2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
56 #include <asm/processor.h>
57 #include <asm/nvram.h>
58 #include <asm/cache.h>
59 #include <asm/machdep.h>
60 #include <asm/uaccess.h>
64 #include <asm/div64.h>
66 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
76 /* keep track of when we need to update the rtc */
77 time_t last_rtc_update;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
87 #define XSEC_PER_SEC (1024*1024)
90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
104 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
105 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs; /* 0.64 fraction */
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
116 unsigned tb_to_ns_shift;
118 struct gettimeofday_struct do_gtod;
120 extern unsigned long wall_jiffies;
122 extern struct timezone sys_tz;
123 static long timezone_offset;
125 unsigned long ppc_proc_freq;
126 unsigned long ppc_tb_freq;
128 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
129 static DEFINE_PER_CPU(u64, last_jiffy);
131 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
133 * Factors for converting from cputime_t (timebase ticks) to
134 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
135 * These are all stored as 0.64 fixed-point binary fractions.
137 u64 __cputime_jiffies_factor;
138 EXPORT_SYMBOL(__cputime_jiffies_factor);
139 u64 __cputime_msec_factor;
140 EXPORT_SYMBOL(__cputime_msec_factor);
141 u64 __cputime_sec_factor;
142 EXPORT_SYMBOL(__cputime_sec_factor);
143 u64 __cputime_clockt_factor;
144 EXPORT_SYMBOL(__cputime_clockt_factor);
146 static void calc_cputime_factors(void)
148 struct div_result res;
150 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
151 __cputime_jiffies_factor = res.result_low;
152 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
153 __cputime_msec_factor = res.result_low;
154 div128_by_32(1, 0, tb_ticks_per_sec, &res);
155 __cputime_sec_factor = res.result_low;
156 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
157 __cputime_clockt_factor = res.result_low;
161 * Read the PURR on systems that have it, otherwise the timebase.
163 static u64 read_purr(void)
165 if (cpu_has_feature(CPU_FTR_PURR))
166 return mfspr(SPRN_PURR);
171 * Account time for a transition between system, hard irq
174 void account_system_vtime(struct task_struct *tsk)
179 local_irq_save(flags);
181 delta = now - get_paca()->startpurr;
182 get_paca()->startpurr = now;
183 if (!in_interrupt()) {
184 delta += get_paca()->system_time;
185 get_paca()->system_time = 0;
187 account_system_time(tsk, 0, delta);
188 local_irq_restore(flags);
192 * Transfer the user and system times accumulated in the paca
193 * by the exception entry and exit code to the generic process
194 * user and system time records.
195 * Must be called with interrupts disabled.
197 void account_process_vtime(struct task_struct *tsk)
201 utime = get_paca()->user_time;
202 get_paca()->user_time = 0;
203 account_user_time(tsk, utime);
206 static void account_process_time(struct pt_regs *regs)
208 int cpu = smp_processor_id();
210 account_process_vtime(current);
212 if (rcu_pending(cpu))
213 rcu_check_callbacks(cpu, user_mode(regs));
215 run_posix_cpu_timers(current);
218 #ifdef CONFIG_PPC_SPLPAR
220 * Stuff for accounting stolen time.
222 struct cpu_purr_data {
223 int initialized; /* thread is running */
224 u64 tb0; /* timebase at origin time */
225 u64 purr0; /* PURR at origin time */
226 u64 tb; /* last TB value read */
227 u64 purr; /* last PURR value read */
228 u64 stolen; /* stolen time so far */
232 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
234 static void snapshot_tb_and_purr(void *data)
236 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
239 p->purr0 = mfspr(SPRN_PURR);
247 * Called during boot when all cpus have come up.
249 void snapshot_timebases(void)
253 if (!cpu_has_feature(CPU_FTR_PURR))
255 for_each_possible_cpu(cpu)
256 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
257 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
260 void calculate_steal_time(void)
264 struct cpu_purr_data *p0, *pme, *phim;
267 if (!cpu_has_feature(CPU_FTR_PURR))
269 cpu = smp_processor_id();
270 pme = &per_cpu(cpu_purr_data, cpu);
271 if (!pme->initialized)
272 return; /* this can happen in early boot */
273 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
274 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
275 spin_lock(&p0->lock);
277 purr = mfspr(SPRN_PURR) - pme->purr0;
278 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
279 stolen = (tb - pme->tb) - (purr - pme->purr);
284 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
287 account_steal_time(current, stolen);
288 p0->stolen += stolen;
292 spin_unlock(&p0->lock);
296 * Must be called before the cpu is added to the online map when
297 * a cpu is being brought up at runtime.
299 static void snapshot_purr(void)
303 struct cpu_purr_data *p0, *pme, *phim;
306 if (!cpu_has_feature(CPU_FTR_PURR))
308 cpu = smp_processor_id();
309 pme = &per_cpu(cpu_purr_data, cpu);
310 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
311 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
312 spin_lock_irqsave(&p0->lock, flags);
313 pme->tb = pme->tb0 = mftb();
314 purr = mfspr(SPRN_PURR);
315 if (!phim->initialized) {
319 /* set p->purr and p->purr0 for no change in p0->stolen */
320 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
321 pme->purr0 = purr - pme->purr;
323 pme->initialized = 1;
324 spin_unlock_irqrestore(&p0->lock, flags);
327 #endif /* CONFIG_PPC_SPLPAR */
329 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
330 #define calc_cputime_factors()
331 #define account_process_time(regs) update_process_times(user_mode(regs))
332 #define calculate_steal_time() do { } while (0)
335 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
336 #define snapshot_purr() do { } while (0)
340 * Called when a cpu comes up after the system has finished booting,
341 * i.e. as a result of a hotplug cpu action.
343 void snapshot_timebase(void)
345 __get_cpu_var(last_jiffy) = get_tb();
349 void __delay(unsigned long loops)
357 /* the RTCL register wraps at 1000000000 */
358 diff = get_rtcl() - start;
361 } while (diff < loops);
364 while (get_tbl() - start < loops)
369 EXPORT_SYMBOL(__delay);
371 void udelay(unsigned long usecs)
373 __delay(tb_ticks_per_usec * usecs);
375 EXPORT_SYMBOL(udelay);
377 static __inline__ void timer_check_rtc(void)
380 * update the rtc when needed, this should be performed on the
381 * right fraction of a second. Half or full second ?
382 * Full second works on mk48t59 clocks, others need testing.
383 * Note that this update is basically only used through
384 * the adjtimex system calls. Setting the HW clock in
385 * any other way is a /dev/rtc and userland business.
386 * This is still wrong by -0.5/+1.5 jiffies because of the
387 * timer interrupt resolution and possible delay, but here we
388 * hit a quantization limit which can only be solved by higher
389 * resolution timers and decoupling time management from timer
390 * interrupts. This is also wrong on the clocks
391 * which require being written at the half second boundary.
392 * We should have an rtc call that only sets the minutes and
393 * seconds like on Intel to avoid problems with non UTC clocks.
395 if (ppc_md.set_rtc_time && ntp_synced() &&
396 xtime.tv_sec - last_rtc_update >= 659 &&
397 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
399 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
402 if (ppc_md.set_rtc_time(&tm) == 0)
403 last_rtc_update = xtime.tv_sec + 1;
405 /* Try again one minute later */
406 last_rtc_update += 60;
411 * This version of gettimeofday has microsecond resolution.
413 static inline void __do_gettimeofday(struct timeval *tv)
415 unsigned long sec, usec;
417 struct gettimeofday_vars *temp_varp;
418 u64 temp_tb_to_xs, temp_stamp_xsec;
421 * These calculations are faster (gets rid of divides)
422 * if done in units of 1/2^20 rather than microseconds.
423 * The conversion to microseconds at the end is done
424 * without a divide (and in fact, without a multiply)
426 temp_varp = do_gtod.varp;
428 /* Sampling the time base must be done after loading
429 * do_gtod.varp in order to avoid racing with update_gtod.
431 data_barrier(temp_varp);
432 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
433 temp_tb_to_xs = temp_varp->tb_to_xs;
434 temp_stamp_xsec = temp_varp->stamp_xsec;
435 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
436 sec = xsec / XSEC_PER_SEC;
437 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
438 usec = SCALE_XSEC(usec, 1000000);
444 void do_gettimeofday(struct timeval *tv)
447 /* do this the old way */
448 unsigned long flags, seq;
449 unsigned int sec, nsec, usec;
452 seq = read_seqbegin_irqsave(&xtime_lock, flags);
454 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
455 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
457 while (usec >= 1000000) {
465 __do_gettimeofday(tv);
468 EXPORT_SYMBOL(do_gettimeofday);
471 * There are two copies of tb_to_xs and stamp_xsec so that no
472 * lock is needed to access and use these values in
473 * do_gettimeofday. We alternate the copies and as long as a
474 * reasonable time elapses between changes, there will never
475 * be inconsistent values. ntpd has a minimum of one minute
478 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
482 struct gettimeofday_vars *temp_varp;
484 temp_idx = (do_gtod.var_idx == 0);
485 temp_varp = &do_gtod.vars[temp_idx];
487 temp_varp->tb_to_xs = new_tb_to_xs;
488 temp_varp->tb_orig_stamp = new_tb_stamp;
489 temp_varp->stamp_xsec = new_stamp_xsec;
491 do_gtod.varp = temp_varp;
492 do_gtod.var_idx = temp_idx;
495 * tb_update_count is used to allow the userspace gettimeofday code
496 * to assure itself that it sees a consistent view of the tb_to_xs and
497 * stamp_xsec variables. It reads the tb_update_count, then reads
498 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
499 * the two values of tb_update_count match and are even then the
500 * tb_to_xs and stamp_xsec values are consistent. If not, then it
501 * loops back and reads them again until this criteria is met.
502 * We expect the caller to have done the first increment of
503 * vdso_data->tb_update_count already.
505 vdso_data->tb_orig_stamp = new_tb_stamp;
506 vdso_data->stamp_xsec = new_stamp_xsec;
507 vdso_data->tb_to_xs = new_tb_to_xs;
508 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
509 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
511 ++(vdso_data->tb_update_count);
515 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
516 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
517 * difference tb - tb_orig_stamp small enough to always fit inside a
518 * 32 bits number. This is a requirement of our fast 32 bits userland
519 * implementation in the vdso. If we "miss" a call to this function
520 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
521 * with a too big difference, then the vdso will fallback to calling
524 static __inline__ void timer_recalc_offset(u64 cur_tb)
526 unsigned long offset;
529 u64 tb, xsec_old, xsec_new;
530 struct gettimeofday_vars *varp;
534 tlen = current_tick_length();
535 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
536 if (tlen == last_tick_len && offset < 0x80000000u)
538 if (tlen != last_tick_len) {
539 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
540 last_tick_len = tlen;
542 t2x = do_gtod.varp->tb_to_xs;
543 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
544 do_div(new_stamp_xsec, 1000000000);
545 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
547 ++vdso_data->tb_update_count;
551 * Make sure time doesn't go backwards for userspace gettimeofday.
555 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
557 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
558 if (xsec_new < xsec_old)
559 new_stamp_xsec += xsec_old - xsec_new;
561 update_gtod(cur_tb, new_stamp_xsec, t2x);
565 unsigned long profile_pc(struct pt_regs *regs)
567 unsigned long pc = instruction_pointer(regs);
569 if (in_lock_functions(pc))
574 EXPORT_SYMBOL(profile_pc);
577 #ifdef CONFIG_PPC_ISERIES
580 * This function recalibrates the timebase based on the 49-bit time-of-day
581 * value in the Titan chip. The Titan is much more accurate than the value
582 * returned by the service processor for the timebase frequency.
585 static void iSeries_tb_recal(void)
587 struct div_result divres;
588 unsigned long titan, tb;
590 titan = HvCallXm_loadTod();
591 if ( iSeries_recal_titan ) {
592 unsigned long tb_ticks = tb - iSeries_recal_tb;
593 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
594 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
595 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
596 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
598 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
599 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
601 if ( tick_diff < 0 ) {
602 tick_diff = -tick_diff;
606 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
607 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
608 new_tb_ticks_per_jiffy, sign, tick_diff );
609 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
610 tb_ticks_per_sec = new_tb_ticks_per_sec;
611 calc_cputime_factors();
612 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
613 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
614 tb_to_xs = divres.result_low;
615 do_gtod.varp->tb_to_xs = tb_to_xs;
616 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
617 vdso_data->tb_to_xs = tb_to_xs;
620 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
621 " new tb_ticks_per_jiffy = %lu\n"
622 " old tb_ticks_per_jiffy = %lu\n",
623 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
627 iSeries_recal_titan = titan;
628 iSeries_recal_tb = tb;
633 * For iSeries shared processors, we have to let the hypervisor
634 * set the hardware decrementer. We set a virtual decrementer
635 * in the lppaca and call the hypervisor if the virtual
636 * decrementer is less than the current value in the hardware
637 * decrementer. (almost always the new decrementer value will
638 * be greater than the current hardware decementer so the hypervisor
639 * call will not be needed)
643 * timer_interrupt - gets called when the decrementer overflows,
644 * with interrupts disabled.
646 void timer_interrupt(struct pt_regs * regs)
649 int cpu = smp_processor_id();
654 if (atomic_read(&ppc_n_lost_interrupts) != 0)
660 profile_tick(CPU_PROFILING, regs);
661 calculate_steal_time();
663 #ifdef CONFIG_PPC_ISERIES
664 get_lppaca()->int_dword.fields.decr_int = 0;
667 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
668 >= tb_ticks_per_jiffy) {
669 /* Update last_jiffy */
670 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
671 /* Handle RTCL overflow on 601 */
672 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
673 per_cpu(last_jiffy, cpu) -= 1000000000;
676 * We cannot disable the decrementer, so in the period
677 * between this cpu's being marked offline in cpu_online_map
678 * and calling stop-self, it is taking timer interrupts.
679 * Avoid calling into the scheduler rebalancing code if this
682 if (!cpu_is_offline(cpu))
683 account_process_time(regs);
686 * No need to check whether cpu is offline here; boot_cpuid
687 * should have been fixed up by now.
689 if (cpu != boot_cpuid)
692 write_seqlock(&xtime_lock);
693 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
694 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
695 tb_last_jiffy = tb_next_jiffy;
697 timer_recalc_offset(tb_last_jiffy);
700 write_sequnlock(&xtime_lock);
703 next_dec = tb_ticks_per_jiffy - ticks;
706 #ifdef CONFIG_PPC_ISERIES
707 if (hvlpevent_is_pending())
708 process_hvlpevents(regs);
712 /* collect purr register values often, for accurate calculations */
713 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
714 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
715 cu->current_tb = mfspr(SPRN_PURR);
722 void wakeup_decrementer(void)
727 * The timebase gets saved on sleep and restored on wakeup,
728 * so all we need to do is to reset the decrementer.
730 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
731 if (ticks < tb_ticks_per_jiffy)
732 ticks = tb_ticks_per_jiffy - ticks;
739 void __init smp_space_timers(unsigned int max_cpus)
742 unsigned long half = tb_ticks_per_jiffy / 2;
743 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
744 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
747 previous_tb -= tb_ticks_per_jiffy;
749 * The stolen time calculation for POWER5 shared-processor LPAR
750 * systems works better if the two threads' timebase interrupts
751 * are staggered by half a jiffy with respect to each other.
753 for_each_possible_cpu(i) {
756 if (i == (boot_cpuid ^ 1))
757 per_cpu(last_jiffy, i) =
758 per_cpu(last_jiffy, boot_cpuid) - half;
760 per_cpu(last_jiffy, i) =
761 per_cpu(last_jiffy, i ^ 1) + half;
763 previous_tb += offset;
764 per_cpu(last_jiffy, i) = previous_tb;
771 * Scheduler clock - returns current time in nanosec units.
773 * Note: mulhdu(a, b) (multiply high double unsigned) returns
774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
775 * are 64-bit unsigned numbers.
777 unsigned long long sched_clock(void)
781 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
784 int do_settimeofday(struct timespec *tv)
786 time_t wtm_sec, new_sec = tv->tv_sec;
787 long wtm_nsec, new_nsec = tv->tv_nsec;
790 unsigned long tb_delta;
792 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
795 write_seqlock_irqsave(&xtime_lock, flags);
798 * Updating the RTC is not the job of this code. If the time is
799 * stepped under NTP, the RTC will be updated after STA_UNSYNC
800 * is cleared. Tools like clock/hwclock either copy the RTC
801 * to the system time, in which case there is no point in writing
802 * to the RTC again, or write to the RTC but then they don't call
803 * settimeofday to perform this operation.
805 #ifdef CONFIG_PPC_ISERIES
806 if (first_settimeofday) {
808 first_settimeofday = 0;
812 /* Make userspace gettimeofday spin until we're done. */
813 ++vdso_data->tb_update_count;
817 * Subtract off the number of nanoseconds since the
818 * beginning of the last tick.
819 * Note that since we don't increment jiffies_64 anywhere other
820 * than in do_timer (since we don't have a lost tick problem),
821 * wall_jiffies will always be the same as jiffies,
822 * and therefore the (jiffies - wall_jiffies) computation
825 tb_delta = tb_ticks_since(tb_last_jiffy);
826 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
827 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
829 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
830 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
832 set_normalized_timespec(&xtime, new_sec, new_nsec);
833 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
835 /* In case of a large backwards jump in time with NTP, we want the
836 * clock to be updated as soon as the PLL is again in lock.
838 last_rtc_update = new_sec - 658;
842 new_xsec = xtime.tv_nsec;
844 new_xsec *= XSEC_PER_SEC;
845 do_div(new_xsec, NSEC_PER_SEC);
847 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
848 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
851 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
853 write_sequnlock_irqrestore(&xtime_lock, flags);
858 EXPORT_SYMBOL(do_settimeofday);
860 static int __init get_freq(char *name, int cells, unsigned long *val)
862 struct device_node *cpu;
863 const unsigned int *fp;
866 /* The cpu node should have timebase and clock frequency properties */
867 cpu = of_find_node_by_type(NULL, "cpu");
870 fp = get_property(cpu, name, NULL);
873 *val = of_read_ulong(fp, cells);
882 void __init generic_calibrate_decr(void)
884 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
886 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
887 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
889 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
893 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
895 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
896 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
898 printk(KERN_ERR "WARNING: Estimating processor frequency "
903 /* Set the time base to zero */
907 /* Clear any pending timer interrupts */
908 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
910 /* Enable decrementer interrupt */
911 mtspr(SPRN_TCR, TCR_DIE);
915 unsigned long get_boot_time(void)
919 if (ppc_md.get_boot_time)
920 return ppc_md.get_boot_time();
921 if (!ppc_md.get_rtc_time)
923 ppc_md.get_rtc_time(&tm);
924 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
925 tm.tm_hour, tm.tm_min, tm.tm_sec);
928 /* This function is only called on the boot processor */
929 void __init time_init(void)
932 unsigned long tm = 0;
933 struct div_result res;
937 if (ppc_md.time_init != NULL)
938 timezone_offset = ppc_md.time_init();
941 /* 601 processor: dec counts down by 128 every 128ns */
942 ppc_tb_freq = 1000000000;
943 tb_last_jiffy = get_rtcl();
945 /* Normal PowerPC with timebase register */
946 ppc_md.calibrate_decr();
947 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
948 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
949 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
950 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
951 tb_last_jiffy = get_tb();
954 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
955 tb_ticks_per_sec = ppc_tb_freq;
956 tb_ticks_per_usec = ppc_tb_freq / 1000000;
957 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
958 calc_cputime_factors();
961 * Calculate the length of each tick in ns. It will not be
962 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
963 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
966 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
967 do_div(x, ppc_tb_freq);
969 last_tick_len = x << TICKLEN_SCALE;
972 * Compute ticklen_to_xs, which is a factor which gets multiplied
973 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
975 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
976 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
977 * which turns out to be N = 51 - SHIFT_HZ.
978 * This gives the result as a 0.64 fixed-point fraction.
979 * That value is reduced by an offset amounting to 1 xsec per
980 * 2^31 timebase ticks to avoid problems with time going backwards
981 * by 1 xsec when we do timer_recalc_offset due to losing the
982 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
983 * since there are 2^20 xsec in a second.
985 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
986 tb_ticks_per_jiffy << SHIFT_HZ, &res);
987 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
988 ticklen_to_xs = res.result_low;
990 /* Compute tb_to_xs from tick_nsec */
991 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
994 * Compute scale factor for sched_clock.
995 * The calibrate_decr() function has set tb_ticks_per_sec,
996 * which is the timebase frequency.
997 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
998 * the 128-bit result as a 64.64 fixed-point number.
999 * We then shift that number right until it is less than 1.0,
1000 * giving us the scale factor and shift count to use in
1003 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1004 scale = res.result_low;
1005 for (shift = 0; res.result_high != 0; ++shift) {
1006 scale = (scale >> 1) | (res.result_high << 63);
1007 res.result_high >>= 1;
1009 tb_to_ns_scale = scale;
1010 tb_to_ns_shift = shift;
1012 tm = get_boot_time();
1014 write_seqlock_irqsave(&xtime_lock, flags);
1016 /* If platform provided a timezone (pmac), we correct the time */
1017 if (timezone_offset) {
1018 sys_tz.tz_minuteswest = -timezone_offset / 60;
1019 sys_tz.tz_dsttime = 0;
1020 tm -= timezone_offset;
1025 do_gtod.varp = &do_gtod.vars[0];
1026 do_gtod.var_idx = 0;
1027 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1028 __get_cpu_var(last_jiffy) = tb_last_jiffy;
1029 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1030 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1031 do_gtod.varp->tb_to_xs = tb_to_xs;
1032 do_gtod.tb_to_us = tb_to_us;
1034 vdso_data->tb_orig_stamp = tb_last_jiffy;
1035 vdso_data->tb_update_count = 0;
1036 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1037 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1038 vdso_data->tb_to_xs = tb_to_xs;
1042 last_rtc_update = xtime.tv_sec;
1043 set_normalized_timespec(&wall_to_monotonic,
1044 -xtime.tv_sec, -xtime.tv_nsec);
1045 write_sequnlock_irqrestore(&xtime_lock, flags);
1047 /* Not exact, but the timer interrupt takes care of this */
1048 set_dec(tb_ticks_per_jiffy);
1053 #define STARTOFTIME 1970
1054 #define SECDAY 86400L
1055 #define SECYR (SECDAY * 365)
1056 #define leapyear(year) ((year) % 4 == 0 && \
1057 ((year) % 100 != 0 || (year) % 400 == 0))
1058 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1059 #define days_in_month(a) (month_days[(a) - 1])
1061 static int month_days[12] = {
1062 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1066 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1068 void GregorianDay(struct rtc_time * tm)
1073 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1075 lastYear = tm->tm_year - 1;
1078 * Number of leap corrections to apply up to end of last year
1080 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1083 * This year is a leap year if it is divisible by 4 except when it is
1084 * divisible by 100 unless it is divisible by 400
1086 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1088 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1090 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1093 tm->tm_wday = day % 7;
1096 void to_tm(int tim, struct rtc_time * tm)
1099 register long hms, day;
1104 /* Hours, minutes, seconds are easy */
1105 tm->tm_hour = hms / 3600;
1106 tm->tm_min = (hms % 3600) / 60;
1107 tm->tm_sec = (hms % 3600) % 60;
1109 /* Number of years in days */
1110 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1111 day -= days_in_year(i);
1114 /* Number of months in days left */
1115 if (leapyear(tm->tm_year))
1116 days_in_month(FEBRUARY) = 29;
1117 for (i = 1; day >= days_in_month(i); i++)
1118 day -= days_in_month(i);
1119 days_in_month(FEBRUARY) = 28;
1122 /* Days are what is left over (+1) from all that. */
1123 tm->tm_mday = day + 1;
1126 * Determine the day of week
1131 /* Auxiliary function to compute scaling factors */
1132 /* Actually the choice of a timebase running at 1/4 the of the bus
1133 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1134 * It makes this computation very precise (27-28 bits typically) which
1135 * is optimistic considering the stability of most processor clock
1136 * oscillators and the precision with which the timebase frequency
1137 * is measured but does not harm.
1139 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1141 unsigned mlt=0, tmp, err;
1142 /* No concern for performance, it's done once: use a stupid
1143 * but safe and compact method to find the multiplier.
1146 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1147 if (mulhwu(inscale, mlt|tmp) < outscale)
1151 /* We might still be off by 1 for the best approximation.
1152 * A side effect of this is that if outscale is too large
1153 * the returned value will be zero.
1154 * Many corner cases have been checked and seem to work,
1155 * some might have been forgotten in the test however.
1158 err = inscale * (mlt+1);
1159 if (err <= inscale/2)
1165 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1168 void div128_by_32(u64 dividend_high, u64 dividend_low,
1169 unsigned divisor, struct div_result *dr)
1171 unsigned long a, b, c, d;
1172 unsigned long w, x, y, z;
1175 a = dividend_high >> 32;
1176 b = dividend_high & 0xffffffff;
1177 c = dividend_low >> 32;
1178 d = dividend_low & 0xffffffff;
1181 ra = ((u64)(a - (w * divisor)) << 32) + b;
1183 rb = ((u64) do_div(ra, divisor) << 32) + c;
1186 rc = ((u64) do_div(rb, divisor) << 32) + d;
1189 do_div(rc, divisor);
1192 dr->result_high = ((u64)w << 32) + x;
1193 dr->result_low = ((u64)y << 32) + z;