2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
39 #include "ref-cache.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
47 * end_io_wq structs are used to do processing in task context when an IO is
48 * complete. This is used during reads to verify checksums, and it is used
49 * by writes to insert metadata for new file extents after IO is complete.
55 struct btrfs_fs_info *info;
58 struct list_head list;
59 struct btrfs_work work;
63 * async submit bios are used to offload expensive checksumming
64 * onto the worker threads. They checksum file and metadata bios
65 * just before they are sent down the IO stack.
67 struct async_submit_bio {
70 struct list_head list;
71 extent_submit_bio_hook_t *submit_bio_start;
72 extent_submit_bio_hook_t *submit_bio_done;
75 unsigned long bio_flags;
76 struct btrfs_work work;
79 /* These are used to set the lockdep class on the extent buffer locks.
80 * The class is set by the readpage_end_io_hook after the buffer has
81 * passed csum validation but before the pages are unlocked.
83 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * The class is based on the level in the tree block, which allows lockdep
87 * to know that lower nodes nest inside the locks of higher nodes.
89 * We also add a check to make sure the highest level of the tree is
90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
91 * code needs update as well.
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
108 /* highest possible level */
114 * extents on the btree inode are pretty simple, there's one extent
115 * that covers the entire device
117 static struct extent_map *btree_get_extent(struct inode *inode,
118 struct page *page, size_t page_offset, u64 start, u64 len,
121 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
122 struct extent_map *em;
125 spin_lock(&em_tree->lock);
126 em = lookup_extent_mapping(em_tree, start, len);
129 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
130 spin_unlock(&em_tree->lock);
133 spin_unlock(&em_tree->lock);
135 em = alloc_extent_map(GFP_NOFS);
137 em = ERR_PTR(-ENOMEM);
142 em->block_len = (u64)-1;
144 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
146 spin_lock(&em_tree->lock);
147 ret = add_extent_mapping(em_tree, em);
148 if (ret == -EEXIST) {
149 u64 failed_start = em->start;
150 u64 failed_len = em->len;
153 em = lookup_extent_mapping(em_tree, start, len);
157 em = lookup_extent_mapping(em_tree, failed_start,
165 spin_unlock(&em_tree->lock);
173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
175 return btrfs_crc32c(seed, data, len);
178 void btrfs_csum_final(u32 crc, char *result)
180 *(__le32 *)result = ~cpu_to_le32(crc);
184 * compute the csum for a btree block, and either verify it or write it
185 * into the csum field of the block.
187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
191 btrfs_super_csum_size(&root->fs_info->super_copy);
194 unsigned long cur_len;
195 unsigned long offset = BTRFS_CSUM_SIZE;
196 char *map_token = NULL;
198 unsigned long map_start;
199 unsigned long map_len;
202 unsigned long inline_result;
204 len = buf->len - offset;
206 err = map_private_extent_buffer(buf, offset, 32,
208 &map_start, &map_len, KM_USER0);
211 cur_len = min(len, map_len - (offset - map_start));
212 crc = btrfs_csum_data(root, kaddr + offset - map_start,
216 unmap_extent_buffer(buf, map_token, KM_USER0);
218 if (csum_size > sizeof(inline_result)) {
219 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
223 result = (char *)&inline_result;
226 btrfs_csum_final(crc, result);
229 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232 memcpy(&found, result, csum_size);
234 read_extent_buffer(buf, &val, 0, csum_size);
235 printk(KERN_INFO "btrfs: %s checksum verify failed "
236 "on %llu wanted %X found %X level %d\n",
237 root->fs_info->sb->s_id,
238 buf->start, val, found, btrfs_header_level(buf));
239 if (result != (char *)&inline_result)
244 write_extent_buffer(buf, result, 0, csum_size);
246 if (result != (char *)&inline_result)
252 * we can't consider a given block up to date unless the transid of the
253 * block matches the transid in the parent node's pointer. This is how we
254 * detect blocks that either didn't get written at all or got written
255 * in the wrong place.
257 static int verify_parent_transid(struct extent_io_tree *io_tree,
258 struct extent_buffer *eb, u64 parent_transid)
262 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
265 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
266 if (extent_buffer_uptodate(io_tree, eb) &&
267 btrfs_header_generation(eb) == parent_transid) {
271 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272 (unsigned long long)eb->start,
273 (unsigned long long)parent_transid,
274 (unsigned long long)btrfs_header_generation(eb));
276 clear_extent_buffer_uptodate(io_tree, eb);
278 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
284 * helper to read a given tree block, doing retries as required when
285 * the checksums don't match and we have alternate mirrors to try.
287 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
288 struct extent_buffer *eb,
289 u64 start, u64 parent_transid)
291 struct extent_io_tree *io_tree;
296 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
298 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
299 btree_get_extent, mirror_num);
301 !verify_parent_transid(io_tree, eb, parent_transid))
304 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
310 if (mirror_num > num_copies)
317 * checksum a dirty tree block before IO. This has extra checks to make sure
318 * we only fill in the checksum field in the first page of a multi-page block
321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
323 struct extent_io_tree *tree;
324 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
328 struct extent_buffer *eb;
331 tree = &BTRFS_I(page->mapping->host)->io_tree;
333 if (page->private == EXTENT_PAGE_PRIVATE)
337 len = page->private >> 2;
340 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
341 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
342 btrfs_header_generation(eb));
344 found_start = btrfs_header_bytenr(eb);
345 if (found_start != start) {
349 if (eb->first_page != page) {
353 if (!PageUptodate(page)) {
357 found_level = btrfs_header_level(eb);
359 csum_tree_block(root, eb, 0);
361 free_extent_buffer(eb);
366 static int check_tree_block_fsid(struct btrfs_root *root,
367 struct extent_buffer *eb)
369 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
370 u8 fsid[BTRFS_UUID_SIZE];
373 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
376 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
380 fs_devices = fs_devices->seed;
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
388 lockdep_set_class_and_name(&eb->lock,
389 &btrfs_eb_class[level],
390 btrfs_eb_name[level]);
394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
395 struct extent_state *state)
397 struct extent_io_tree *tree;
401 struct extent_buffer *eb;
402 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
405 tree = &BTRFS_I(page->mapping->host)->io_tree;
406 if (page->private == EXTENT_PAGE_PRIVATE)
411 len = page->private >> 2;
414 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
416 found_start = btrfs_header_bytenr(eb);
417 if (found_start != start) {
418 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
419 (unsigned long long)found_start,
420 (unsigned long long)eb->start);
424 if (eb->first_page != page) {
425 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
426 eb->first_page->index, page->index);
431 if (check_tree_block_fsid(root, eb)) {
432 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
433 (unsigned long long)eb->start);
437 found_level = btrfs_header_level(eb);
439 btrfs_set_buffer_lockdep_class(eb, found_level);
441 ret = csum_tree_block(root, eb, 1);
445 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
446 end = eb->start + end - 1;
448 free_extent_buffer(eb);
453 static void end_workqueue_bio(struct bio *bio, int err)
455 struct end_io_wq *end_io_wq = bio->bi_private;
456 struct btrfs_fs_info *fs_info;
458 fs_info = end_io_wq->info;
459 end_io_wq->error = err;
460 end_io_wq->work.func = end_workqueue_fn;
461 end_io_wq->work.flags = 0;
463 if (bio->bi_rw & (1 << BIO_RW)) {
464 if (end_io_wq->metadata)
465 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
468 btrfs_queue_worker(&fs_info->endio_write_workers,
471 if (end_io_wq->metadata)
472 btrfs_queue_worker(&fs_info->endio_meta_workers,
475 btrfs_queue_worker(&fs_info->endio_workers,
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
483 struct end_io_wq *end_io_wq;
484 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
488 end_io_wq->private = bio->bi_private;
489 end_io_wq->end_io = bio->bi_end_io;
490 end_io_wq->info = info;
491 end_io_wq->error = 0;
492 end_io_wq->bio = bio;
493 end_io_wq->metadata = metadata;
495 bio->bi_private = end_io_wq;
496 bio->bi_end_io = end_workqueue_bio;
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
502 unsigned long limit = min_t(unsigned long,
503 info->workers.max_workers,
504 info->fs_devices->open_devices);
508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
510 return atomic_read(&info->nr_async_bios) >
511 btrfs_async_submit_limit(info);
514 static void run_one_async_start(struct btrfs_work *work)
516 struct btrfs_fs_info *fs_info;
517 struct async_submit_bio *async;
519 async = container_of(work, struct async_submit_bio, work);
520 fs_info = BTRFS_I(async->inode)->root->fs_info;
521 async->submit_bio_start(async->inode, async->rw, async->bio,
522 async->mirror_num, async->bio_flags);
525 static void run_one_async_done(struct btrfs_work *work)
527 struct btrfs_fs_info *fs_info;
528 struct async_submit_bio *async;
531 async = container_of(work, struct async_submit_bio, work);
532 fs_info = BTRFS_I(async->inode)->root->fs_info;
534 limit = btrfs_async_submit_limit(fs_info);
535 limit = limit * 2 / 3;
537 atomic_dec(&fs_info->nr_async_submits);
539 if (atomic_read(&fs_info->nr_async_submits) < limit &&
540 waitqueue_active(&fs_info->async_submit_wait))
541 wake_up(&fs_info->async_submit_wait);
543 async->submit_bio_done(async->inode, async->rw, async->bio,
544 async->mirror_num, async->bio_flags);
547 static void run_one_async_free(struct btrfs_work *work)
549 struct async_submit_bio *async;
551 async = container_of(work, struct async_submit_bio, work);
555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
556 int rw, struct bio *bio, int mirror_num,
557 unsigned long bio_flags,
558 extent_submit_bio_hook_t *submit_bio_start,
559 extent_submit_bio_hook_t *submit_bio_done)
561 struct async_submit_bio *async;
563 async = kmalloc(sizeof(*async), GFP_NOFS);
567 async->inode = inode;
570 async->mirror_num = mirror_num;
571 async->submit_bio_start = submit_bio_start;
572 async->submit_bio_done = submit_bio_done;
574 async->work.func = run_one_async_start;
575 async->work.ordered_func = run_one_async_done;
576 async->work.ordered_free = run_one_async_free;
578 async->work.flags = 0;
579 async->bio_flags = bio_flags;
581 atomic_inc(&fs_info->nr_async_submits);
583 if (rw & (1 << BIO_RW_SYNCIO))
584 btrfs_set_work_high_prio(&async->work);
586 btrfs_queue_worker(&fs_info->workers, &async->work);
588 int limit = btrfs_async_submit_limit(fs_info);
589 if (atomic_read(&fs_info->nr_async_submits) > limit) {
590 wait_event_timeout(fs_info->async_submit_wait,
591 (atomic_read(&fs_info->nr_async_submits) < limit),
594 wait_event_timeout(fs_info->async_submit_wait,
595 (atomic_read(&fs_info->nr_async_bios) < limit),
599 while (atomic_read(&fs_info->async_submit_draining) &&
600 atomic_read(&fs_info->nr_async_submits)) {
601 wait_event(fs_info->async_submit_wait,
602 (atomic_read(&fs_info->nr_async_submits) == 0));
608 static int btree_csum_one_bio(struct bio *bio)
610 struct bio_vec *bvec = bio->bi_io_vec;
612 struct btrfs_root *root;
614 WARN_ON(bio->bi_vcnt <= 0);
615 while (bio_index < bio->bi_vcnt) {
616 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
617 csum_dirty_buffer(root, bvec->bv_page);
624 static int __btree_submit_bio_start(struct inode *inode, int rw,
625 struct bio *bio, int mirror_num,
626 unsigned long bio_flags)
629 * when we're called for a write, we're already in the async
630 * submission context. Just jump into btrfs_map_bio
632 btree_csum_one_bio(bio);
636 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
637 int mirror_num, unsigned long bio_flags)
640 * when we're called for a write, we're already in the async
641 * submission context. Just jump into btrfs_map_bio
643 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
646 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
647 int mirror_num, unsigned long bio_flags)
651 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655 if (!(rw & (1 << BIO_RW))) {
657 * called for a read, do the setup so that checksum validation
658 * can happen in the async kernel threads
660 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
665 * kthread helpers are used to submit writes so that checksumming
666 * can happen in parallel across all CPUs
668 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
669 inode, rw, bio, mirror_num, 0,
670 __btree_submit_bio_start,
671 __btree_submit_bio_done);
674 static int btree_writepage(struct page *page, struct writeback_control *wbc)
676 struct extent_io_tree *tree;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678 struct extent_buffer *eb;
681 tree = &BTRFS_I(page->mapping->host)->io_tree;
682 if (!(current->flags & PF_MEMALLOC)) {
683 return extent_write_full_page(tree, page,
684 btree_get_extent, wbc);
687 redirty_page_for_writepage(wbc, page);
688 eb = btrfs_find_tree_block(root, page_offset(page),
692 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
694 spin_lock(&root->fs_info->delalloc_lock);
695 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
696 spin_unlock(&root->fs_info->delalloc_lock);
698 free_extent_buffer(eb);
704 static int btree_writepages(struct address_space *mapping,
705 struct writeback_control *wbc)
707 struct extent_io_tree *tree;
708 tree = &BTRFS_I(mapping->host)->io_tree;
709 if (wbc->sync_mode == WB_SYNC_NONE) {
710 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
712 unsigned long thresh = 32 * 1024 * 1024;
714 if (wbc->for_kupdate)
717 /* this is a bit racy, but that's ok */
718 num_dirty = root->fs_info->dirty_metadata_bytes;
719 if (num_dirty < thresh)
722 return extent_writepages(tree, mapping, btree_get_extent, wbc);
725 static int btree_readpage(struct file *file, struct page *page)
727 struct extent_io_tree *tree;
728 tree = &BTRFS_I(page->mapping->host)->io_tree;
729 return extent_read_full_page(tree, page, btree_get_extent);
732 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
734 struct extent_io_tree *tree;
735 struct extent_map_tree *map;
738 if (PageWriteback(page) || PageDirty(page))
741 tree = &BTRFS_I(page->mapping->host)->io_tree;
742 map = &BTRFS_I(page->mapping->host)->extent_tree;
744 ret = try_release_extent_state(map, tree, page, gfp_flags);
748 ret = try_release_extent_buffer(tree, page);
750 ClearPagePrivate(page);
751 set_page_private(page, 0);
752 page_cache_release(page);
758 static void btree_invalidatepage(struct page *page, unsigned long offset)
760 struct extent_io_tree *tree;
761 tree = &BTRFS_I(page->mapping->host)->io_tree;
762 extent_invalidatepage(tree, page, offset);
763 btree_releasepage(page, GFP_NOFS);
764 if (PagePrivate(page)) {
765 printk(KERN_WARNING "btrfs warning page private not zero "
766 "on page %llu\n", (unsigned long long)page_offset(page));
767 ClearPagePrivate(page);
768 set_page_private(page, 0);
769 page_cache_release(page);
774 static int btree_writepage(struct page *page, struct writeback_control *wbc)
776 struct buffer_head *bh;
777 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
778 struct buffer_head *head;
779 if (!page_has_buffers(page)) {
780 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
781 (1 << BH_Dirty)|(1 << BH_Uptodate));
783 head = page_buffers(page);
786 if (buffer_dirty(bh))
787 csum_tree_block(root, bh, 0);
788 bh = bh->b_this_page;
789 } while (bh != head);
790 return block_write_full_page(page, btree_get_block, wbc);
794 static struct address_space_operations btree_aops = {
795 .readpage = btree_readpage,
796 .writepage = btree_writepage,
797 .writepages = btree_writepages,
798 .releasepage = btree_releasepage,
799 .invalidatepage = btree_invalidatepage,
800 .sync_page = block_sync_page,
803 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
806 struct extent_buffer *buf = NULL;
807 struct inode *btree_inode = root->fs_info->btree_inode;
810 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
813 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
814 buf, 0, 0, btree_get_extent, 0);
815 free_extent_buffer(buf);
819 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
820 u64 bytenr, u32 blocksize)
822 struct inode *btree_inode = root->fs_info->btree_inode;
823 struct extent_buffer *eb;
824 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
825 bytenr, blocksize, GFP_NOFS);
829 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
830 u64 bytenr, u32 blocksize)
832 struct inode *btree_inode = root->fs_info->btree_inode;
833 struct extent_buffer *eb;
835 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
836 bytenr, blocksize, NULL, GFP_NOFS);
841 int btrfs_write_tree_block(struct extent_buffer *buf)
843 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
844 buf->start + buf->len - 1, WB_SYNC_ALL);
847 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
849 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
850 buf->start, buf->start + buf->len - 1);
853 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
854 u32 blocksize, u64 parent_transid)
856 struct extent_buffer *buf = NULL;
857 struct inode *btree_inode = root->fs_info->btree_inode;
858 struct extent_io_tree *io_tree;
861 io_tree = &BTRFS_I(btree_inode)->io_tree;
863 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
867 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
870 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
877 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
878 struct extent_buffer *buf)
880 struct inode *btree_inode = root->fs_info->btree_inode;
881 if (btrfs_header_generation(buf) ==
882 root->fs_info->running_transaction->transid) {
883 btrfs_assert_tree_locked(buf);
885 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
886 spin_lock(&root->fs_info->delalloc_lock);
887 if (root->fs_info->dirty_metadata_bytes >= buf->len)
888 root->fs_info->dirty_metadata_bytes -= buf->len;
891 spin_unlock(&root->fs_info->delalloc_lock);
894 /* ugh, clear_extent_buffer_dirty needs to lock the page */
895 btrfs_set_lock_blocking(buf);
896 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
902 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
903 u32 stripesize, struct btrfs_root *root,
904 struct btrfs_fs_info *fs_info,
908 root->commit_root = NULL;
909 root->ref_tree = NULL;
910 root->sectorsize = sectorsize;
911 root->nodesize = nodesize;
912 root->leafsize = leafsize;
913 root->stripesize = stripesize;
915 root->track_dirty = 0;
917 root->fs_info = fs_info;
918 root->objectid = objectid;
919 root->last_trans = 0;
920 root->highest_inode = 0;
921 root->last_inode_alloc = 0;
925 INIT_LIST_HEAD(&root->dirty_list);
926 INIT_LIST_HEAD(&root->orphan_list);
927 INIT_LIST_HEAD(&root->dead_list);
928 spin_lock_init(&root->node_lock);
929 spin_lock_init(&root->list_lock);
930 mutex_init(&root->objectid_mutex);
931 mutex_init(&root->log_mutex);
932 init_waitqueue_head(&root->log_writer_wait);
933 init_waitqueue_head(&root->log_commit_wait[0]);
934 init_waitqueue_head(&root->log_commit_wait[1]);
935 atomic_set(&root->log_commit[0], 0);
936 atomic_set(&root->log_commit[1], 0);
937 atomic_set(&root->log_writers, 0);
939 root->log_transid = 0;
940 extent_io_tree_init(&root->dirty_log_pages,
941 fs_info->btree_inode->i_mapping, GFP_NOFS);
943 btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
944 root->ref_tree = &root->ref_tree_struct;
946 memset(&root->root_key, 0, sizeof(root->root_key));
947 memset(&root->root_item, 0, sizeof(root->root_item));
948 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
949 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
950 root->defrag_trans_start = fs_info->generation;
951 init_completion(&root->kobj_unregister);
952 root->defrag_running = 0;
953 root->defrag_level = 0;
954 root->root_key.objectid = objectid;
955 root->anon_super.s_root = NULL;
956 root->anon_super.s_dev = 0;
957 INIT_LIST_HEAD(&root->anon_super.s_list);
958 INIT_LIST_HEAD(&root->anon_super.s_instances);
959 init_rwsem(&root->anon_super.s_umount);
964 static int find_and_setup_root(struct btrfs_root *tree_root,
965 struct btrfs_fs_info *fs_info,
967 struct btrfs_root *root)
973 __setup_root(tree_root->nodesize, tree_root->leafsize,
974 tree_root->sectorsize, tree_root->stripesize,
975 root, fs_info, objectid);
976 ret = btrfs_find_last_root(tree_root, objectid,
977 &root->root_item, &root->root_key);
980 generation = btrfs_root_generation(&root->root_item);
981 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
982 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
983 blocksize, generation);
988 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
989 struct btrfs_fs_info *fs_info)
991 struct extent_buffer *eb;
992 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
1001 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
1002 0, &start, &end, EXTENT_DIRTY);
1006 clear_extent_dirty(&log_root_tree->dirty_log_pages,
1007 start, end, GFP_NOFS);
1009 eb = fs_info->log_root_tree->node;
1011 WARN_ON(btrfs_header_level(eb) != 0);
1012 WARN_ON(btrfs_header_nritems(eb) != 0);
1014 ret = btrfs_free_reserved_extent(fs_info->tree_root,
1015 eb->start, eb->len);
1018 free_extent_buffer(eb);
1019 kfree(fs_info->log_root_tree);
1020 fs_info->log_root_tree = NULL;
1024 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1025 struct btrfs_fs_info *fs_info)
1027 struct btrfs_root *root;
1028 struct btrfs_root *tree_root = fs_info->tree_root;
1029 struct extent_buffer *leaf;
1031 root = kzalloc(sizeof(*root), GFP_NOFS);
1033 return ERR_PTR(-ENOMEM);
1035 __setup_root(tree_root->nodesize, tree_root->leafsize,
1036 tree_root->sectorsize, tree_root->stripesize,
1037 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1039 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1040 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1041 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1043 * log trees do not get reference counted because they go away
1044 * before a real commit is actually done. They do store pointers
1045 * to file data extents, and those reference counts still get
1046 * updated (along with back refs to the log tree).
1050 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1051 0, BTRFS_TREE_LOG_OBJECTID,
1052 trans->transid, 0, 0, 0);
1055 return ERR_CAST(leaf);
1059 btrfs_set_header_nritems(root->node, 0);
1060 btrfs_set_header_level(root->node, 0);
1061 btrfs_set_header_bytenr(root->node, root->node->start);
1062 btrfs_set_header_generation(root->node, trans->transid);
1063 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1065 write_extent_buffer(root->node, root->fs_info->fsid,
1066 (unsigned long)btrfs_header_fsid(root->node),
1068 btrfs_mark_buffer_dirty(root->node);
1069 btrfs_tree_unlock(root->node);
1073 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1074 struct btrfs_fs_info *fs_info)
1076 struct btrfs_root *log_root;
1078 log_root = alloc_log_tree(trans, fs_info);
1079 if (IS_ERR(log_root))
1080 return PTR_ERR(log_root);
1081 WARN_ON(fs_info->log_root_tree);
1082 fs_info->log_root_tree = log_root;
1086 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root)
1089 struct btrfs_root *log_root;
1090 struct btrfs_inode_item *inode_item;
1092 log_root = alloc_log_tree(trans, root->fs_info);
1093 if (IS_ERR(log_root))
1094 return PTR_ERR(log_root);
1096 log_root->last_trans = trans->transid;
1097 log_root->root_key.offset = root->root_key.objectid;
1099 inode_item = &log_root->root_item.inode;
1100 inode_item->generation = cpu_to_le64(1);
1101 inode_item->size = cpu_to_le64(3);
1102 inode_item->nlink = cpu_to_le32(1);
1103 inode_item->nbytes = cpu_to_le64(root->leafsize);
1104 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1106 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1107 btrfs_set_root_generation(&log_root->root_item, trans->transid);
1109 WARN_ON(root->log_root);
1110 root->log_root = log_root;
1111 root->log_transid = 0;
1115 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1116 struct btrfs_key *location)
1118 struct btrfs_root *root;
1119 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1120 struct btrfs_path *path;
1121 struct extent_buffer *l;
1127 root = kzalloc(sizeof(*root), GFP_NOFS);
1129 return ERR_PTR(-ENOMEM);
1130 if (location->offset == (u64)-1) {
1131 ret = find_and_setup_root(tree_root, fs_info,
1132 location->objectid, root);
1135 return ERR_PTR(ret);
1140 __setup_root(tree_root->nodesize, tree_root->leafsize,
1141 tree_root->sectorsize, tree_root->stripesize,
1142 root, fs_info, location->objectid);
1144 path = btrfs_alloc_path();
1146 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1153 read_extent_buffer(l, &root->root_item,
1154 btrfs_item_ptr_offset(l, path->slots[0]),
1155 sizeof(root->root_item));
1156 memcpy(&root->root_key, location, sizeof(*location));
1159 btrfs_release_path(root, path);
1160 btrfs_free_path(path);
1163 return ERR_PTR(ret);
1165 generation = btrfs_root_generation(&root->root_item);
1166 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1167 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1168 blocksize, generation);
1169 BUG_ON(!root->node);
1171 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1173 ret = btrfs_find_highest_inode(root, &highest_inode);
1175 root->highest_inode = highest_inode;
1176 root->last_inode_alloc = highest_inode;
1182 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1185 struct btrfs_root *root;
1187 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1188 return fs_info->tree_root;
1189 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1190 return fs_info->extent_root;
1192 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1193 (unsigned long)root_objectid);
1197 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1198 struct btrfs_key *location)
1200 struct btrfs_root *root;
1203 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1204 return fs_info->tree_root;
1205 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1206 return fs_info->extent_root;
1207 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1208 return fs_info->chunk_root;
1209 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1210 return fs_info->dev_root;
1211 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1212 return fs_info->csum_root;
1214 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1215 (unsigned long)location->objectid);
1219 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1223 set_anon_super(&root->anon_super, NULL);
1225 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1226 (unsigned long)root->root_key.objectid,
1229 free_extent_buffer(root->node);
1231 return ERR_PTR(ret);
1233 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1234 ret = btrfs_find_dead_roots(fs_info->tree_root,
1235 root->root_key.objectid, root);
1237 btrfs_orphan_cleanup(root);
1242 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1243 struct btrfs_key *location,
1244 const char *name, int namelen)
1246 struct btrfs_root *root;
1249 root = btrfs_read_fs_root_no_name(fs_info, location);
1256 ret = btrfs_set_root_name(root, name, namelen);
1258 free_extent_buffer(root->node);
1260 return ERR_PTR(ret);
1263 ret = btrfs_sysfs_add_root(root);
1265 free_extent_buffer(root->node);
1268 return ERR_PTR(ret);
1275 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1277 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1279 struct btrfs_device *device;
1280 struct backing_dev_info *bdi;
1282 if ((bdi_bits & (1 << BDI_write_congested)) &&
1283 btrfs_congested_async(info, 0))
1286 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1289 bdi = blk_get_backing_dev_info(device->bdev);
1290 if (bdi && bdi_congested(bdi, bdi_bits)) {
1299 * this unplugs every device on the box, and it is only used when page
1302 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1304 struct btrfs_device *device;
1305 struct btrfs_fs_info *info;
1307 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1308 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1312 bdi = blk_get_backing_dev_info(device->bdev);
1313 if (bdi->unplug_io_fn)
1314 bdi->unplug_io_fn(bdi, page);
1318 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1320 struct inode *inode;
1321 struct extent_map_tree *em_tree;
1322 struct extent_map *em;
1323 struct address_space *mapping;
1326 /* the generic O_DIRECT read code does this */
1328 __unplug_io_fn(bdi, page);
1333 * page->mapping may change at any time. Get a consistent copy
1334 * and use that for everything below
1337 mapping = page->mapping;
1341 inode = mapping->host;
1344 * don't do the expensive searching for a small number of
1347 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1348 __unplug_io_fn(bdi, page);
1352 offset = page_offset(page);
1354 em_tree = &BTRFS_I(inode)->extent_tree;
1355 spin_lock(&em_tree->lock);
1356 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1357 spin_unlock(&em_tree->lock);
1359 __unplug_io_fn(bdi, page);
1363 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1364 free_extent_map(em);
1365 __unplug_io_fn(bdi, page);
1368 offset = offset - em->start;
1369 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1370 em->block_start + offset, page);
1371 free_extent_map(em);
1374 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1377 bdi->ra_pages = default_backing_dev_info.ra_pages;
1379 bdi->capabilities = default_backing_dev_info.capabilities;
1380 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1381 bdi->unplug_io_data = info;
1382 bdi->congested_fn = btrfs_congested_fn;
1383 bdi->congested_data = info;
1387 static int bio_ready_for_csum(struct bio *bio)
1393 struct extent_io_tree *io_tree = NULL;
1394 struct btrfs_fs_info *info = NULL;
1395 struct bio_vec *bvec;
1399 bio_for_each_segment(bvec, bio, i) {
1400 page = bvec->bv_page;
1401 if (page->private == EXTENT_PAGE_PRIVATE) {
1402 length += bvec->bv_len;
1405 if (!page->private) {
1406 length += bvec->bv_len;
1409 length = bvec->bv_len;
1410 buf_len = page->private >> 2;
1411 start = page_offset(page) + bvec->bv_offset;
1412 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1413 info = BTRFS_I(page->mapping->host)->root->fs_info;
1415 /* are we fully contained in this bio? */
1416 if (buf_len <= length)
1419 ret = extent_range_uptodate(io_tree, start + length,
1420 start + buf_len - 1);
1425 * called by the kthread helper functions to finally call the bio end_io
1426 * functions. This is where read checksum verification actually happens
1428 static void end_workqueue_fn(struct btrfs_work *work)
1431 struct end_io_wq *end_io_wq;
1432 struct btrfs_fs_info *fs_info;
1435 end_io_wq = container_of(work, struct end_io_wq, work);
1436 bio = end_io_wq->bio;
1437 fs_info = end_io_wq->info;
1439 /* metadata bio reads are special because the whole tree block must
1440 * be checksummed at once. This makes sure the entire block is in
1441 * ram and up to date before trying to verify things. For
1442 * blocksize <= pagesize, it is basically a noop
1444 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1445 !bio_ready_for_csum(bio)) {
1446 btrfs_queue_worker(&fs_info->endio_meta_workers,
1450 error = end_io_wq->error;
1451 bio->bi_private = end_io_wq->private;
1452 bio->bi_end_io = end_io_wq->end_io;
1454 bio_endio(bio, error);
1457 static int cleaner_kthread(void *arg)
1459 struct btrfs_root *root = arg;
1463 if (root->fs_info->closing)
1466 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1467 mutex_lock(&root->fs_info->cleaner_mutex);
1468 btrfs_clean_old_snapshots(root);
1469 mutex_unlock(&root->fs_info->cleaner_mutex);
1471 if (freezing(current)) {
1475 if (root->fs_info->closing)
1477 set_current_state(TASK_INTERRUPTIBLE);
1479 __set_current_state(TASK_RUNNING);
1481 } while (!kthread_should_stop());
1485 static int transaction_kthread(void *arg)
1487 struct btrfs_root *root = arg;
1488 struct btrfs_trans_handle *trans;
1489 struct btrfs_transaction *cur;
1491 unsigned long delay;
1496 if (root->fs_info->closing)
1500 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1501 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1503 mutex_lock(&root->fs_info->trans_mutex);
1504 cur = root->fs_info->running_transaction;
1506 mutex_unlock(&root->fs_info->trans_mutex);
1510 now = get_seconds();
1511 if (now < cur->start_time || now - cur->start_time < 30) {
1512 mutex_unlock(&root->fs_info->trans_mutex);
1516 mutex_unlock(&root->fs_info->trans_mutex);
1517 trans = btrfs_start_transaction(root, 1);
1518 ret = btrfs_commit_transaction(trans, root);
1521 wake_up_process(root->fs_info->cleaner_kthread);
1522 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1524 if (freezing(current)) {
1527 if (root->fs_info->closing)
1529 set_current_state(TASK_INTERRUPTIBLE);
1530 schedule_timeout(delay);
1531 __set_current_state(TASK_RUNNING);
1533 } while (!kthread_should_stop());
1537 struct btrfs_root *open_ctree(struct super_block *sb,
1538 struct btrfs_fs_devices *fs_devices,
1548 struct btrfs_key location;
1549 struct buffer_head *bh;
1550 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1552 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1554 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1556 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1558 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1560 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1562 struct btrfs_root *log_tree_root;
1567 struct btrfs_super_block *disk_super;
1569 if (!extent_root || !tree_root || !fs_info ||
1570 !chunk_root || !dev_root || !csum_root) {
1574 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1575 INIT_LIST_HEAD(&fs_info->trans_list);
1576 INIT_LIST_HEAD(&fs_info->dead_roots);
1577 INIT_LIST_HEAD(&fs_info->hashers);
1578 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1579 INIT_LIST_HEAD(&fs_info->ordered_operations);
1580 spin_lock_init(&fs_info->delalloc_lock);
1581 spin_lock_init(&fs_info->new_trans_lock);
1582 spin_lock_init(&fs_info->ref_cache_lock);
1584 init_completion(&fs_info->kobj_unregister);
1585 fs_info->tree_root = tree_root;
1586 fs_info->extent_root = extent_root;
1587 fs_info->csum_root = csum_root;
1588 fs_info->chunk_root = chunk_root;
1589 fs_info->dev_root = dev_root;
1590 fs_info->fs_devices = fs_devices;
1591 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1592 INIT_LIST_HEAD(&fs_info->space_info);
1593 btrfs_mapping_init(&fs_info->mapping_tree);
1594 atomic_set(&fs_info->nr_async_submits, 0);
1595 atomic_set(&fs_info->async_delalloc_pages, 0);
1596 atomic_set(&fs_info->async_submit_draining, 0);
1597 atomic_set(&fs_info->nr_async_bios, 0);
1598 atomic_set(&fs_info->throttles, 0);
1599 atomic_set(&fs_info->throttle_gen, 0);
1601 fs_info->max_extent = (u64)-1;
1602 fs_info->max_inline = 8192 * 1024;
1603 setup_bdi(fs_info, &fs_info->bdi);
1604 fs_info->btree_inode = new_inode(sb);
1605 fs_info->btree_inode->i_ino = 1;
1606 fs_info->btree_inode->i_nlink = 1;
1607 fs_info->metadata_ratio = 8;
1609 fs_info->thread_pool_size = min_t(unsigned long,
1610 num_online_cpus() + 2, 8);
1612 INIT_LIST_HEAD(&fs_info->ordered_extents);
1613 spin_lock_init(&fs_info->ordered_extent_lock);
1615 sb->s_blocksize = 4096;
1616 sb->s_blocksize_bits = blksize_bits(4096);
1619 * we set the i_size on the btree inode to the max possible int.
1620 * the real end of the address space is determined by all of
1621 * the devices in the system
1623 fs_info->btree_inode->i_size = OFFSET_MAX;
1624 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1625 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1627 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1628 fs_info->btree_inode->i_mapping,
1630 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1633 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1635 spin_lock_init(&fs_info->block_group_cache_lock);
1636 fs_info->block_group_cache_tree.rb_node = NULL;
1638 extent_io_tree_init(&fs_info->pinned_extents,
1639 fs_info->btree_inode->i_mapping, GFP_NOFS);
1640 fs_info->do_barriers = 1;
1642 INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1643 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1644 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1646 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1647 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1648 sizeof(struct btrfs_key));
1649 insert_inode_hash(fs_info->btree_inode);
1651 mutex_init(&fs_info->trans_mutex);
1652 mutex_init(&fs_info->ordered_operations_mutex);
1653 mutex_init(&fs_info->tree_log_mutex);
1654 mutex_init(&fs_info->drop_mutex);
1655 mutex_init(&fs_info->chunk_mutex);
1656 mutex_init(&fs_info->transaction_kthread_mutex);
1657 mutex_init(&fs_info->cleaner_mutex);
1658 mutex_init(&fs_info->volume_mutex);
1659 mutex_init(&fs_info->tree_reloc_mutex);
1661 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1662 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1664 init_waitqueue_head(&fs_info->transaction_throttle);
1665 init_waitqueue_head(&fs_info->transaction_wait);
1666 init_waitqueue_head(&fs_info->async_submit_wait);
1668 __setup_root(4096, 4096, 4096, 4096, tree_root,
1669 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1672 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1676 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1677 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1678 sizeof(fs_info->super_for_commit));
1681 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1683 disk_super = &fs_info->super_copy;
1684 if (!btrfs_super_root(disk_super))
1687 ret = btrfs_parse_options(tree_root, options);
1693 features = btrfs_super_incompat_flags(disk_super) &
1694 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1696 printk(KERN_ERR "BTRFS: couldn't mount because of "
1697 "unsupported optional features (%Lx).\n",
1703 features = btrfs_super_compat_ro_flags(disk_super) &
1704 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1705 if (!(sb->s_flags & MS_RDONLY) && features) {
1706 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1707 "unsupported option features (%Lx).\n",
1714 * we need to start all the end_io workers up front because the
1715 * queue work function gets called at interrupt time, and so it
1716 * cannot dynamically grow.
1718 btrfs_init_workers(&fs_info->workers, "worker",
1719 fs_info->thread_pool_size);
1721 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1722 fs_info->thread_pool_size);
1724 btrfs_init_workers(&fs_info->submit_workers, "submit",
1725 min_t(u64, fs_devices->num_devices,
1726 fs_info->thread_pool_size));
1728 /* a higher idle thresh on the submit workers makes it much more
1729 * likely that bios will be send down in a sane order to the
1732 fs_info->submit_workers.idle_thresh = 64;
1734 fs_info->workers.idle_thresh = 16;
1735 fs_info->workers.ordered = 1;
1737 fs_info->delalloc_workers.idle_thresh = 2;
1738 fs_info->delalloc_workers.ordered = 1;
1740 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1741 btrfs_init_workers(&fs_info->endio_workers, "endio",
1742 fs_info->thread_pool_size);
1743 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1744 fs_info->thread_pool_size);
1745 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1746 "endio-meta-write", fs_info->thread_pool_size);
1747 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1748 fs_info->thread_pool_size);
1751 * endios are largely parallel and should have a very
1754 fs_info->endio_workers.idle_thresh = 4;
1755 fs_info->endio_meta_workers.idle_thresh = 4;
1757 fs_info->endio_write_workers.idle_thresh = 64;
1758 fs_info->endio_meta_write_workers.idle_thresh = 64;
1760 btrfs_start_workers(&fs_info->workers, 1);
1761 btrfs_start_workers(&fs_info->submit_workers, 1);
1762 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1763 btrfs_start_workers(&fs_info->fixup_workers, 1);
1764 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1765 btrfs_start_workers(&fs_info->endio_meta_workers,
1766 fs_info->thread_pool_size);
1767 btrfs_start_workers(&fs_info->endio_meta_write_workers,
1768 fs_info->thread_pool_size);
1769 btrfs_start_workers(&fs_info->endio_write_workers,
1770 fs_info->thread_pool_size);
1772 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1773 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1774 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1776 nodesize = btrfs_super_nodesize(disk_super);
1777 leafsize = btrfs_super_leafsize(disk_super);
1778 sectorsize = btrfs_super_sectorsize(disk_super);
1779 stripesize = btrfs_super_stripesize(disk_super);
1780 tree_root->nodesize = nodesize;
1781 tree_root->leafsize = leafsize;
1782 tree_root->sectorsize = sectorsize;
1783 tree_root->stripesize = stripesize;
1785 sb->s_blocksize = sectorsize;
1786 sb->s_blocksize_bits = blksize_bits(sectorsize);
1788 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1789 sizeof(disk_super->magic))) {
1790 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1791 goto fail_sb_buffer;
1794 mutex_lock(&fs_info->chunk_mutex);
1795 ret = btrfs_read_sys_array(tree_root);
1796 mutex_unlock(&fs_info->chunk_mutex);
1798 printk(KERN_WARNING "btrfs: failed to read the system "
1799 "array on %s\n", sb->s_id);
1800 goto fail_sys_array;
1803 blocksize = btrfs_level_size(tree_root,
1804 btrfs_super_chunk_root_level(disk_super));
1805 generation = btrfs_super_chunk_root_generation(disk_super);
1807 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1808 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1810 chunk_root->node = read_tree_block(chunk_root,
1811 btrfs_super_chunk_root(disk_super),
1812 blocksize, generation);
1813 BUG_ON(!chunk_root->node);
1815 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1816 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1819 mutex_lock(&fs_info->chunk_mutex);
1820 ret = btrfs_read_chunk_tree(chunk_root);
1821 mutex_unlock(&fs_info->chunk_mutex);
1823 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1825 goto fail_chunk_root;
1828 btrfs_close_extra_devices(fs_devices);
1830 blocksize = btrfs_level_size(tree_root,
1831 btrfs_super_root_level(disk_super));
1832 generation = btrfs_super_generation(disk_super);
1834 tree_root->node = read_tree_block(tree_root,
1835 btrfs_super_root(disk_super),
1836 blocksize, generation);
1837 if (!tree_root->node)
1838 goto fail_chunk_root;
1841 ret = find_and_setup_root(tree_root, fs_info,
1842 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1844 goto fail_tree_root;
1845 extent_root->track_dirty = 1;
1847 ret = find_and_setup_root(tree_root, fs_info,
1848 BTRFS_DEV_TREE_OBJECTID, dev_root);
1849 dev_root->track_dirty = 1;
1851 goto fail_extent_root;
1853 ret = find_and_setup_root(tree_root, fs_info,
1854 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1856 goto fail_extent_root;
1858 csum_root->track_dirty = 1;
1860 btrfs_read_block_groups(extent_root);
1862 fs_info->generation = generation;
1863 fs_info->last_trans_committed = generation;
1864 fs_info->data_alloc_profile = (u64)-1;
1865 fs_info->metadata_alloc_profile = (u64)-1;
1866 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1867 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1869 if (IS_ERR(fs_info->cleaner_kthread))
1870 goto fail_csum_root;
1872 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1874 "btrfs-transaction");
1875 if (IS_ERR(fs_info->transaction_kthread))
1878 if (btrfs_super_log_root(disk_super) != 0) {
1879 u64 bytenr = btrfs_super_log_root(disk_super);
1881 if (fs_devices->rw_devices == 0) {
1882 printk(KERN_WARNING "Btrfs log replay required "
1885 goto fail_trans_kthread;
1888 btrfs_level_size(tree_root,
1889 btrfs_super_log_root_level(disk_super));
1891 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1894 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1895 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1897 log_tree_root->node = read_tree_block(tree_root, bytenr,
1900 ret = btrfs_recover_log_trees(log_tree_root);
1903 if (sb->s_flags & MS_RDONLY) {
1904 ret = btrfs_commit_super(tree_root);
1909 if (!(sb->s_flags & MS_RDONLY)) {
1910 ret = btrfs_cleanup_reloc_trees(tree_root);
1914 location.objectid = BTRFS_FS_TREE_OBJECTID;
1915 location.type = BTRFS_ROOT_ITEM_KEY;
1916 location.offset = (u64)-1;
1918 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1919 if (!fs_info->fs_root)
1920 goto fail_trans_kthread;
1924 kthread_stop(fs_info->transaction_kthread);
1926 kthread_stop(fs_info->cleaner_kthread);
1929 * make sure we're done with the btree inode before we stop our
1932 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1933 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1936 free_extent_buffer(csum_root->node);
1938 free_extent_buffer(extent_root->node);
1940 free_extent_buffer(tree_root->node);
1942 free_extent_buffer(chunk_root->node);
1944 free_extent_buffer(dev_root->node);
1946 btrfs_stop_workers(&fs_info->fixup_workers);
1947 btrfs_stop_workers(&fs_info->delalloc_workers);
1948 btrfs_stop_workers(&fs_info->workers);
1949 btrfs_stop_workers(&fs_info->endio_workers);
1950 btrfs_stop_workers(&fs_info->endio_meta_workers);
1951 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1952 btrfs_stop_workers(&fs_info->endio_write_workers);
1953 btrfs_stop_workers(&fs_info->submit_workers);
1955 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1956 iput(fs_info->btree_inode);
1958 btrfs_close_devices(fs_info->fs_devices);
1959 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1960 bdi_destroy(&fs_info->bdi);
1969 return ERR_PTR(err);
1972 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1974 char b[BDEVNAME_SIZE];
1977 set_buffer_uptodate(bh);
1979 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1980 printk(KERN_WARNING "lost page write due to "
1981 "I/O error on %s\n",
1982 bdevname(bh->b_bdev, b));
1984 /* note, we dont' set_buffer_write_io_error because we have
1985 * our own ways of dealing with the IO errors
1987 clear_buffer_uptodate(bh);
1993 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1995 struct buffer_head *bh;
1996 struct buffer_head *latest = NULL;
1997 struct btrfs_super_block *super;
2002 /* we would like to check all the supers, but that would make
2003 * a btrfs mount succeed after a mkfs from a different FS.
2004 * So, we need to add a special mount option to scan for
2005 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2007 for (i = 0; i < 1; i++) {
2008 bytenr = btrfs_sb_offset(i);
2009 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2011 bh = __bread(bdev, bytenr / 4096, 4096);
2015 super = (struct btrfs_super_block *)bh->b_data;
2016 if (btrfs_super_bytenr(super) != bytenr ||
2017 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2018 sizeof(super->magic))) {
2023 if (!latest || btrfs_super_generation(super) > transid) {
2026 transid = btrfs_super_generation(super);
2034 static int write_dev_supers(struct btrfs_device *device,
2035 struct btrfs_super_block *sb,
2036 int do_barriers, int wait, int max_mirrors)
2038 struct buffer_head *bh;
2044 int last_barrier = 0;
2046 if (max_mirrors == 0)
2047 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2049 /* make sure only the last submit_bh does a barrier */
2051 for (i = 0; i < max_mirrors; i++) {
2052 bytenr = btrfs_sb_offset(i);
2053 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2054 device->total_bytes)
2060 for (i = 0; i < max_mirrors; i++) {
2061 bytenr = btrfs_sb_offset(i);
2062 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2066 bh = __find_get_block(device->bdev, bytenr / 4096,
2067 BTRFS_SUPER_INFO_SIZE);
2071 if (buffer_uptodate(bh)) {
2076 btrfs_set_super_bytenr(sb, bytenr);
2079 crc = btrfs_csum_data(NULL, (char *)sb +
2080 BTRFS_CSUM_SIZE, crc,
2081 BTRFS_SUPER_INFO_SIZE -
2083 btrfs_csum_final(crc, sb->csum);
2085 bh = __getblk(device->bdev, bytenr / 4096,
2086 BTRFS_SUPER_INFO_SIZE);
2087 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2089 set_buffer_uptodate(bh);
2092 bh->b_end_io = btrfs_end_buffer_write_sync;
2095 if (i == last_barrier && do_barriers && device->barriers) {
2096 ret = submit_bh(WRITE_BARRIER, bh);
2097 if (ret == -EOPNOTSUPP) {
2098 printk("btrfs: disabling barriers on dev %s\n",
2100 set_buffer_uptodate(bh);
2101 device->barriers = 0;
2104 ret = submit_bh(WRITE_SYNC, bh);
2107 ret = submit_bh(WRITE_SYNC, bh);
2112 if (!buffer_uptodate(bh))
2120 return errors < i ? 0 : -1;
2123 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2125 struct list_head *head = &root->fs_info->fs_devices->devices;
2126 struct btrfs_device *dev;
2127 struct btrfs_super_block *sb;
2128 struct btrfs_dev_item *dev_item;
2132 int total_errors = 0;
2135 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2136 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2138 sb = &root->fs_info->super_for_commit;
2139 dev_item = &sb->dev_item;
2140 list_for_each_entry(dev, head, dev_list) {
2145 if (!dev->in_fs_metadata || !dev->writeable)
2148 btrfs_set_stack_device_generation(dev_item, 0);
2149 btrfs_set_stack_device_type(dev_item, dev->type);
2150 btrfs_set_stack_device_id(dev_item, dev->devid);
2151 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2152 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2153 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2154 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2155 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2156 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2157 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2159 flags = btrfs_super_flags(sb);
2160 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2162 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2166 if (total_errors > max_errors) {
2167 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2173 list_for_each_entry(dev, head, dev_list) {
2176 if (!dev->in_fs_metadata || !dev->writeable)
2179 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2183 if (total_errors > max_errors) {
2184 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2191 int write_ctree_super(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root, int max_mirrors)
2196 ret = write_all_supers(root, max_mirrors);
2200 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2202 radix_tree_delete(&fs_info->fs_roots_radix,
2203 (unsigned long)root->root_key.objectid);
2204 if (root->anon_super.s_dev) {
2205 down_write(&root->anon_super.s_umount);
2206 kill_anon_super(&root->anon_super);
2209 free_extent_buffer(root->node);
2210 if (root->commit_root)
2211 free_extent_buffer(root->commit_root);
2217 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2220 struct btrfs_root *gang[8];
2224 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2229 for (i = 0; i < ret; i++)
2230 btrfs_free_fs_root(fs_info, gang[i]);
2235 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2237 u64 root_objectid = 0;
2238 struct btrfs_root *gang[8];
2243 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2244 (void **)gang, root_objectid,
2248 for (i = 0; i < ret; i++) {
2249 root_objectid = gang[i]->root_key.objectid;
2250 ret = btrfs_find_dead_roots(fs_info->tree_root,
2251 root_objectid, gang[i]);
2253 btrfs_orphan_cleanup(gang[i]);
2260 int btrfs_commit_super(struct btrfs_root *root)
2262 struct btrfs_trans_handle *trans;
2265 mutex_lock(&root->fs_info->cleaner_mutex);
2266 btrfs_clean_old_snapshots(root);
2267 mutex_unlock(&root->fs_info->cleaner_mutex);
2268 trans = btrfs_start_transaction(root, 1);
2269 ret = btrfs_commit_transaction(trans, root);
2271 /* run commit again to drop the original snapshot */
2272 trans = btrfs_start_transaction(root, 1);
2273 btrfs_commit_transaction(trans, root);
2274 ret = btrfs_write_and_wait_transaction(NULL, root);
2277 ret = write_ctree_super(NULL, root, 0);
2281 int close_ctree(struct btrfs_root *root)
2283 struct btrfs_fs_info *fs_info = root->fs_info;
2286 fs_info->closing = 1;
2289 kthread_stop(root->fs_info->transaction_kthread);
2290 kthread_stop(root->fs_info->cleaner_kthread);
2292 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2293 ret = btrfs_commit_super(root);
2295 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2298 if (fs_info->delalloc_bytes) {
2299 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2300 fs_info->delalloc_bytes);
2302 if (fs_info->total_ref_cache_size) {
2303 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2304 (unsigned long long)fs_info->total_ref_cache_size);
2307 if (fs_info->extent_root->node)
2308 free_extent_buffer(fs_info->extent_root->node);
2310 if (fs_info->tree_root->node)
2311 free_extent_buffer(fs_info->tree_root->node);
2313 if (root->fs_info->chunk_root->node)
2314 free_extent_buffer(root->fs_info->chunk_root->node);
2316 if (root->fs_info->dev_root->node)
2317 free_extent_buffer(root->fs_info->dev_root->node);
2319 if (root->fs_info->csum_root->node)
2320 free_extent_buffer(root->fs_info->csum_root->node);
2322 btrfs_free_block_groups(root->fs_info);
2324 del_fs_roots(fs_info);
2326 iput(fs_info->btree_inode);
2328 btrfs_stop_workers(&fs_info->fixup_workers);
2329 btrfs_stop_workers(&fs_info->delalloc_workers);
2330 btrfs_stop_workers(&fs_info->workers);
2331 btrfs_stop_workers(&fs_info->endio_workers);
2332 btrfs_stop_workers(&fs_info->endio_meta_workers);
2333 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2334 btrfs_stop_workers(&fs_info->endio_write_workers);
2335 btrfs_stop_workers(&fs_info->submit_workers);
2338 while (!list_empty(&fs_info->hashers)) {
2339 struct btrfs_hasher *hasher;
2340 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2342 list_del(&hasher->hashers);
2343 crypto_free_hash(&fs_info->hash_tfm);
2347 btrfs_close_devices(fs_info->fs_devices);
2348 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2350 bdi_destroy(&fs_info->bdi);
2352 kfree(fs_info->extent_root);
2353 kfree(fs_info->tree_root);
2354 kfree(fs_info->chunk_root);
2355 kfree(fs_info->dev_root);
2356 kfree(fs_info->csum_root);
2360 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2363 struct inode *btree_inode = buf->first_page->mapping->host;
2365 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2369 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2374 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2376 struct inode *btree_inode = buf->first_page->mapping->host;
2377 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2381 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2383 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2384 u64 transid = btrfs_header_generation(buf);
2385 struct inode *btree_inode = root->fs_info->btree_inode;
2388 btrfs_assert_tree_locked(buf);
2389 if (transid != root->fs_info->generation) {
2390 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2391 "found %llu running %llu\n",
2392 (unsigned long long)buf->start,
2393 (unsigned long long)transid,
2394 (unsigned long long)root->fs_info->generation);
2397 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2400 spin_lock(&root->fs_info->delalloc_lock);
2401 root->fs_info->dirty_metadata_bytes += buf->len;
2402 spin_unlock(&root->fs_info->delalloc_lock);
2406 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2409 * looks as though older kernels can get into trouble with
2410 * this code, they end up stuck in balance_dirty_pages forever
2412 struct extent_io_tree *tree;
2415 unsigned long thresh = 32 * 1024 * 1024;
2416 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2418 if (current->flags & PF_MEMALLOC)
2421 num_dirty = count_range_bits(tree, &start, (u64)-1,
2422 thresh, EXTENT_DIRTY);
2423 if (num_dirty > thresh) {
2424 balance_dirty_pages_ratelimited_nr(
2425 root->fs_info->btree_inode->i_mapping, 1);
2430 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2432 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2434 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2436 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2440 int btree_lock_page_hook(struct page *page)
2442 struct inode *inode = page->mapping->host;
2443 struct btrfs_root *root = BTRFS_I(inode)->root;
2444 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2445 struct extent_buffer *eb;
2447 u64 bytenr = page_offset(page);
2449 if (page->private == EXTENT_PAGE_PRIVATE)
2452 len = page->private >> 2;
2453 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2457 btrfs_tree_lock(eb);
2458 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2460 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2461 spin_lock(&root->fs_info->delalloc_lock);
2462 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2463 root->fs_info->dirty_metadata_bytes -= eb->len;
2466 spin_unlock(&root->fs_info->delalloc_lock);
2469 btrfs_tree_unlock(eb);
2470 free_extent_buffer(eb);
2476 static struct extent_io_ops btree_extent_io_ops = {
2477 .write_cache_pages_lock_hook = btree_lock_page_hook,
2478 .readpage_end_io_hook = btree_readpage_end_io_hook,
2479 .submit_bio_hook = btree_submit_bio_hook,
2480 /* note we're sharing with inode.c for the merge bio hook */
2481 .merge_bio_hook = btrfs_merge_bio_hook,