDX(prod);
4272
4273         vlan_tag_flags = 0;
4274         if (skb->ip_summed == CHECKSUM_HW) {
4275                 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4276         }
4277
4278         if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
4279                 vlan_tag_flags |=
4280                         (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
4281         }
4282 #ifdef BCM_TSO 
4283         if ((mss = skb_shinfo(skb)->tso_size) &&
4284                 (skb->len > (bp->dev->mtu + ETH_HLEN))) {
4285                 u32 tcp_opt_len, ip_tcp_len;
4286
4287                 if (skb_header_cloned(skb) &&
4288                     pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
4289                         dev_kfree_skb(skb);
4290                         return NETDEV_TX_OK;
4291                 }
4292
4293                 tcp_opt_len = ((skb->h.th->doff - 5) * 4);
4294                 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
4295
4296                 tcp_opt_len = 0;
4297                 if (skb->h.th->doff > 5) {
4298                         tcp_opt_len = (skb->h.th->doff - 5) << 2;
4299                 }
4300                 ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
4301
4302                 skb->nh.iph->check = 0;
4303                 skb->nh.iph->tot_len = ntohs(mss + ip_tcp_len + tcp_opt_len);
4304                 skb->h.th->check =
4305                         ~csum_tcpudp_magic(skb->nh.iph->saddr,
4306                                             skb->nh.iph->daddr,
4307                                             0, IPPROTO_TCP, 0);
4308
4309                 if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
4310                         vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
4311                                 (tcp_opt_len >> 2)) << 8;
4312                 }
4313         }
4314         else
4315 #endif
4316         {
4317                 mss = 0;
4318         }
4319
4320         mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
4321         
4322         tx_buf = &bp->tx_buf_ring[ring_prod];
4323         tx_buf->skb = skb;
4324         pci_unmap_addr_set(tx_buf, mapping, mapping);
4325
4326         txbd = &bp->tx_desc_ring[ring_prod];
4327
4328         txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
4329         txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
4330         txbd->tx_bd_mss_nbytes = len | (mss << 16);
4331         txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
4332
4333         last_frag = skb_shinfo(skb)->nr_frags;
4334
4335         for (i = 0; i < last_frag; i++) {
4336                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4337
4338                 prod = NEXT_TX_BD(prod);
4339                 ring_prod = TX_RING_IDX(prod);
4340                 txbd = &bp->tx_desc_ring[ring_prod];
4341
4342                 len = frag->size;
4343                 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
4344                         len, PCI_DMA_TODEVICE);
4345                 pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
4346                                 mapping, mapping);
4347
4348                 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
4349                 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
4350                 txbd->tx_bd_mss_nbytes = len | (mss << 16);
4351                 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
4352
4353         }
4354         txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
4355
4356         prod = NEXT_TX_BD(prod);
4357         bp->tx_prod_bseq += skb->len;
4358
4359         REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod);
4360         REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
4361
4362         mmiowb();
4363
4364         bp->tx_prod = prod;
4365         dev->trans_start = jiffies;
4366
4367         if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
4368                 spin_lock(&bp->tx_lock);
4369                 netif_stop_queue(dev);
4370                 
4371                 if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)
4372                         netif_wake_queue(dev);
4373                 spin_unlock(&bp->tx_lock);
4374         }
4375
4376         return NETDEV_TX_OK;
4377 }
4378
4379 /* Called with rtnl_lock */
4380 static int
4381 bnx2_close(struct net_device *dev)
4382 {
4383         struct bnx2 *bp = netdev_priv(dev);
4384         u32 reset_code;
4385
4386         /* Calling flush_scheduled_work() may deadlock because
4387          * linkwatch_event() may be on the workqueue and it will try to get
4388          * the rtnl_lock which we are holding.
4389          */
4390         while (bp->in_reset_task)
4391                 msleep(1);
4392
4393         bnx2_netif_stop(bp);
4394         del_timer_sync(&bp->timer);
4395         if (bp->flags & NO_WOL_FLAG)
4396                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD;
4397         else if (bp->wol)
4398                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
4399         else
4400                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
4401         bnx2_reset_chip(bp, reset_code);
4402         free_irq(bp->pdev->irq, dev);
4403         if (bp->flags & USING_MSI_FLAG) {
4404                 pci_disable_msi(bp->pdev);
4405                 bp->flags &= ~USING_MSI_FLAG;
4406         }
4407         bnx2_free_skbs(bp);
4408         bnx2_free_mem(bp);
4409         bp->link_up = 0;
4410         netif_carrier_off(bp->dev);
4411         bnx2_set_power_state(bp, PCI_D3hot);
4412         return 0;
4413 }
4414
4415 #define GET_NET_STATS64(ctr)                                    \
4416         (unsigned long) ((unsigned long) (ctr##_hi) << 32) +    \
4417         (unsigned long) (ctr##_lo)
4418
4419 #define GET_NET_STATS32(ctr)            \
4420         (ctr##_lo)
4421
4422 #if (BITS_PER_LONG == 64)
4423 #define GET_NET_STATS   GET_NET_STATS64
4424 #else
4425 #define GET_NET_STATS   GET_NET_STATS32
4426 #endif
4427
4428 static struct net_device_stats *
4429 bnx2_get_stats(struct net_device *dev)
4430 {
4431         struct bnx2 *bp = netdev_priv(dev);
4432         struct statistics_block *stats_blk = bp->stats_blk;
4433         struct net_device_stats *net_stats = &bp->net_stats;
4434
4435         if (bp->stats_blk == NULL) {
4436                 return net_stats;
4437         }
4438         net_stats->rx_packets =
4439                 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
4440                 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
4441                 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
4442
4443         net_stats->tx_packets =
4444                 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
4445                 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
4446                 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
4447
4448         net_stats->rx_bytes =
4449                 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
4450
4451         net_stats->tx_bytes =
4452                 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
4453
4454         net_stats->multicast = 
4455                 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
4456
4457         net_stats->collisions = 
4458                 (unsigned long) stats_blk->stat_EtherStatsCollisions;
4459
4460         net_stats->rx_length_errors = 
4461                 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
4462                 stats_blk->stat_EtherStatsOverrsizePkts);
4463
4464         net_stats->rx_over_errors = 
4465                 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
4466
4467         net_stats->rx_frame_errors = 
4468                 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
4469
4470         net_stats->rx_crc_errors = 
4471                 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
4472
4473         net_stats->rx_errors = net_stats->rx_length_errors +
4474                 net_stats->rx_over_errors + net_stats->rx_frame_errors +
4475                 net_stats->rx_crc_errors;
4476
4477         net_stats->tx_aborted_errors =
4478                 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
4479                 stats_blk->stat_Dot3StatsLateCollisions);
4480
4481         if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4482             (CHIP_ID(bp) == CHIP_ID_5708_A0))
4483                 net_stats->tx_carrier_errors = 0;
4484         else {
4485                 net_stats->tx_carrier_errors =
4486                         (unsigned long)
4487                         stats_blk->stat_Dot3StatsCarrierSenseErrors;
4488         }
4489
4490         net_stats->tx_errors =
4491                 (unsigned long) 
4492                 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
4493                 +
4494                 net_stats->tx_aborted_errors +
4495                 net_stats->tx_carrier_errors;
4496
4497         return net_stats;
4498 }
4499
4500 /* All ethtool functions called with rtnl_lock */
4501
4502 static int
4503 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4504 {
4505         struct bnx2 *bp = netdev_priv(dev);
4506
4507         cmd->supported = SUPPORTED_Autoneg;
4508         if (bp->phy_flags & PHY_SERDES_FLAG) {
4509                 cmd->supported |= SUPPORTED_1000baseT_Full |
4510                         SUPPORTED_FIBRE;
4511
4512                 cmd->port = PORT_FIBRE;
4513         }
4514         else {
4515                 cmd->supported |= SUPPORTED_10baseT_Half |
4516                         SUPPORTED_10baseT_Full |
4517                         SUPPORTED_100baseT_Half |
4518                         SUPPORTED_100baseT_Full |
4519                         SUPPORTED_1000baseT_Full |
4520                         SUPPORTED_TP;
4521
4522                 cmd->port = PORT_TP;
4523         }
4524
4525         cmd->advertising = bp->advertising;
4526
4527         if (bp->autoneg & AUTONEG_SPEED) {
4528                 cmd->autoneg = AUTONEG_ENABLE;
4529         }
4530         else {
4531                 cmd->autoneg = AUTONEG_DISABLE;
4532         }
4533
4534         if (netif_carrier_ok(dev)) {
4535                 cmd->speed = bp->line_speed;
4536                 cmd->duplex = bp->duplex;
4537         }
4538         else {
4539                 cmd->speed = -1;
4540                 cmd->duplex = -1;
4541         }
4542
4543         cmd->transceiver = XCVR_INTERNAL;
4544         cmd->phy_address = bp->phy_addr;
4545
4546         return 0;
4547 }
4548   
4549 static int
4550 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4551 {
4552         struct bnx2 *bp = netdev_priv(dev);
4553         u8 autoneg = bp->autoneg;
4554         u8 req_duplex = bp->req_duplex;
4555         u16 req_line_speed = bp->req_line_speed;
4556         u32 advertising = bp->advertising;
4557
4558         if (cmd->autoneg == AUTONEG_ENABLE) {
4559                 autoneg |= AUTONEG_SPEED;
4560
4561                 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED; 
4562
4563                 /* allow advertising 1 speed */
4564                 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
4565                         (cmd->advertising == ADVERTISED_10baseT_Full) ||
4566                         (cmd->advertising == ADVERTISED_100baseT_Half) ||
4567                         (cmd->advertising == ADVERTISED_100baseT_Full)) {
4568
4569                         if (bp->phy_flags & PHY_SERDES_FLAG)
4570                                 return -EINVAL;
4571
4572                         advertising = cmd->advertising;
4573
4574                 }
4575                 else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
4576                         advertising = cmd->advertising;
4577                 }
4578                 else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
4579                         return -EINVAL;
4580                 }
4581                 else {
4582                         if (bp->phy_flags & PHY_SERDES_FLAG) {
4583                                 advertising = ETHTOOL_ALL_FIBRE_SPEED;
4584                         }
4585                         else {
4586                                 advertising = ETHTOOL_ALL_COPPER_SPEED;
4587                         }
4588                 }
4589                 advertising |= ADVERTISED_Autoneg;
4590         }
4591         else {
4592                 if (bp->phy_flags & PHY_SERDES_FLAG) {
4593                         if ((cmd->speed != SPEED_1000) ||
4594                                 (cmd->duplex != DUPLEX_FULL)) {
4595                                 return -EINVAL;
4596                         }
4597                 }
4598                 else if (cmd->speed == SPEED_1000) {
4599                         return -EINVAL;
4600                 }
4601                 autoneg &= ~AUTONEG_SPEED;
4602                 req_line_speed = cmd->speed;
4603                 req_duplex = cmd->duplex;
4604                 advertising = 0;
4605         }
4606
4607         bp->autoneg = autoneg;
4608         bp->advertising = advertising;
4609         bp->req_line_speed = req_line_speed;
4610         bp->req_duplex = req_duplex;
4611
4612         spin_lock_bh(&bp->phy_lock);
4613
4614         bnx2_setup_phy(bp);
4615
4616         spin_unlock_bh(&bp->phy_lock);
4617
4618         return 0;
4619 }
4620
4621 static void
4622 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4623 {
4624         struct bnx2 *bp = netdev_priv(dev);
4625
4626         strcpy(info->driver, DRV_MODULE_NAME);
4627         strcpy(info->version, DRV_MODULE_VERSION);
4628         strcpy(info->bus_info, pci_name(bp->pdev));
4629         info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
4630         info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
4631         info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
4632         info->fw_version[1] = info->fw_version[3] = '.';
4633         info->fw_version[5] = 0;
4634 }
4635
4636 #define BNX2_REGDUMP_LEN                (32 * 1024)
4637
4638 static int
4639 bnx2_get_regs_len(struct net_device *dev)
4640 {
4641         return BNX2_REGDUMP_LEN;
4642 }
4643
4644 static void
4645 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
4646 {
4647         u32 *p = _p, i, offset;
4648         u8 *orig_p = _p;
4649         struct bnx2 *bp = netdev_priv(dev);
4650         u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
4651                                  0x0800, 0x0880, 0x0c00, 0x0c10,
4652                                  0x0c30, 0x0d08, 0x1000, 0x101c,
4653                                  0x1040, 0x1048, 0x1080, 0x10a4,
4654                                  0x1400, 0x1490, 0x1498, 0x14f0,
4655                                  0x1500, 0x155c, 0x1580, 0x15dc,
4656                                  0x1600, 0x1658, 0x1680, 0x16d8,
4657                                  0x1800, 0x1820, 0x1840, 0x1854,
4658                                  0x1880, 0x1894, 0x1900, 0x1984,
4659                                  0x1c00, 0x1c0c, 0x1c40, 0x1c54,
4660                                  0x1c80, 0x1c94, 0x1d00, 0x1d84,
4661                                  0x2000, 0x2030, 0x23c0, 0x2400,
4662                                  0x2800, 0x2820, 0x2830, 0x2850,
4663                                  0x2b40, 0x2c10, 0x2fc0, 0x3058,
4664                                  0x3c00, 0x3c94, 0x4000, 0x4010,
4665                                  0x4080, 0x4090, 0x43c0, 0x4458,
4666                                  0x4c00, 0x4c18, 0x4c40, 0x4c54,
4667                                  0x4fc0, 0x5010, 0x53c0, 0x5444,
4668                                  0x5c00, 0x5c18, 0x5c80, 0x5c90,
4669                                  0x5fc0, 0x6000, 0x6400, 0x6428,
4670                                  0x6800, 0x6848, 0x684c, 0x6860,
4671                                  0x6888, 0x6910, 0x8000 };
4672
4673         regs->version = 0;
4674
4675         memset(p, 0, BNX2_REGDUMP_LEN);
4676
4677         if (!netif_running(bp->dev))
4678                 return;
4679
4680         i = 0;
4681         offset = reg_boundaries[0];
4682         p += offset;
4683         while (offset < BNX2_REGDUMP_LEN) {
4684                 *p++ = REG_RD(bp, offset);
4685                 offset += 4;
4686                 if (offset == reg_boundaries[i + 1]) {
4687                         offset = reg_boundaries[i + 2];
4688                         p = (u32 *) (orig_p + offset);
4689                         i += 2;
4690                 }
4691         }
4692 }
4693
4694 static void
4695 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
4696 {
4697         struct bnx2 *bp = netdev_priv(dev);
4698
4699         if (bp->flags & NO_WOL_FLAG) {
4700                 wol->supported = 0;
4701                 wol->wolopts = 0;
4702         }
4703         else {
4704                 wol->supported = WAKE_MAGIC;
4705                 if (bp->wol)
4706                         wol->wolopts = WAKE_MAGIC;
4707                 else
4708                         wol->wolopts = 0;
4709         }
4710         memset(&wol->sopass, 0, sizeof(wol->sopass));
4711 }
4712
4713 static int
4714 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
4715 {
4716         struct bnx2 *bp = netdev_priv(dev);
4717
4718         if (wol->wolopts & ~WAKE_MAGIC)
4719                 return -EINVAL;
4720
4721         if (wol->wolopts & WAKE_MAGIC) {
4722                 if (bp->flags & NO_WOL_FLAG)
4723                         return -EINVAL;
4724
4725                 bp->wol = 1;
4726         }
4727         else {
4728                 bp->wol = 0;
4729         }
4730         return 0;
4731 }
4732
4733 static int
4734 bnx2_nway_reset(struct net_device *dev)
4735 {
4736         struct bnx2 *bp = netdev_priv(dev);
4737         u32 bmcr;
4738
4739         if (!(bp->autoneg & AUTONEG_SPEED)) {
4740                 return -EINVAL;
4741         }
4742
4743         spin_lock_bh(&bp->phy_lock);
4744
4745         /* Force a link down visible on the other side */
4746         if (bp->phy_flags & PHY_SERDES_FLAG) {
4747                 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
4748                 spin_unlock_bh(&bp->phy_lock);
4749
4750                 msleep(20);
4751
4752                 spin_lock_bh(&bp->phy_lock);
4753                 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
4754                         bp->current_interval = SERDES_AN_TIMEOUT;
4755                         bp->serdes_an_pending = 1;
4756                         mod_timer(&bp->timer, jiffies + bp->current_interval);
4757                 }
4758         }
4759
4760         bnx2_read_phy(bp, MII_BMCR, &bmcr);
4761         bmcr &= ~BMCR_LOOPBACK;
4762         bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
4763
4764         spin_unlock_bh(&bp->phy_lock);
4765
4766         return 0;
4767 }
4768
4769 static int
4770 bnx2_get_eeprom_len(struct net_device *dev)
4771 {
4772         struct bnx2 *bp = netdev_priv(dev);
4773
4774         if (bp->flash_info == NULL)
4775                 return 0;
4776
4777         return (int) bp->flash_size;
4778 }
4779
4780 static int
4781 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
4782                 u8 *eebuf)
4783 {
4784         struct bnx2 *bp = netdev_priv(dev);
4785         int rc;
4786
4787         /* parameters already validated in ethtool_get_eeprom */
4788
4789         rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
4790
4791         return rc;
4792 }
4793
4794 static int
4795 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
4796                 u8 *eebuf)
4797 {
4798         struct bnx2 *bp = netdev_priv(dev);
4799         int rc;
4800
4801         /* parameters already validated in ethtool_set_eeprom */
4802
4803         rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
4804
4805         return rc;
4806 }
4807
4808 static int
4809 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
4810 {
4811         struct bnx2 *bp = netdev_priv(dev);
4812
4813         memset(coal, 0, sizeof(struct ethtool_coalesce));
4814
4815         coal->rx_coalesce_usecs = bp->rx_ticks;
4816         coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
4817         coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
4818         coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
4819
4820         coal->tx_coalesce_usecs = bp->tx_ticks;
4821         coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
4822         coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
4823         coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
4824
4825         coal->stats_block_coalesce_usecs = bp->stats_ticks;
4826
4827         return 0;
4828 }
4829
4830 static int
4831 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
4832 {
4833         struct bnx2 *bp = netdev_priv(dev);
4834
4835         bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
4836         if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
4837
4838         bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames; 
4839         if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
4840
4841         bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
4842         if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
4843
4844         bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
4845         if (bp->rx_quick_cons_trip_int > 0xff)
4846                 bp->rx_quick_cons_trip_int = 0xff;
4847
4848         bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
4849         if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
4850
4851         bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
4852         if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
4853
4854         bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
4855         if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
4856
4857         bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
4858         if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
4859                 0xff;
4860
4861         bp->stats_ticks = coal->stats_block_coalesce_usecs;
4862         if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
4863         bp->stats_ticks &= 0xffff00;
4864
4865         if (netif_running(bp->dev)) {
4866                 bnx2_netif_stop(bp);
4867                 bnx2_init_nic(bp);
4868                 bnx2_netif_start(bp);
4869         }
4870
4871         return 0;
4872 }
4873
4874 static void
4875 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
4876 {
4877         struct bnx2 *bp = netdev_priv(dev);
4878
4879         ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
4880         ering->rx_mini_max_pending = 0;
4881         ering->rx_jumbo_max_pending = 0;
4882
4883         ering->rx_pending = bp->rx_ring_size;
4884         ering->rx_mini_pending = 0;
4885         ering->rx_jumbo_pending = 0;
4886
4887         ering->tx_max_pending = MAX_TX_DESC_CNT;
4888         ering->tx_pending = bp->tx_ring_size;
4889 }
4890
4891 static int
4892 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
4893 {
4894         struct bnx2 *bp = netdev_priv(dev);
4895
4896         if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
4897                 (ering->tx_pending > MAX_TX_DESC_CNT) ||
4898                 (ering->tx_pending <= MAX_SKB_FRAGS)) {
4899
4900                 return -EINVAL;
4901         }
4902         if (netif_running(bp->dev)) {
4903                 bnx2_netif_stop(bp);
4904                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
4905                 bnx2_free_skbs(bp);
4906                 bnx2_free_mem(bp);
4907         }
4908
4909         bnx2_set_rx_ring_size(bp, ering->rx_pending);
4910         bp->tx_ring_size = ering->tx_pending;
4911
4912         if (netif_running(bp->dev)) {
4913                 int rc;
4914
4915                 rc = bnx2_alloc_mem(bp);
4916                 if (rc)
4917                         return rc;
4918                 bnx2_init_nic(bp);
4919                 bnx2_netif_start(bp);
4920         }
4921
4922         return 0;
4923 }
4924
4925 static void
4926 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
4927 {
4928         struct bnx2 *bp = netdev_priv(dev);
4929
4930         epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
4931         epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
4932         epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
4933 }
4934
4935 static int
4936 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
4937 {
4938         struct bnx2 *bp = netdev_priv(dev);
4939
4940         bp->req_flow_ctrl = 0;
4941         if (epause->rx_pause)
4942                 bp->req_flow_ctrl |= FLOW_CTRL_RX;
4943         if (epause->tx_pause)
4944                 bp->req_flow_ctrl |= FLOW_CTRL_TX;
4945
4946         if (epause->autoneg) {
4947                 bp->autoneg |= AUTONEG_FLOW_CTRL;
4948         }
4949         else {
4950                 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
4951         }
4952
4953         spin_lock_bh(&bp->phy_lock);
4954
4955         bnx2_setup_phy(bp);
4956
4957         spin_unlock_bh(&bp->phy_lock);
4958
4959         return 0;
4960 }
4961
4962 static u32
4963 bnx2_get_rx_csum(struct net_device *dev)
4964 {
4965         struct bnx2 *bp = netdev_priv(dev);
4966
4967         return bp->rx_csum;
4968 }
4969
4970 static int
4971 bnx2_set_rx_csum(struct net_device *dev, u32 data)
4972 {
4973         struct bnx2 *bp = netdev_priv(dev);
4974
4975         bp->rx_csum = data;
4976         return 0;
4977 }
4978
4979 #define BNX2_NUM_STATS 45
4980
4981 static struct {
4982         char string[ETH_GSTRING_LEN];
4983 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
4984         { "rx_bytes" },
4985         { "rx_error_bytes" },
4986         { "tx_bytes" },
4987         { "tx_error_bytes" },
4988         { "rx_ucast_packets" },
4989         { "rx_mcast_packets" },
4990         { "rx_bcast_packets" },
4991         { "tx_ucast_packets" },
4992         { "tx_mcast_packets" },
4993         { "tx_bcast_packets" },
4994         { "tx_mac_errors" },
4995         { "tx_carrier_errors" },
4996         { "rx_crc_errors" },
4997         { "rx_align_errors" },
4998         { "tx_single_collisions" },
4999         { "tx_multi_collisions" },
5000         { "tx_deferred" },
5001         { "tx_excess_collisions" },
5002         { "tx_late_collisions" },
5003         { "tx_total_collisions" },
5004         { "rx_fragments" },
5005         { "rx_jabbers" },
5006         { "rx_undersize_packets" },
5007         { "rx_oversize_packets" },
5008         { "rx_64_byte_packets" },
5009         { "rx_65_to_127_byte_packets" },
5010         { "rx_128_to_255_byte_packets" },
5011         { "rx_256_to_511_byte_packets" },
5012         { "rx_512_to_1023_byte_packets" },
5013         { "rx_1024_to_1522_byte_packets" },
5014         { "rx_1523_to_9022_byte_packets" },
5015         { "tx_64_byte_packets" },
5016         { "tx_65_to_127_byte_packets" },
5017         { "tx_128_to_255_byte_packets" },
5018         { "tx_256_to_511_byte_packets" },
5019         { "tx_512_to_1023_byte_packets" },
5020         { "tx_1024_to_1522_byte_packets" },
5021         { "tx_1523_to_9022_byte_packets" },
5022         { "rx_xon_frames" },
5023         { "rx_xoff_frames" },
5024         { "tx_xon_frames" },
5025         { "tx_xoff_frames" },
5026         { "rx_mac_ctrl_frames" },
5027         { "rx_filtered_packets" },
5028         { "rx_discards" },
5029 };
5030
5031 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
5032
5033 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
5034     STATS_OFFSET32(stat_IfHCInOctets_hi),
5035     STATS_OFFSET32(stat_IfHCInBadOctets_hi),
5036     STATS_OFFSET32(stat_IfHCOutOctets_hi),
5037     STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
5038     STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
5039     STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
5040     STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
5041     STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
5042     STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
5043     STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
5044     STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
5045     STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),                 
5046     STATS_OFFSET32(stat_Dot3StatsFCSErrors),                          
5047     STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),                    
5048     STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),              
5049     STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),            
5050     STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),              
5051     STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),                
5052     STATS_OFFSET32(stat_Dot3StatsLateCollisions),                     
5053     STATS_OFFSET32(stat_EtherStatsCollisions),                        
5054     STATS_OFFSET32(stat_EtherStatsFragments),                         
5055     STATS_OFFSET32(stat_EtherStatsJabbers),                           
5056     STATS_OFFSET32(stat_EtherStatsUndersizePkts),                     
5057     STATS_OFFSET32(stat_EtherStatsOverrsizePkts),                     
5058     STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),                    
5059     STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),         
5060     STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),        
5061     STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),        
5062     STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),       
5063     STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),      
5064     STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),      
5065     STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),                    
5066     STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),         
5067     STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),        
5068     STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),        
5069     STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),       
5070     STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),      
5071     STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),      
5072     STATS_OFFSET32(stat_XonPauseFramesReceived),                      
5073     STATS_OFFSET32(stat_XoffPauseFramesReceived),                     
5074     STATS_OFFSET32(stat_OutXonSent),                                  
5075     STATS_OFFSET32(stat_OutXoffSent),                                 
5076     STATS_OFFSET32(stat_MacControlFramesReceived),                    
5077     STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),                  
5078     STATS_OFFSET32(stat_IfInMBUFDiscards),                            
5079 };
5080
5081 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
5082  * skipped because of errata.
5083  */               
5084 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
5085         8,0,8,8,8,8,8,8,8,8,
5086         4,0,4,4,4,4,4,4,4,4,
5087         4,4,4,4,4,4,4,4,4,4,
5088         4,4,4,4,4,4,4,4,4,4,
5089         4,4,4,4,4,
5090 };
5091
5092 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
5093         8,0,8,8,8,8,8,8,8,8,
5094         4,4,4,4,4,4,4,4,4,4,
5095         4,4,4,4,4,4,4,4,4,4,
5096         4,4,4,4,4,4,4,4,4,4,
5097         4,4,4,4,4,
5098 };
5099
5100 #define BNX2_NUM_TESTS 6
5101
5102 static struct {
5103         char string[ETH_GSTRING_LEN];
5104 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
5105         { "register_test (offline)" },
5106         { "memory_test (offline)" },
5107         { "loopback_test (offline)" },
5108         { "nvram_test (online)" },
5109         { "interrupt_test (online)" },
5110         { "link_test (online)" },
5111 };
5112
5113 static int
5114 bnx2_self_test_count(struct net_device *dev)
5115 {
5116         return BNX2_NUM_TESTS;
5117 }
5118
5119 static void
5120 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
5121 {
5122         struct bnx2 *bp = netdev_priv(dev);
5123
5124         memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
5125         if (etest->flags & ETH_TEST_FL_OFFLINE) {
5126                 bnx2_netif_stop(bp);
5127                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
5128                 bnx2_free_skbs(bp);
5129
5130                 if (bnx2_test_registers(bp) != 0) {
5131                         buf[0] = 1;
5132                         etest->flags |= ETH_TEST_FL_FAILED;
5133                 }
5134                 if (bnx2_test_memory(bp) != 0) {
5135                         buf[1] = 1;
5136                         etest->flags |= ETH_TEST_FL_FAILED;
5137                 }
5138                 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
5139                         etest->flags |= ETH_TEST_FL_FAILED;
5140
5141                 if (!netif_running(bp->dev)) {
5142                         bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
5143                 }
5144                 else {
5145                         bnx2_init_nic(bp);
5146                         bnx2_netif_start(bp);
5147                 }
5148
5149                 /* wait for link up */
5150                 msleep_interruptible(3000);
5151                 if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG))
5152                         msleep_interruptible(4000);
5153         }
5154
5155         if (bnx2_test_nvram(bp) != 0) {
5156                 buf[3] = 1;
5157                 etest->flags |= ETH_TEST_FL_FAILED;
5158         }
5159         if (bnx2_test_intr(bp) != 0) {
5160                 buf[4] = 1;
5161                 etest->flags |= ETH_TEST_FL_FAILED;
5162         }
5163
5164         if (bnx2_test_link(bp) != 0) {
5165                 buf[5] = 1;
5166                 etest->flags |= ETH_TEST_FL_FAILED;
5167
5168         }
5169 }
5170
5171 static void
5172 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
5173 {
5174         switch (stringset) {
5175         case ETH_SS_STATS:
5176                 memcpy(buf, bnx2_stats_str_arr,
5177                         sizeof(bnx2_stats_str_arr));
5178                 break;
5179         case ETH_SS_TEST:
5180                 memcpy(buf, bnx2_tests_str_arr,
5181                         sizeof(bnx2_tests_str_arr));
5182                 break;
5183         }
5184 }
5185
5186 static int
5187 bnx2_get_stats_count(struct net_device *dev)
5188 {
5189         return BNX2_NUM_STATS;
5190 }
5191
5192 static void
5193 bnx2_get_ethtool_stats(struct net_device *dev,
5194                 struct ethtool_stats *stats, u64 *buf)
5195 {
5196         struct bnx2 *bp = netdev_priv(dev);
5197         int i;
5198         u32 *hw_stats = (u32 *) bp->stats_blk;
5199         u8 *stats_len_arr = NULL;
5200
5201         if (hw_stats == NULL) {
5202                 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
5203                 return;
5204         }
5205
5206         if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
5207             (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
5208             (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
5209             (CHIP_ID(bp) == CHIP_ID_5708_A0))
5210                 stats_len_arr = bnx2_5706_stats_len_arr;
5211         else
5212                 stats_len_arr = bnx2_5708_stats_len_arr;
5213
5214         for (i = 0; i < BNX2_NUM_STATS; i++) {
5215                 if (stats_len_arr[i] == 0) {
5216                         /* skip this counter */
5217                         buf[i] = 0;
5218                         continue;
5219                 }
5220                 if (stats_len_arr[i] == 4) {
5221                         /* 4-byte counter */
5222                         buf[i] = (u64)
5223                                 *(hw_stats + bnx2_stats_offset_arr[i]);
5224                         continue;
5225                 }
5226                 /* 8-byte counter */
5227                 buf[i] = (((u64) *(hw_stats +
5228                                         bnx2_stats_offset_arr[i])) << 32) +
5229                                 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
5230         }
5231 }
5232
5233 static int
5234 bnx2_phys_id(struct net_device *dev, u32 data)
5235 {
5236         struct bnx2 *bp = netdev_priv(dev);
5237         int i;
5238         u32 save;
5239
5240         if (data == 0)
5241                 data = 2;
5242
5243         save = REG_RD(bp, BNX2_MISC_CFG);
5244         REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
5245
5246         for (i = 0; i < (data * 2); i++) {
5247                 if ((i % 2) == 0) {
5248                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
5249                 }
5250                 else {
5251                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
5252                                 BNX2_EMAC_LED_1000MB_OVERRIDE |
5253                                 BNX2_EMAC_LED_100MB_OVERRIDE |
5254                                 BNX2_EMAC_LED_10MB_OVERRIDE |
5255                                 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
5256                                 BNX2_EMAC_LED_TRAFFIC);
5257                 }
5258                 msleep_interruptible(500);
5259                 if (signal_pending(current))
5260                         break;
5261         }
5262         REG_WR(bp, BNX2_EMAC_LED, 0);
5263         REG_WR(bp, BNX2_MISC_CFG, save);
5264         return 0;
5265 }
5266
5267 static struct ethtool_ops bnx2_ethtool_ops = {
5268         .get_settings           = bnx2_get_settings,
5269         .set_settings           = bnx2_set_settings,
5270         .get_drvinfo            = bnx2_get_drvinfo,
5271         .get_regs_len           = bnx2_get_regs_len,
5272         .get_regs               = bnx2_get_regs,
5273         .get_wol                = bnx2_get_wol,
5274         .set_wol                = bnx2_set_wol,
5275         .nway_reset             = bnx2_nway_reset,
5276         .get_link               = ethtool_op_get_link,
5277         .get_eeprom_len         = bnx2_get_eeprom_len,
5278         .get_eeprom             = bnx2_get_eeprom,
5279         .set_eeprom             = bnx2_set_eeprom,
5280         .get_coalesce           = bnx2_get_coalesce,
5281         .set_coalesce           = bnx2_set_coalesce,
5282         .get_ringparam          = bnx2_get_ringparam,
5283         .set_ringparam          = bnx2_set_ringparam,
5284         .get_pauseparam         = bnx2_get_pauseparam,
5285         .set_pauseparam         = bnx2_set_pauseparam,
5286         .get_rx_csum            = bnx2_get_rx_csum,
5287         .set_rx_csum            = bnx2_set_rx_csum,
5288         .get_tx_csum            = ethtool_op_get_tx_csum,
5289         .set_tx_csum            = ethtool_op_set_tx_csum,
5290         .get_sg                 = ethtool_op_get_sg,
5291         .set_sg                 = ethtool_op_set_sg,
5292 #ifdef BCM_TSO
5293         .get_tso                = ethtool_op_get_tso,
5294         .set_tso                = ethtool_op_set_tso,
5295 #endif
5296         .self_test_count        = bnx2_self_test_count,
5297         .self_test              = bnx2_self_test,
5298         .get_strings            = bnx2_get_strings,
5299         .phys_id                = bnx2_phys_id,
5300         .get_stats_count        = bnx2_get_stats_count,
5301         .get_ethtool_stats      = bnx2_get_ethtool_stats,
5302         .get_perm_addr          = ethtool_op_get_perm_addr,
5303 };
5304
5305 /* Called with rtnl_lock */
5306 static int
5307 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5308 {
5309         struct mii_ioctl_data *data = if_mii(ifr);
5310         struct bnx2 *bp = netdev_priv(dev);
5311         int err;
5312
5313         switch(cmd) {
5314         case SIOCGMIIPHY:
5315                 data->phy_id = bp->phy_addr;
5316
5317                 /* fallthru */
5318         case SIOCGMIIREG: {
5319                 u32 mii_regval;
5320
5321                 spin_lock_bh(&bp->phy_lock);
5322                 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
5323                 spin_unlock_bh(&bp->phy_lock);
5324
5325                 data->val_out = mii_regval;
5326
5327                 return err;
5328         }
5329
5330         case SIOCSMIIREG:
5331                 if (!capable(CAP_NET_ADMIN))
5332                         return -EPERM;
5333
5334                 spin_lock_bh(&bp->phy_lock);
5335                 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
5336                 spin_unlock_bh(&bp->phy_lock);
5337
5338                 return err;
5339
5340         default:
5341                 /* do nothing */
5342                 break;
5343         }
5344         return -EOPNOTSUPP;
5345 }
5346
5347 /* Called with rtnl_lock */
5348 static int
5349 bnx2_change_mac_addr(struct net_device *dev, void *p)
5350 {
5351         struct sockaddr *addr = p;
5352         struct bnx2 *bp = netdev_priv(dev);
5353
5354         if (!is_valid_ether_addr(addr->sa_data))
5355                 return -EINVAL;
5356
5357         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5358         if (netif_running(dev))
5359                 bnx2_set_mac_addr(bp);
5360
5361         return 0;
5362 }
5363
5364 /* Called with rtnl_lock */
5365 static int
5366 bnx2_change_mtu(struct net_device *dev, int new_mtu)
5367 {
5368         struct bnx2 *bp = netdev_priv(dev);
5369
5370         if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
5371                 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
5372                 return -EINVAL;
5373
5374         dev->mtu = new_mtu;
5375         if (netif_running(dev)) {
5376                 bnx2_netif_stop(bp);
5377
5378                 bnx2_init_nic(bp);
5379
5380                 bnx2_netif_start(bp);
5381         }
5382         return 0;
5383 }
5384
5385 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5386 static void
5387 poll_bnx2(struct net_device *dev)
5388 {
5389         struct bnx2 *bp = netdev_priv(dev);
5390
5391         disable_irq(bp->pdev->irq);
5392         bnx2_interrupt(bp->pdev->irq, dev, NULL);
5393         enable_irq(bp->pdev->irq);
5394 }
5395 #endif
5396
5397 static int __devinit
5398 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
5399 {
5400         struct bnx2 *bp;
5401         unsigned long mem_len;
5402         int rc;
5403         u32 reg;
5404
5405         SET_MODULE_OWNER(dev);
5406         SET_NETDEV_DEV(dev, &pdev->dev);
5407         bp = netdev_priv(dev);
5408
5409         bp->flags = 0;
5410         bp->phy_flags = 0;
5411
5412         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5413         rc = pci_enable_device(pdev);
5414         if (rc) {
5415                 printk(KERN_ERR PFX "Cannot enable PCI device, aborting.");
5416                 goto err_out;
5417         }
5418
5419         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5420                 printk(KERN_ERR PFX "Cannot find PCI device base address, "
5421                        "aborting.\n");
5422                 rc = -ENODEV;
5423                 goto err_out_disable;
5424         }
5425
5426         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5427         if (rc) {
5428                 printk(KERN_ERR PFX "Cannot obtain PCI resources, aborting.\n");
5429                 goto err_out_disable;
5430         }
5431
5432         pci_set_master(pdev);
5433
5434         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
5435         if (bp->pm_cap == 0) {
5436                 printk(KERN_ERR PFX "Cannot find power management capability, "
5437                                "aborting.\n");
5438                 rc = -EIO;
5439                 goto err_out_release;
5440         }
5441
5442         bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
5443         if (bp->pcix_cap == 0) {
5444                 printk(KERN_ERR PFX "Cannot find PCIX capability, aborting.\n");
5445                 rc = -EIO;
5446                 goto err_out_release;
5447         }
5448
5449         if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
5450                 bp->flags |= USING_DAC_FLAG;
5451                 if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
5452                         printk(KERN_ERR PFX "pci_set_consistent_dma_mask "
5453                                "failed, aborting.\n");
5454                         rc = -EIO;
5455                         goto err_out_release;
5456                 }
5457         }
5458         else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
5459                 printk(KERN_ERR PFX "System does not support DMA, aborting.\n");
5460                 rc = -EIO;
5461                 goto err_out_release;
5462         }
5463
5464         bp->dev = dev;
5465         bp->pdev = pdev;
5466
5467         spin_lock_init(&bp->phy_lock);
5468         spin_lock_init(&bp->tx_lock);
5469         INIT_WORK(&bp->reset_task, bnx2_reset_task, bp);
5470
5471         dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
5472         mem_len = MB_GET_CID_ADDR(17);
5473         dev->mem_end = dev->mem_start + mem_len;
5474         dev->irq = pdev->irq;
5475
5476         bp->regview = ioremap_nocache(dev->base_addr, mem_len);
5477
5478         if (!bp->regview) {
5479                 printk(KERN_ERR PFX "Cannot map register space, aborting.\n");
5480                 rc = -ENOMEM;
5481                 goto err_out_release;
5482         }
5483
5484         /* Configure byte swap and enable write to the reg_window registers.
5485          * Rely on CPU to do target byte swapping on big endian systems
5486          * The chip's target access swapping will not swap all accesses
5487          */
5488         pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
5489                                BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5490                                BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
5491
5492         bnx2_set_power_state(bp, PCI_D0);
5493
5494         bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
5495
5496         /* Get bus information. */
5497         reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
5498         if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
5499                 u32 clkreg;
5500
5501                 bp->flags |= PCIX_FLAG;
5502
5503                 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
5504                 
5505                 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
5506                 switch (clkreg) {
5507                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
5508                         bp->bus_speed_mhz = 133;
5509                         break;
5510
5511                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
5512                         bp->bus_speed_mhz = 100;
5513                         break;
5514
5515                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
5516                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
5517                         bp->bus_speed_mhz = 66;
5518                         break;
5519
5520                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
5521                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
5522                         bp->bus_speed_mhz = 50;
5523                         break;
5524
5525                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
5526                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
5527                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
5528                         bp->bus_speed_mhz = 33;
5529                         break;
5530                 }
5531         }
5532         else {
5533                 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
5534                         bp->bus_speed_mhz = 66;
5535                 else
5536                         bp->bus_speed_mhz = 33;
5537         }
5538
5539         if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
5540                 bp->flags |= PCI_32BIT_FLAG;
5541
5542         /* 5706A0 may falsely detect SERR and PERR. */
5543         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
5544                 reg = REG_RD(bp, PCI_COMMAND);
5545                 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
5546                 REG_WR(bp, PCI_COMMAND, reg);
5547         }
5548         else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
5549                 !(bp->flags & PCIX_FLAG)) {
5550
5551                 printk(KERN_ERR PFX "5706 A1 can only be used in a PCIX bus, "
5552                        "aborting.\n");
5553                 goto err_out_unmap;
5554         }
5555
5556         bnx2_init_nvram(bp);
5557
5558         reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
5559
5560         if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
5561             BNX2_SHM_HDR_SIGNATURE_SIG)
5562                 bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
5563         else
5564                 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
5565
5566         /* Get the permanent MAC address.  First we need to make sure the
5567          * firmware is actually running.
5568          */
5569         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
5570
5571         if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5572             BNX2_DEV_INFO_SIGNATURE_MAGIC) {
5573                 printk(KERN_ERR PFX "Firmware not running, aborting.\n");
5574                 rc = -ENODEV;
5575                 goto err_out_unmap;
5576         }
5577
5578         bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
5579
5580         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
5581         bp->mac_addr[0] = (u8) (reg >> 8);
5582         bp->mac_addr[1] = (u8) reg;
5583
5584         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
5585         bp->mac_addr[2] = (u8) (reg >> 24);
5586         bp->mac_addr[3] = (u8) (reg >> 16);
5587         bp->mac_addr[4] = (u8) (reg >> 8);
5588         bp->mac_addr[5] = (u8) reg;
5589
5590         bp->tx_ring_size = MAX_TX_DESC_CNT;
5591         bnx2_set_rx_ring_size(bp, 100);
5592
5593         bp->rx_csum = 1;
5594
5595         bp->rx_offset = sizeof(struct l2_fhdr) + 2;
5596
5597         bp->tx_quick_cons_trip_int = 20;
5598         bp->tx_quick_cons_trip = 20;
5599         bp->tx_ticks_int = 80;
5600         bp->tx_ticks = 80;
5601                 
5602         bp->rx_quick_cons_trip_int = 6;
5603         bp->rx_quick_cons_trip = 6;
5604         bp->rx_ticks_int = 18;
5605         bp->rx_ticks = 18;
5606
5607         bp->stats_ticks = 1000000 & 0xffff00;
5608
5609         bp->timer_interval =  HZ;
5610         bp->current_interval =  HZ;
5611
5612         bp->phy_addr = 1;
5613
5614         /* Disable WOL support if we are running on a SERDES chip. */
5615         if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
5616                 bp->phy_flags |= PHY_SERDES_FLAG;
5617                 bp->flags |= NO_WOL_FLAG;
5618                 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
5619                         bp->phy_addr = 2;
5620                         reg = REG_RD_IND(bp, bp->shmem_base +
5621                                          BNX2_SHARED_HW_CFG_CONFIG);
5622                         if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
5623                                 bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
5624                 }
5625         }
5626
5627         if (CHIP_NUM(bp) == CHIP_NUM_5708)
5628                 bp->flags |= NO_WOL_FLAG;
5629
5630         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
5631                 bp->tx_quick_cons_trip_int =
5632                         bp->tx_quick_cons_trip;
5633                 bp->tx_ticks_int = bp->tx_ticks;
5634                 bp->rx_quick_cons_trip_int =
5635                         bp->rx_quick_cons_trip;
5636                 bp->rx_ticks_int = bp->rx_ticks;
5637                 bp->comp_prod_trip_int = bp->comp_prod_trip;
5638                 bp->com_ticks_int = bp->com_ticks;
5639                 bp->cmd_ticks_int = bp->cmd_ticks;
5640         }
5641
5642         bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
5643         bp->req_line_speed = 0;
5644         if (bp->phy_flags & PHY_SERDES_FLAG) {
5645                 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
5646
5647                 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
5648                 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
5649                 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
5650                         bp->autoneg = 0;
5651                         bp->req_line_speed = bp->line_speed = SPEED_1000;
5652                         bp->req_duplex = DUPLEX_FULL;
5653                 }
5654         }
5655         else {
5656                 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
5657         }
5658
5659         bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
5660
5661         init_timer(&bp->timer);
5662         bp->timer.expires = RUN_AT(bp->timer_interval);
5663         bp->timer.data = (unsigned long) bp;
5664         bp->timer.function = bnx2_timer;
5665
5666         return 0;
5667
5668 err_out_unmap:
5669         if (bp->regview) {
5670                 iounmap(bp->regview);
5671                 bp->regview = NULL;
5672         }
5673
5674 err_out_release:
5675         pci_release_regions(pdev);
5676
5677 err_out_disable:
5678         pci_disable_device(pdev);
5679         pci_set_drvdata(pdev, NULL);
5680
5681 err_out:
5682         return rc;
5683 }
5684
5685 static int __devinit
5686 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5687 {
5688         static int version_printed = 0;
5689         struct net_device *dev = NULL;
5690         struct bnx2 *bp;
5691         int rc, i;
5692
5693         if (version_printed++ == 0)
5694                 printk(KERN_INFO "%s", version);
5695
5696         /* dev zeroed in init_etherdev */
5697         dev = alloc_etherdev(sizeof(*bp));
5698
5699         if (!dev)
5700                 return -ENOMEM;
5701
5702         rc = bnx2_init_board(pdev, dev);
5703         if (rc < 0) {
5704                 free_netdev(dev);
5705                 return rc;
5706         }
5707
5708         dev->open = bnx2_open;
5709         dev->hard_start_xmit = bnx2_start_xmit;
5710         dev->stop = bnx2_close;
5711         dev->get_stats = bnx2_get_stats;
5712         dev->set_multicast_list = bnx2_set_rx_mode;
5713         dev->do_ioctl = bnx2_ioctl;
5714         dev->set_mac_address = bnx2_change_mac_addr;
5715         dev->change_mtu = bnx2_change_mtu;
5716         dev->tx_timeout = bnx2_tx_timeout;
5717         dev->watchdog_timeo = TX_TIMEOUT;
5718 #ifdef BCM_VLAN
5719         dev->vlan_rx_register = bnx2_vlan_rx_register;
5720         dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
5721 #endif
5722         dev->poll = bnx2_poll;
5723         dev->ethtool_ops = &bnx2_ethtool_ops;
5724         dev->weight = 64;
5725
5726         bp = netdev_priv(dev);
5727
5728 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5729         dev->poll_controller = poll_bnx2;
5730 #endif
5731
5732         if ((rc = register_netdev(dev))) {
5733                 printk(KERN_ERR PFX "Cannot register net device\n");
5734                 if (bp->regview)
5735                         iounmap(bp->regview);
5736                 pci_release_regions(pdev);
5737                 pci_disable_device(pdev);
5738                 pci_set_drvdata(pdev, NULL);
5739                 free_netdev(dev);
5740                 return rc;
5741         }
5742
5743         pci_set_drvdata(pdev, dev);
5744
5745         memcpy(dev->dev_addr, bp->mac_addr, 6);
5746         memcpy(dev->perm_addr, bp->mac_addr, 6);
5747         bp->name = board_info[ent->driver_data].name,
5748         printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
5749                 "IRQ %d, ",
5750                 dev->name,
5751                 bp->name,
5752                 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
5753                 ((CHIP_ID(bp) & 0x0ff0) >> 4),
5754                 ((bp->flags & PCIX_FLAG) ? "-X" : ""),
5755                 ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
5756                 bp->bus_speed_mhz,
5757                 dev->base_addr,
5758                 bp->pdev->irq);
5759
5760         printk("node addr ");
5761         for (i = 0; i < 6; i++)
5762                 printk("%2.2x", dev->dev_addr[i]);
5763         printk("\n");
5764
5765         dev->features |= NETIF_F_SG;
5766         if (bp->flags & USING_DAC_FLAG)
5767                 dev->features |= NETIF_F_HIGHDMA;
5768         dev->features |= NETIF_F_IP_CSUM;
5769 #ifdef BCM_VLAN
5770         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
5771 #endif
5772 #ifdef BCM_TSO
5773         dev->features |= NETIF_F_TSO;
5774 #endif
5775
5776         netif_carrier_off(bp->dev);
5777
5778         return 0;
5779 }
5780
5781 static void __devexit
5782 bnx2_remove_one(struct pci_dev *pdev)
5783 {
5784         struct net_device *dev = pci_get_drvdata(pdev);
5785         struct bnx2 *bp = netdev_priv(dev);
5786
5787         flush_scheduled_work();
5788
5789         unregister_netdev(dev);
5790
5791         if (bp->regview)
5792                 iounmap(bp->regview);
5793
5794         free_netdev(dev);
5795         pci_release_regions(pdev);
5796         pci_disable_device(pdev);
5797         pci_set_drvdata(pdev, NULL);
5798 }
5799
5800 static int
5801 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
5802 {
5803         struct net_device *dev = pci_get_drvdata(pdev);
5804         struct bnx2 *bp = netdev_priv(dev);
5805         u32 reset_code;
5806
5807         if (!netif_running(dev))
5808                 return 0;
5809
5810         flush_scheduled_work();
5811         bnx2_netif_stop(bp);
5812         netif_device_detach(dev);
5813         del_timer_sync(&bp->timer);
5814         if (bp->flags & NO_WOL_FLAG)
5815                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD;
5816         else if (bp->wol)
5817                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5818         else
5819                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5820         bnx2_reset_chip(bp, reset_code);
5821         bnx2_free_skbs(bp);
5822         bnx2_set_power_state(bp, pci_choose_state(pdev, state));
5823         return 0;
5824 }
5825
5826 static int
5827 bnx2_resume(struct pci_dev *pdev)
5828 {
5829         struct net_device *dev = pci_get_drvdata(pdev);
5830         struct bnx2 *bp = netdev_priv(dev);
5831
5832         if (!netif_running(dev))
5833                 return 0;
5834
5835         bnx2_set_power_state(bp, PCI_D0);
5836         netif_device_attach(dev);
5837         bnx2_init_nic(bp);
5838         bnx2_netif_start(bp);
5839         return 0;
5840 }
5841
5842 static struct pci_driver bnx2_pci_driver = {
5843         .name           = DRV_MODULE_NAME,
5844         .id_table       = bnx2_pci_tbl,
5845         .probe          = bnx2_init_one,
5846         .remove         = __devexit_p(bnx2_remove_one),
5847         .suspend        = bnx2_suspend,
5848         .resume         = bnx2_resume,
5849 };
5850
5851 static int __init bnx2_init(void)
5852 {
5853         return pci_module_init(&bnx2_pci_driver);
5854 }
5855
5856 static void __exit bnx2_cleanup(void)
5857 {
5858         pci_unregister_driver(&bnx2_pci_driver);
5859 }
5860
5861 module_init(bnx2_init);
5862 module_exit(bnx2_cleanup);
5863
5864
5865