Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[linux-2.6] / drivers / ieee1394 / sbp2.c
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/module.h>
64 #include <linux/moduleparam.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/stat.h>
68 #include <linux/string.h>
69 #include <linux/stringify.h>
70 #include <linux/types.h>
71 #include <linux/wait.h>
72
73 #include <asm/byteorder.h>
74 #include <asm/errno.h>
75 #include <asm/param.h>
76 #include <asm/scatterlist.h>
77 #include <asm/system.h>
78 #include <asm/types.h>
79
80 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
81 #include <asm/io.h> /* for bus_to_virt */
82 #endif
83
84 #include <scsi/scsi.h>
85 #include <scsi/scsi_cmnd.h>
86 #include <scsi/scsi_dbg.h>
87 #include <scsi/scsi_device.h>
88 #include <scsi/scsi_host.h>
89
90 #include "csr1212.h"
91 #include "highlevel.h"
92 #include "hosts.h"
93 #include "ieee1394.h"
94 #include "ieee1394_core.h"
95 #include "ieee1394_hotplug.h"
96 #include "ieee1394_transactions.h"
97 #include "ieee1394_types.h"
98 #include "nodemgr.h"
99 #include "sbp2.h"
100
101 /*
102  * Module load parameter definitions
103  */
104
105 /*
106  * Change max_speed on module load if you have a bad IEEE-1394
107  * controller that has trouble running 2KB packets at 400mb.
108  *
109  * NOTE: On certain OHCI parts I have seen short packets on async transmit
110  * (probably due to PCI latency/throughput issues with the part). You can
111  * bump down the speed if you are running into problems.
112  */
113 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
114 module_param_named(max_speed, sbp2_max_speed, int, 0644);
115 MODULE_PARM_DESC(max_speed, "Force max speed "
116                  "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
117
118 /*
119  * Set serialize_io to 1 if you'd like only one scsi command sent
120  * down to us at a time (debugging). This might be necessary for very
121  * badly behaved sbp2 devices.
122  */
123 static int sbp2_serialize_io = 1;
124 module_param_named(serialize_io, sbp2_serialize_io, int, 0444);
125 MODULE_PARM_DESC(serialize_io, "Serialize I/O coming from scsi drivers "
126                  "(default = 1, faster = 0)");
127
128 /*
129  * Bump up max_sectors if you'd like to support very large sized
130  * transfers. Please note that some older sbp2 bridge chips are broken for
131  * transfers greater or equal to 128KB.  Default is a value of 255
132  * sectors, or just under 128KB (at 512 byte sector size). I can note that
133  * the Oxsemi sbp2 chipsets have no problems supporting very large
134  * transfer sizes.
135  */
136 static int sbp2_max_sectors = SBP2_MAX_SECTORS;
137 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
138 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
139                  "(default = " __stringify(SBP2_MAX_SECTORS) ")");
140
141 /*
142  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
143  * do an exclusive login, as it's generally unsafe to have two hosts
144  * talking to a single sbp2 device at the same time (filesystem coherency,
145  * etc.). If you're running an sbp2 device that supports multiple logins,
146  * and you're either running read-only filesystems or some sort of special
147  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
148  * File System, or Lustre, then set exclusive_login to zero.
149  *
150  * So far only bridges from Oxford Semiconductor are known to support
151  * concurrent logins. Depending on firmware, four or two concurrent logins
152  * are possible on OXFW911 and newer Oxsemi bridges.
153  */
154 static int sbp2_exclusive_login = 1;
155 module_param_named(exclusive_login, sbp2_exclusive_login, int, 0644);
156 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
157                  "(default = 1)");
158
159 /*
160  * If any of the following workarounds is required for your device to work,
161  * please submit the kernel messages logged by sbp2 to the linux1394-devel
162  * mailing list.
163  *
164  * - 128kB max transfer
165  *   Limit transfer size. Necessary for some old bridges.
166  *
167  * - 36 byte inquiry
168  *   When scsi_mod probes the device, let the inquiry command look like that
169  *   from MS Windows.
170  *
171  * - skip mode page 8
172  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
173  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
174  *
175  * - fix capacity
176  *   Tell sd_mod to correct the last sector number reported by read_capacity.
177  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
178  *   Don't use this with devices which don't have this bug.
179  *
180  * - override internal blacklist
181  *   Instead of adding to the built-in blacklist, use only the workarounds
182  *   specified in the module load parameter.
183  *   Useful if a blacklist entry interfered with a non-broken device.
184  */
185 static int sbp2_default_workarounds;
186 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
187 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
188         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
189         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
190         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
191         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
192         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
193         ", or a combination)");
194
195
196 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
197 #define SBP2_ERR(fmt, args...)  HPSB_ERR("sbp2: "fmt, ## args)
198
199 /*
200  * Globals
201  */
202 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
203 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
204                                       void (*)(struct scsi_cmnd *));
205 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
206 static int sbp2_start_device(struct sbp2_lu *);
207 static void sbp2_remove_device(struct sbp2_lu *);
208 static int sbp2_login_device(struct sbp2_lu *);
209 static int sbp2_reconnect_device(struct sbp2_lu *);
210 static int sbp2_logout_device(struct sbp2_lu *);
211 static void sbp2_host_reset(struct hpsb_host *);
212 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
213                                     u64, size_t, u16);
214 static int sbp2_agent_reset(struct sbp2_lu *, int);
215 static void sbp2_parse_unit_directory(struct sbp2_lu *,
216                                       struct unit_directory *);
217 static int sbp2_set_busy_timeout(struct sbp2_lu *);
218 static int sbp2_max_speed_and_size(struct sbp2_lu *);
219
220
221 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
222
223 static struct hpsb_highlevel sbp2_highlevel = {
224         .name           = SBP2_DEVICE_NAME,
225         .host_reset     = sbp2_host_reset,
226 };
227
228 static struct hpsb_address_ops sbp2_ops = {
229         .write          = sbp2_handle_status_write
230 };
231
232 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
233 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
234                                      u64, size_t, u16);
235 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
236                                     size_t, u16);
237
238 static struct hpsb_address_ops sbp2_physdma_ops = {
239         .read           = sbp2_handle_physdma_read,
240         .write          = sbp2_handle_physdma_write,
241 };
242 #endif
243
244
245 /*
246  * Interface to driver core and IEEE 1394 core
247  */
248 static struct ieee1394_device_id sbp2_id_table[] = {
249         {
250          .match_flags   = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
251          .specifier_id  = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
252          .version       = SBP2_SW_VERSION_ENTRY & 0xffffff},
253         {}
254 };
255 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
256
257 static int sbp2_probe(struct device *);
258 static int sbp2_remove(struct device *);
259 static int sbp2_update(struct unit_directory *);
260
261 static struct hpsb_protocol_driver sbp2_driver = {
262         .name           = SBP2_DEVICE_NAME,
263         .id_table       = sbp2_id_table,
264         .update         = sbp2_update,
265         .driver         = {
266                 .probe          = sbp2_probe,
267                 .remove         = sbp2_remove,
268         },
269 };
270
271
272 /*
273  * Interface to SCSI core
274  */
275 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
276                                  void (*)(struct scsi_cmnd *));
277 static int sbp2scsi_abort(struct scsi_cmnd *);
278 static int sbp2scsi_reset(struct scsi_cmnd *);
279 static int sbp2scsi_slave_alloc(struct scsi_device *);
280 static int sbp2scsi_slave_configure(struct scsi_device *);
281 static void sbp2scsi_slave_destroy(struct scsi_device *);
282 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
283                                            struct device_attribute *, char *);
284
285 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
286
287 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
288         &dev_attr_ieee1394_id,
289         NULL
290 };
291
292 static struct scsi_host_template sbp2_shost_template = {
293         .module                  = THIS_MODULE,
294         .name                    = "SBP-2 IEEE-1394",
295         .proc_name               = SBP2_DEVICE_NAME,
296         .queuecommand            = sbp2scsi_queuecommand,
297         .eh_abort_handler        = sbp2scsi_abort,
298         .eh_device_reset_handler = sbp2scsi_reset,
299         .slave_alloc             = sbp2scsi_slave_alloc,
300         .slave_configure         = sbp2scsi_slave_configure,
301         .slave_destroy           = sbp2scsi_slave_destroy,
302         .this_id                 = -1,
303         .sg_tablesize            = SG_ALL,
304         .use_clustering          = ENABLE_CLUSTERING,
305         .cmd_per_lun             = SBP2_MAX_CMDS,
306         .can_queue               = SBP2_MAX_CMDS,
307         .emulated                = 1,
308         .sdev_attrs              = sbp2_sysfs_sdev_attrs,
309 };
310
311
312 /*
313  * List of devices with known bugs.
314  *
315  * The firmware_revision field, masked with 0xffff00, is the best indicator
316  * for the type of bridge chip of a device.  It yields a few false positives
317  * but this did not break correctly behaving devices so far.
318  */
319 static const struct {
320         u32 firmware_revision;
321         u32 model_id;
322         unsigned workarounds;
323 } sbp2_workarounds_table[] = {
324         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
325                 .firmware_revision      = 0x002800,
326                 .model_id               = 0x001010,
327                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
328                                           SBP2_WORKAROUND_MODE_SENSE_8,
329         },
330         /* Initio bridges, actually only needed for some older ones */ {
331                 .firmware_revision      = 0x000200,
332                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
333         },
334         /* Symbios bridge */ {
335                 .firmware_revision      = 0xa0b800,
336                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
337         },
338         /*
339          * Note about the following Apple iPod blacklist entries:
340          *
341          * There are iPods (2nd gen, 3rd gen) with model_id==0.  Since our
342          * matching logic treats 0 as a wildcard, we cannot match this ID
343          * without rewriting the matching routine.  Fortunately these iPods
344          * do not feature the read_capacity bug according to one report.
345          * Read_capacity behaviour as well as model_id could change due to
346          * Apple-supplied firmware updates though.
347          */
348         /* iPod 4th generation */ {
349                 .firmware_revision      = 0x0a2700,
350                 .model_id               = 0x000021,
351                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
352         },
353         /* iPod mini */ {
354                 .firmware_revision      = 0x0a2700,
355                 .model_id               = 0x000023,
356                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
357         },
358         /* iPod Photo */ {
359                 .firmware_revision      = 0x0a2700,
360                 .model_id               = 0x00007e,
361                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
362         }
363 };
364
365 /**************************************
366  * General utility functions
367  **************************************/
368
369 #ifndef __BIG_ENDIAN
370 /*
371  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
372  */
373 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
374 {
375         u32 *temp = buffer;
376
377         for (length = (length >> 2); length--; )
378                 temp[length] = be32_to_cpu(temp[length]);
379 }
380
381 /*
382  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
383  */
384 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
385 {
386         u32 *temp = buffer;
387
388         for (length = (length >> 2); length--; )
389                 temp[length] = cpu_to_be32(temp[length]);
390 }
391 #else /* BIG_ENDIAN */
392 /* Why waste the cpu cycles? */
393 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
394 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
395 #endif
396
397 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
398
399 /*
400  * Waits for completion of an SBP-2 access request.
401  * Returns nonzero if timed out or prematurely interrupted.
402  */
403 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
404 {
405         long leftover;
406
407         leftover = wait_event_interruptible_timeout(
408                         sbp2_access_wq, lu->access_complete, timeout);
409         lu->access_complete = 0;
410         return leftover <= 0;
411 }
412
413 static void sbp2_free_packet(void *packet)
414 {
415         hpsb_free_tlabel(packet);
416         hpsb_free_packet(packet);
417 }
418
419 /*
420  * This is much like hpsb_node_write(), except it ignores the response
421  * subaction and returns immediately. Can be used from atomic context.
422  */
423 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
424                                        quadlet_t *buf, size_t len)
425 {
426         struct hpsb_packet *packet;
427
428         packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
429         if (!packet)
430                 return -ENOMEM;
431
432         hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
433         hpsb_node_fill_packet(ne, packet);
434         if (hpsb_send_packet(packet) < 0) {
435                 sbp2_free_packet(packet);
436                 return -EIO;
437         }
438         return 0;
439 }
440
441 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
442                                         quadlet_t *data, size_t len)
443 {
444         /* There is a small window after a bus reset within which the node
445          * entry's generation is current but the reconnect wasn't completed. */
446         if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
447                 return;
448
449         if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
450                             data, len))
451                 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
452
453         /* Now accept new SCSI commands, unless a bus reset happended during
454          * hpsb_node_write. */
455         if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
456                 scsi_unblock_requests(lu->shost);
457 }
458
459 static void sbp2util_write_orb_pointer(struct work_struct *work)
460 {
461         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
462         quadlet_t data[2];
463
464         data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
465         data[1] = lu->last_orb_dma;
466         sbp2util_cpu_to_be32_buffer(data, 8);
467         sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
468 }
469
470 static void sbp2util_write_doorbell(struct work_struct *work)
471 {
472         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
473
474         sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
475 }
476
477 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
478 {
479         struct sbp2_fwhost_info *hi = lu->hi;
480         int i;
481         unsigned long flags, orbs;
482         struct sbp2_command_info *cmd;
483
484         orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
485
486         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
487         for (i = 0; i < orbs; i++) {
488                 cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
489                 if (!cmd) {
490                         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
491                         return -ENOMEM;
492                 }
493                 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
494                                                 &cmd->command_orb,
495                                                 sizeof(struct sbp2_command_orb),
496                                                 DMA_TO_DEVICE);
497                 cmd->sge_dma = dma_map_single(hi->host->device.parent,
498                                         &cmd->scatter_gather_element,
499                                         sizeof(cmd->scatter_gather_element),
500                                         DMA_BIDIRECTIONAL);
501                 INIT_LIST_HEAD(&cmd->list);
502                 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
503         }
504         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
505         return 0;
506 }
507
508 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu)
509 {
510         struct hpsb_host *host = lu->hi->host;
511         struct list_head *lh, *next;
512         struct sbp2_command_info *cmd;
513         unsigned long flags;
514
515         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
516         if (!list_empty(&lu->cmd_orb_completed))
517                 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
518                         cmd = list_entry(lh, struct sbp2_command_info, list);
519                         dma_unmap_single(host->device.parent,
520                                          cmd->command_orb_dma,
521                                          sizeof(struct sbp2_command_orb),
522                                          DMA_TO_DEVICE);
523                         dma_unmap_single(host->device.parent, cmd->sge_dma,
524                                          sizeof(cmd->scatter_gather_element),
525                                          DMA_BIDIRECTIONAL);
526                         kfree(cmd);
527                 }
528         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
529         return;
530 }
531
532 /*
533  * Finds the sbp2_command for a given outstanding command ORB.
534  * Only looks at the in-use list.
535  */
536 static struct sbp2_command_info *sbp2util_find_command_for_orb(
537                                 struct sbp2_lu *lu, dma_addr_t orb)
538 {
539         struct sbp2_command_info *cmd;
540         unsigned long flags;
541
542         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
543         if (!list_empty(&lu->cmd_orb_inuse))
544                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
545                         if (cmd->command_orb_dma == orb) {
546                                 spin_unlock_irqrestore(
547                                                 &lu->cmd_orb_lock, flags);
548                                 return cmd;
549                         }
550         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
551         return NULL;
552 }
553
554 /*
555  * Finds the sbp2_command for a given outstanding SCpnt.
556  * Only looks at the in-use list.
557  * Must be called with lu->cmd_orb_lock held.
558  */
559 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
560                                 struct sbp2_lu *lu, void *SCpnt)
561 {
562         struct sbp2_command_info *cmd;
563
564         if (!list_empty(&lu->cmd_orb_inuse))
565                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
566                         if (cmd->Current_SCpnt == SCpnt)
567                                 return cmd;
568         return NULL;
569 }
570
571 static struct sbp2_command_info *sbp2util_allocate_command_orb(
572                                 struct sbp2_lu *lu,
573                                 struct scsi_cmnd *Current_SCpnt,
574                                 void (*Current_done)(struct scsi_cmnd *))
575 {
576         struct list_head *lh;
577         struct sbp2_command_info *cmd = NULL;
578         unsigned long flags;
579
580         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
581         if (!list_empty(&lu->cmd_orb_completed)) {
582                 lh = lu->cmd_orb_completed.next;
583                 list_del(lh);
584                 cmd = list_entry(lh, struct sbp2_command_info, list);
585                 cmd->Current_done = Current_done;
586                 cmd->Current_SCpnt = Current_SCpnt;
587                 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
588         } else
589                 SBP2_ERR("%s: no orbs available", __FUNCTION__);
590         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
591         return cmd;
592 }
593
594 /*
595  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
596  * Must be called with lu->cmd_orb_lock held.
597  */
598 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
599                                             struct sbp2_command_info *cmd)
600 {
601         struct hpsb_host *host = lu->ud->ne->host;
602
603         if (cmd->cmd_dma) {
604                 if (cmd->dma_type == CMD_DMA_SINGLE)
605                         dma_unmap_single(host->device.parent, cmd->cmd_dma,
606                                          cmd->dma_size, cmd->dma_dir);
607                 else if (cmd->dma_type == CMD_DMA_PAGE)
608                         dma_unmap_page(host->device.parent, cmd->cmd_dma,
609                                        cmd->dma_size, cmd->dma_dir);
610                 /* XXX: Check for CMD_DMA_NONE bug */
611                 cmd->dma_type = CMD_DMA_NONE;
612                 cmd->cmd_dma = 0;
613         }
614         if (cmd->sge_buffer) {
615                 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
616                              cmd->dma_size, cmd->dma_dir);
617                 cmd->sge_buffer = NULL;
618         }
619         list_move_tail(&cmd->list, &lu->cmd_orb_completed);
620 }
621
622 /*
623  * Is lu valid? Is the 1394 node still present?
624  */
625 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
626 {
627         return lu && lu->ne && !lu->ne->in_limbo;
628 }
629
630 /*********************************************
631  * IEEE-1394 core driver stack related section
632  *********************************************/
633
634 static int sbp2_probe(struct device *dev)
635 {
636         struct unit_directory *ud;
637         struct sbp2_lu *lu;
638
639         ud = container_of(dev, struct unit_directory, device);
640
641         /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
642          * instead. */
643         if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
644                 return -ENODEV;
645
646         lu = sbp2_alloc_device(ud);
647         if (!lu)
648                 return -ENOMEM;
649
650         sbp2_parse_unit_directory(lu, ud);
651         return sbp2_start_device(lu);
652 }
653
654 static int sbp2_remove(struct device *dev)
655 {
656         struct unit_directory *ud;
657         struct sbp2_lu *lu;
658         struct scsi_device *sdev;
659
660         ud = container_of(dev, struct unit_directory, device);
661         lu = ud->device.driver_data;
662         if (!lu)
663                 return 0;
664
665         if (lu->shost) {
666                 /* Get rid of enqueued commands if there is no chance to
667                  * send them. */
668                 if (!sbp2util_node_is_available(lu))
669                         sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
670                 /* scsi_remove_device() may trigger shutdown functions of SCSI
671                  * highlevel drivers which would deadlock if blocked. */
672                 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
673                 scsi_unblock_requests(lu->shost);
674         }
675         sdev = lu->sdev;
676         if (sdev) {
677                 lu->sdev = NULL;
678                 scsi_remove_device(sdev);
679         }
680
681         sbp2_logout_device(lu);
682         sbp2_remove_device(lu);
683
684         return 0;
685 }
686
687 static int sbp2_update(struct unit_directory *ud)
688 {
689         struct sbp2_lu *lu = ud->device.driver_data;
690
691         if (sbp2_reconnect_device(lu)) {
692                 /* Reconnect has failed. Perhaps we didn't reconnect fast
693                  * enough. Try a regular login, but first log out just in
694                  * case of any weirdness. */
695                 sbp2_logout_device(lu);
696
697                 if (sbp2_login_device(lu)) {
698                         /* Login failed too, just fail, and the backend
699                          * will call our sbp2_remove for us */
700                         SBP2_ERR("Failed to reconnect to sbp2 device!");
701                         return -EBUSY;
702                 }
703         }
704
705         sbp2_set_busy_timeout(lu);
706         sbp2_agent_reset(lu, 1);
707         sbp2_max_speed_and_size(lu);
708
709         /* Complete any pending commands with busy (so they get retried)
710          * and remove them from our queue. */
711         sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
712
713         /* Accept new commands unless there was another bus reset in the
714          * meantime. */
715         if (hpsb_node_entry_valid(lu->ne)) {
716                 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
717                 scsi_unblock_requests(lu->shost);
718         }
719         return 0;
720 }
721
722 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
723 {
724         struct sbp2_fwhost_info *hi;
725         struct Scsi_Host *shost = NULL;
726         struct sbp2_lu *lu = NULL;
727
728         lu = kzalloc(sizeof(*lu), GFP_KERNEL);
729         if (!lu) {
730                 SBP2_ERR("failed to create lu");
731                 goto failed_alloc;
732         }
733
734         lu->ne = ud->ne;
735         lu->ud = ud;
736         lu->speed_code = IEEE1394_SPEED_100;
737         lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
738         lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
739         INIT_LIST_HEAD(&lu->cmd_orb_inuse);
740         INIT_LIST_HEAD(&lu->cmd_orb_completed);
741         INIT_LIST_HEAD(&lu->lu_list);
742         spin_lock_init(&lu->cmd_orb_lock);
743         atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
744         INIT_WORK(&lu->protocol_work, NULL);
745
746         ud->device.driver_data = lu;
747
748         hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
749         if (!hi) {
750                 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
751                                           sizeof(*hi));
752                 if (!hi) {
753                         SBP2_ERR("failed to allocate hostinfo");
754                         goto failed_alloc;
755                 }
756                 hi->host = ud->ne->host;
757                 INIT_LIST_HEAD(&hi->logical_units);
758
759 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
760                 /* Handle data movement if physical dma is not
761                  * enabled or not supported on host controller */
762                 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
763                                              &sbp2_physdma_ops,
764                                              0x0ULL, 0xfffffffcULL)) {
765                         SBP2_ERR("failed to register lower 4GB address range");
766                         goto failed_alloc;
767                 }
768 #endif
769         }
770
771         /* Prevent unloading of the 1394 host */
772         if (!try_module_get(hi->host->driver->owner)) {
773                 SBP2_ERR("failed to get a reference on 1394 host driver");
774                 goto failed_alloc;
775         }
776
777         lu->hi = hi;
778
779         list_add_tail(&lu->lu_list, &hi->logical_units);
780
781         /* Register the status FIFO address range. We could use the same FIFO
782          * for targets at different nodes. However we need different FIFOs per
783          * target in order to support multi-unit devices.
784          * The FIFO is located out of the local host controller's physical range
785          * but, if possible, within the posted write area. Status writes will
786          * then be performed as unified transactions. This slightly reduces
787          * bandwidth usage, and some Prolific based devices seem to require it.
788          */
789         lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
790                         &sbp2_highlevel, ud->ne->host, &sbp2_ops,
791                         sizeof(struct sbp2_status_block), sizeof(quadlet_t),
792                         ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
793         if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
794                 SBP2_ERR("failed to allocate status FIFO address range");
795                 goto failed_alloc;
796         }
797
798         shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
799         if (!shost) {
800                 SBP2_ERR("failed to register scsi host");
801                 goto failed_alloc;
802         }
803
804         shost->hostdata[0] = (unsigned long)lu;
805
806         if (!scsi_add_host(shost, &ud->device)) {
807                 lu->shost = shost;
808                 return lu;
809         }
810
811         SBP2_ERR("failed to add scsi host");
812         scsi_host_put(shost);
813
814 failed_alloc:
815         sbp2_remove_device(lu);
816         return NULL;
817 }
818
819 static void sbp2_host_reset(struct hpsb_host *host)
820 {
821         struct sbp2_fwhost_info *hi;
822         struct sbp2_lu *lu;
823
824         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
825         if (!hi)
826                 return;
827         list_for_each_entry(lu, &hi->logical_units, lu_list)
828                 if (likely(atomic_read(&lu->state) !=
829                            SBP2LU_STATE_IN_SHUTDOWN)) {
830                         atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
831                         scsi_block_requests(lu->shost);
832                 }
833 }
834
835 static int sbp2_start_device(struct sbp2_lu *lu)
836 {
837         struct sbp2_fwhost_info *hi = lu->hi;
838         int error;
839
840         lu->login_response = dma_alloc_coherent(hi->host->device.parent,
841                                      sizeof(struct sbp2_login_response),
842                                      &lu->login_response_dma, GFP_KERNEL);
843         if (!lu->login_response)
844                 goto alloc_fail;
845
846         lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
847                                      sizeof(struct sbp2_query_logins_orb),
848                                      &lu->query_logins_orb_dma, GFP_KERNEL);
849         if (!lu->query_logins_orb)
850                 goto alloc_fail;
851
852         lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
853                                      sizeof(struct sbp2_query_logins_response),
854                                      &lu->query_logins_response_dma, GFP_KERNEL);
855         if (!lu->query_logins_response)
856                 goto alloc_fail;
857
858         lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
859                                      sizeof(struct sbp2_reconnect_orb),
860                                      &lu->reconnect_orb_dma, GFP_KERNEL);
861         if (!lu->reconnect_orb)
862                 goto alloc_fail;
863
864         lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
865                                      sizeof(struct sbp2_logout_orb),
866                                      &lu->logout_orb_dma, GFP_KERNEL);
867         if (!lu->logout_orb)
868                 goto alloc_fail;
869
870         lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
871                                      sizeof(struct sbp2_login_orb),
872                                      &lu->login_orb_dma, GFP_KERNEL);
873         if (!lu->login_orb)
874                 goto alloc_fail;
875
876         if (sbp2util_create_command_orb_pool(lu)) {
877                 SBP2_ERR("sbp2util_create_command_orb_pool failed!");
878                 sbp2_remove_device(lu);
879                 return -ENOMEM;
880         }
881
882         /* Wait a second before trying to log in. Previously logged in
883          * initiators need a chance to reconnect. */
884         if (msleep_interruptible(1000)) {
885                 sbp2_remove_device(lu);
886                 return -EINTR;
887         }
888
889         if (sbp2_login_device(lu)) {
890                 sbp2_remove_device(lu);
891                 return -EBUSY;
892         }
893
894         sbp2_set_busy_timeout(lu);
895         sbp2_agent_reset(lu, 1);
896         sbp2_max_speed_and_size(lu);
897
898         error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
899         if (error) {
900                 SBP2_ERR("scsi_add_device failed");
901                 sbp2_logout_device(lu);
902                 sbp2_remove_device(lu);
903                 return error;
904         }
905
906         return 0;
907
908 alloc_fail:
909         SBP2_ERR("Could not allocate memory for lu");
910         sbp2_remove_device(lu);
911         return -ENOMEM;
912 }
913
914 static void sbp2_remove_device(struct sbp2_lu *lu)
915 {
916         struct sbp2_fwhost_info *hi;
917
918         if (!lu)
919                 return;
920
921         hi = lu->hi;
922
923         if (lu->shost) {
924                 scsi_remove_host(lu->shost);
925                 scsi_host_put(lu->shost);
926         }
927         flush_scheduled_work();
928         sbp2util_remove_command_orb_pool(lu);
929
930         list_del(&lu->lu_list);
931
932         if (lu->login_response)
933                 dma_free_coherent(hi->host->device.parent,
934                                     sizeof(struct sbp2_login_response),
935                                     lu->login_response,
936                                     lu->login_response_dma);
937         if (lu->login_orb)
938                 dma_free_coherent(hi->host->device.parent,
939                                     sizeof(struct sbp2_login_orb),
940                                     lu->login_orb,
941                                     lu->login_orb_dma);
942         if (lu->reconnect_orb)
943                 dma_free_coherent(hi->host->device.parent,
944                                     sizeof(struct sbp2_reconnect_orb),
945                                     lu->reconnect_orb,
946                                     lu->reconnect_orb_dma);
947         if (lu->logout_orb)
948                 dma_free_coherent(hi->host->device.parent,
949                                     sizeof(struct sbp2_logout_orb),
950                                     lu->logout_orb,
951                                     lu->logout_orb_dma);
952         if (lu->query_logins_orb)
953                 dma_free_coherent(hi->host->device.parent,
954                                     sizeof(struct sbp2_query_logins_orb),
955                                     lu->query_logins_orb,
956                                     lu->query_logins_orb_dma);
957         if (lu->query_logins_response)
958                 dma_free_coherent(hi->host->device.parent,
959                                     sizeof(struct sbp2_query_logins_response),
960                                     lu->query_logins_response,
961                                     lu->query_logins_response_dma);
962
963         if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
964                 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
965                                           lu->status_fifo_addr);
966
967         lu->ud->device.driver_data = NULL;
968
969         if (hi)
970                 module_put(hi->host->driver->owner);
971
972         kfree(lu);
973 }
974
975 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
976 /*
977  * Deal with write requests on adapters which do not support physical DMA or
978  * have it switched off.
979  */
980 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
981                                      int destid, quadlet_t *data, u64 addr,
982                                      size_t length, u16 flags)
983 {
984         memcpy(bus_to_virt((u32) addr), data, length);
985         return RCODE_COMPLETE;
986 }
987
988 /*
989  * Deal with read requests on adapters which do not support physical DMA or
990  * have it switched off.
991  */
992 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
993                                     quadlet_t *data, u64 addr, size_t length,
994                                     u16 flags)
995 {
996         memcpy(data, bus_to_virt((u32) addr), length);
997         return RCODE_COMPLETE;
998 }
999 #endif
1000
1001 /**************************************
1002  * SBP-2 protocol related section
1003  **************************************/
1004
1005 static int sbp2_query_logins(struct sbp2_lu *lu)
1006 {
1007         struct sbp2_fwhost_info *hi = lu->hi;
1008         quadlet_t data[2];
1009         int max_logins;
1010         int active_logins;
1011
1012         lu->query_logins_orb->reserved1 = 0x0;
1013         lu->query_logins_orb->reserved2 = 0x0;
1014
1015         lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1016         lu->query_logins_orb->query_response_hi =
1017                         ORB_SET_NODE_ID(hi->host->node_id);
1018         lu->query_logins_orb->lun_misc =
1019                         ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1020         lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1021         lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1022
1023         lu->query_logins_orb->reserved_resp_length =
1024                 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1025                         sizeof(struct sbp2_query_logins_response));
1026
1027         lu->query_logins_orb->status_fifo_hi =
1028                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1029         lu->query_logins_orb->status_fifo_lo =
1030                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1031
1032         sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1033                                     sizeof(struct sbp2_query_logins_orb));
1034
1035         memset(lu->query_logins_response, 0,
1036                sizeof(struct sbp2_query_logins_response));
1037
1038         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1039         data[1] = lu->query_logins_orb_dma;
1040         sbp2util_cpu_to_be32_buffer(data, 8);
1041
1042         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1043
1044         if (sbp2util_access_timeout(lu, 2*HZ)) {
1045                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1046                 return -EIO;
1047         }
1048
1049         if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1050                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1051                 return -EIO;
1052         }
1053
1054         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1055                 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1056                 return -EIO;
1057         }
1058
1059         sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1060                                     sizeof(struct sbp2_query_logins_response));
1061
1062         max_logins = RESPONSE_GET_MAX_LOGINS(
1063                         lu->query_logins_response->length_max_logins);
1064         SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1065
1066         active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1067                         lu->query_logins_response->length_max_logins);
1068         SBP2_INFO("Number of active logins: %d", active_logins);
1069
1070         if (active_logins >= max_logins) {
1071                 return -EIO;
1072         }
1073
1074         return 0;
1075 }
1076
1077 static int sbp2_login_device(struct sbp2_lu *lu)
1078 {
1079         struct sbp2_fwhost_info *hi = lu->hi;
1080         quadlet_t data[2];
1081
1082         if (!lu->login_orb)
1083                 return -EIO;
1084
1085         if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1086                 SBP2_INFO("Device does not support any more concurrent logins");
1087                 return -EIO;
1088         }
1089
1090         /* assume no password */
1091         lu->login_orb->password_hi = 0;
1092         lu->login_orb->password_lo = 0;
1093
1094         lu->login_orb->login_response_lo = lu->login_response_dma;
1095         lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1096         lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1097
1098         /* one second reconnect time */
1099         lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1100         lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1101         lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1102         lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1103
1104         lu->login_orb->passwd_resp_lengths =
1105                 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1106
1107         lu->login_orb->status_fifo_hi =
1108                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1109         lu->login_orb->status_fifo_lo =
1110                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1111
1112         sbp2util_cpu_to_be32_buffer(lu->login_orb,
1113                                     sizeof(struct sbp2_login_orb));
1114
1115         memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1116
1117         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1118         data[1] = lu->login_orb_dma;
1119         sbp2util_cpu_to_be32_buffer(data, 8);
1120
1121         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1122
1123         /* wait up to 20 seconds for login status */
1124         if (sbp2util_access_timeout(lu, 20*HZ)) {
1125                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1126                 return -EIO;
1127         }
1128
1129         /* make sure that the returned status matches the login ORB */
1130         if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1131                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1132                 return -EIO;
1133         }
1134
1135         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1136                 SBP2_ERR("Error logging into SBP-2 device - failed");
1137                 return -EIO;
1138         }
1139
1140         sbp2util_cpu_to_be32_buffer(lu->login_response,
1141                                     sizeof(struct sbp2_login_response));
1142         lu->command_block_agent_addr =
1143                         ((u64)lu->login_response->command_block_agent_hi) << 32;
1144         lu->command_block_agent_addr |=
1145                         ((u64)lu->login_response->command_block_agent_lo);
1146         lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1147
1148         SBP2_INFO("Logged into SBP-2 device");
1149         return 0;
1150 }
1151
1152 static int sbp2_logout_device(struct sbp2_lu *lu)
1153 {
1154         struct sbp2_fwhost_info *hi = lu->hi;
1155         quadlet_t data[2];
1156         int error;
1157
1158         lu->logout_orb->reserved1 = 0x0;
1159         lu->logout_orb->reserved2 = 0x0;
1160         lu->logout_orb->reserved3 = 0x0;
1161         lu->logout_orb->reserved4 = 0x0;
1162
1163         lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1164         lu->logout_orb->login_ID_misc |=
1165                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1166         lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1167
1168         lu->logout_orb->reserved5 = 0x0;
1169         lu->logout_orb->status_fifo_hi =
1170                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1171         lu->logout_orb->status_fifo_lo =
1172                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1173
1174         sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1175                                     sizeof(struct sbp2_logout_orb));
1176
1177         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1178         data[1] = lu->logout_orb_dma;
1179         sbp2util_cpu_to_be32_buffer(data, 8);
1180
1181         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1182         if (error)
1183                 return error;
1184
1185         /* wait up to 1 second for the device to complete logout */
1186         if (sbp2util_access_timeout(lu, HZ))
1187                 return -EIO;
1188
1189         SBP2_INFO("Logged out of SBP-2 device");
1190         return 0;
1191 }
1192
1193 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1194 {
1195         struct sbp2_fwhost_info *hi = lu->hi;
1196         quadlet_t data[2];
1197         int error;
1198
1199         lu->reconnect_orb->reserved1 = 0x0;
1200         lu->reconnect_orb->reserved2 = 0x0;
1201         lu->reconnect_orb->reserved3 = 0x0;
1202         lu->reconnect_orb->reserved4 = 0x0;
1203
1204         lu->reconnect_orb->login_ID_misc =
1205                         ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1206         lu->reconnect_orb->login_ID_misc |=
1207                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1208         lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1209
1210         lu->reconnect_orb->reserved5 = 0x0;
1211         lu->reconnect_orb->status_fifo_hi =
1212                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1213         lu->reconnect_orb->status_fifo_lo =
1214                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1215
1216         sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1217                                     sizeof(struct sbp2_reconnect_orb));
1218
1219         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1220         data[1] = lu->reconnect_orb_dma;
1221         sbp2util_cpu_to_be32_buffer(data, 8);
1222
1223         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1224         if (error)
1225                 return error;
1226
1227         /* wait up to 1 second for reconnect status */
1228         if (sbp2util_access_timeout(lu, HZ)) {
1229                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1230                 return -EIO;
1231         }
1232
1233         /* make sure that the returned status matches the reconnect ORB */
1234         if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1235                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1236                 return -EIO;
1237         }
1238
1239         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1240                 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1241                 return -EIO;
1242         }
1243
1244         SBP2_INFO("Reconnected to SBP-2 device");
1245         return 0;
1246 }
1247
1248 /*
1249  * Set the target node's Single Phase Retry limit. Affects the target's retry
1250  * behaviour if our node is too busy to accept requests.
1251  */
1252 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1253 {
1254         quadlet_t data;
1255
1256         data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1257         if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1258                 SBP2_ERR("%s error", __FUNCTION__);
1259         return 0;
1260 }
1261
1262 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1263                                       struct unit_directory *ud)
1264 {
1265         struct csr1212_keyval *kv;
1266         struct csr1212_dentry *dentry;
1267         u64 management_agent_addr;
1268         u32 unit_characteristics, firmware_revision;
1269         unsigned workarounds;
1270         int i;
1271
1272         management_agent_addr = 0;
1273         unit_characteristics = 0;
1274         firmware_revision = 0;
1275
1276         csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1277                 switch (kv->key.id) {
1278                 case CSR1212_KV_ID_DEPENDENT_INFO:
1279                         if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1280                                 management_agent_addr =
1281                                     CSR1212_REGISTER_SPACE_BASE +
1282                                     (kv->value.csr_offset << 2);
1283
1284                         else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1285                                 lu->lun = ORB_SET_LUN(kv->value.immediate);
1286                         break;
1287
1288                 case SBP2_UNIT_CHARACTERISTICS_KEY:
1289                         /* FIXME: This is ignored so far.
1290                          * See SBP-2 clause 7.4.8. */
1291                         unit_characteristics = kv->value.immediate;
1292                         break;
1293
1294                 case SBP2_FIRMWARE_REVISION_KEY:
1295                         firmware_revision = kv->value.immediate;
1296                         break;
1297
1298                 default:
1299                         /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1300                          * Its "ordered" bit has consequences for command ORB
1301                          * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1302                         break;
1303                 }
1304         }
1305
1306         workarounds = sbp2_default_workarounds;
1307
1308         if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1309                 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1310                         if (sbp2_workarounds_table[i].firmware_revision &&
1311                             sbp2_workarounds_table[i].firmware_revision !=
1312                             (firmware_revision & 0xffff00))
1313                                 continue;
1314                         if (sbp2_workarounds_table[i].model_id &&
1315                             sbp2_workarounds_table[i].model_id != ud->model_id)
1316                                 continue;
1317                         workarounds |= sbp2_workarounds_table[i].workarounds;
1318                         break;
1319                 }
1320
1321         if (workarounds)
1322                 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1323                           "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1324                           " model_id 0x%06x)",
1325                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1326                           workarounds, firmware_revision,
1327                           ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1328                           ud->model_id);
1329
1330         /* We would need one SCSI host template for each target to adjust
1331          * max_sectors on the fly, therefore warn only. */
1332         if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1333             (sbp2_max_sectors * 512) > (128 * 1024))
1334                 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1335                           "max transfer size. WARNING: Current max_sectors "
1336                           "setting is larger than 128KB (%d sectors)",
1337                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1338                           sbp2_max_sectors);
1339
1340         /* If this is a logical unit directory entry, process the parent
1341          * to get the values. */
1342         if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1343                 struct unit_directory *parent_ud = container_of(
1344                         ud->device.parent, struct unit_directory, device);
1345                 sbp2_parse_unit_directory(lu, parent_ud);
1346         } else {
1347                 lu->management_agent_addr = management_agent_addr;
1348                 lu->workarounds = workarounds;
1349                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1350                         lu->lun = ORB_SET_LUN(ud->lun);
1351         }
1352 }
1353
1354 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1355
1356 /*
1357  * This function is called in order to determine the max speed and packet
1358  * size we can use in our ORBs. Note, that we (the driver and host) only
1359  * initiate the transaction. The SBP-2 device actually transfers the data
1360  * (by reading from the DMA area we tell it). This means that the SBP-2
1361  * device decides the actual maximum data it can transfer. We just tell it
1362  * the speed that it needs to use, and the max_rec the host supports, and
1363  * it takes care of the rest.
1364  */
1365 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1366 {
1367         struct sbp2_fwhost_info *hi = lu->hi;
1368         u8 payload;
1369
1370         lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1371
1372         if (lu->speed_code > sbp2_max_speed) {
1373                 lu->speed_code = sbp2_max_speed;
1374                 SBP2_INFO("Reducing speed to %s",
1375                           hpsb_speedto_str[sbp2_max_speed]);
1376         }
1377
1378         /* Payload size is the lesser of what our speed supports and what
1379          * our host supports.  */
1380         payload = min(sbp2_speedto_max_payload[lu->speed_code],
1381                       (u8) (hi->host->csr.max_rec - 1));
1382
1383         /* If physical DMA is off, work around limitation in ohci1394:
1384          * packet size must not exceed PAGE_SIZE */
1385         if (lu->ne->host->low_addr_space < (1ULL << 32))
1386                 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1387                        payload)
1388                         payload--;
1389
1390         SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1391                   NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1392                   hpsb_speedto_str[lu->speed_code],
1393                   SBP2_PAYLOAD_TO_BYTES(payload));
1394
1395         lu->max_payload_size = payload;
1396         return 0;
1397 }
1398
1399 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1400 {
1401         quadlet_t data;
1402         u64 addr;
1403         int retval;
1404         unsigned long flags;
1405
1406         /* flush lu->protocol_work */
1407         if (wait)
1408                 flush_scheduled_work();
1409
1410         data = ntohl(SBP2_AGENT_RESET_DATA);
1411         addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1412
1413         if (wait)
1414                 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1415         else
1416                 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1417
1418         if (retval < 0) {
1419                 SBP2_ERR("hpsb_node_write failed.\n");
1420                 return -EIO;
1421         }
1422
1423         /* make sure that the ORB_POINTER is written on next command */
1424         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1425         lu->last_orb = NULL;
1426         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1427
1428         return 0;
1429 }
1430
1431 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1432                                      struct sbp2_fwhost_info *hi,
1433                                      struct sbp2_command_info *cmd,
1434                                      unsigned int scsi_use_sg,
1435                                      struct scatterlist *sgpnt,
1436                                      u32 orb_direction,
1437                                      enum dma_data_direction dma_dir)
1438 {
1439         cmd->dma_dir = dma_dir;
1440         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1441         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1442
1443         /* special case if only one element (and less than 64KB in size) */
1444         if ((scsi_use_sg == 1) &&
1445             (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
1446
1447                 cmd->dma_size = sgpnt[0].length;
1448                 cmd->dma_type = CMD_DMA_PAGE;
1449                 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1450                                             sgpnt[0].page, sgpnt[0].offset,
1451                                             cmd->dma_size, cmd->dma_dir);
1452
1453                 orb->data_descriptor_lo = cmd->cmd_dma;
1454                 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1455
1456         } else {
1457                 struct sbp2_unrestricted_page_table *sg_element =
1458                                                 &cmd->scatter_gather_element[0];
1459                 u32 sg_count, sg_len;
1460                 dma_addr_t sg_addr;
1461                 int i, count = dma_map_sg(hi->host->device.parent, sgpnt,
1462                                           scsi_use_sg, dma_dir);
1463
1464                 cmd->dma_size = scsi_use_sg;
1465                 cmd->sge_buffer = sgpnt;
1466
1467                 /* use page tables (s/g) */
1468                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1469                 orb->data_descriptor_lo = cmd->sge_dma;
1470
1471                 /* loop through and fill out our SBP-2 page tables
1472                  * (and split up anything too large) */
1473                 for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
1474                         sg_len = sg_dma_len(sgpnt);
1475                         sg_addr = sg_dma_address(sgpnt);
1476                         while (sg_len) {
1477                                 sg_element[sg_count].segment_base_lo = sg_addr;
1478                                 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1479                                         sg_element[sg_count].length_segment_base_hi =
1480                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1481                                         sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1482                                         sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1483                                 } else {
1484                                         sg_element[sg_count].length_segment_base_hi =
1485                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1486                                         sg_len = 0;
1487                                 }
1488                                 sg_count++;
1489                         }
1490                 }
1491
1492                 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1493
1494                 sbp2util_cpu_to_be32_buffer(sg_element,
1495                                 (sizeof(struct sbp2_unrestricted_page_table)) *
1496                                 sg_count);
1497         }
1498 }
1499
1500 static void sbp2_prep_command_orb_no_sg(struct sbp2_command_orb *orb,
1501                                         struct sbp2_fwhost_info *hi,
1502                                         struct sbp2_command_info *cmd,
1503                                         struct scatterlist *sgpnt,
1504                                         u32 orb_direction,
1505                                         unsigned int scsi_request_bufflen,
1506                                         void *scsi_request_buffer,
1507                                         enum dma_data_direction dma_dir)
1508 {
1509         cmd->dma_dir = dma_dir;
1510         cmd->dma_size = scsi_request_bufflen;
1511         cmd->dma_type = CMD_DMA_SINGLE;
1512         cmd->cmd_dma = dma_map_single(hi->host->device.parent,
1513                                       scsi_request_buffer,
1514                                       cmd->dma_size, cmd->dma_dir);
1515         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1516         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1517
1518         /* handle case where we get a command w/o s/g enabled
1519          * (but check for transfers larger than 64K) */
1520         if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1521
1522                 orb->data_descriptor_lo = cmd->cmd_dma;
1523                 orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen);
1524
1525         } else {
1526                 /* The buffer is too large. Turn this into page tables. */
1527
1528                 struct sbp2_unrestricted_page_table *sg_element =
1529                                                 &cmd->scatter_gather_element[0];
1530                 u32 sg_count, sg_len;
1531                 dma_addr_t sg_addr;
1532
1533                 orb->data_descriptor_lo = cmd->sge_dma;
1534                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1535
1536                 /* fill out our SBP-2 page tables; split up the large buffer */
1537                 sg_count = 0;
1538                 sg_len = scsi_request_bufflen;
1539                 sg_addr = cmd->cmd_dma;
1540                 while (sg_len) {
1541                         sg_element[sg_count].segment_base_lo = sg_addr;
1542                         if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1543                                 sg_element[sg_count].length_segment_base_hi =
1544                                         PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1545                                 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1546                                 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1547                         } else {
1548                                 sg_element[sg_count].length_segment_base_hi =
1549                                         PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1550                                 sg_len = 0;
1551                         }
1552                         sg_count++;
1553                 }
1554
1555                 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1556
1557                 sbp2util_cpu_to_be32_buffer(sg_element,
1558                                 (sizeof(struct sbp2_unrestricted_page_table)) *
1559                                 sg_count);
1560         }
1561 }
1562
1563 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1564                                     struct sbp2_command_info *cmd,
1565                                     unchar *scsi_cmd,
1566                                     unsigned int scsi_use_sg,
1567                                     unsigned int scsi_request_bufflen,
1568                                     void *scsi_request_buffer,
1569                                     enum dma_data_direction dma_dir)
1570 {
1571         struct sbp2_fwhost_info *hi = lu->hi;
1572         struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
1573         struct sbp2_command_orb *orb = &cmd->command_orb;
1574         u32 orb_direction;
1575
1576         /*
1577          * Set-up our command ORB.
1578          *
1579          * NOTE: We're doing unrestricted page tables (s/g), as this is
1580          * best performance (at least with the devices I have). This means
1581          * that data_size becomes the number of s/g elements, and
1582          * page_size should be zero (for unrestricted).
1583          */
1584         orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1585         orb->next_ORB_lo = 0x0;
1586         orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1587         orb->misc |= ORB_SET_SPEED(lu->speed_code);
1588         orb->misc |= ORB_SET_NOTIFY(1);
1589
1590         if (dma_dir == DMA_NONE)
1591                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1592         else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1593                 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1594         else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1595                 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1596         else {
1597                 SBP2_INFO("Falling back to DMA_NONE");
1598                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1599         }
1600
1601         /* set up our page table stuff */
1602         if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1603                 orb->data_descriptor_hi = 0x0;
1604                 orb->data_descriptor_lo = 0x0;
1605                 orb->misc |= ORB_SET_DIRECTION(1);
1606         } else if (scsi_use_sg)
1607                 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sgpnt,
1608                                          orb_direction, dma_dir);
1609         else
1610                 sbp2_prep_command_orb_no_sg(orb, hi, cmd, sgpnt, orb_direction,
1611                                             scsi_request_bufflen,
1612                                             scsi_request_buffer, dma_dir);
1613
1614         sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1615
1616         memset(orb->cdb, 0, 12);
1617         memcpy(orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
1618 }
1619
1620 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1621                                   struct sbp2_command_info *cmd)
1622 {
1623         struct sbp2_fwhost_info *hi = lu->hi;
1624         struct sbp2_command_orb *last_orb;
1625         dma_addr_t last_orb_dma;
1626         u64 addr = lu->command_block_agent_addr;
1627         quadlet_t data[2];
1628         size_t length;
1629         unsigned long flags;
1630
1631         dma_sync_single_for_device(hi->host->device.parent,
1632                                    cmd->command_orb_dma,
1633                                    sizeof(struct sbp2_command_orb),
1634                                    DMA_TO_DEVICE);
1635         dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1636                                    sizeof(cmd->scatter_gather_element),
1637                                    DMA_BIDIRECTIONAL);
1638
1639         /* check to see if there are any previous orbs to use */
1640         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1641         last_orb = lu->last_orb;
1642         last_orb_dma = lu->last_orb_dma;
1643         if (!last_orb) {
1644                 /*
1645                  * last_orb == NULL means: We know that the target's fetch agent
1646                  * is not active right now.
1647                  */
1648                 addr += SBP2_ORB_POINTER_OFFSET;
1649                 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1650                 data[1] = cmd->command_orb_dma;
1651                 sbp2util_cpu_to_be32_buffer(data, 8);
1652                 length = 8;
1653         } else {
1654                 /*
1655                  * last_orb != NULL means: We know that the target's fetch agent
1656                  * is (very probably) not dead or in reset state right now.
1657                  * We have an ORB already sent that we can append a new one to.
1658                  * The target's fetch agent may or may not have read this
1659                  * previous ORB yet.
1660                  */
1661                 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1662                                         sizeof(struct sbp2_command_orb),
1663                                         DMA_TO_DEVICE);
1664                 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1665                 wmb();
1666                 /* Tells hardware that this pointer is valid */
1667                 last_orb->next_ORB_hi = 0;
1668                 dma_sync_single_for_device(hi->host->device.parent,
1669                                            last_orb_dma,
1670                                            sizeof(struct sbp2_command_orb),
1671                                            DMA_TO_DEVICE);
1672                 addr += SBP2_DOORBELL_OFFSET;
1673                 data[0] = 0;
1674                 length = 4;
1675         }
1676         lu->last_orb = &cmd->command_orb;
1677         lu->last_orb_dma = cmd->command_orb_dma;
1678         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1679
1680         if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1681                 /*
1682                  * sbp2util_node_write_no_wait failed. We certainly ran out
1683                  * of transaction labels, perhaps just because there were no
1684                  * context switches which gave khpsbpkt a chance to collect
1685                  * free tlabels. Try again in non-atomic context. If necessary,
1686                  * the workqueue job will sleep to guaranteedly get a tlabel.
1687                  * We do not accept new commands until the job is over.
1688                  */
1689                 scsi_block_requests(lu->shost);
1690                 PREPARE_WORK(&lu->protocol_work,
1691                              last_orb ? sbp2util_write_doorbell:
1692                                         sbp2util_write_orb_pointer);
1693                 schedule_work(&lu->protocol_work);
1694         }
1695 }
1696
1697 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1698                              void (*done)(struct scsi_cmnd *))
1699 {
1700         unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
1701         unsigned int request_bufflen = SCpnt->request_bufflen;
1702         struct sbp2_command_info *cmd;
1703
1704         cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1705         if (!cmd)
1706                 return -EIO;
1707
1708         sbp2_create_command_orb(lu, cmd, scsi_cmd, SCpnt->use_sg,
1709                                 request_bufflen, SCpnt->request_buffer,
1710                                 SCpnt->sc_data_direction);
1711         sbp2_link_orb_command(lu, cmd);
1712
1713         return 0;
1714 }
1715
1716 /*
1717  * Translates SBP-2 status into SCSI sense data for check conditions
1718  */
1719 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1720                                               unchar *sense_data)
1721 {
1722         /* OK, it's pretty ugly... ;-) */
1723         sense_data[0] = 0x70;
1724         sense_data[1] = 0x0;
1725         sense_data[2] = sbp2_status[9];
1726         sense_data[3] = sbp2_status[12];
1727         sense_data[4] = sbp2_status[13];
1728         sense_data[5] = sbp2_status[14];
1729         sense_data[6] = sbp2_status[15];
1730         sense_data[7] = 10;
1731         sense_data[8] = sbp2_status[16];
1732         sense_data[9] = sbp2_status[17];
1733         sense_data[10] = sbp2_status[18];
1734         sense_data[11] = sbp2_status[19];
1735         sense_data[12] = sbp2_status[10];
1736         sense_data[13] = sbp2_status[11];
1737         sense_data[14] = sbp2_status[20];
1738         sense_data[15] = sbp2_status[21];
1739
1740         return sbp2_status[8] & 0x3f;
1741 }
1742
1743 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1744                                     int destid, quadlet_t *data, u64 addr,
1745                                     size_t length, u16 fl)
1746 {
1747         struct sbp2_fwhost_info *hi;
1748         struct sbp2_lu *lu = NULL, *lu_tmp;
1749         struct scsi_cmnd *SCpnt = NULL;
1750         struct sbp2_status_block *sb;
1751         u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1752         struct sbp2_command_info *cmd;
1753         unsigned long flags;
1754
1755         if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1756                 SBP2_ERR("Wrong size of status block");
1757                 return RCODE_ADDRESS_ERROR;
1758         }
1759         if (unlikely(!host)) {
1760                 SBP2_ERR("host is NULL - this is bad!");
1761                 return RCODE_ADDRESS_ERROR;
1762         }
1763         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1764         if (unlikely(!hi)) {
1765                 SBP2_ERR("host info is NULL - this is bad!");
1766                 return RCODE_ADDRESS_ERROR;
1767         }
1768
1769         /* Find the unit which wrote the status. */
1770         list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1771                 if (lu_tmp->ne->nodeid == nodeid &&
1772                     lu_tmp->status_fifo_addr == addr) {
1773                         lu = lu_tmp;
1774                         break;
1775                 }
1776         }
1777         if (unlikely(!lu)) {
1778                 SBP2_ERR("lu is NULL - device is gone?");
1779                 return RCODE_ADDRESS_ERROR;
1780         }
1781
1782         /* Put response into lu status fifo buffer. The first two bytes
1783          * come in big endian bit order. Often the target writes only a
1784          * truncated status block, minimally the first two quadlets. The rest
1785          * is implied to be zeros. */
1786         sb = &lu->status_block;
1787         memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1788         memcpy(sb, data, length);
1789         sbp2util_be32_to_cpu_buffer(sb, 8);
1790
1791         /* Ignore unsolicited status. Handle command ORB status. */
1792         if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1793                 cmd = NULL;
1794         else
1795                 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1796         if (cmd) {
1797                 dma_sync_single_for_cpu(hi->host->device.parent,
1798                                         cmd->command_orb_dma,
1799                                         sizeof(struct sbp2_command_orb),
1800                                         DMA_TO_DEVICE);
1801                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1802                                         sizeof(cmd->scatter_gather_element),
1803                                         DMA_BIDIRECTIONAL);
1804                 /* Grab SCSI command pointers and check status. */
1805                 /*
1806                  * FIXME: If the src field in the status is 1, the ORB DMA must
1807                  * not be reused until status for a subsequent ORB is received.
1808                  */
1809                 SCpnt = cmd->Current_SCpnt;
1810                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1811                 sbp2util_mark_command_completed(lu, cmd);
1812                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1813
1814                 if (SCpnt) {
1815                         u32 h = sb->ORB_offset_hi_misc;
1816                         u32 r = STATUS_GET_RESP(h);
1817
1818                         if (r != RESP_STATUS_REQUEST_COMPLETE) {
1819                                 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1820                                           r, STATUS_GET_SBP_STATUS(h));
1821                                 scsi_status =
1822                                         r == RESP_STATUS_TRANSPORT_FAILURE ?
1823                                         SBP2_SCSI_STATUS_BUSY :
1824                                         SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1825                         }
1826
1827                         if (STATUS_GET_LEN(h) > 1)
1828                                 scsi_status = sbp2_status_to_sense_data(
1829                                         (unchar *)sb, SCpnt->sense_buffer);
1830
1831                         if (STATUS_TEST_DEAD(h))
1832                                 sbp2_agent_reset(lu, 0);
1833                 }
1834
1835                 /* Check here to see if there are no commands in-use. If there
1836                  * are none, we know that the fetch agent left the active state
1837                  * _and_ that we did not reactivate it yet. Therefore clear
1838                  * last_orb so that next time we write directly to the
1839                  * ORB_POINTER register. That way the fetch agent does not need
1840                  * to refetch the next_ORB. */
1841                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1842                 if (list_empty(&lu->cmd_orb_inuse))
1843                         lu->last_orb = NULL;
1844                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1845
1846         } else {
1847                 /* It's probably status after a management request. */
1848                 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1849                     (sb->ORB_offset_lo == lu->login_orb_dma) ||
1850                     (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1851                     (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1852                         lu->access_complete = 1;
1853                         wake_up_interruptible(&sbp2_access_wq);
1854                 }
1855         }
1856
1857         if (SCpnt)
1858                 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1859                                           cmd->Current_done);
1860         return RCODE_COMPLETE;
1861 }
1862
1863 /**************************************
1864  * SCSI interface related section
1865  **************************************/
1866
1867 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1868                                  void (*done)(struct scsi_cmnd *))
1869 {
1870         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1871         struct sbp2_fwhost_info *hi;
1872         int result = DID_NO_CONNECT << 16;
1873
1874         if (unlikely(!sbp2util_node_is_available(lu)))
1875                 goto done;
1876
1877         hi = lu->hi;
1878
1879         if (unlikely(!hi)) {
1880                 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1881                 goto done;
1882         }
1883
1884         /* Multiple units are currently represented to the SCSI core as separate
1885          * targets, not as one target with multiple LUs. Therefore return
1886          * selection time-out to any IO directed at non-zero LUNs. */
1887         if (unlikely(SCpnt->device->lun))
1888                 goto done;
1889
1890         if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1891                 SBP2_ERR("Bus reset in progress - rejecting command");
1892                 result = DID_BUS_BUSY << 16;
1893                 goto done;
1894         }
1895
1896         /* Bidirectional commands are not yet implemented,
1897          * and unknown transfer direction not handled. */
1898         if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1899                 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1900                 result = DID_ERROR << 16;
1901                 goto done;
1902         }
1903
1904         if (sbp2_send_command(lu, SCpnt, done)) {
1905                 SBP2_ERR("Error sending SCSI command");
1906                 sbp2scsi_complete_command(lu,
1907                                           SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1908                                           SCpnt, done);
1909         }
1910         return 0;
1911
1912 done:
1913         SCpnt->result = result;
1914         done(SCpnt);
1915         return 0;
1916 }
1917
1918 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1919 {
1920         struct sbp2_fwhost_info *hi = lu->hi;
1921         struct list_head *lh;
1922         struct sbp2_command_info *cmd;
1923         unsigned long flags;
1924
1925         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1926         while (!list_empty(&lu->cmd_orb_inuse)) {
1927                 lh = lu->cmd_orb_inuse.next;
1928                 cmd = list_entry(lh, struct sbp2_command_info, list);
1929                 dma_sync_single_for_cpu(hi->host->device.parent,
1930                                         cmd->command_orb_dma,
1931                                         sizeof(struct sbp2_command_orb),
1932                                         DMA_TO_DEVICE);
1933                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1934                                         sizeof(cmd->scatter_gather_element),
1935                                         DMA_BIDIRECTIONAL);
1936                 sbp2util_mark_command_completed(lu, cmd);
1937                 if (cmd->Current_SCpnt) {
1938                         cmd->Current_SCpnt->result = status << 16;
1939                         cmd->Current_done(cmd->Current_SCpnt);
1940                 }
1941         }
1942         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1943
1944         return;
1945 }
1946
1947 /*
1948  * Complete a regular SCSI command. Can be called in atomic context.
1949  */
1950 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1951                                       struct scsi_cmnd *SCpnt,
1952                                       void (*done)(struct scsi_cmnd *))
1953 {
1954         if (!SCpnt) {
1955                 SBP2_ERR("SCpnt is NULL");
1956                 return;
1957         }
1958
1959         switch (scsi_status) {
1960         case SBP2_SCSI_STATUS_GOOD:
1961                 SCpnt->result = DID_OK << 16;
1962                 break;
1963
1964         case SBP2_SCSI_STATUS_BUSY:
1965                 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1966                 SCpnt->result = DID_BUS_BUSY << 16;
1967                 break;
1968
1969         case SBP2_SCSI_STATUS_CHECK_CONDITION:
1970                 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1971                 break;
1972
1973         case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1974                 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1975                 SCpnt->result = DID_NO_CONNECT << 16;
1976                 scsi_print_command(SCpnt);
1977                 break;
1978
1979         case SBP2_SCSI_STATUS_CONDITION_MET:
1980         case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1981         case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1982                 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1983                 SCpnt->result = DID_ERROR << 16;
1984                 scsi_print_command(SCpnt);
1985                 break;
1986
1987         default:
1988                 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1989                 SCpnt->result = DID_ERROR << 16;
1990         }
1991
1992         /* If a bus reset is in progress and there was an error, complete
1993          * the command as busy so that it will get retried. */
1994         if (!hpsb_node_entry_valid(lu->ne)
1995             && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1996                 SBP2_ERR("Completing command with busy (bus reset)");
1997                 SCpnt->result = DID_BUS_BUSY << 16;
1998         }
1999
2000         /* Tell the SCSI stack that we're done with this command. */
2001         done(SCpnt);
2002 }
2003
2004 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
2005 {
2006         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2007
2008         lu->sdev = sdev;
2009         sdev->allow_restart = 1;
2010
2011         if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2012                 sdev->inquiry_len = 36;
2013         return 0;
2014 }
2015
2016 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2017 {
2018         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2019
2020         blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
2021         sdev->use_10_for_rw = 1;
2022
2023         if (sdev->type == TYPE_ROM)
2024                 sdev->use_10_for_ms = 1;
2025         if (sdev->type == TYPE_DISK &&
2026             lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2027                 sdev->skip_ms_page_8 = 1;
2028         if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2029                 sdev->fix_capacity = 1;
2030         return 0;
2031 }
2032
2033 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2034 {
2035         ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2036         return;
2037 }
2038
2039 /*
2040  * Called by scsi stack when something has really gone wrong.
2041  * Usually called when a command has timed-out for some reason.
2042  */
2043 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2044 {
2045         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2046         struct sbp2_fwhost_info *hi = lu->hi;
2047         struct sbp2_command_info *cmd;
2048         unsigned long flags;
2049
2050         SBP2_INFO("aborting sbp2 command");
2051         scsi_print_command(SCpnt);
2052
2053         if (sbp2util_node_is_available(lu)) {
2054                 sbp2_agent_reset(lu, 1);
2055
2056                 /* Return a matching command structure to the free pool. */
2057                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2058                 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2059                 if (cmd) {
2060                         dma_sync_single_for_cpu(hi->host->device.parent,
2061                                         cmd->command_orb_dma,
2062                                         sizeof(struct sbp2_command_orb),
2063                                         DMA_TO_DEVICE);
2064                         dma_sync_single_for_cpu(hi->host->device.parent,
2065                                         cmd->sge_dma,
2066                                         sizeof(cmd->scatter_gather_element),
2067                                         DMA_BIDIRECTIONAL);
2068                         sbp2util_mark_command_completed(lu, cmd);
2069                         if (cmd->Current_SCpnt) {
2070                                 cmd->Current_SCpnt->result = DID_ABORT << 16;
2071                                 cmd->Current_done(cmd->Current_SCpnt);
2072                         }
2073                 }
2074                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2075
2076                 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2077         }
2078
2079         return SUCCESS;
2080 }
2081
2082 /*
2083  * Called by scsi stack when something has really gone wrong.
2084  */
2085 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2086 {
2087         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2088
2089         SBP2_INFO("reset requested");
2090
2091         if (sbp2util_node_is_available(lu)) {
2092                 SBP2_INFO("generating sbp2 fetch agent reset");
2093                 sbp2_agent_reset(lu, 1);
2094         }
2095
2096         return SUCCESS;
2097 }
2098
2099 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2100                                            struct device_attribute *attr,
2101                                            char *buf)
2102 {
2103         struct scsi_device *sdev;
2104         struct sbp2_lu *lu;
2105
2106         if (!(sdev = to_scsi_device(dev)))
2107                 return 0;
2108
2109         if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2110                 return 0;
2111
2112         return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)lu->ne->guid,
2113                        lu->ud->id, ORB_SET_LUN(lu->lun));
2114 }
2115
2116 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2117 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2118 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2119 MODULE_LICENSE("GPL");
2120
2121 static int sbp2_module_init(void)
2122 {
2123         int ret;
2124
2125         if (sbp2_serialize_io) {
2126                 sbp2_shost_template.can_queue = 1;
2127                 sbp2_shost_template.cmd_per_lun = 1;
2128         }
2129
2130         if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
2131             (sbp2_max_sectors * 512) > (128 * 1024))
2132                 sbp2_max_sectors = 128 * 1024 / 512;
2133         sbp2_shost_template.max_sectors = sbp2_max_sectors;
2134
2135         hpsb_register_highlevel(&sbp2_highlevel);
2136         ret = hpsb_register_protocol(&sbp2_driver);
2137         if (ret) {
2138                 SBP2_ERR("Failed to register protocol");
2139                 hpsb_unregister_highlevel(&sbp2_highlevel);
2140                 return ret;
2141         }
2142         return 0;
2143 }
2144
2145 static void __exit sbp2_module_exit(void)
2146 {
2147         hpsb_unregister_protocol(&sbp2_driver);
2148         hpsb_unregister_highlevel(&sbp2_highlevel);
2149 }
2150
2151 module_init(sbp2_module_init);
2152 module_exit(sbp2_module_exit);