4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
82 unsigned long long __attribute__((weak)) sched_clock(void)
84 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114 * These are the 'tuning knobs' of the scheduler:
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
119 #define DEF_TIMESLICE (100 * HZ / 1000)
122 * single value that denotes runtime == period, ie unlimited time.
124 #define RUNTIME_INF ((u64)~0ULL)
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
218 if (rt_b->rt_runtime == RUNTIME_INF)
221 if (hrtimer_active(&rt_b->rt_period_timer))
224 spin_lock(&rt_b->rt_runtime_lock);
226 if (hrtimer_active(&rt_b->rt_period_timer))
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start(&rt_b->rt_period_timer,
232 rt_b->rt_period_timer.expires,
235 spin_unlock(&rt_b->rt_runtime_lock);
238 #ifdef CONFIG_RT_GROUP_SCHED
239 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
241 hrtimer_cancel(&rt_b->rt_period_timer);
245 #ifdef CONFIG_GROUP_SCHED
247 #include <linux/cgroup.h>
251 static LIST_HEAD(task_groups);
253 /* task group related information */
255 #ifdef CONFIG_CGROUP_SCHED
256 struct cgroup_subsys_state css;
259 #ifdef CONFIG_FAIR_GROUP_SCHED
260 /* schedulable entities of this group on each cpu */
261 struct sched_entity **se;
262 /* runqueue "owned" by this group on each cpu */
263 struct cfs_rq **cfs_rq;
264 unsigned long shares;
267 #ifdef CONFIG_RT_GROUP_SCHED
268 struct sched_rt_entity **rt_se;
269 struct rt_rq **rt_rq;
271 struct rt_bandwidth rt_bandwidth;
275 struct list_head list;
277 struct task_group *parent;
278 struct list_head siblings;
279 struct list_head children;
282 #ifdef CONFIG_USER_SCHED
286 * Every UID task group (including init_task_group aka UID-0) will
287 * be a child to this group.
289 struct task_group root_task_group;
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 /* Default task group's sched entity on each cpu */
293 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
294 /* Default task group's cfs_rq on each cpu */
295 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
298 #ifdef CONFIG_RT_GROUP_SCHED
299 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
300 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
303 #define root_task_group init_task_group
306 /* task_group_lock serializes add/remove of task groups and also changes to
307 * a task group's cpu shares.
309 static DEFINE_SPINLOCK(task_group_lock);
311 /* doms_cur_mutex serializes access to doms_cur[] array */
312 static DEFINE_MUTEX(doms_cur_mutex);
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 #ifdef CONFIG_USER_SCHED
316 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
318 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
323 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 /* Default task group.
327 * Every task in system belong to this group at bootup.
329 struct task_group init_task_group;
331 /* return group to which a task belongs */
332 static inline struct task_group *task_group(struct task_struct *p)
334 struct task_group *tg;
336 #ifdef CONFIG_USER_SCHED
338 #elif defined(CONFIG_CGROUP_SCHED)
339 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
340 struct task_group, css);
342 tg = &init_task_group;
347 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
348 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
350 #ifdef CONFIG_FAIR_GROUP_SCHED
351 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
352 p->se.parent = task_group(p)->se[cpu];
355 #ifdef CONFIG_RT_GROUP_SCHED
356 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
357 p->rt.parent = task_group(p)->rt_se[cpu];
361 static inline void lock_doms_cur(void)
363 mutex_lock(&doms_cur_mutex);
366 static inline void unlock_doms_cur(void)
368 mutex_unlock(&doms_cur_mutex);
373 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
374 static inline void lock_doms_cur(void) { }
375 static inline void unlock_doms_cur(void) { }
377 #endif /* CONFIG_GROUP_SCHED */
379 /* CFS-related fields in a runqueue */
381 struct load_weight load;
382 unsigned long nr_running;
387 struct rb_root tasks_timeline;
388 struct rb_node *rb_leftmost;
390 struct list_head tasks;
391 struct list_head *balance_iterator;
394 * 'curr' points to currently running entity on this cfs_rq.
395 * It is set to NULL otherwise (i.e when none are currently running).
397 struct sched_entity *curr, *next;
399 unsigned long nr_spread_over;
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
412 struct list_head leaf_cfs_rq_list;
413 struct task_group *tg; /* group that "owns" this runqueue */
416 unsigned long task_weight;
417 unsigned long shares;
419 * We need space to build a sched_domain wide view of the full task
420 * group tree, in order to avoid depending on dynamic memory allocation
421 * during the load balancing we place this in the per cpu task group
422 * hierarchy. This limits the load balancing to one instance per cpu,
423 * but more should not be needed anyway.
425 struct aggregate_struct {
427 * load = weight(cpus) * f(tg)
429 * Where f(tg) is the recursive weight fraction assigned to
435 * part of the group weight distributed to this span.
437 unsigned long shares;
440 * The sum of all runqueue weights within this span.
442 unsigned long rq_weight;
445 * Weight contributed by tasks; this is the part we can
446 * influence by moving tasks around.
448 unsigned long task_weight;
454 /* Real-Time classes' related field in a runqueue: */
456 struct rt_prio_array active;
457 unsigned long rt_nr_running;
458 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
459 int highest_prio; /* highest queued rt task prio */
462 unsigned long rt_nr_migratory;
468 /* Nests inside the rq lock: */
469 spinlock_t rt_runtime_lock;
471 #ifdef CONFIG_RT_GROUP_SCHED
472 unsigned long rt_nr_boosted;
475 struct list_head leaf_rt_rq_list;
476 struct task_group *tg;
477 struct sched_rt_entity *rt_se;
484 * We add the notion of a root-domain which will be used to define per-domain
485 * variables. Each exclusive cpuset essentially defines an island domain by
486 * fully partitioning the member cpus from any other cpuset. Whenever a new
487 * exclusive cpuset is created, we also create and attach a new root-domain
497 * The "RT overload" flag: it gets set if a CPU has more than
498 * one runnable RT task.
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
508 static struct root_domain def_root_domain;
513 * This is the main, per-CPU runqueue data structure.
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
527 unsigned long nr_running;
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530 unsigned char idle_at_tick;
532 unsigned long last_tick_seen;
533 unsigned char in_nohz_recently;
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
537 unsigned long nr_load_updates;
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
547 #ifdef CONFIG_RT_GROUP_SCHED
548 struct list_head leaf_rt_rq_list;
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
557 unsigned long nr_uninterruptible;
559 struct task_struct *curr, *idle;
560 unsigned long next_balance;
561 struct mm_struct *prev_mm;
563 u64 clock, prev_clock_raw;
566 unsigned int clock_warps, clock_overflows, clock_underflows;
568 unsigned int clock_deep_idle_events;
574 struct root_domain *rd;
575 struct sched_domain *sd;
577 /* For active balancing */
580 /* cpu of this runqueue: */
583 struct task_struct *migration_thread;
584 struct list_head migration_queue;
587 #ifdef CONFIG_SCHED_HRTICK
588 unsigned long hrtick_flags;
589 ktime_t hrtick_expire;
590 struct hrtimer hrtick_timer;
593 #ifdef CONFIG_SCHEDSTATS
595 struct sched_info rq_sched_info;
597 /* sys_sched_yield() stats */
598 unsigned int yld_exp_empty;
599 unsigned int yld_act_empty;
600 unsigned int yld_both_empty;
601 unsigned int yld_count;
603 /* schedule() stats */
604 unsigned int sched_switch;
605 unsigned int sched_count;
606 unsigned int sched_goidle;
608 /* try_to_wake_up() stats */
609 unsigned int ttwu_count;
610 unsigned int ttwu_local;
613 unsigned int bkl_count;
615 struct lock_class_key rq_lock_key;
618 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
620 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
622 rq->curr->sched_class->check_preempt_curr(rq, p);
625 static inline int cpu_of(struct rq *rq)
635 static inline bool nohz_on(int cpu)
637 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
640 static inline u64 max_skipped_ticks(struct rq *rq)
642 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
645 static inline void update_last_tick_seen(struct rq *rq)
647 rq->last_tick_seen = jiffies;
650 static inline u64 max_skipped_ticks(struct rq *rq)
655 static inline void update_last_tick_seen(struct rq *rq)
661 * Update the per-runqueue clock, as finegrained as the platform can give
662 * us, but without assuming monotonicity, etc.:
664 static void __update_rq_clock(struct rq *rq)
666 u64 prev_raw = rq->prev_clock_raw;
667 u64 now = sched_clock();
668 s64 delta = now - prev_raw;
669 u64 clock = rq->clock;
671 #ifdef CONFIG_SCHED_DEBUG
672 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
675 * Protect against sched_clock() occasionally going backwards:
677 if (unlikely(delta < 0)) {
682 * Catch too large forward jumps too:
684 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
685 u64 max_time = rq->tick_timestamp + max_jump;
687 if (unlikely(clock + delta > max_time)) {
688 if (clock < max_time)
692 rq->clock_overflows++;
694 if (unlikely(delta > rq->clock_max_delta))
695 rq->clock_max_delta = delta;
700 rq->prev_clock_raw = now;
704 static void update_rq_clock(struct rq *rq)
706 if (likely(smp_processor_id() == cpu_of(rq)))
707 __update_rq_clock(rq);
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
712 * See detach_destroy_domains: synchronize_sched for details.
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
717 #define for_each_domain(cpu, __sd) \
718 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
720 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721 #define this_rq() (&__get_cpu_var(runqueues))
722 #define task_rq(p) cpu_rq(task_cpu(p))
723 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
728 #ifdef CONFIG_SCHED_DEBUG
729 # define const_debug __read_mostly
731 # define const_debug static const
735 * Debugging: various feature bits
738 #define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
742 #include "sched_features.h"
747 #define SCHED_FEAT(name, enabled) \
748 (1UL << __SCHED_FEAT_##name) * enabled |
750 const_debug unsigned int sysctl_sched_features =
751 #include "sched_features.h"
756 #ifdef CONFIG_SCHED_DEBUG
757 #define SCHED_FEAT(name, enabled) \
760 __read_mostly char *sched_feat_names[] = {
761 #include "sched_features.h"
767 int sched_feat_open(struct inode *inode, struct file *filp)
769 filp->private_data = inode->i_private;
774 sched_feat_read(struct file *filp, char __user *ubuf,
775 size_t cnt, loff_t *ppos)
782 for (i = 0; sched_feat_names[i]; i++) {
783 len += strlen(sched_feat_names[i]);
787 buf = kmalloc(len + 2, GFP_KERNEL);
791 for (i = 0; sched_feat_names[i]; i++) {
792 if (sysctl_sched_features & (1UL << i))
793 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
795 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
798 r += sprintf(buf + r, "\n");
799 WARN_ON(r >= len + 2);
801 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
809 sched_feat_write(struct file *filp, const char __user *ubuf,
810 size_t cnt, loff_t *ppos)
820 if (copy_from_user(&buf, ubuf, cnt))
825 if (strncmp(buf, "NO_", 3) == 0) {
830 for (i = 0; sched_feat_names[i]; i++) {
831 int len = strlen(sched_feat_names[i]);
833 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
835 sysctl_sched_features &= ~(1UL << i);
837 sysctl_sched_features |= (1UL << i);
842 if (!sched_feat_names[i])
850 static struct file_operations sched_feat_fops = {
851 .open = sched_feat_open,
852 .read = sched_feat_read,
853 .write = sched_feat_write,
856 static __init int sched_init_debug(void)
858 debugfs_create_file("sched_features", 0644, NULL, NULL,
863 late_initcall(sched_init_debug);
867 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
870 * Number of tasks to iterate in a single balance run.
871 * Limited because this is done with IRQs disabled.
873 const_debug unsigned int sysctl_sched_nr_migrate = 32;
876 * period over which we measure -rt task cpu usage in us.
879 unsigned int sysctl_sched_rt_period = 1000000;
881 static __read_mostly int scheduler_running;
884 * part of the period that we allow rt tasks to run in us.
887 int sysctl_sched_rt_runtime = 950000;
889 static inline u64 global_rt_period(void)
891 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
894 static inline u64 global_rt_runtime(void)
896 if (sysctl_sched_rt_period < 0)
899 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
902 static const unsigned long long time_sync_thresh = 100000;
904 static DEFINE_PER_CPU(unsigned long long, time_offset);
905 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
908 * Global lock which we take every now and then to synchronize
909 * the CPUs time. This method is not warp-safe, but it's good
910 * enough to synchronize slowly diverging time sources and thus
911 * it's good enough for tracing:
913 static DEFINE_SPINLOCK(time_sync_lock);
914 static unsigned long long prev_global_time;
916 static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
920 spin_lock_irqsave(&time_sync_lock, flags);
922 if (time < prev_global_time) {
923 per_cpu(time_offset, cpu) += prev_global_time - time;
924 time = prev_global_time;
926 prev_global_time = time;
929 spin_unlock_irqrestore(&time_sync_lock, flags);
934 static unsigned long long __cpu_clock(int cpu)
936 unsigned long long now;
941 * Only call sched_clock() if the scheduler has already been
942 * initialized (some code might call cpu_clock() very early):
944 if (unlikely(!scheduler_running))
947 local_irq_save(flags);
951 local_irq_restore(flags);
957 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
958 * clock constructed from sched_clock():
960 unsigned long long cpu_clock(int cpu)
962 unsigned long long prev_cpu_time, time, delta_time;
964 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
965 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
966 delta_time = time-prev_cpu_time;
968 if (unlikely(delta_time > time_sync_thresh))
969 time = __sync_cpu_clock(time, cpu);
973 EXPORT_SYMBOL_GPL(cpu_clock);
975 #ifndef prepare_arch_switch
976 # define prepare_arch_switch(next) do { } while (0)
978 #ifndef finish_arch_switch
979 # define finish_arch_switch(prev) do { } while (0)
982 static inline int task_current(struct rq *rq, struct task_struct *p)
984 return rq->curr == p;
987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
988 static inline int task_running(struct rq *rq, struct task_struct *p)
990 return task_current(rq, p);
993 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
997 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
999 #ifdef CONFIG_DEBUG_SPINLOCK
1000 /* this is a valid case when another task releases the spinlock */
1001 rq->lock.owner = current;
1004 * If we are tracking spinlock dependencies then we have to
1005 * fix up the runqueue lock - which gets 'carried over' from
1006 * prev into current:
1008 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1010 spin_unlock_irq(&rq->lock);
1013 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1014 static inline int task_running(struct rq *rq, struct task_struct *p)
1019 return task_current(rq, p);
1023 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1027 * We can optimise this out completely for !SMP, because the
1028 * SMP rebalancing from interrupt is the only thing that cares
1033 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1034 spin_unlock_irq(&rq->lock);
1036 spin_unlock(&rq->lock);
1040 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1044 * After ->oncpu is cleared, the task can be moved to a different CPU.
1045 * We must ensure this doesn't happen until the switch is completely
1051 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1055 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1058 * __task_rq_lock - lock the runqueue a given task resides on.
1059 * Must be called interrupts disabled.
1061 static inline struct rq *__task_rq_lock(struct task_struct *p)
1062 __acquires(rq->lock)
1065 struct rq *rq = task_rq(p);
1066 spin_lock(&rq->lock);
1067 if (likely(rq == task_rq(p)))
1069 spin_unlock(&rq->lock);
1074 * task_rq_lock - lock the runqueue a given task resides on and disable
1075 * interrupts. Note the ordering: we can safely lookup the task_rq without
1076 * explicitly disabling preemption.
1078 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1079 __acquires(rq->lock)
1084 local_irq_save(*flags);
1086 spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1089 spin_unlock_irqrestore(&rq->lock, *flags);
1093 static void __task_rq_unlock(struct rq *rq)
1094 __releases(rq->lock)
1096 spin_unlock(&rq->lock);
1099 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1100 __releases(rq->lock)
1102 spin_unlock_irqrestore(&rq->lock, *flags);
1106 * this_rq_lock - lock this runqueue and disable interrupts.
1108 static struct rq *this_rq_lock(void)
1109 __acquires(rq->lock)
1113 local_irq_disable();
1115 spin_lock(&rq->lock);
1121 * We are going deep-idle (irqs are disabled):
1123 void sched_clock_idle_sleep_event(void)
1125 struct rq *rq = cpu_rq(smp_processor_id());
1127 spin_lock(&rq->lock);
1128 __update_rq_clock(rq);
1129 spin_unlock(&rq->lock);
1130 rq->clock_deep_idle_events++;
1132 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
1135 * We just idled delta nanoseconds (called with irqs disabled):
1137 void sched_clock_idle_wakeup_event(u64 delta_ns)
1139 struct rq *rq = cpu_rq(smp_processor_id());
1140 u64 now = sched_clock();
1142 rq->idle_clock += delta_ns;
1144 * Override the previous timestamp and ignore all
1145 * sched_clock() deltas that occured while we idled,
1146 * and use the PM-provided delta_ns to advance the
1149 spin_lock(&rq->lock);
1150 rq->prev_clock_raw = now;
1151 rq->clock += delta_ns;
1152 spin_unlock(&rq->lock);
1153 touch_softlockup_watchdog();
1155 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1157 static void __resched_task(struct task_struct *p, int tif_bit);
1159 static inline void resched_task(struct task_struct *p)
1161 __resched_task(p, TIF_NEED_RESCHED);
1164 #ifdef CONFIG_SCHED_HRTICK
1166 * Use HR-timers to deliver accurate preemption points.
1168 * Its all a bit involved since we cannot program an hrt while holding the
1169 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1172 * When we get rescheduled we reprogram the hrtick_timer outside of the
1175 static inline void resched_hrt(struct task_struct *p)
1177 __resched_task(p, TIF_HRTICK_RESCHED);
1180 static inline void resched_rq(struct rq *rq)
1182 unsigned long flags;
1184 spin_lock_irqsave(&rq->lock, flags);
1185 resched_task(rq->curr);
1186 spin_unlock_irqrestore(&rq->lock, flags);
1190 HRTICK_SET, /* re-programm hrtick_timer */
1191 HRTICK_RESET, /* not a new slice */
1196 * - enabled by features
1197 * - hrtimer is actually high res
1199 static inline int hrtick_enabled(struct rq *rq)
1201 if (!sched_feat(HRTICK))
1203 return hrtimer_is_hres_active(&rq->hrtick_timer);
1207 * Called to set the hrtick timer state.
1209 * called with rq->lock held and irqs disabled
1211 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1213 assert_spin_locked(&rq->lock);
1216 * preempt at: now + delay
1219 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1221 * indicate we need to program the timer
1223 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1225 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1228 * New slices are called from the schedule path and don't need a
1229 * forced reschedule.
1232 resched_hrt(rq->curr);
1235 static void hrtick_clear(struct rq *rq)
1237 if (hrtimer_active(&rq->hrtick_timer))
1238 hrtimer_cancel(&rq->hrtick_timer);
1242 * Update the timer from the possible pending state.
1244 static void hrtick_set(struct rq *rq)
1248 unsigned long flags;
1250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1252 spin_lock_irqsave(&rq->lock, flags);
1253 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1254 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1255 time = rq->hrtick_expire;
1256 clear_thread_flag(TIF_HRTICK_RESCHED);
1257 spin_unlock_irqrestore(&rq->lock, flags);
1260 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1261 if (reset && !hrtimer_active(&rq->hrtick_timer))
1268 * High-resolution timer tick.
1269 * Runs from hardirq context with interrupts disabled.
1271 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1273 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1275 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1277 spin_lock(&rq->lock);
1278 __update_rq_clock(rq);
1279 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1280 spin_unlock(&rq->lock);
1282 return HRTIMER_NORESTART;
1285 static inline void init_rq_hrtick(struct rq *rq)
1287 rq->hrtick_flags = 0;
1288 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1289 rq->hrtick_timer.function = hrtick;
1290 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1293 void hrtick_resched(void)
1296 unsigned long flags;
1298 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1301 local_irq_save(flags);
1302 rq = cpu_rq(smp_processor_id());
1304 local_irq_restore(flags);
1307 static inline void hrtick_clear(struct rq *rq)
1311 static inline void hrtick_set(struct rq *rq)
1315 static inline void init_rq_hrtick(struct rq *rq)
1319 void hrtick_resched(void)
1325 * resched_task - mark a task 'to be rescheduled now'.
1327 * On UP this means the setting of the need_resched flag, on SMP it
1328 * might also involve a cross-CPU call to trigger the scheduler on
1333 #ifndef tsk_is_polling
1334 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1337 static void __resched_task(struct task_struct *p, int tif_bit)
1341 assert_spin_locked(&task_rq(p)->lock);
1343 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1346 set_tsk_thread_flag(p, tif_bit);
1349 if (cpu == smp_processor_id())
1352 /* NEED_RESCHED must be visible before we test polling */
1354 if (!tsk_is_polling(p))
1355 smp_send_reschedule(cpu);
1358 static void resched_cpu(int cpu)
1360 struct rq *rq = cpu_rq(cpu);
1361 unsigned long flags;
1363 if (!spin_trylock_irqsave(&rq->lock, flags))
1365 resched_task(cpu_curr(cpu));
1366 spin_unlock_irqrestore(&rq->lock, flags);
1371 * When add_timer_on() enqueues a timer into the timer wheel of an
1372 * idle CPU then this timer might expire before the next timer event
1373 * which is scheduled to wake up that CPU. In case of a completely
1374 * idle system the next event might even be infinite time into the
1375 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1376 * leaves the inner idle loop so the newly added timer is taken into
1377 * account when the CPU goes back to idle and evaluates the timer
1378 * wheel for the next timer event.
1380 void wake_up_idle_cpu(int cpu)
1382 struct rq *rq = cpu_rq(cpu);
1384 if (cpu == smp_processor_id())
1388 * This is safe, as this function is called with the timer
1389 * wheel base lock of (cpu) held. When the CPU is on the way
1390 * to idle and has not yet set rq->curr to idle then it will
1391 * be serialized on the timer wheel base lock and take the new
1392 * timer into account automatically.
1394 if (rq->curr != rq->idle)
1398 * We can set TIF_RESCHED on the idle task of the other CPU
1399 * lockless. The worst case is that the other CPU runs the
1400 * idle task through an additional NOOP schedule()
1402 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1404 /* NEED_RESCHED must be visible before we test polling */
1406 if (!tsk_is_polling(rq->idle))
1407 smp_send_reschedule(cpu);
1412 static void __resched_task(struct task_struct *p, int tif_bit)
1414 assert_spin_locked(&task_rq(p)->lock);
1415 set_tsk_thread_flag(p, tif_bit);
1419 #if BITS_PER_LONG == 32
1420 # define WMULT_CONST (~0UL)
1422 # define WMULT_CONST (1UL << 32)
1425 #define WMULT_SHIFT 32
1428 * Shift right and round:
1430 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1433 * delta *= weight / lw
1435 static unsigned long
1436 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1437 struct load_weight *lw)
1441 if (unlikely(!lw->inv_weight))
1442 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1444 tmp = (u64)delta_exec * weight;
1446 * Check whether we'd overflow the 64-bit multiplication:
1448 if (unlikely(tmp > WMULT_CONST))
1449 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1452 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1454 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1457 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1463 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1470 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1471 * of tasks with abnormal "nice" values across CPUs the contribution that
1472 * each task makes to its run queue's load is weighted according to its
1473 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1474 * scaled version of the new time slice allocation that they receive on time
1478 #define WEIGHT_IDLEPRIO 2
1479 #define WMULT_IDLEPRIO (1 << 31)
1482 * Nice levels are multiplicative, with a gentle 10% change for every
1483 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1484 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1485 * that remained on nice 0.
1487 * The "10% effect" is relative and cumulative: from _any_ nice level,
1488 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1489 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1490 * If a task goes up by ~10% and another task goes down by ~10% then
1491 * the relative distance between them is ~25%.)
1493 static const int prio_to_weight[40] = {
1494 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1495 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1496 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1497 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1498 /* 0 */ 1024, 820, 655, 526, 423,
1499 /* 5 */ 335, 272, 215, 172, 137,
1500 /* 10 */ 110, 87, 70, 56, 45,
1501 /* 15 */ 36, 29, 23, 18, 15,
1505 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1507 * In cases where the weight does not change often, we can use the
1508 * precalculated inverse to speed up arithmetics by turning divisions
1509 * into multiplications:
1511 static const u32 prio_to_wmult[40] = {
1512 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1513 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1514 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1515 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1516 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1517 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1518 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1519 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1522 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1525 * runqueue iterator, to support SMP load-balancing between different
1526 * scheduling classes, without having to expose their internal data
1527 * structures to the load-balancing proper:
1529 struct rq_iterator {
1531 struct task_struct *(*start)(void *);
1532 struct task_struct *(*next)(void *);
1536 static unsigned long
1537 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1538 unsigned long max_load_move, struct sched_domain *sd,
1539 enum cpu_idle_type idle, int *all_pinned,
1540 int *this_best_prio, struct rq_iterator *iterator);
1543 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1544 struct sched_domain *sd, enum cpu_idle_type idle,
1545 struct rq_iterator *iterator);
1548 #ifdef CONFIG_CGROUP_CPUACCT
1549 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1551 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1554 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1556 update_load_add(&rq->load, load);
1559 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1561 update_load_sub(&rq->load, load);
1565 static unsigned long source_load(int cpu, int type);
1566 static unsigned long target_load(int cpu, int type);
1567 static unsigned long cpu_avg_load_per_task(int cpu);
1568 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Group load balancing.
1575 * We calculate a few balance domain wide aggregate numbers; load and weight.
1576 * Given the pictures below, and assuming each item has equal weight:
1587 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1588 * which equals 1/9-th of the total load.
1591 * The weight of this group on the selected cpus.
1594 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1598 * Part of the rq_weight contributed by tasks; all groups except B would
1602 static inline struct aggregate_struct *
1603 aggregate(struct task_group *tg, struct sched_domain *sd)
1605 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1608 typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1611 * Iterate the full tree, calling @down when first entering a node and @up when
1612 * leaving it for the final time.
1615 void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1616 struct sched_domain *sd)
1618 struct task_group *parent, *child;
1621 parent = &root_task_group;
1623 (*down)(parent, sd);
1624 list_for_each_entry_rcu(child, &parent->children, siblings) {
1634 parent = parent->parent;
1641 * Calculate the aggregate runqueue weight.
1644 void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1646 unsigned long rq_weight = 0;
1647 unsigned long task_weight = 0;
1650 for_each_cpu_mask(i, sd->span) {
1651 rq_weight += tg->cfs_rq[i]->load.weight;
1652 task_weight += tg->cfs_rq[i]->task_weight;
1655 aggregate(tg, sd)->rq_weight = rq_weight;
1656 aggregate(tg, sd)->task_weight = task_weight;
1660 * Compute the weight of this group on the given cpus.
1663 void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1665 unsigned long shares = 0;
1668 for_each_cpu_mask(i, sd->span)
1669 shares += tg->cfs_rq[i]->shares;
1671 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1672 shares = tg->shares;
1674 aggregate(tg, sd)->shares = shares;
1678 * Compute the load fraction assigned to this group, relies on the aggregate
1679 * weight and this group's parent's load, i.e. top-down.
1682 void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1690 for_each_cpu_mask(i, sd->span)
1691 load += cpu_rq(i)->load.weight;
1694 load = aggregate(tg->parent, sd)->load;
1697 * shares is our weight in the parent's rq so
1698 * shares/parent->rq_weight gives our fraction of the load
1700 load *= aggregate(tg, sd)->shares;
1701 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1704 aggregate(tg, sd)->load = load;
1707 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1710 * Calculate and set the cpu's group shares.
1713 __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1717 unsigned long shares;
1718 unsigned long rq_weight;
1723 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1726 * If there are currently no tasks on the cpu pretend there is one of
1727 * average load so that when a new task gets to run here it will not
1728 * get delayed by group starvation.
1732 rq_weight = NICE_0_LOAD;
1736 * \Sum shares * rq_weight
1737 * shares = -----------------------
1741 shares = aggregate(tg, sd)->shares * rq_weight;
1742 shares /= aggregate(tg, sd)->rq_weight + 1;
1745 * record the actual number of shares, not the boosted amount.
1747 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1749 if (shares < MIN_SHARES)
1750 shares = MIN_SHARES;
1752 __set_se_shares(tg->se[tcpu], shares);
1756 * Re-adjust the weights on the cpu the task came from and on the cpu the
1760 __move_group_shares(struct task_group *tg, struct sched_domain *sd,
1763 unsigned long shares;
1765 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1767 __update_group_shares_cpu(tg, sd, scpu);
1768 __update_group_shares_cpu(tg, sd, dcpu);
1771 * ensure we never loose shares due to rounding errors in the
1772 * above redistribution.
1774 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1776 tg->cfs_rq[dcpu]->shares += shares;
1780 * Because changing a group's shares changes the weight of the super-group
1781 * we need to walk up the tree and change all shares until we hit the root.
1784 move_group_shares(struct task_group *tg, struct sched_domain *sd,
1788 __move_group_shares(tg, sd, scpu, dcpu);
1794 void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1796 unsigned long shares = aggregate(tg, sd)->shares;
1799 for_each_cpu_mask(i, sd->span) {
1800 struct rq *rq = cpu_rq(i);
1801 unsigned long flags;
1803 spin_lock_irqsave(&rq->lock, flags);
1804 __update_group_shares_cpu(tg, sd, i);
1805 spin_unlock_irqrestore(&rq->lock, flags);
1808 aggregate_group_shares(tg, sd);
1811 * ensure we never loose shares due to rounding errors in the
1812 * above redistribution.
1814 shares -= aggregate(tg, sd)->shares;
1816 tg->cfs_rq[sd->first_cpu]->shares += shares;
1817 aggregate(tg, sd)->shares += shares;
1822 * Calculate the accumulative weight and recursive load of each task group
1823 * while walking down the tree.
1826 void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1828 aggregate_group_weight(tg, sd);
1829 aggregate_group_shares(tg, sd);
1830 aggregate_group_load(tg, sd);
1834 * Rebalance the cpu shares while walking back up the tree.
1837 void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1839 aggregate_group_set_shares(tg, sd);
1842 static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1844 static void __init init_aggregate(void)
1848 for_each_possible_cpu(i)
1849 spin_lock_init(&per_cpu(aggregate_lock, i));
1852 static int get_aggregate(struct sched_domain *sd)
1854 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1857 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1861 static void put_aggregate(struct sched_domain *sd)
1863 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1866 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1868 cfs_rq->shares = shares;
1873 static inline void init_aggregate(void)
1877 static inline int get_aggregate(struct sched_domain *sd)
1882 static inline void put_aggregate(struct sched_domain *sd)
1887 #else /* CONFIG_SMP */
1889 #ifdef CONFIG_FAIR_GROUP_SCHED
1890 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1895 #endif /* CONFIG_SMP */
1897 #include "sched_stats.h"
1898 #include "sched_idletask.c"
1899 #include "sched_fair.c"
1900 #include "sched_rt.c"
1901 #ifdef CONFIG_SCHED_DEBUG
1902 # include "sched_debug.c"
1905 #define sched_class_highest (&rt_sched_class)
1907 static void inc_nr_running(struct rq *rq)
1912 static void dec_nr_running(struct rq *rq)
1917 static void set_load_weight(struct task_struct *p)
1919 if (task_has_rt_policy(p)) {
1920 p->se.load.weight = prio_to_weight[0] * 2;
1921 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1926 * SCHED_IDLE tasks get minimal weight:
1928 if (p->policy == SCHED_IDLE) {
1929 p->se.load.weight = WEIGHT_IDLEPRIO;
1930 p->se.load.inv_weight = WMULT_IDLEPRIO;
1934 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1935 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1938 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1940 sched_info_queued(p);
1941 p->sched_class->enqueue_task(rq, p, wakeup);
1945 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1947 p->sched_class->dequeue_task(rq, p, sleep);
1952 * __normal_prio - return the priority that is based on the static prio
1954 static inline int __normal_prio(struct task_struct *p)
1956 return p->static_prio;
1960 * Calculate the expected normal priority: i.e. priority
1961 * without taking RT-inheritance into account. Might be
1962 * boosted by interactivity modifiers. Changes upon fork,
1963 * setprio syscalls, and whenever the interactivity
1964 * estimator recalculates.
1966 static inline int normal_prio(struct task_struct *p)
1970 if (task_has_rt_policy(p))
1971 prio = MAX_RT_PRIO-1 - p->rt_priority;
1973 prio = __normal_prio(p);
1978 * Calculate the current priority, i.e. the priority
1979 * taken into account by the scheduler. This value might
1980 * be boosted by RT tasks, or might be boosted by
1981 * interactivity modifiers. Will be RT if the task got
1982 * RT-boosted. If not then it returns p->normal_prio.
1984 static int effective_prio(struct task_struct *p)
1986 p->normal_prio = normal_prio(p);
1988 * If we are RT tasks or we were boosted to RT priority,
1989 * keep the priority unchanged. Otherwise, update priority
1990 * to the normal priority:
1992 if (!rt_prio(p->prio))
1993 return p->normal_prio;
1998 * activate_task - move a task to the runqueue.
2000 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
2002 if (task_contributes_to_load(p))
2003 rq->nr_uninterruptible--;
2005 enqueue_task(rq, p, wakeup);
2010 * deactivate_task - remove a task from the runqueue.
2012 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
2014 if (task_contributes_to_load(p))
2015 rq->nr_uninterruptible++;
2017 dequeue_task(rq, p, sleep);
2022 * task_curr - is this task currently executing on a CPU?
2023 * @p: the task in question.
2025 inline int task_curr(const struct task_struct *p)
2027 return cpu_curr(task_cpu(p)) == p;
2030 /* Used instead of source_load when we know the type == 0 */
2031 unsigned long weighted_cpuload(const int cpu)
2033 return cpu_rq(cpu)->load.weight;
2036 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2038 set_task_rq(p, cpu);
2041 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2042 * successfuly executed on another CPU. We must ensure that updates of
2043 * per-task data have been completed by this moment.
2046 task_thread_info(p)->cpu = cpu;
2050 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2051 const struct sched_class *prev_class,
2052 int oldprio, int running)
2054 if (prev_class != p->sched_class) {
2055 if (prev_class->switched_from)
2056 prev_class->switched_from(rq, p, running);
2057 p->sched_class->switched_to(rq, p, running);
2059 p->sched_class->prio_changed(rq, p, oldprio, running);
2065 * Is this task likely cache-hot:
2068 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2073 * Buddy candidates are cache hot:
2075 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2078 if (p->sched_class != &fair_sched_class)
2081 if (sysctl_sched_migration_cost == -1)
2083 if (sysctl_sched_migration_cost == 0)
2086 delta = now - p->se.exec_start;
2088 return delta < (s64)sysctl_sched_migration_cost;
2092 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2094 int old_cpu = task_cpu(p);
2095 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2096 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2097 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2100 clock_offset = old_rq->clock - new_rq->clock;
2102 #ifdef CONFIG_SCHEDSTATS
2103 if (p->se.wait_start)
2104 p->se.wait_start -= clock_offset;
2105 if (p->se.sleep_start)
2106 p->se.sleep_start -= clock_offset;
2107 if (p->se.block_start)
2108 p->se.block_start -= clock_offset;
2109 if (old_cpu != new_cpu) {
2110 schedstat_inc(p, se.nr_migrations);
2111 if (task_hot(p, old_rq->clock, NULL))
2112 schedstat_inc(p, se.nr_forced2_migrations);
2115 p->se.vruntime -= old_cfsrq->min_vruntime -
2116 new_cfsrq->min_vruntime;
2118 __set_task_cpu(p, new_cpu);
2121 struct migration_req {
2122 struct list_head list;
2124 struct task_struct *task;
2127 struct completion done;
2131 * The task's runqueue lock must be held.
2132 * Returns true if you have to wait for migration thread.
2135 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2137 struct rq *rq = task_rq(p);
2140 * If the task is not on a runqueue (and not running), then
2141 * it is sufficient to simply update the task's cpu field.
2143 if (!p->se.on_rq && !task_running(rq, p)) {
2144 set_task_cpu(p, dest_cpu);
2148 init_completion(&req->done);
2150 req->dest_cpu = dest_cpu;
2151 list_add(&req->list, &rq->migration_queue);
2157 * wait_task_inactive - wait for a thread to unschedule.
2159 * The caller must ensure that the task *will* unschedule sometime soon,
2160 * else this function might spin for a *long* time. This function can't
2161 * be called with interrupts off, or it may introduce deadlock with
2162 * smp_call_function() if an IPI is sent by the same process we are
2163 * waiting to become inactive.
2165 void wait_task_inactive(struct task_struct *p)
2167 unsigned long flags;
2173 * We do the initial early heuristics without holding
2174 * any task-queue locks at all. We'll only try to get
2175 * the runqueue lock when things look like they will
2181 * If the task is actively running on another CPU
2182 * still, just relax and busy-wait without holding
2185 * NOTE! Since we don't hold any locks, it's not
2186 * even sure that "rq" stays as the right runqueue!
2187 * But we don't care, since "task_running()" will
2188 * return false if the runqueue has changed and p
2189 * is actually now running somewhere else!
2191 while (task_running(rq, p))
2195 * Ok, time to look more closely! We need the rq
2196 * lock now, to be *sure*. If we're wrong, we'll
2197 * just go back and repeat.
2199 rq = task_rq_lock(p, &flags);
2200 running = task_running(rq, p);
2201 on_rq = p->se.on_rq;
2202 task_rq_unlock(rq, &flags);
2205 * Was it really running after all now that we
2206 * checked with the proper locks actually held?
2208 * Oops. Go back and try again..
2210 if (unlikely(running)) {
2216 * It's not enough that it's not actively running,
2217 * it must be off the runqueue _entirely_, and not
2220 * So if it wa still runnable (but just not actively
2221 * running right now), it's preempted, and we should
2222 * yield - it could be a while.
2224 if (unlikely(on_rq)) {
2225 schedule_timeout_uninterruptible(1);
2230 * Ahh, all good. It wasn't running, and it wasn't
2231 * runnable, which means that it will never become
2232 * running in the future either. We're all done!
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2251 void kick_process(struct task_struct *p)
2257 if ((cpu != smp_processor_id()) && task_curr(p))
2258 smp_send_reschedule(cpu);
2263 * Return a low guess at the load of a migration-source cpu weighted
2264 * according to the scheduling class and "nice" value.
2266 * We want to under-estimate the load of migration sources, to
2267 * balance conservatively.
2269 static unsigned long source_load(int cpu, int type)
2271 struct rq *rq = cpu_rq(cpu);
2272 unsigned long total = weighted_cpuload(cpu);
2277 return min(rq->cpu_load[type-1], total);
2281 * Return a high guess at the load of a migration-target cpu weighted
2282 * according to the scheduling class and "nice" value.
2284 static unsigned long target_load(int cpu, int type)
2286 struct rq *rq = cpu_rq(cpu);
2287 unsigned long total = weighted_cpuload(cpu);
2292 return max(rq->cpu_load[type-1], total);
2296 * Return the average load per task on the cpu's run queue
2298 static unsigned long cpu_avg_load_per_task(int cpu)
2300 struct rq *rq = cpu_rq(cpu);
2301 unsigned long total = weighted_cpuload(cpu);
2302 unsigned long n = rq->nr_running;
2304 return n ? total / n : SCHED_LOAD_SCALE;
2308 * find_idlest_group finds and returns the least busy CPU group within the
2311 static struct sched_group *
2312 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2314 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2315 unsigned long min_load = ULONG_MAX, this_load = 0;
2316 int load_idx = sd->forkexec_idx;
2317 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2320 unsigned long load, avg_load;
2324 /* Skip over this group if it has no CPUs allowed */
2325 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2328 local_group = cpu_isset(this_cpu, group->cpumask);
2330 /* Tally up the load of all CPUs in the group */
2333 for_each_cpu_mask(i, group->cpumask) {
2334 /* Bias balancing toward cpus of our domain */
2336 load = source_load(i, load_idx);
2338 load = target_load(i, load_idx);
2343 /* Adjust by relative CPU power of the group */
2344 avg_load = sg_div_cpu_power(group,
2345 avg_load * SCHED_LOAD_SCALE);
2348 this_load = avg_load;
2350 } else if (avg_load < min_load) {
2351 min_load = avg_load;
2354 } while (group = group->next, group != sd->groups);
2356 if (!idlest || 100*this_load < imbalance*min_load)
2362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2365 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2368 unsigned long load, min_load = ULONG_MAX;
2372 /* Traverse only the allowed CPUs */
2373 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2375 for_each_cpu_mask(i, *tmp) {
2376 load = weighted_cpuload(i);
2378 if (load < min_load || (load == min_load && i == this_cpu)) {
2388 * sched_balance_self: balance the current task (running on cpu) in domains
2389 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2392 * Balance, ie. select the least loaded group.
2394 * Returns the target CPU number, or the same CPU if no balancing is needed.
2396 * preempt must be disabled.
2398 static int sched_balance_self(int cpu, int flag)
2400 struct task_struct *t = current;
2401 struct sched_domain *tmp, *sd = NULL;
2403 for_each_domain(cpu, tmp) {
2405 * If power savings logic is enabled for a domain, stop there.
2407 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2409 if (tmp->flags & flag)
2414 cpumask_t span, tmpmask;
2415 struct sched_group *group;
2416 int new_cpu, weight;
2418 if (!(sd->flags & flag)) {
2424 group = find_idlest_group(sd, t, cpu);
2430 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2431 if (new_cpu == -1 || new_cpu == cpu) {
2432 /* Now try balancing at a lower domain level of cpu */
2437 /* Now try balancing at a lower domain level of new_cpu */
2440 weight = cpus_weight(span);
2441 for_each_domain(cpu, tmp) {
2442 if (weight <= cpus_weight(tmp->span))
2444 if (tmp->flags & flag)
2447 /* while loop will break here if sd == NULL */
2453 #endif /* CONFIG_SMP */
2456 * try_to_wake_up - wake up a thread
2457 * @p: the to-be-woken-up thread
2458 * @state: the mask of task states that can be woken
2459 * @sync: do a synchronous wakeup?
2461 * Put it on the run-queue if it's not already there. The "current"
2462 * thread is always on the run-queue (except when the actual
2463 * re-schedule is in progress), and as such you're allowed to do
2464 * the simpler "current->state = TASK_RUNNING" to mark yourself
2465 * runnable without the overhead of this.
2467 * returns failure only if the task is already active.
2469 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2471 int cpu, orig_cpu, this_cpu, success = 0;
2472 unsigned long flags;
2476 if (!sched_feat(SYNC_WAKEUPS))
2480 rq = task_rq_lock(p, &flags);
2481 old_state = p->state;
2482 if (!(old_state & state))
2490 this_cpu = smp_processor_id();
2493 if (unlikely(task_running(rq, p)))
2496 cpu = p->sched_class->select_task_rq(p, sync);
2497 if (cpu != orig_cpu) {
2498 set_task_cpu(p, cpu);
2499 task_rq_unlock(rq, &flags);
2500 /* might preempt at this point */
2501 rq = task_rq_lock(p, &flags);
2502 old_state = p->state;
2503 if (!(old_state & state))
2508 this_cpu = smp_processor_id();
2512 #ifdef CONFIG_SCHEDSTATS
2513 schedstat_inc(rq, ttwu_count);
2514 if (cpu == this_cpu)
2515 schedstat_inc(rq, ttwu_local);
2517 struct sched_domain *sd;
2518 for_each_domain(this_cpu, sd) {
2519 if (cpu_isset(cpu, sd->span)) {
2520 schedstat_inc(sd, ttwu_wake_remote);
2528 #endif /* CONFIG_SMP */
2529 schedstat_inc(p, se.nr_wakeups);
2531 schedstat_inc(p, se.nr_wakeups_sync);
2532 if (orig_cpu != cpu)
2533 schedstat_inc(p, se.nr_wakeups_migrate);
2534 if (cpu == this_cpu)
2535 schedstat_inc(p, se.nr_wakeups_local);
2537 schedstat_inc(p, se.nr_wakeups_remote);
2538 update_rq_clock(rq);
2539 activate_task(rq, p, 1);
2543 check_preempt_curr(rq, p);
2545 p->state = TASK_RUNNING;
2547 if (p->sched_class->task_wake_up)
2548 p->sched_class->task_wake_up(rq, p);
2551 task_rq_unlock(rq, &flags);
2556 int wake_up_process(struct task_struct *p)
2558 return try_to_wake_up(p, TASK_ALL, 0);
2560 EXPORT_SYMBOL(wake_up_process);
2562 int wake_up_state(struct task_struct *p, unsigned int state)
2564 return try_to_wake_up(p, state, 0);
2568 * Perform scheduler related setup for a newly forked process p.
2569 * p is forked by current.
2571 * __sched_fork() is basic setup used by init_idle() too:
2573 static void __sched_fork(struct task_struct *p)
2575 p->se.exec_start = 0;
2576 p->se.sum_exec_runtime = 0;
2577 p->se.prev_sum_exec_runtime = 0;
2578 p->se.last_wakeup = 0;
2579 p->se.avg_overlap = 0;
2581 #ifdef CONFIG_SCHEDSTATS
2582 p->se.wait_start = 0;
2583 p->se.sum_sleep_runtime = 0;
2584 p->se.sleep_start = 0;
2585 p->se.block_start = 0;
2586 p->se.sleep_max = 0;
2587 p->se.block_max = 0;
2589 p->se.slice_max = 0;
2593 INIT_LIST_HEAD(&p->rt.run_list);
2595 INIT_LIST_HEAD(&p->se.group_node);
2597 #ifdef CONFIG_PREEMPT_NOTIFIERS
2598 INIT_HLIST_HEAD(&p->preempt_notifiers);
2602 * We mark the process as running here, but have not actually
2603 * inserted it onto the runqueue yet. This guarantees that
2604 * nobody will actually run it, and a signal or other external
2605 * event cannot wake it up and insert it on the runqueue either.
2607 p->state = TASK_RUNNING;
2611 * fork()/clone()-time setup:
2613 void sched_fork(struct task_struct *p, int clone_flags)
2615 int cpu = get_cpu();
2620 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2622 set_task_cpu(p, cpu);
2625 * Make sure we do not leak PI boosting priority to the child:
2627 p->prio = current->normal_prio;
2628 if (!rt_prio(p->prio))
2629 p->sched_class = &fair_sched_class;
2631 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2632 if (likely(sched_info_on()))
2633 memset(&p->sched_info, 0, sizeof(p->sched_info));
2635 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2638 #ifdef CONFIG_PREEMPT
2639 /* Want to start with kernel preemption disabled. */
2640 task_thread_info(p)->preempt_count = 1;
2646 * wake_up_new_task - wake up a newly created task for the first time.
2648 * This function will do some initial scheduler statistics housekeeping
2649 * that must be done for every newly created context, then puts the task
2650 * on the runqueue and wakes it.
2652 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2654 unsigned long flags;
2657 rq = task_rq_lock(p, &flags);
2658 BUG_ON(p->state != TASK_RUNNING);
2659 update_rq_clock(rq);
2661 p->prio = effective_prio(p);
2663 if (!p->sched_class->task_new || !current->se.on_rq) {
2664 activate_task(rq, p, 0);
2667 * Let the scheduling class do new task startup
2668 * management (if any):
2670 p->sched_class->task_new(rq, p);
2673 check_preempt_curr(rq, p);
2675 if (p->sched_class->task_wake_up)
2676 p->sched_class->task_wake_up(rq, p);
2678 task_rq_unlock(rq, &flags);
2681 #ifdef CONFIG_PREEMPT_NOTIFIERS
2684 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2685 * @notifier: notifier struct to register
2687 void preempt_notifier_register(struct preempt_notifier *notifier)
2689 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2691 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2694 * preempt_notifier_unregister - no longer interested in preemption notifications
2695 * @notifier: notifier struct to unregister
2697 * This is safe to call from within a preemption notifier.
2699 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2701 hlist_del(¬ifier->link);
2703 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2705 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2715 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2716 struct task_struct *next)
2718 struct preempt_notifier *notifier;
2719 struct hlist_node *node;
2721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2722 notifier->ops->sched_out(notifier, next);
2727 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2732 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2733 struct task_struct *next)
2740 * prepare_task_switch - prepare to switch tasks
2741 * @rq: the runqueue preparing to switch
2742 * @prev: the current task that is being switched out
2743 * @next: the task we are going to switch to.
2745 * This is called with the rq lock held and interrupts off. It must
2746 * be paired with a subsequent finish_task_switch after the context
2749 * prepare_task_switch sets up locking and calls architecture specific
2753 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2754 struct task_struct *next)
2756 fire_sched_out_preempt_notifiers(prev, next);
2757 prepare_lock_switch(rq, next);
2758 prepare_arch_switch(next);
2762 * finish_task_switch - clean up after a task-switch
2763 * @rq: runqueue associated with task-switch
2764 * @prev: the thread we just switched away from.
2766 * finish_task_switch must be called after the context switch, paired
2767 * with a prepare_task_switch call before the context switch.
2768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2769 * and do any other architecture-specific cleanup actions.
2771 * Note that we may have delayed dropping an mm in context_switch(). If
2772 * so, we finish that here outside of the runqueue lock. (Doing it
2773 * with the lock held can cause deadlocks; see schedule() for
2776 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2777 __releases(rq->lock)
2779 struct mm_struct *mm = rq->prev_mm;
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2793 * Manfred Spraul <manfred@colorfullife.com>
2795 prev_state = prev->state;
2796 finish_arch_switch(prev);
2797 finish_lock_switch(rq, prev);
2799 if (current->sched_class->post_schedule)
2800 current->sched_class->post_schedule(rq);
2803 fire_sched_in_preempt_notifiers(current);
2806 if (unlikely(prev_state == TASK_DEAD)) {
2808 * Remove function-return probe instances associated with this
2809 * task and put them back on the free list.
2811 kprobe_flush_task(prev);
2812 put_task_struct(prev);
2817 * schedule_tail - first thing a freshly forked thread must call.
2818 * @prev: the thread we just switched away from.
2820 asmlinkage void schedule_tail(struct task_struct *prev)
2821 __releases(rq->lock)
2823 struct rq *rq = this_rq();
2825 finish_task_switch(rq, prev);
2826 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2827 /* In this case, finish_task_switch does not reenable preemption */
2830 if (current->set_child_tid)
2831 put_user(task_pid_vnr(current), current->set_child_tid);
2835 * context_switch - switch to the new MM and the new
2836 * thread's register state.
2839 context_switch(struct rq *rq, struct task_struct *prev,
2840 struct task_struct *next)
2842 struct mm_struct *mm, *oldmm;
2844 prepare_task_switch(rq, prev, next);
2846 oldmm = prev->active_mm;
2848 * For paravirt, this is coupled with an exit in switch_to to
2849 * combine the page table reload and the switch backend into
2852 arch_enter_lazy_cpu_mode();
2854 if (unlikely(!mm)) {
2855 next->active_mm = oldmm;
2856 atomic_inc(&oldmm->mm_count);
2857 enter_lazy_tlb(oldmm, next);
2859 switch_mm(oldmm, mm, next);
2861 if (unlikely(!prev->mm)) {
2862 prev->active_mm = NULL;
2863 rq->prev_mm = oldmm;
2866 * Since the runqueue lock will be released by the next
2867 * task (which is an invalid locking op but in the case
2868 * of the scheduler it's an obvious special-case), so we
2869 * do an early lockdep release here:
2871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2872 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875 /* Here we just switch the register state and the stack. */
2876 switch_to(prev, next, prev);
2880 * this_rq must be evaluated again because prev may have moved
2881 * CPUs since it called schedule(), thus the 'rq' on its stack
2882 * frame will be invalid.
2884 finish_task_switch(this_rq(), prev);
2888 * nr_running, nr_uninterruptible and nr_context_switches:
2890 * externally visible scheduler statistics: current number of runnable
2891 * threads, current number of uninterruptible-sleeping threads, total
2892 * number of context switches performed since bootup.
2894 unsigned long nr_running(void)
2896 unsigned long i, sum = 0;
2898 for_each_online_cpu(i)
2899 sum += cpu_rq(i)->nr_running;
2904 unsigned long nr_uninterruptible(void)
2906 unsigned long i, sum = 0;
2908 for_each_possible_cpu(i)
2909 sum += cpu_rq(i)->nr_uninterruptible;
2912 * Since we read the counters lockless, it might be slightly
2913 * inaccurate. Do not allow it to go below zero though:
2915 if (unlikely((long)sum < 0))
2921 unsigned long long nr_context_switches(void)
2924 unsigned long long sum = 0;
2926 for_each_possible_cpu(i)
2927 sum += cpu_rq(i)->nr_switches;
2932 unsigned long nr_iowait(void)
2934 unsigned long i, sum = 0;
2936 for_each_possible_cpu(i)
2937 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2942 unsigned long nr_active(void)
2944 unsigned long i, running = 0, uninterruptible = 0;
2946 for_each_online_cpu(i) {
2947 running += cpu_rq(i)->nr_running;
2948 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2951 if (unlikely((long)uninterruptible < 0))
2952 uninterruptible = 0;
2954 return running + uninterruptible;
2958 * Update rq->cpu_load[] statistics. This function is usually called every
2959 * scheduler tick (TICK_NSEC).
2961 static void update_cpu_load(struct rq *this_rq)
2963 unsigned long this_load = this_rq->load.weight;
2966 this_rq->nr_load_updates++;
2968 /* Update our load: */
2969 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2970 unsigned long old_load, new_load;
2972 /* scale is effectively 1 << i now, and >> i divides by scale */
2974 old_load = this_rq->cpu_load[i];
2975 new_load = this_load;
2977 * Round up the averaging division if load is increasing. This
2978 * prevents us from getting stuck on 9 if the load is 10, for
2981 if (new_load > old_load)
2982 new_load += scale-1;
2983 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2990 * double_rq_lock - safely lock two runqueues
2992 * Note this does not disable interrupts like task_rq_lock,
2993 * you need to do so manually before calling.
2995 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2996 __acquires(rq1->lock)
2997 __acquires(rq2->lock)
2999 BUG_ON(!irqs_disabled());
3001 spin_lock(&rq1->lock);
3002 __acquire(rq2->lock); /* Fake it out ;) */
3005 spin_lock(&rq1->lock);
3006 spin_lock(&rq2->lock);
3008 spin_lock(&rq2->lock);
3009 spin_lock(&rq1->lock);
3012 update_rq_clock(rq1);
3013 update_rq_clock(rq2);
3017 * double_rq_unlock - safely unlock two runqueues
3019 * Note this does not restore interrupts like task_rq_unlock,
3020 * you need to do so manually after calling.
3022 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3023 __releases(rq1->lock)
3024 __releases(rq2->lock)
3026 spin_unlock(&rq1->lock);
3028 spin_unlock(&rq2->lock);
3030 __release(rq2->lock);
3034 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3036 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3037 __releases(this_rq->lock)
3038 __acquires(busiest->lock)
3039 __acquires(this_rq->lock)
3043 if (unlikely(!irqs_disabled())) {
3044 /* printk() doesn't work good under rq->lock */
3045 spin_unlock(&this_rq->lock);
3048 if (unlikely(!spin_trylock(&busiest->lock))) {
3049 if (busiest < this_rq) {
3050 spin_unlock(&this_rq->lock);
3051 spin_lock(&busiest->lock);
3052 spin_lock(&this_rq->lock);
3055 spin_lock(&busiest->lock);
3061 * If dest_cpu is allowed for this process, migrate the task to it.
3062 * This is accomplished by forcing the cpu_allowed mask to only
3063 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3064 * the cpu_allowed mask is restored.
3066 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3068 struct migration_req req;
3069 unsigned long flags;
3072 rq = task_rq_lock(p, &flags);
3073 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3074 || unlikely(cpu_is_offline(dest_cpu)))
3077 /* force the process onto the specified CPU */
3078 if (migrate_task(p, dest_cpu, &req)) {
3079 /* Need to wait for migration thread (might exit: take ref). */
3080 struct task_struct *mt = rq->migration_thread;
3082 get_task_struct(mt);
3083 task_rq_unlock(rq, &flags);
3084 wake_up_process(mt);
3085 put_task_struct(mt);
3086 wait_for_completion(&req.done);
3091 task_rq_unlock(rq, &flags);
3095 * sched_exec - execve() is a valuable balancing opportunity, because at
3096 * this point the task has the smallest effective memory and cache footprint.
3098 void sched_exec(void)
3100 int new_cpu, this_cpu = get_cpu();
3101 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3103 if (new_cpu != this_cpu)
3104 sched_migrate_task(current, new_cpu);
3108 * pull_task - move a task from a remote runqueue to the local runqueue.
3109 * Both runqueues must be locked.
3111 static void pull_task(struct rq *src_rq, struct task_struct *p,
3112 struct rq *this_rq, int this_cpu)
3114 deactivate_task(src_rq, p, 0);
3115 set_task_cpu(p, this_cpu);
3116 activate_task(this_rq, p, 0);
3118 * Note that idle threads have a prio of MAX_PRIO, for this test
3119 * to be always true for them.
3121 check_preempt_curr(this_rq, p);
3125 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3128 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3129 struct sched_domain *sd, enum cpu_idle_type idle,
3133 * We do not migrate tasks that are:
3134 * 1) running (obviously), or
3135 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3136 * 3) are cache-hot on their current CPU.
3138 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3139 schedstat_inc(p, se.nr_failed_migrations_affine);
3144 if (task_running(rq, p)) {
3145 schedstat_inc(p, se.nr_failed_migrations_running);
3150 * Aggressive migration if:
3151 * 1) task is cache cold, or
3152 * 2) too many balance attempts have failed.
3155 if (!task_hot(p, rq->clock, sd) ||
3156 sd->nr_balance_failed > sd->cache_nice_tries) {
3157 #ifdef CONFIG_SCHEDSTATS
3158 if (task_hot(p, rq->clock, sd)) {
3159 schedstat_inc(sd, lb_hot_gained[idle]);
3160 schedstat_inc(p, se.nr_forced_migrations);
3166 if (task_hot(p, rq->clock, sd)) {
3167 schedstat_inc(p, se.nr_failed_migrations_hot);
3173 static unsigned long
3174 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3175 unsigned long max_load_move, struct sched_domain *sd,
3176 enum cpu_idle_type idle, int *all_pinned,
3177 int *this_best_prio, struct rq_iterator *iterator)
3179 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
3180 struct task_struct *p;
3181 long rem_load_move = max_load_move;
3183 if (max_load_move == 0)
3189 * Start the load-balancing iterator:
3191 p = iterator->start(iterator->arg);
3193 if (!p || loops++ > sysctl_sched_nr_migrate)
3196 * To help distribute high priority tasks across CPUs we don't
3197 * skip a task if it will be the highest priority task (i.e. smallest
3198 * prio value) on its new queue regardless of its load weight
3200 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3201 SCHED_LOAD_SCALE_FUZZ;
3202 if ((skip_for_load && p->prio >= *this_best_prio) ||
3203 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3204 p = iterator->next(iterator->arg);
3208 pull_task(busiest, p, this_rq, this_cpu);
3210 rem_load_move -= p->se.load.weight;
3213 * We only want to steal up to the prescribed amount of weighted load.
3215 if (rem_load_move > 0) {
3216 if (p->prio < *this_best_prio)
3217 *this_best_prio = p->prio;
3218 p = iterator->next(iterator->arg);
3223 * Right now, this is one of only two places pull_task() is called,
3224 * so we can safely collect pull_task() stats here rather than
3225 * inside pull_task().
3227 schedstat_add(sd, lb_gained[idle], pulled);
3230 *all_pinned = pinned;
3232 return max_load_move - rem_load_move;
3236 * move_tasks tries to move up to max_load_move weighted load from busiest to
3237 * this_rq, as part of a balancing operation within domain "sd".
3238 * Returns 1 if successful and 0 otherwise.
3240 * Called with both runqueues locked.
3242 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3243 unsigned long max_load_move,
3244 struct sched_domain *sd, enum cpu_idle_type idle,
3247 const struct sched_class *class = sched_class_highest;
3248 unsigned long total_load_moved = 0;
3249 int this_best_prio = this_rq->curr->prio;
3253 class->load_balance(this_rq, this_cpu, busiest,
3254 max_load_move - total_load_moved,
3255 sd, idle, all_pinned, &this_best_prio);
3256 class = class->next;
3257 } while (class && max_load_move > total_load_moved);
3259 return total_load_moved > 0;
3263 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3264 struct sched_domain *sd, enum cpu_idle_type idle,
3265 struct rq_iterator *iterator)
3267 struct task_struct *p = iterator->start(iterator->arg);
3271 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3272 pull_task(busiest, p, this_rq, this_cpu);
3274 * Right now, this is only the second place pull_task()
3275 * is called, so we can safely collect pull_task()
3276 * stats here rather than inside pull_task().
3278 schedstat_inc(sd, lb_gained[idle]);
3282 p = iterator->next(iterator->arg);
3289 * move_one_task tries to move exactly one task from busiest to this_rq, as
3290 * part of active balancing operations within "domain".
3291 * Returns 1 if successful and 0 otherwise.
3293 * Called with both runqueues locked.
3295 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3296 struct sched_domain *sd, enum cpu_idle_type idle)
3298 const struct sched_class *class;
3300 for (class = sched_class_highest; class; class = class->next)
3301 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3308 * find_busiest_group finds and returns the busiest CPU group within the
3309 * domain. It calculates and returns the amount of weighted load which
3310 * should be moved to restore balance via the imbalance parameter.
3312 static struct sched_group *
3313 find_busiest_group(struct sched_domain *sd, int this_cpu,
3314 unsigned long *imbalance, enum cpu_idle_type idle,
3315 int *sd_idle, const cpumask_t *cpus, int *balance)
3317 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3318 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3319 unsigned long max_pull;
3320 unsigned long busiest_load_per_task, busiest_nr_running;
3321 unsigned long this_load_per_task, this_nr_running;
3322 int load_idx, group_imb = 0;
3323 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3324 int power_savings_balance = 1;
3325 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3326 unsigned long min_nr_running = ULONG_MAX;
3327 struct sched_group *group_min = NULL, *group_leader = NULL;
3330 max_load = this_load = total_load = total_pwr = 0;
3331 busiest_load_per_task = busiest_nr_running = 0;
3332 this_load_per_task = this_nr_running = 0;
3333 if (idle == CPU_NOT_IDLE)
3334 load_idx = sd->busy_idx;
3335 else if (idle == CPU_NEWLY_IDLE)
3336 load_idx = sd->newidle_idx;
3338 load_idx = sd->idle_idx;
3341 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3344 int __group_imb = 0;
3345 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3346 unsigned long sum_nr_running, sum_weighted_load;
3348 local_group = cpu_isset(this_cpu, group->cpumask);
3351 balance_cpu = first_cpu(group->cpumask);
3353 /* Tally up the load of all CPUs in the group */
3354 sum_weighted_load = sum_nr_running = avg_load = 0;
3356 min_cpu_load = ~0UL;
3358 for_each_cpu_mask(i, group->cpumask) {
3361 if (!cpu_isset(i, *cpus))
3366 if (*sd_idle && rq->nr_running)
3369 /* Bias balancing toward cpus of our domain */
3371 if (idle_cpu(i) && !first_idle_cpu) {
3376 load = target_load(i, load_idx);
3378 load = source_load(i, load_idx);
3379 if (load > max_cpu_load)
3380 max_cpu_load = load;
3381 if (min_cpu_load > load)
3382 min_cpu_load = load;
3386 sum_nr_running += rq->nr_running;
3387 sum_weighted_load += weighted_cpuload(i);
3391 * First idle cpu or the first cpu(busiest) in this sched group
3392 * is eligible for doing load balancing at this and above
3393 * domains. In the newly idle case, we will allow all the cpu's
3394 * to do the newly idle load balance.
3396 if (idle != CPU_NEWLY_IDLE && local_group &&
3397 balance_cpu != this_cpu && balance) {
3402 total_load += avg_load;
3403 total_pwr += group->__cpu_power;
3405 /* Adjust by relative CPU power of the group */
3406 avg_load = sg_div_cpu_power(group,
3407 avg_load * SCHED_LOAD_SCALE);
3409 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3412 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3415 this_load = avg_load;
3417 this_nr_running = sum_nr_running;
3418 this_load_per_task = sum_weighted_load;
3419 } else if (avg_load > max_load &&
3420 (sum_nr_running > group_capacity || __group_imb)) {
3421 max_load = avg_load;
3423 busiest_nr_running = sum_nr_running;
3424 busiest_load_per_task = sum_weighted_load;
3425 group_imb = __group_imb;
3428 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3430 * Busy processors will not participate in power savings
3433 if (idle == CPU_NOT_IDLE ||
3434 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3438 * If the local group is idle or completely loaded
3439 * no need to do power savings balance at this domain
3441 if (local_group && (this_nr_running >= group_capacity ||
3443 power_savings_balance = 0;
3446 * If a group is already running at full capacity or idle,
3447 * don't include that group in power savings calculations
3449 if (!power_savings_balance || sum_nr_running >= group_capacity
3454 * Calculate the group which has the least non-idle load.
3455 * This is the group from where we need to pick up the load
3458 if ((sum_nr_running < min_nr_running) ||
3459 (sum_nr_running == min_nr_running &&
3460 first_cpu(group->cpumask) <
3461 first_cpu(group_min->cpumask))) {
3463 min_nr_running = sum_nr_running;
3464 min_load_per_task = sum_weighted_load /
3469 * Calculate the group which is almost near its
3470 * capacity but still has some space to pick up some load
3471 * from other group and save more power
3473 if (sum_nr_running <= group_capacity - 1) {
3474 if (sum_nr_running > leader_nr_running ||
3475 (sum_nr_running == leader_nr_running &&
3476 first_cpu(group->cpumask) >
3477 first_cpu(group_leader->cpumask))) {
3478 group_leader = group;
3479 leader_nr_running = sum_nr_running;
3484 group = group->next;
3485 } while (group != sd->groups);
3487 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3490 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3492 if (this_load >= avg_load ||
3493 100*max_load <= sd->imbalance_pct*this_load)
3496 busiest_load_per_task /= busiest_nr_running;
3498 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3501 * We're trying to get all the cpus to the average_load, so we don't
3502 * want to push ourselves above the average load, nor do we wish to
3503 * reduce the max loaded cpu below the average load, as either of these
3504 * actions would just result in more rebalancing later, and ping-pong
3505 * tasks around. Thus we look for the minimum possible imbalance.
3506 * Negative imbalances (*we* are more loaded than anyone else) will
3507 * be counted as no imbalance for these purposes -- we can't fix that
3508 * by pulling tasks to us. Be careful of negative numbers as they'll
3509 * appear as very large values with unsigned longs.
3511 if (max_load <= busiest_load_per_task)
3515 * In the presence of smp nice balancing, certain scenarios can have
3516 * max load less than avg load(as we skip the groups at or below
3517 * its cpu_power, while calculating max_load..)
3519 if (max_load < avg_load) {
3521 goto small_imbalance;
3524 /* Don't want to pull so many tasks that a group would go idle */
3525 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3527 /* How much load to actually move to equalise the imbalance */
3528 *imbalance = min(max_pull * busiest->__cpu_power,
3529 (avg_load - this_load) * this->__cpu_power)
3533 * if *imbalance is less than the average load per runnable task
3534 * there is no gaurantee that any tasks will be moved so we'll have
3535 * a think about bumping its value to force at least one task to be
3538 if (*imbalance < busiest_load_per_task) {
3539 unsigned long tmp, pwr_now, pwr_move;
3543 pwr_move = pwr_now = 0;
3545 if (this_nr_running) {
3546 this_load_per_task /= this_nr_running;
3547 if (busiest_load_per_task > this_load_per_task)
3550 this_load_per_task = SCHED_LOAD_SCALE;
3552 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3553 busiest_load_per_task * imbn) {
3554 *imbalance = busiest_load_per_task;
3559 * OK, we don't have enough imbalance to justify moving tasks,
3560 * however we may be able to increase total CPU power used by
3564 pwr_now += busiest->__cpu_power *
3565 min(busiest_load_per_task, max_load);
3566 pwr_now += this->__cpu_power *
3567 min(this_load_per_task, this_load);
3568 pwr_now /= SCHED_LOAD_SCALE;
3570 /* Amount of load we'd subtract */
3571 tmp = sg_div_cpu_power(busiest,
3572 busiest_load_per_task * SCHED_LOAD_SCALE);
3574 pwr_move += busiest->__cpu_power *
3575 min(busiest_load_per_task, max_load - tmp);
3577 /* Amount of load we'd add */
3578 if (max_load * busiest->__cpu_power <
3579 busiest_load_per_task * SCHED_LOAD_SCALE)
3580 tmp = sg_div_cpu_power(this,
3581 max_load * busiest->__cpu_power);
3583 tmp = sg_div_cpu_power(this,
3584 busiest_load_per_task * SCHED_LOAD_SCALE);
3585 pwr_move += this->__cpu_power *
3586 min(this_load_per_task, this_load + tmp);
3587 pwr_move /= SCHED_LOAD_SCALE;
3589 /* Move if we gain throughput */
3590 if (pwr_move > pwr_now)
3591 *imbalance = busiest_load_per_task;
3597 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3598 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3601 if (this == group_leader && group_leader != group_min) {
3602 *imbalance = min_load_per_task;
3612 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3615 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3616 unsigned long imbalance, const cpumask_t *cpus)
3618 struct rq *busiest = NULL, *rq;
3619 unsigned long max_load = 0;
3622 for_each_cpu_mask(i, group->cpumask) {
3625 if (!cpu_isset(i, *cpus))
3629 wl = weighted_cpuload(i);
3631 if (rq->nr_running == 1 && wl > imbalance)
3634 if (wl > max_load) {
3644 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3645 * so long as it is large enough.
3647 #define MAX_PINNED_INTERVAL 512
3650 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3651 * tasks if there is an imbalance.
3653 static int load_balance(int this_cpu, struct rq *this_rq,
3654 struct sched_domain *sd, enum cpu_idle_type idle,
3655 int *balance, cpumask_t *cpus)
3657 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3658 struct sched_group *group;
3659 unsigned long imbalance;
3661 unsigned long flags;
3662 int unlock_aggregate;
3666 unlock_aggregate = get_aggregate(sd);
3669 * When power savings policy is enabled for the parent domain, idle
3670 * sibling can pick up load irrespective of busy siblings. In this case,
3671 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3672 * portraying it as CPU_NOT_IDLE.
3674 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3675 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3678 schedstat_inc(sd, lb_count[idle]);
3681 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3688 schedstat_inc(sd, lb_nobusyg[idle]);
3692 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3694 schedstat_inc(sd, lb_nobusyq[idle]);
3698 BUG_ON(busiest == this_rq);
3700 schedstat_add(sd, lb_imbalance[idle], imbalance);
3703 if (busiest->nr_running > 1) {
3705 * Attempt to move tasks. If find_busiest_group has found
3706 * an imbalance but busiest->nr_running <= 1, the group is
3707 * still unbalanced. ld_moved simply stays zero, so it is
3708 * correctly treated as an imbalance.
3710 local_irq_save(flags);
3711 double_rq_lock(this_rq, busiest);
3712 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3713 imbalance, sd, idle, &all_pinned);
3714 double_rq_unlock(this_rq, busiest);
3715 local_irq_restore(flags);
3718 * some other cpu did the load balance for us.
3720 if (ld_moved && this_cpu != smp_processor_id())
3721 resched_cpu(this_cpu);
3723 /* All tasks on this runqueue were pinned by CPU affinity */
3724 if (unlikely(all_pinned)) {
3725 cpu_clear(cpu_of(busiest), *cpus);
3726 if (!cpus_empty(*cpus))
3733 schedstat_inc(sd, lb_failed[idle]);
3734 sd->nr_balance_failed++;
3736 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3738 spin_lock_irqsave(&busiest->lock, flags);
3740 /* don't kick the migration_thread, if the curr
3741 * task on busiest cpu can't be moved to this_cpu
3743 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3744 spin_unlock_irqrestore(&busiest->lock, flags);
3746 goto out_one_pinned;
3749 if (!busiest->active_balance) {
3750 busiest->active_balance = 1;
3751 busiest->push_cpu = this_cpu;
3754 spin_unlock_irqrestore(&busiest->lock, flags);
3756 wake_up_process(busiest->migration_thread);
3759 * We've kicked active balancing, reset the failure
3762 sd->nr_balance_failed = sd->cache_nice_tries+1;
3765 sd->nr_balance_failed = 0;
3767 if (likely(!active_balance)) {
3768 /* We were unbalanced, so reset the balancing interval */
3769 sd->balance_interval = sd->min_interval;
3772 * If we've begun active balancing, start to back off. This
3773 * case may not be covered by the all_pinned logic if there
3774 * is only 1 task on the busy runqueue (because we don't call
3777 if (sd->balance_interval < sd->max_interval)
3778 sd->balance_interval *= 2;
3781 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3782 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3788 schedstat_inc(sd, lb_balanced[idle]);
3790 sd->nr_balance_failed = 0;
3793 /* tune up the balancing interval */
3794 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3795 (sd->balance_interval < sd->max_interval))
3796 sd->balance_interval *= 2;
3798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3804 if (unlock_aggregate)
3810 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3811 * tasks if there is an imbalance.
3813 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3814 * this_rq is locked.
3817 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3820 struct sched_group *group;
3821 struct rq *busiest = NULL;
3822 unsigned long imbalance;
3830 * When power savings policy is enabled for the parent domain, idle
3831 * sibling can pick up load irrespective of busy siblings. In this case,
3832 * let the state of idle sibling percolate up as IDLE, instead of
3833 * portraying it as CPU_NOT_IDLE.
3835 if (sd->flags & SD_SHARE_CPUPOWER &&
3836 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3839 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3841 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3842 &sd_idle, cpus, NULL);
3844 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3848 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3850 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3854 BUG_ON(busiest == this_rq);
3856 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3859 if (busiest->nr_running > 1) {
3860 /* Attempt to move tasks */
3861 double_lock_balance(this_rq, busiest);
3862 /* this_rq->clock is already updated */
3863 update_rq_clock(busiest);
3864 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3865 imbalance, sd, CPU_NEWLY_IDLE,
3867 spin_unlock(&busiest->lock);
3869 if (unlikely(all_pinned)) {
3870 cpu_clear(cpu_of(busiest), *cpus);
3871 if (!cpus_empty(*cpus))
3877 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3878 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3879 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3882 sd->nr_balance_failed = 0;
3887 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3888 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3889 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3891 sd->nr_balance_failed = 0;
3897 * idle_balance is called by schedule() if this_cpu is about to become
3898 * idle. Attempts to pull tasks from other CPUs.
3900 static void idle_balance(int this_cpu, struct rq *this_rq)
3902 struct sched_domain *sd;
3903 int pulled_task = -1;
3904 unsigned long next_balance = jiffies + HZ;
3907 for_each_domain(this_cpu, sd) {
3908 unsigned long interval;
3910 if (!(sd->flags & SD_LOAD_BALANCE))
3913 if (sd->flags & SD_BALANCE_NEWIDLE)
3914 /* If we've pulled tasks over stop searching: */
3915 pulled_task = load_balance_newidle(this_cpu, this_rq,
3918 interval = msecs_to_jiffies(sd->balance_interval);
3919 if (time_after(next_balance, sd->last_balance + interval))
3920 next_balance = sd->last_balance + interval;
3924 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3926 * We are going idle. next_balance may be set based on
3927 * a busy processor. So reset next_balance.
3929 this_rq->next_balance = next_balance;
3934 * active_load_balance is run by migration threads. It pushes running tasks
3935 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3936 * running on each physical CPU where possible, and avoids physical /
3937 * logical imbalances.
3939 * Called with busiest_rq locked.
3941 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3943 int target_cpu = busiest_rq->push_cpu;
3944 struct sched_domain *sd;
3945 struct rq *target_rq;
3947 /* Is there any task to move? */
3948 if (busiest_rq->nr_running <= 1)
3951 target_rq = cpu_rq(target_cpu);
3954 * This condition is "impossible", if it occurs
3955 * we need to fix it. Originally reported by
3956 * Bjorn Helgaas on a 128-cpu setup.
3958 BUG_ON(busiest_rq == target_rq);
3960 /* move a task from busiest_rq to target_rq */
3961 double_lock_balance(busiest_rq, target_rq);
3962 update_rq_clock(busiest_rq);
3963 update_rq_clock(target_rq);
3965 /* Search for an sd spanning us and the target CPU. */
3966 for_each_domain(target_cpu, sd) {
3967 if ((sd->flags & SD_LOAD_BALANCE) &&
3968 cpu_isset(busiest_cpu, sd->span))
3973 schedstat_inc(sd, alb_count);
3975 if (move_one_task(target_rq, target_cpu, busiest_rq,
3977 schedstat_inc(sd, alb_pushed);
3979 schedstat_inc(sd, alb_failed);
3981 spin_unlock(&target_rq->lock);
3986 atomic_t load_balancer;
3988 } nohz ____cacheline_aligned = {
3989 .load_balancer = ATOMIC_INIT(-1),
3990 .cpu_mask = CPU_MASK_NONE,
3994 * This routine will try to nominate the ilb (idle load balancing)
3995 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3996 * load balancing on behalf of all those cpus. If all the cpus in the system
3997 * go into this tickless mode, then there will be no ilb owner (as there is
3998 * no need for one) and all the cpus will sleep till the next wakeup event
4001 * For the ilb owner, tick is not stopped. And this tick will be used
4002 * for idle load balancing. ilb owner will still be part of
4005 * While stopping the tick, this cpu will become the ilb owner if there
4006 * is no other owner. And will be the owner till that cpu becomes busy
4007 * or if all cpus in the system stop their ticks at which point
4008 * there is no need for ilb owner.
4010 * When the ilb owner becomes busy, it nominates another owner, during the
4011 * next busy scheduler_tick()
4013 int select_nohz_load_balancer(int stop_tick)
4015 int cpu = smp_processor_id();
4018 cpu_set(cpu, nohz.cpu_mask);
4019 cpu_rq(cpu)->in_nohz_recently = 1;
4022 * If we are going offline and still the leader, give up!
4024 if (cpu_is_offline(cpu) &&
4025 atomic_read(&nohz.load_balancer) == cpu) {
4026 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4031 /* time for ilb owner also to sleep */
4032 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4033 if (atomic_read(&nohz.load_balancer) == cpu)
4034 atomic_set(&nohz.load_balancer, -1);
4038 if (atomic_read(&nohz.load_balancer) == -1) {
4039 /* make me the ilb owner */
4040 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4042 } else if (atomic_read(&nohz.load_balancer) == cpu)
4045 if (!cpu_isset(cpu, nohz.cpu_mask))
4048 cpu_clear(cpu, nohz.cpu_mask);
4050 if (atomic_read(&nohz.load_balancer) == cpu)
4051 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4058 static DEFINE_SPINLOCK(balancing);
4061 * It checks each scheduling domain to see if it is due to be balanced,
4062 * and initiates a balancing operation if so.
4064 * Balancing parameters are set up in arch_init_sched_domains.
4066 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4069 struct rq *rq = cpu_rq(cpu);
4070 unsigned long interval;
4071 struct sched_domain *sd;
4072 /* Earliest time when we have to do rebalance again */
4073 unsigned long next_balance = jiffies + 60*HZ;
4074 int update_next_balance = 0;
4077 for_each_domain(cpu, sd) {
4078 if (!(sd->flags & SD_LOAD_BALANCE))
4081 interval = sd->balance_interval;
4082 if (idle != CPU_IDLE)
4083 interval *= sd->busy_factor;
4085 /* scale ms to jiffies */
4086 interval = msecs_to_jiffies(interval);
4087 if (unlikely(!interval))
4089 if (interval > HZ*NR_CPUS/10)
4090 interval = HZ*NR_CPUS/10;
4093 if (sd->flags & SD_SERIALIZE) {
4094 if (!spin_trylock(&balancing))
4098 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4099 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4101 * We've pulled tasks over so either we're no
4102 * longer idle, or one of our SMT siblings is
4105 idle = CPU_NOT_IDLE;
4107 sd->last_balance = jiffies;
4109 if (sd->flags & SD_SERIALIZE)
4110 spin_unlock(&balancing);
4112 if (time_after(next_balance, sd->last_balance + interval)) {
4113 next_balance = sd->last_balance + interval;
4114 update_next_balance = 1;
4118 * Stop the load balance at this level. There is another
4119 * CPU in our sched group which is doing load balancing more
4127 * next_balance will be updated only when there is a need.
4128 * When the cpu is attached to null domain for ex, it will not be
4131 if (likely(update_next_balance))
4132 rq->next_balance = next_balance;
4136 * run_rebalance_domains is triggered when needed from the scheduler tick.
4137 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4138 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4140 static void run_rebalance_domains(struct softirq_action *h)
4142 int this_cpu = smp_processor_id();
4143 struct rq *this_rq = cpu_rq(this_cpu);
4144 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4145 CPU_IDLE : CPU_NOT_IDLE;
4147 rebalance_domains(this_cpu, idle);
4151 * If this cpu is the owner for idle load balancing, then do the
4152 * balancing on behalf of the other idle cpus whose ticks are
4155 if (this_rq->idle_at_tick &&
4156 atomic_read(&nohz.load_balancer) == this_cpu) {
4157 cpumask_t cpus = nohz.cpu_mask;
4161 cpu_clear(this_cpu, cpus);
4162 for_each_cpu_mask(balance_cpu, cpus) {
4164 * If this cpu gets work to do, stop the load balancing
4165 * work being done for other cpus. Next load
4166 * balancing owner will pick it up.
4171 rebalance_domains(balance_cpu, CPU_IDLE);
4173 rq = cpu_rq(balance_cpu);
4174 if (time_after(this_rq->next_balance, rq->next_balance))
4175 this_rq->next_balance = rq->next_balance;
4182 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4184 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4185 * idle load balancing owner or decide to stop the periodic load balancing,
4186 * if the whole system is idle.
4188 static inline void trigger_load_balance(struct rq *rq, int cpu)
4192 * If we were in the nohz mode recently and busy at the current
4193 * scheduler tick, then check if we need to nominate new idle
4196 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4197 rq->in_nohz_recently = 0;
4199 if (atomic_read(&nohz.load_balancer) == cpu) {
4200 cpu_clear(cpu, nohz.cpu_mask);
4201 atomic_set(&nohz.load_balancer, -1);
4204 if (atomic_read(&nohz.load_balancer) == -1) {
4206 * simple selection for now: Nominate the
4207 * first cpu in the nohz list to be the next
4210 * TBD: Traverse the sched domains and nominate
4211 * the nearest cpu in the nohz.cpu_mask.
4213 int ilb = first_cpu(nohz.cpu_mask);
4215 if (ilb < nr_cpu_ids)
4221 * If this cpu is idle and doing idle load balancing for all the
4222 * cpus with ticks stopped, is it time for that to stop?
4224 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4225 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4231 * If this cpu is idle and the idle load balancing is done by
4232 * someone else, then no need raise the SCHED_SOFTIRQ
4234 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4235 cpu_isset(cpu, nohz.cpu_mask))
4238 if (time_after_eq(jiffies, rq->next_balance))
4239 raise_softirq(SCHED_SOFTIRQ);
4242 #else /* CONFIG_SMP */
4245 * on UP we do not need to balance between CPUs:
4247 static inline void idle_balance(int cpu, struct rq *rq)
4253 DEFINE_PER_CPU(struct kernel_stat, kstat);
4255 EXPORT_PER_CPU_SYMBOL(kstat);
4258 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4259 * that have not yet been banked in case the task is currently running.
4261 unsigned long long task_sched_runtime(struct task_struct *p)
4263 unsigned long flags;
4267 rq = task_rq_lock(p, &flags);
4268 ns = p->se.sum_exec_runtime;
4269 if (task_current(rq, p)) {
4270 update_rq_clock(rq);
4271 delta_exec = rq->clock - p->se.exec_start;
4272 if ((s64)delta_exec > 0)
4275 task_rq_unlock(rq, &flags);
4281 * Account user cpu time to a process.
4282 * @p: the process that the cpu time gets accounted to
4283 * @cputime: the cpu time spent in user space since the last update
4285 void account_user_time(struct task_struct *p, cputime_t cputime)
4287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4290 p->utime = cputime_add(p->utime, cputime);
4292 /* Add user time to cpustat. */
4293 tmp = cputime_to_cputime64(cputime);
4294 if (TASK_NICE(p) > 0)
4295 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4297 cpustat->user = cputime64_add(cpustat->user, tmp);
4301 * Account guest cpu time to a process.
4302 * @p: the process that the cpu time gets accounted to
4303 * @cputime: the cpu time spent in virtual machine since the last update
4305 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4310 tmp = cputime_to_cputime64(cputime);
4312 p->utime = cputime_add(p->utime, cputime);
4313 p->gtime = cputime_add(p->gtime, cputime);
4315 cpustat->user = cputime64_add(cpustat->user, tmp);
4316 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4320 * Account scaled user cpu time to a process.
4321 * @p: the process that the cpu time gets accounted to
4322 * @cputime: the cpu time spent in user space since the last update
4324 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4326 p->utimescaled = cputime_add(p->utimescaled, cputime);
4330 * Account system cpu time to a process.
4331 * @p: the process that the cpu time gets accounted to
4332 * @hardirq_offset: the offset to subtract from hardirq_count()
4333 * @cputime: the cpu time spent in kernel space since the last update
4335 void account_system_time(struct task_struct *p, int hardirq_offset,
4338 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4339 struct rq *rq = this_rq();
4342 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
4343 return account_guest_time(p, cputime);
4345 p->stime = cputime_add(p->stime, cputime);
4347 /* Add system time to cpustat. */
4348 tmp = cputime_to_cputime64(cputime);
4349 if (hardirq_count() - hardirq_offset)
4350 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4351 else if (softirq_count())
4352 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4353 else if (p != rq->idle)
4354 cpustat->system = cputime64_add(cpustat->system, tmp);
4355 else if (atomic_read(&rq->nr_iowait) > 0)
4356 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4358 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4359 /* Account for system time used */
4360 acct_update_integrals(p);
4364 * Account scaled system cpu time to a process.
4365 * @p: the process that the cpu time gets accounted to
4366 * @hardirq_offset: the offset to subtract from hardirq_count()
4367 * @cputime: the cpu time spent in kernel space since the last update
4369 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4371 p->stimescaled = cputime_add(p->stimescaled, cputime);
4375 * Account for involuntary wait time.
4376 * @p: the process from which the cpu time has been stolen
4377 * @steal: the cpu time spent in involuntary wait
4379 void account_steal_time(struct task_struct *p, cputime_t steal)
4381 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4382 cputime64_t tmp = cputime_to_cputime64(steal);
4383 struct rq *rq = this_rq();
4385 if (p == rq->idle) {
4386 p->stime = cputime_add(p->stime, steal);
4387 if (atomic_read(&rq->nr_iowait) > 0)
4388 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4390 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4392 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4396 * This function gets called by the timer code, with HZ frequency.
4397 * We call it with interrupts disabled.
4399 * It also gets called by the fork code, when changing the parent's
4402 void scheduler_tick(void)
4404 int cpu = smp_processor_id();
4405 struct rq *rq = cpu_rq(cpu);
4406 struct task_struct *curr = rq->curr;
4407 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
4409 spin_lock(&rq->lock);
4410 __update_rq_clock(rq);
4412 * Let rq->clock advance by at least TICK_NSEC:
4414 if (unlikely(rq->clock < next_tick)) {
4415 rq->clock = next_tick;
4416 rq->clock_underflows++;
4418 rq->tick_timestamp = rq->clock;
4419 update_last_tick_seen(rq);
4420 update_cpu_load(rq);
4421 curr->sched_class->task_tick(rq, curr, 0);
4422 spin_unlock(&rq->lock);
4425 rq->idle_at_tick = idle_cpu(cpu);
4426 trigger_load_balance(rq, cpu);
4430 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4432 void __kprobes add_preempt_count(int val)
4437 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4439 preempt_count() += val;
4441 * Spinlock count overflowing soon?
4443 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4446 EXPORT_SYMBOL(add_preempt_count);
4448 void __kprobes sub_preempt_count(int val)
4453 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4456 * Is the spinlock portion underflowing?
4458 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4459 !(preempt_count() & PREEMPT_MASK)))
4462 preempt_count() -= val;
4464 EXPORT_SYMBOL(sub_preempt_count);
4469 * Print scheduling while atomic bug:
4471 static noinline void __schedule_bug(struct task_struct *prev)
4473 struct pt_regs *regs = get_irq_regs();
4475 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4476 prev->comm, prev->pid, preempt_count());
4478 debug_show_held_locks(prev);
4479 if (irqs_disabled())
4480 print_irqtrace_events(prev);
4489 * Various schedule()-time debugging checks and statistics:
4491 static inline void schedule_debug(struct task_struct *prev)
4494 * Test if we are atomic. Since do_exit() needs to call into
4495 * schedule() atomically, we ignore that path for now.
4496 * Otherwise, whine if we are scheduling when we should not be.
4498 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4499 __schedule_bug(prev);
4501 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4503 schedstat_inc(this_rq(), sched_count);
4504 #ifdef CONFIG_SCHEDSTATS
4505 if (unlikely(prev->lock_depth >= 0)) {
4506 schedstat_inc(this_rq(), bkl_count);
4507 schedstat_inc(prev, sched_info.bkl_count);
4513 * Pick up the highest-prio task:
4515 static inline struct task_struct *
4516 pick_next_task(struct rq *rq, struct task_struct *prev)
4518 const struct sched_class *class;
4519 struct task_struct *p;
4522 * Optimization: we know that if all tasks are in
4523 * the fair class we can call that function directly:
4525 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4526 p = fair_sched_class.pick_next_task(rq);
4531 class = sched_class_highest;
4533 p = class->pick_next_task(rq);
4537 * Will never be NULL as the idle class always
4538 * returns a non-NULL p:
4540 class = class->next;
4545 * schedule() is the main scheduler function.
4547 asmlinkage void __sched schedule(void)
4549 struct task_struct *prev, *next;
4550 unsigned long *switch_count;
4556 cpu = smp_processor_id();
4560 switch_count = &prev->nivcsw;
4562 release_kernel_lock(prev);
4563 need_resched_nonpreemptible:
4565 schedule_debug(prev);
4570 * Do the rq-clock update outside the rq lock:
4572 local_irq_disable();
4573 __update_rq_clock(rq);
4574 spin_lock(&rq->lock);
4575 clear_tsk_need_resched(prev);
4577 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4578 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4579 signal_pending(prev))) {
4580 prev->state = TASK_RUNNING;
4582 deactivate_task(rq, prev, 1);
4584 switch_count = &prev->nvcsw;
4588 if (prev->sched_class->pre_schedule)
4589 prev->sched_class->pre_schedule(rq, prev);
4592 if (unlikely(!rq->nr_running))
4593 idle_balance(cpu, rq);
4595 prev->sched_class->put_prev_task(rq, prev);
4596 next = pick_next_task(rq, prev);
4598 sched_info_switch(prev, next);
4600 if (likely(prev != next)) {
4605 context_switch(rq, prev, next); /* unlocks the rq */
4607 * the context switch might have flipped the stack from under
4608 * us, hence refresh the local variables.
4610 cpu = smp_processor_id();
4613 spin_unlock_irq(&rq->lock);
4617 if (unlikely(reacquire_kernel_lock(current) < 0))
4618 goto need_resched_nonpreemptible;
4620 preempt_enable_no_resched();
4621 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4624 EXPORT_SYMBOL(schedule);
4626 #ifdef CONFIG_PREEMPT
4628 * this is the entry point to schedule() from in-kernel preemption
4629 * off of preempt_enable. Kernel preemptions off return from interrupt
4630 * occur there and call schedule directly.
4632 asmlinkage void __sched preempt_schedule(void)
4634 struct thread_info *ti = current_thread_info();
4635 struct task_struct *task = current;
4636 int saved_lock_depth;
4639 * If there is a non-zero preempt_count or interrupts are disabled,
4640 * we do not want to preempt the current task. Just return..
4642 if (likely(ti->preempt_count || irqs_disabled()))
4646 add_preempt_count(PREEMPT_ACTIVE);
4649 * We keep the big kernel semaphore locked, but we
4650 * clear ->lock_depth so that schedule() doesnt
4651 * auto-release the semaphore:
4653 saved_lock_depth = task->lock_depth;
4654 task->lock_depth = -1;
4656 task->lock_depth = saved_lock_depth;
4657 sub_preempt_count(PREEMPT_ACTIVE);
4660 * Check again in case we missed a preemption opportunity
4661 * between schedule and now.
4664 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4666 EXPORT_SYMBOL(preempt_schedule);
4669 * this is the entry point to schedule() from kernel preemption
4670 * off of irq context.
4671 * Note, that this is called and return with irqs disabled. This will
4672 * protect us against recursive calling from irq.
4674 asmlinkage void __sched preempt_schedule_irq(void)
4676 struct thread_info *ti = current_thread_info();
4677 struct task_struct *task = current;
4678 int saved_lock_depth;
4680 /* Catch callers which need to be fixed */
4681 BUG_ON(ti->preempt_count || !irqs_disabled());
4684 add_preempt_count(PREEMPT_ACTIVE);
4687 * We keep the big kernel semaphore locked, but we
4688 * clear ->lock_depth so that schedule() doesnt
4689 * auto-release the semaphore:
4691 saved_lock_depth = task->lock_depth;
4692 task->lock_depth = -1;
4695 local_irq_disable();
4696 task->lock_depth = saved_lock_depth;
4697 sub_preempt_count(PREEMPT_ACTIVE);
4700 * Check again in case we missed a preemption opportunity
4701 * between schedule and now.
4704 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4707 #endif /* CONFIG_PREEMPT */
4709 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4712 return try_to_wake_up(curr->private, mode, sync);
4714 EXPORT_SYMBOL(default_wake_function);
4717 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4718 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4719 * number) then we wake all the non-exclusive tasks and one exclusive task.
4721 * There are circumstances in which we can try to wake a task which has already
4722 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4723 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4725 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4726 int nr_exclusive, int sync, void *key)
4728 wait_queue_t *curr, *next;
4730 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4731 unsigned flags = curr->flags;
4733 if (curr->func(curr, mode, sync, key) &&
4734 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4740 * __wake_up - wake up threads blocked on a waitqueue.
4742 * @mode: which threads
4743 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4744 * @key: is directly passed to the wakeup function
4746 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4747 int nr_exclusive, void *key)
4749 unsigned long flags;
4751 spin_lock_irqsave(&q->lock, flags);
4752 __wake_up_common(q, mode, nr_exclusive, 0, key);
4753 spin_unlock_irqrestore(&q->lock, flags);
4755 EXPORT_SYMBOL(__wake_up);
4758 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4760 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4762 __wake_up_common(q, mode, 1, 0, NULL);
4766 * __wake_up_sync - wake up threads blocked on a waitqueue.
4768 * @mode: which threads
4769 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4771 * The sync wakeup differs that the waker knows that it will schedule
4772 * away soon, so while the target thread will be woken up, it will not
4773 * be migrated to another CPU - ie. the two threads are 'synchronized'
4774 * with each other. This can prevent needless bouncing between CPUs.
4776 * On UP it can prevent extra preemption.
4779 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4781 unsigned long flags;
4787 if (unlikely(!nr_exclusive))
4790 spin_lock_irqsave(&q->lock, flags);
4791 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4792 spin_unlock_irqrestore(&q->lock, flags);
4794 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4796 void complete(struct completion *x)
4798 unsigned long flags;
4800 spin_lock_irqsave(&x->wait.lock, flags);
4802 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4803 spin_unlock_irqrestore(&x->wait.lock, flags);
4805 EXPORT_SYMBOL(complete);
4807 void complete_all(struct completion *x)
4809 unsigned long flags;
4811 spin_lock_irqsave(&x->wait.lock, flags);
4812 x->done += UINT_MAX/2;
4813 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4814 spin_unlock_irqrestore(&x->wait.lock, flags);
4816 EXPORT_SYMBOL(complete_all);
4818 static inline long __sched
4819 do_wait_for_common(struct completion *x, long timeout, int state)
4822 DECLARE_WAITQUEUE(wait, current);
4824 wait.flags |= WQ_FLAG_EXCLUSIVE;
4825 __add_wait_queue_tail(&x->wait, &wait);
4827 if ((state == TASK_INTERRUPTIBLE &&
4828 signal_pending(current)) ||
4829 (state == TASK_KILLABLE &&
4830 fatal_signal_pending(current))) {
4831 __remove_wait_queue(&x->wait, &wait);
4832 return -ERESTARTSYS;
4834 __set_current_state(state);
4835 spin_unlock_irq(&x->wait.lock);
4836 timeout = schedule_timeout(timeout);
4837 spin_lock_irq(&x->wait.lock);
4839 __remove_wait_queue(&x->wait, &wait);
4843 __remove_wait_queue(&x->wait, &wait);
4850 wait_for_common(struct completion *x, long timeout, int state)
4854 spin_lock_irq(&x->wait.lock);
4855 timeout = do_wait_for_common(x, timeout, state);
4856 spin_unlock_irq(&x->wait.lock);
4860 void __sched wait_for_completion(struct completion *x)
4862 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4864 EXPORT_SYMBOL(wait_for_completion);
4866 unsigned long __sched
4867 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4869 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4871 EXPORT_SYMBOL(wait_for_completion_timeout);
4873 int __sched wait_for_completion_interruptible(struct completion *x)
4875 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4876 if (t == -ERESTARTSYS)
4880 EXPORT_SYMBOL(wait_for_completion_interruptible);
4882 unsigned long __sched
4883 wait_for_completion_interruptible_timeout(struct completion *x,
4884 unsigned long timeout)
4886 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4888 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4890 int __sched wait_for_completion_killable(struct completion *x)
4892 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4893 if (t == -ERESTARTSYS)
4897 EXPORT_SYMBOL(wait_for_completion_killable);
4900 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4902 unsigned long flags;
4905 init_waitqueue_entry(&wait, current);
4907 __set_current_state(state);
4909 spin_lock_irqsave(&q->lock, flags);
4910 __add_wait_queue(q, &wait);
4911 spin_unlock(&q->lock);
4912 timeout = schedule_timeout(timeout);
4913 spin_lock_irq(&q->lock);
4914 __remove_wait_queue(q, &wait);
4915 spin_unlock_irqrestore(&q->lock, flags);
4920 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4922 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4924 EXPORT_SYMBOL(interruptible_sleep_on);
4927 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4929 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4931 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4933 void __sched sleep_on(wait_queue_head_t *q)
4935 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4937 EXPORT_SYMBOL(sleep_on);
4939 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4941 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4943 EXPORT_SYMBOL(sleep_on_timeout);
4945 #ifdef CONFIG_RT_MUTEXES
4948 * rt_mutex_setprio - set the current priority of a task
4950 * @prio: prio value (kernel-internal form)
4952 * This function changes the 'effective' priority of a task. It does
4953 * not touch ->normal_prio like __setscheduler().
4955 * Used by the rt_mutex code to implement priority inheritance logic.
4957 void rt_mutex_setprio(struct task_struct *p, int prio)
4959 unsigned long flags;
4960 int oldprio, on_rq, running;
4962 const struct sched_class *prev_class = p->sched_class;
4964 BUG_ON(prio < 0 || prio > MAX_PRIO);
4966 rq = task_rq_lock(p, &flags);
4967 update_rq_clock(rq);
4970 on_rq = p->se.on_rq;
4971 running = task_current(rq, p);
4973 dequeue_task(rq, p, 0);
4975 p->sched_class->put_prev_task(rq, p);
4978 p->sched_class = &rt_sched_class;
4980 p->sched_class = &fair_sched_class;
4985 p->sched_class->set_curr_task(rq);
4987 enqueue_task(rq, p, 0);
4989 check_class_changed(rq, p, prev_class, oldprio, running);
4991 task_rq_unlock(rq, &flags);
4996 void set_user_nice(struct task_struct *p, long nice)
4998 int old_prio, delta, on_rq;
4999 unsigned long flags;
5002 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5005 * We have to be careful, if called from sys_setpriority(),
5006 * the task might be in the middle of scheduling on another CPU.
5008 rq = task_rq_lock(p, &flags);
5009 update_rq_clock(rq);
5011 * The RT priorities are set via sched_setscheduler(), but we still
5012 * allow the 'normal' nice value to be set - but as expected
5013 * it wont have any effect on scheduling until the task is
5014 * SCHED_FIFO/SCHED_RR:
5016 if (task_has_rt_policy(p)) {
5017 p->static_prio = NICE_TO_PRIO(nice);
5020 on_rq = p->se.on_rq;
5022 dequeue_task(rq, p, 0);
5024 p->static_prio = NICE_TO_PRIO(nice);
5027 p->prio = effective_prio(p);
5028 delta = p->prio - old_prio;
5031 enqueue_task(rq, p, 0);
5033 * If the task increased its priority or is running and
5034 * lowered its priority, then reschedule its CPU:
5036 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5037 resched_task(rq->curr);
5040 task_rq_unlock(rq, &flags);
5042 EXPORT_SYMBOL(set_user_nice);
5045 * can_nice - check if a task can reduce its nice value
5049 int can_nice(const struct task_struct *p, const int nice)
5051 /* convert nice value [19,-20] to rlimit style value [1,40] */
5052 int nice_rlim = 20 - nice;
5054 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5055 capable(CAP_SYS_NICE));
5058 #ifdef __ARCH_WANT_SYS_NICE
5061 * sys_nice - change the priority of the current process.
5062 * @increment: priority increment
5064 * sys_setpriority is a more generic, but much slower function that
5065 * does similar things.
5067 asmlinkage long sys_nice(int increment)
5072 * Setpriority might change our priority at the same moment.
5073 * We don't have to worry. Conceptually one call occurs first
5074 * and we have a single winner.
5076 if (increment < -40)
5081 nice = PRIO_TO_NICE(current->static_prio) + increment;
5087 if (increment < 0 && !can_nice(current, nice))
5090 retval = security_task_setnice(current, nice);
5094 set_user_nice(current, nice);
5101 * task_prio - return the priority value of a given task.
5102 * @p: the task in question.
5104 * This is the priority value as seen by users in /proc.
5105 * RT tasks are offset by -200. Normal tasks are centered
5106 * around 0, value goes from -16 to +15.
5108 int task_prio(const struct task_struct *p)
5110 return p->prio - MAX_RT_PRIO;
5114 * task_nice - return the nice value of a given task.
5115 * @p: the task in question.
5117 int task_nice(const struct task_struct *p)
5119 return TASK_NICE(p);
5121 EXPORT_SYMBOL(task_nice);
5124 * idle_cpu - is a given cpu idle currently?
5125 * @cpu: the processor in question.
5127 int idle_cpu(int cpu)
5129 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5133 * idle_task - return the idle task for a given cpu.
5134 * @cpu: the processor in question.
5136 struct task_struct *idle_task(int cpu)
5138 return cpu_rq(cpu)->idle;
5142 * find_process_by_pid - find a process with a matching PID value.
5143 * @pid: the pid in question.
5145 static struct task_struct *find_process_by_pid(pid_t pid)
5147 return pid ? find_task_by_vpid(pid) : current;
5150 /* Actually do priority change: must hold rq lock. */
5152 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5154 BUG_ON(p->se.on_rq);
5157 switch (p->policy) {
5161 p->sched_class = &fair_sched_class;
5165 p->sched_class = &rt_sched_class;
5169 p->rt_priority = prio;
5170 p->normal_prio = normal_prio(p);
5171 /* we are holding p->pi_lock already */
5172 p->prio = rt_mutex_getprio(p);
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5182 * NOTE that the task may be already dead.
5184 int sched_setscheduler(struct task_struct *p, int policy,
5185 struct sched_param *param)
5187 int retval, oldprio, oldpolicy = -1, on_rq, running;
5188 unsigned long flags;
5189 const struct sched_class *prev_class = p->sched_class;
5192 /* may grab non-irq protected spin_locks */
5193 BUG_ON(in_interrupt());
5195 /* double check policy once rq lock held */
5197 policy = oldpolicy = p->policy;
5198 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5199 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5200 policy != SCHED_IDLE)
5203 * Valid priorities for SCHED_FIFO and SCHED_RR are
5204 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5205 * SCHED_BATCH and SCHED_IDLE is 0.
5207 if (param->sched_priority < 0 ||
5208 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5209 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5211 if (rt_policy(policy) != (param->sched_priority != 0))
5215 * Allow unprivileged RT tasks to decrease priority:
5217 if (!capable(CAP_SYS_NICE)) {
5218 if (rt_policy(policy)) {
5219 unsigned long rlim_rtprio;
5221 if (!lock_task_sighand(p, &flags))
5223 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5224 unlock_task_sighand(p, &flags);
5226 /* can't set/change the rt policy */
5227 if (policy != p->policy && !rlim_rtprio)
5230 /* can't increase priority */
5231 if (param->sched_priority > p->rt_priority &&
5232 param->sched_priority > rlim_rtprio)
5236 * Like positive nice levels, dont allow tasks to
5237 * move out of SCHED_IDLE either:
5239 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5242 /* can't change other user's priorities */
5243 if ((current->euid != p->euid) &&
5244 (current->euid != p->uid))
5248 #ifdef CONFIG_RT_GROUP_SCHED
5250 * Do not allow realtime tasks into groups that have no runtime
5253 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5257 retval = security_task_setscheduler(p, policy, param);
5261 * make sure no PI-waiters arrive (or leave) while we are
5262 * changing the priority of the task:
5264 spin_lock_irqsave(&p->pi_lock, flags);
5266 * To be able to change p->policy safely, the apropriate
5267 * runqueue lock must be held.
5269 rq = __task_rq_lock(p);
5270 /* recheck policy now with rq lock held */
5271 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5272 policy = oldpolicy = -1;
5273 __task_rq_unlock(rq);
5274 spin_unlock_irqrestore(&p->pi_lock, flags);
5277 update_rq_clock(rq);
5278 on_rq = p->se.on_rq;
5279 running = task_current(rq, p);
5281 deactivate_task(rq, p, 0);
5283 p->sched_class->put_prev_task(rq, p);
5286 __setscheduler(rq, p, policy, param->sched_priority);
5289 p->sched_class->set_curr_task(rq);
5291 activate_task(rq, p, 0);
5293 check_class_changed(rq, p, prev_class, oldprio, running);
5295 __task_rq_unlock(rq);
5296 spin_unlock_irqrestore(&p->pi_lock, flags);
5298 rt_mutex_adjust_pi(p);
5302 EXPORT_SYMBOL_GPL(sched_setscheduler);
5305 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5307 struct sched_param lparam;
5308 struct task_struct *p;
5311 if (!param || pid < 0)
5313 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5318 p = find_process_by_pid(pid);
5320 retval = sched_setscheduler(p, policy, &lparam);
5327 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5328 * @pid: the pid in question.
5329 * @policy: new policy.
5330 * @param: structure containing the new RT priority.
5333 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5335 /* negative values for policy are not valid */
5339 return do_sched_setscheduler(pid, policy, param);
5343 * sys_sched_setparam - set/change the RT priority of a thread
5344 * @pid: the pid in question.
5345 * @param: structure containing the new RT priority.
5347 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5349 return do_sched_setscheduler(pid, -1, param);
5353 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5354 * @pid: the pid in question.
5356 asmlinkage long sys_sched_getscheduler(pid_t pid)
5358 struct task_struct *p;
5365 read_lock(&tasklist_lock);
5366 p = find_process_by_pid(pid);
5368 retval = security_task_getscheduler(p);
5372 read_unlock(&tasklist_lock);
5377 * sys_sched_getscheduler - get the RT priority of a thread
5378 * @pid: the pid in question.
5379 * @param: structure containing the RT priority.
5381 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5383 struct sched_param lp;
5384 struct task_struct *p;
5387 if (!param || pid < 0)
5390 read_lock(&tasklist_lock);
5391 p = find_process_by_pid(pid);
5396 retval = security_task_getscheduler(p);
5400 lp.sched_priority = p->rt_priority;
5401 read_unlock(&tasklist_lock);
5404 * This one might sleep, we cannot do it with a spinlock held ...
5406 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5411 read_unlock(&tasklist_lock);
5415 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5417 cpumask_t cpus_allowed;
5418 cpumask_t new_mask = *in_mask;
5419 struct task_struct *p;
5423 read_lock(&tasklist_lock);
5425 p = find_process_by_pid(pid);
5427 read_unlock(&tasklist_lock);
5433 * It is not safe to call set_cpus_allowed with the
5434 * tasklist_lock held. We will bump the task_struct's
5435 * usage count and then drop tasklist_lock.
5438 read_unlock(&tasklist_lock);
5441 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5442 !capable(CAP_SYS_NICE))
5445 retval = security_task_setscheduler(p, 0, NULL);
5449 cpuset_cpus_allowed(p, &cpus_allowed);
5450 cpus_and(new_mask, new_mask, cpus_allowed);
5452 retval = set_cpus_allowed_ptr(p, &new_mask);
5455 cpuset_cpus_allowed(p, &cpus_allowed);
5456 if (!cpus_subset(new_mask, cpus_allowed)) {
5458 * We must have raced with a concurrent cpuset
5459 * update. Just reset the cpus_allowed to the
5460 * cpuset's cpus_allowed
5462 new_mask = cpus_allowed;
5472 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5473 cpumask_t *new_mask)
5475 if (len < sizeof(cpumask_t)) {
5476 memset(new_mask, 0, sizeof(cpumask_t));
5477 } else if (len > sizeof(cpumask_t)) {
5478 len = sizeof(cpumask_t);
5480 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5484 * sys_sched_setaffinity - set the cpu affinity of a process
5485 * @pid: pid of the process
5486 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5487 * @user_mask_ptr: user-space pointer to the new cpu mask
5489 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5490 unsigned long __user *user_mask_ptr)
5495 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5499 return sched_setaffinity(pid, &new_mask);
5503 * Represents all cpu's present in the system
5504 * In systems capable of hotplug, this map could dynamically grow
5505 * as new cpu's are detected in the system via any platform specific
5506 * method, such as ACPI for e.g.
5509 cpumask_t cpu_present_map __read_mostly;
5510 EXPORT_SYMBOL(cpu_present_map);
5513 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5514 EXPORT_SYMBOL(cpu_online_map);
5516 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5517 EXPORT_SYMBOL(cpu_possible_map);
5520 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5522 struct task_struct *p;
5526 read_lock(&tasklist_lock);
5529 p = find_process_by_pid(pid);
5533 retval = security_task_getscheduler(p);
5537 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5540 read_unlock(&tasklist_lock);
5547 * sys_sched_getaffinity - get the cpu affinity of a process
5548 * @pid: pid of the process
5549 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5550 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5552 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5553 unsigned long __user *user_mask_ptr)
5558 if (len < sizeof(cpumask_t))
5561 ret = sched_getaffinity(pid, &mask);
5565 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5568 return sizeof(cpumask_t);
5572 * sys_sched_yield - yield the current processor to other threads.
5574 * This function yields the current CPU to other tasks. If there are no
5575 * other threads running on this CPU then this function will return.
5577 asmlinkage long sys_sched_yield(void)
5579 struct rq *rq = this_rq_lock();
5581 schedstat_inc(rq, yld_count);
5582 current->sched_class->yield_task(rq);
5585 * Since we are going to call schedule() anyway, there's
5586 * no need to preempt or enable interrupts:
5588 __release(rq->lock);
5589 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5590 _raw_spin_unlock(&rq->lock);
5591 preempt_enable_no_resched();
5598 static void __cond_resched(void)
5600 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5601 __might_sleep(__FILE__, __LINE__);
5604 * The BKS might be reacquired before we have dropped
5605 * PREEMPT_ACTIVE, which could trigger a second
5606 * cond_resched() call.
5609 add_preempt_count(PREEMPT_ACTIVE);
5611 sub_preempt_count(PREEMPT_ACTIVE);
5612 } while (need_resched());
5615 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5616 int __sched _cond_resched(void)
5618 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5619 system_state == SYSTEM_RUNNING) {
5625 EXPORT_SYMBOL(_cond_resched);
5629 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5630 * call schedule, and on return reacquire the lock.
5632 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5633 * operations here to prevent schedule() from being called twice (once via
5634 * spin_unlock(), once by hand).
5636 int cond_resched_lock(spinlock_t *lock)
5638 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5641 if (spin_needbreak(lock) || resched) {
5643 if (resched && need_resched())
5652 EXPORT_SYMBOL(cond_resched_lock);
5654 int __sched cond_resched_softirq(void)
5656 BUG_ON(!in_softirq());
5658 if (need_resched() && system_state == SYSTEM_RUNNING) {
5666 EXPORT_SYMBOL(cond_resched_softirq);
5669 * yield - yield the current processor to other threads.
5671 * This is a shortcut for kernel-space yielding - it marks the
5672 * thread runnable and calls sys_sched_yield().
5674 void __sched yield(void)
5676 set_current_state(TASK_RUNNING);
5679 EXPORT_SYMBOL(yield);
5682 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5683 * that process accounting knows that this is a task in IO wait state.
5685 * But don't do that if it is a deliberate, throttling IO wait (this task
5686 * has set its backing_dev_info: the queue against which it should throttle)
5688 void __sched io_schedule(void)
5690 struct rq *rq = &__raw_get_cpu_var(runqueues);
5692 delayacct_blkio_start();
5693 atomic_inc(&rq->nr_iowait);
5695 atomic_dec(&rq->nr_iowait);
5696 delayacct_blkio_end();
5698 EXPORT_SYMBOL(io_schedule);
5700 long __sched io_schedule_timeout(long timeout)
5702 struct rq *rq = &__raw_get_cpu_var(runqueues);
5705 delayacct_blkio_start();
5706 atomic_inc(&rq->nr_iowait);
5707 ret = schedule_timeout(timeout);
5708 atomic_dec(&rq->nr_iowait);
5709 delayacct_blkio_end();
5714 * sys_sched_get_priority_max - return maximum RT priority.
5715 * @policy: scheduling class.
5717 * this syscall returns the maximum rt_priority that can be used
5718 * by a given scheduling class.
5720 asmlinkage long sys_sched_get_priority_max(int policy)
5727 ret = MAX_USER_RT_PRIO-1;
5739 * sys_sched_get_priority_min - return minimum RT priority.
5740 * @policy: scheduling class.
5742 * this syscall returns the minimum rt_priority that can be used
5743 * by a given scheduling class.
5745 asmlinkage long sys_sched_get_priority_min(int policy)
5763 * sys_sched_rr_get_interval - return the default timeslice of a process.
5764 * @pid: pid of the process.
5765 * @interval: userspace pointer to the timeslice value.
5767 * this syscall writes the default timeslice value of a given process
5768 * into the user-space timespec buffer. A value of '0' means infinity.
5771 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5773 struct task_struct *p;
5774 unsigned int time_slice;
5782 read_lock(&tasklist_lock);
5783 p = find_process_by_pid(pid);
5787 retval = security_task_getscheduler(p);
5792 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5793 * tasks that are on an otherwise idle runqueue:
5796 if (p->policy == SCHED_RR) {
5797 time_slice = DEF_TIMESLICE;
5798 } else if (p->policy != SCHED_FIFO) {
5799 struct sched_entity *se = &p->se;
5800 unsigned long flags;
5803 rq = task_rq_lock(p, &flags);
5804 if (rq->cfs.load.weight)
5805 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5806 task_rq_unlock(rq, &flags);
5808 read_unlock(&tasklist_lock);
5809 jiffies_to_timespec(time_slice, &t);
5810 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5814 read_unlock(&tasklist_lock);
5818 static const char stat_nam[] = "RSDTtZX";
5820 void sched_show_task(struct task_struct *p)
5822 unsigned long free = 0;
5825 state = p->state ? __ffs(p->state) + 1 : 0;
5826 printk(KERN_INFO "%-13.13s %c", p->comm,
5827 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5828 #if BITS_PER_LONG == 32
5829 if (state == TASK_RUNNING)
5830 printk(KERN_CONT " running ");
5832 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5834 if (state == TASK_RUNNING)
5835 printk(KERN_CONT " running task ");
5837 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5839 #ifdef CONFIG_DEBUG_STACK_USAGE
5841 unsigned long *n = end_of_stack(p);
5844 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5847 printk(KERN_CONT "%5lu %5d %6d\n", free,
5848 task_pid_nr(p), task_pid_nr(p->real_parent));
5850 show_stack(p, NULL);
5853 void show_state_filter(unsigned long state_filter)
5855 struct task_struct *g, *p;
5857 #if BITS_PER_LONG == 32
5859 " task PC stack pid father\n");
5862 " task PC stack pid father\n");
5864 read_lock(&tasklist_lock);
5865 do_each_thread(g, p) {
5867 * reset the NMI-timeout, listing all files on a slow
5868 * console might take alot of time:
5870 touch_nmi_watchdog();
5871 if (!state_filter || (p->state & state_filter))
5873 } while_each_thread(g, p);
5875 touch_all_softlockup_watchdogs();
5877 #ifdef CONFIG_SCHED_DEBUG
5878 sysrq_sched_debug_show();
5880 read_unlock(&tasklist_lock);
5882 * Only show locks if all tasks are dumped:
5884 if (state_filter == -1)
5885 debug_show_all_locks();
5888 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5890 idle->sched_class = &idle_sched_class;
5894 * init_idle - set up an idle thread for a given CPU
5895 * @idle: task in question
5896 * @cpu: cpu the idle task belongs to
5898 * NOTE: this function does not set the idle thread's NEED_RESCHED
5899 * flag, to make booting more robust.
5901 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5903 struct rq *rq = cpu_rq(cpu);
5904 unsigned long flags;
5907 idle->se.exec_start = sched_clock();
5909 idle->prio = idle->normal_prio = MAX_PRIO;
5910 idle->cpus_allowed = cpumask_of_cpu(cpu);
5911 __set_task_cpu(idle, cpu);
5913 spin_lock_irqsave(&rq->lock, flags);
5914 rq->curr = rq->idle = idle;
5915 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5918 spin_unlock_irqrestore(&rq->lock, flags);
5920 /* Set the preempt count _outside_ the spinlocks! */
5921 task_thread_info(idle)->preempt_count = 0;
5924 * The idle tasks have their own, simple scheduling class:
5926 idle->sched_class = &idle_sched_class;
5930 * In a system that switches off the HZ timer nohz_cpu_mask
5931 * indicates which cpus entered this state. This is used
5932 * in the rcu update to wait only for active cpus. For system
5933 * which do not switch off the HZ timer nohz_cpu_mask should
5934 * always be CPU_MASK_NONE.
5936 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5939 * Increase the granularity value when there are more CPUs,
5940 * because with more CPUs the 'effective latency' as visible
5941 * to users decreases. But the relationship is not linear,
5942 * so pick a second-best guess by going with the log2 of the
5945 * This idea comes from the SD scheduler of Con Kolivas:
5947 static inline void sched_init_granularity(void)
5949 unsigned int factor = 1 + ilog2(num_online_cpus());
5950 const unsigned long limit = 200000000;
5952 sysctl_sched_min_granularity *= factor;
5953 if (sysctl_sched_min_granularity > limit)
5954 sysctl_sched_min_granularity = limit;
5956 sysctl_sched_latency *= factor;
5957 if (sysctl_sched_latency > limit)
5958 sysctl_sched_latency = limit;
5960 sysctl_sched_wakeup_granularity *= factor;
5965 * This is how migration works:
5967 * 1) we queue a struct migration_req structure in the source CPU's
5968 * runqueue and wake up that CPU's migration thread.
5969 * 2) we down() the locked semaphore => thread blocks.
5970 * 3) migration thread wakes up (implicitly it forces the migrated
5971 * thread off the CPU)
5972 * 4) it gets the migration request and checks whether the migrated
5973 * task is still in the wrong runqueue.
5974 * 5) if it's in the wrong runqueue then the migration thread removes
5975 * it and puts it into the right queue.
5976 * 6) migration thread up()s the semaphore.
5977 * 7) we wake up and the migration is done.
5981 * Change a given task's CPU affinity. Migrate the thread to a
5982 * proper CPU and schedule it away if the CPU it's executing on
5983 * is removed from the allowed bitmask.
5985 * NOTE: the caller must have a valid reference to the task, the
5986 * task must not exit() & deallocate itself prematurely. The
5987 * call is not atomic; no spinlocks may be held.
5989 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5991 struct migration_req req;
5992 unsigned long flags;
5996 rq = task_rq_lock(p, &flags);
5997 if (!cpus_intersects(*new_mask, cpu_online_map)) {
6002 if (p->sched_class->set_cpus_allowed)
6003 p->sched_class->set_cpus_allowed(p, new_mask);
6005 p->cpus_allowed = *new_mask;
6006 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6009 /* Can the task run on the task's current CPU? If so, we're done */
6010 if (cpu_isset(task_cpu(p), *new_mask))
6013 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
6014 /* Need help from migration thread: drop lock and wait. */
6015 task_rq_unlock(rq, &flags);
6016 wake_up_process(rq->migration_thread);
6017 wait_for_completion(&req.done);
6018 tlb_migrate_finish(p->mm);
6022 task_rq_unlock(rq, &flags);
6026 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6029 * Move (not current) task off this cpu, onto dest cpu. We're doing
6030 * this because either it can't run here any more (set_cpus_allowed()
6031 * away from this CPU, or CPU going down), or because we're
6032 * attempting to rebalance this task on exec (sched_exec).
6034 * So we race with normal scheduler movements, but that's OK, as long
6035 * as the task is no longer on this CPU.
6037 * Returns non-zero if task was successfully migrated.
6039 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6041 struct rq *rq_dest, *rq_src;
6044 if (unlikely(cpu_is_offline(dest_cpu)))
6047 rq_src = cpu_rq(src_cpu);
6048 rq_dest = cpu_rq(dest_cpu);
6050 double_rq_lock(rq_src, rq_dest);
6051 /* Already moved. */
6052 if (task_cpu(p) != src_cpu)
6054 /* Affinity changed (again). */
6055 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6058 on_rq = p->se.on_rq;
6060 deactivate_task(rq_src, p, 0);
6062 set_task_cpu(p, dest_cpu);
6064 activate_task(rq_dest, p, 0);
6065 check_preempt_curr(rq_dest, p);
6069 double_rq_unlock(rq_src, rq_dest);
6074 * migration_thread - this is a highprio system thread that performs
6075 * thread migration by bumping thread off CPU then 'pushing' onto
6078 static int migration_thread(void *data)
6080 int cpu = (long)data;
6084 BUG_ON(rq->migration_thread != current);
6086 set_current_state(TASK_INTERRUPTIBLE);
6087 while (!kthread_should_stop()) {
6088 struct migration_req *req;
6089 struct list_head *head;
6091 spin_lock_irq(&rq->lock);
6093 if (cpu_is_offline(cpu)) {
6094 spin_unlock_irq(&rq->lock);
6098 if (rq->active_balance) {
6099 active_load_balance(rq, cpu);
6100 rq->active_balance = 0;
6103 head = &rq->migration_queue;
6105 if (list_empty(head)) {
6106 spin_unlock_irq(&rq->lock);
6108 set_current_state(TASK_INTERRUPTIBLE);
6111 req = list_entry(head->next, struct migration_req, list);
6112 list_del_init(head->next);
6114 spin_unlock(&rq->lock);
6115 __migrate_task(req->task, cpu, req->dest_cpu);
6118 complete(&req->done);
6120 __set_current_state(TASK_RUNNING);
6124 /* Wait for kthread_stop */
6125 set_current_state(TASK_INTERRUPTIBLE);
6126 while (!kthread_should_stop()) {
6128 set_current_state(TASK_INTERRUPTIBLE);
6130 __set_current_state(TASK_RUNNING);
6134 #ifdef CONFIG_HOTPLUG_CPU
6136 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6140 local_irq_disable();
6141 ret = __migrate_task(p, src_cpu, dest_cpu);
6147 * Figure out where task on dead CPU should go, use force if necessary.
6148 * NOTE: interrupts should be disabled by the caller
6150 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6152 unsigned long flags;
6159 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6160 cpus_and(mask, mask, p->cpus_allowed);
6161 dest_cpu = any_online_cpu(mask);
6163 /* On any allowed CPU? */
6164 if (dest_cpu >= nr_cpu_ids)
6165 dest_cpu = any_online_cpu(p->cpus_allowed);
6167 /* No more Mr. Nice Guy. */
6168 if (dest_cpu >= nr_cpu_ids) {
6169 cpumask_t cpus_allowed;
6171 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6173 * Try to stay on the same cpuset, where the
6174 * current cpuset may be a subset of all cpus.
6175 * The cpuset_cpus_allowed_locked() variant of
6176 * cpuset_cpus_allowed() will not block. It must be
6177 * called within calls to cpuset_lock/cpuset_unlock.
6179 rq = task_rq_lock(p, &flags);
6180 p->cpus_allowed = cpus_allowed;
6181 dest_cpu = any_online_cpu(p->cpus_allowed);
6182 task_rq_unlock(rq, &flags);
6185 * Don't tell them about moving exiting tasks or
6186 * kernel threads (both mm NULL), since they never
6189 if (p->mm && printk_ratelimit()) {
6190 printk(KERN_INFO "process %d (%s) no "
6191 "longer affine to cpu%d\n",
6192 task_pid_nr(p), p->comm, dead_cpu);
6195 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6199 * While a dead CPU has no uninterruptible tasks queued at this point,
6200 * it might still have a nonzero ->nr_uninterruptible counter, because
6201 * for performance reasons the counter is not stricly tracking tasks to
6202 * their home CPUs. So we just add the counter to another CPU's counter,
6203 * to keep the global sum constant after CPU-down:
6205 static void migrate_nr_uninterruptible(struct rq *rq_src)
6207 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6208 unsigned long flags;
6210 local_irq_save(flags);
6211 double_rq_lock(rq_src, rq_dest);
6212 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6213 rq_src->nr_uninterruptible = 0;
6214 double_rq_unlock(rq_src, rq_dest);
6215 local_irq_restore(flags);
6218 /* Run through task list and migrate tasks from the dead cpu. */
6219 static void migrate_live_tasks(int src_cpu)
6221 struct task_struct *p, *t;
6223 read_lock(&tasklist_lock);
6225 do_each_thread(t, p) {
6229 if (task_cpu(p) == src_cpu)
6230 move_task_off_dead_cpu(src_cpu, p);
6231 } while_each_thread(t, p);
6233 read_unlock(&tasklist_lock);
6237 * Schedules idle task to be the next runnable task on current CPU.
6238 * It does so by boosting its priority to highest possible.
6239 * Used by CPU offline code.
6241 void sched_idle_next(void)
6243 int this_cpu = smp_processor_id();
6244 struct rq *rq = cpu_rq(this_cpu);
6245 struct task_struct *p = rq->idle;
6246 unsigned long flags;
6248 /* cpu has to be offline */
6249 BUG_ON(cpu_online(this_cpu));
6252 * Strictly not necessary since rest of the CPUs are stopped by now
6253 * and interrupts disabled on the current cpu.
6255 spin_lock_irqsave(&rq->lock, flags);
6257 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6259 update_rq_clock(rq);
6260 activate_task(rq, p, 0);
6262 spin_unlock_irqrestore(&rq->lock, flags);
6266 * Ensures that the idle task is using init_mm right before its cpu goes
6269 void idle_task_exit(void)
6271 struct mm_struct *mm = current->active_mm;
6273 BUG_ON(cpu_online(smp_processor_id()));
6276 switch_mm(mm, &init_mm, current);
6280 /* called under rq->lock with disabled interrupts */
6281 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6283 struct rq *rq = cpu_rq(dead_cpu);
6285 /* Must be exiting, otherwise would be on tasklist. */
6286 BUG_ON(!p->exit_state);
6288 /* Cannot have done final schedule yet: would have vanished. */
6289 BUG_ON(p->state == TASK_DEAD);
6294 * Drop lock around migration; if someone else moves it,
6295 * that's OK. No task can be added to this CPU, so iteration is
6298 spin_unlock_irq(&rq->lock);
6299 move_task_off_dead_cpu(dead_cpu, p);
6300 spin_lock_irq(&rq->lock);
6305 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6306 static void migrate_dead_tasks(unsigned int dead_cpu)
6308 struct rq *rq = cpu_rq(dead_cpu);
6309 struct task_struct *next;
6312 if (!rq->nr_running)
6314 update_rq_clock(rq);
6315 next = pick_next_task(rq, rq->curr);
6318 migrate_dead(dead_cpu, next);
6322 #endif /* CONFIG_HOTPLUG_CPU */
6324 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6326 static struct ctl_table sd_ctl_dir[] = {
6328 .procname = "sched_domain",
6334 static struct ctl_table sd_ctl_root[] = {
6336 .ctl_name = CTL_KERN,
6337 .procname = "kernel",
6339 .child = sd_ctl_dir,
6344 static struct ctl_table *sd_alloc_ctl_entry(int n)
6346 struct ctl_table *entry =
6347 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6352 static void sd_free_ctl_entry(struct ctl_table **tablep)
6354 struct ctl_table *entry;
6357 * In the intermediate directories, both the child directory and
6358 * procname are dynamically allocated and could fail but the mode
6359 * will always be set. In the lowest directory the names are
6360 * static strings and all have proc handlers.
6362 for (entry = *tablep; entry->mode; entry++) {
6364 sd_free_ctl_entry(&entry->child);
6365 if (entry->proc_handler == NULL)
6366 kfree(entry->procname);
6374 set_table_entry(struct ctl_table *entry,
6375 const char *procname, void *data, int maxlen,
6376 mode_t mode, proc_handler *proc_handler)
6378 entry->procname = procname;
6380 entry->maxlen = maxlen;
6382 entry->proc_handler = proc_handler;
6385 static struct ctl_table *
6386 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6388 struct ctl_table *table = sd_alloc_ctl_entry(12);
6393 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6394 sizeof(long), 0644, proc_doulongvec_minmax);
6395 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6396 sizeof(long), 0644, proc_doulongvec_minmax);
6397 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6398 sizeof(int), 0644, proc_dointvec_minmax);
6399 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6400 sizeof(int), 0644, proc_dointvec_minmax);
6401 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6402 sizeof(int), 0644, proc_dointvec_minmax);
6403 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6404 sizeof(int), 0644, proc_dointvec_minmax);
6405 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6406 sizeof(int), 0644, proc_dointvec_minmax);
6407 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6408 sizeof(int), 0644, proc_dointvec_minmax);
6409 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6410 sizeof(int), 0644, proc_dointvec_minmax);
6411 set_table_entry(&table[9], "cache_nice_tries",
6412 &sd->cache_nice_tries,
6413 sizeof(int), 0644, proc_dointvec_minmax);
6414 set_table_entry(&table[10], "flags", &sd->flags,
6415 sizeof(int), 0644, proc_dointvec_minmax);
6416 /* &table[11] is terminator */
6421 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6423 struct ctl_table *entry, *table;
6424 struct sched_domain *sd;
6425 int domain_num = 0, i;
6428 for_each_domain(cpu, sd)
6430 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6435 for_each_domain(cpu, sd) {
6436 snprintf(buf, 32, "domain%d", i);
6437 entry->procname = kstrdup(buf, GFP_KERNEL);
6439 entry->child = sd_alloc_ctl_domain_table(sd);
6446 static struct ctl_table_header *sd_sysctl_header;
6447 static void register_sched_domain_sysctl(void)
6449 int i, cpu_num = num_online_cpus();
6450 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6453 WARN_ON(sd_ctl_dir[0].child);
6454 sd_ctl_dir[0].child = entry;
6459 for_each_online_cpu(i) {
6460 snprintf(buf, 32, "cpu%d", i);
6461 entry->procname = kstrdup(buf, GFP_KERNEL);
6463 entry->child = sd_alloc_ctl_cpu_table(i);
6467 WARN_ON(sd_sysctl_header);
6468 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6471 /* may be called multiple times per register */
6472 static void unregister_sched_domain_sysctl(void)
6474 if (sd_sysctl_header)
6475 unregister_sysctl_table(sd_sysctl_header);
6476 sd_sysctl_header = NULL;
6477 if (sd_ctl_dir[0].child)
6478 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6481 static void register_sched_domain_sysctl(void)
6484 static void unregister_sched_domain_sysctl(void)
6490 * migration_call - callback that gets triggered when a CPU is added.
6491 * Here we can start up the necessary migration thread for the new CPU.
6493 static int __cpuinit
6494 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6496 struct task_struct *p;
6497 int cpu = (long)hcpu;
6498 unsigned long flags;
6503 case CPU_UP_PREPARE:
6504 case CPU_UP_PREPARE_FROZEN:
6505 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6508 kthread_bind(p, cpu);
6509 /* Must be high prio: stop_machine expects to yield to it. */
6510 rq = task_rq_lock(p, &flags);
6511 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6512 task_rq_unlock(rq, &flags);
6513 cpu_rq(cpu)->migration_thread = p;
6517 case CPU_ONLINE_FROZEN:
6518 /* Strictly unnecessary, as first user will wake it. */
6519 wake_up_process(cpu_rq(cpu)->migration_thread);
6521 /* Update our root-domain */
6523 spin_lock_irqsave(&rq->lock, flags);
6525 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6526 cpu_set(cpu, rq->rd->online);
6528 spin_unlock_irqrestore(&rq->lock, flags);
6531 #ifdef CONFIG_HOTPLUG_CPU
6532 case CPU_UP_CANCELED:
6533 case CPU_UP_CANCELED_FROZEN:
6534 if (!cpu_rq(cpu)->migration_thread)
6536 /* Unbind it from offline cpu so it can run. Fall thru. */
6537 kthread_bind(cpu_rq(cpu)->migration_thread,
6538 any_online_cpu(cpu_online_map));
6539 kthread_stop(cpu_rq(cpu)->migration_thread);
6540 cpu_rq(cpu)->migration_thread = NULL;
6544 case CPU_DEAD_FROZEN:
6545 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6546 migrate_live_tasks(cpu);
6548 kthread_stop(rq->migration_thread);
6549 rq->migration_thread = NULL;
6550 /* Idle task back to normal (off runqueue, low prio) */
6551 spin_lock_irq(&rq->lock);
6552 update_rq_clock(rq);
6553 deactivate_task(rq, rq->idle, 0);
6554 rq->idle->static_prio = MAX_PRIO;
6555 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6556 rq->idle->sched_class = &idle_sched_class;
6557 migrate_dead_tasks(cpu);
6558 spin_unlock_irq(&rq->lock);
6560 migrate_nr_uninterruptible(rq);
6561 BUG_ON(rq->nr_running != 0);
6564 * No need to migrate the tasks: it was best-effort if
6565 * they didn't take sched_hotcpu_mutex. Just wake up
6568 spin_lock_irq(&rq->lock);
6569 while (!list_empty(&rq->migration_queue)) {
6570 struct migration_req *req;
6572 req = list_entry(rq->migration_queue.next,
6573 struct migration_req, list);
6574 list_del_init(&req->list);
6575 complete(&req->done);
6577 spin_unlock_irq(&rq->lock);
6581 case CPU_DYING_FROZEN:
6582 /* Update our root-domain */
6584 spin_lock_irqsave(&rq->lock, flags);
6586 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6587 cpu_clear(cpu, rq->rd->online);
6589 spin_unlock_irqrestore(&rq->lock, flags);
6596 /* Register at highest priority so that task migration (migrate_all_tasks)
6597 * happens before everything else.
6599 static struct notifier_block __cpuinitdata migration_notifier = {
6600 .notifier_call = migration_call,
6604 void __init migration_init(void)
6606 void *cpu = (void *)(long)smp_processor_id();
6609 /* Start one for the boot CPU: */
6610 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6611 BUG_ON(err == NOTIFY_BAD);
6612 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6613 register_cpu_notifier(&migration_notifier);
6619 #ifdef CONFIG_SCHED_DEBUG
6621 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6622 cpumask_t *groupmask)
6624 struct sched_group *group = sd->groups;
6627 cpulist_scnprintf(str, sizeof(str), sd->span);
6628 cpus_clear(*groupmask);
6630 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6632 if (!(sd->flags & SD_LOAD_BALANCE)) {
6633 printk("does not load-balance\n");
6635 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6640 printk(KERN_CONT "span %s\n", str);
6642 if (!cpu_isset(cpu, sd->span)) {
6643 printk(KERN_ERR "ERROR: domain->span does not contain "
6646 if (!cpu_isset(cpu, group->cpumask)) {
6647 printk(KERN_ERR "ERROR: domain->groups does not contain"
6651 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6655 printk(KERN_ERR "ERROR: group is NULL\n");
6659 if (!group->__cpu_power) {
6660 printk(KERN_CONT "\n");
6661 printk(KERN_ERR "ERROR: domain->cpu_power not "
6666 if (!cpus_weight(group->cpumask)) {
6667 printk(KERN_CONT "\n");
6668 printk(KERN_ERR "ERROR: empty group\n");
6672 if (cpus_intersects(*groupmask, group->cpumask)) {
6673 printk(KERN_CONT "\n");
6674 printk(KERN_ERR "ERROR: repeated CPUs\n");
6678 cpus_or(*groupmask, *groupmask, group->cpumask);
6680 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6681 printk(KERN_CONT " %s", str);
6683 group = group->next;
6684 } while (group != sd->groups);
6685 printk(KERN_CONT "\n");
6687 if (!cpus_equal(sd->span, *groupmask))
6688 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6690 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6691 printk(KERN_ERR "ERROR: parent span is not a superset "
6692 "of domain->span\n");
6696 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6698 cpumask_t *groupmask;
6702 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6706 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6708 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6710 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6715 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6725 # define sched_domain_debug(sd, cpu) do { } while (0)
6728 static int sd_degenerate(struct sched_domain *sd)
6730 if (cpus_weight(sd->span) == 1)
6733 /* Following flags need at least 2 groups */
6734 if (sd->flags & (SD_LOAD_BALANCE |
6735 SD_BALANCE_NEWIDLE |
6739 SD_SHARE_PKG_RESOURCES)) {
6740 if (sd->groups != sd->groups->next)
6744 /* Following flags don't use groups */
6745 if (sd->flags & (SD_WAKE_IDLE |
6754 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6756 unsigned long cflags = sd->flags, pflags = parent->flags;
6758 if (sd_degenerate(parent))
6761 if (!cpus_equal(sd->span, parent->span))
6764 /* Does parent contain flags not in child? */
6765 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6766 if (cflags & SD_WAKE_AFFINE)
6767 pflags &= ~SD_WAKE_BALANCE;
6768 /* Flags needing groups don't count if only 1 group in parent */
6769 if (parent->groups == parent->groups->next) {
6770 pflags &= ~(SD_LOAD_BALANCE |
6771 SD_BALANCE_NEWIDLE |
6775 SD_SHARE_PKG_RESOURCES);
6777 if (~cflags & pflags)
6783 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6785 unsigned long flags;
6786 const struct sched_class *class;
6788 spin_lock_irqsave(&rq->lock, flags);
6791 struct root_domain *old_rd = rq->rd;
6793 for (class = sched_class_highest; class; class = class->next) {
6794 if (class->leave_domain)
6795 class->leave_domain(rq);
6798 cpu_clear(rq->cpu, old_rd->span);
6799 cpu_clear(rq->cpu, old_rd->online);
6801 if (atomic_dec_and_test(&old_rd->refcount))
6805 atomic_inc(&rd->refcount);
6808 cpu_set(rq->cpu, rd->span);
6809 if (cpu_isset(rq->cpu, cpu_online_map))
6810 cpu_set(rq->cpu, rd->online);
6812 for (class = sched_class_highest; class; class = class->next) {
6813 if (class->join_domain)
6814 class->join_domain(rq);
6817 spin_unlock_irqrestore(&rq->lock, flags);
6820 static void init_rootdomain(struct root_domain *rd)
6822 memset(rd, 0, sizeof(*rd));
6824 cpus_clear(rd->span);
6825 cpus_clear(rd->online);
6828 static void init_defrootdomain(void)
6830 init_rootdomain(&def_root_domain);
6831 atomic_set(&def_root_domain.refcount, 1);
6834 static struct root_domain *alloc_rootdomain(void)
6836 struct root_domain *rd;
6838 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6842 init_rootdomain(rd);
6848 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6849 * hold the hotplug lock.
6852 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6854 struct rq *rq = cpu_rq(cpu);
6855 struct sched_domain *tmp;
6857 /* Remove the sched domains which do not contribute to scheduling. */
6858 for (tmp = sd; tmp; tmp = tmp->parent) {
6859 struct sched_domain *parent = tmp->parent;
6862 if (sd_parent_degenerate(tmp, parent)) {
6863 tmp->parent = parent->parent;
6865 parent->parent->child = tmp;
6869 if (sd && sd_degenerate(sd)) {
6875 sched_domain_debug(sd, cpu);
6877 rq_attach_root(rq, rd);
6878 rcu_assign_pointer(rq->sd, sd);
6881 /* cpus with isolated domains */
6882 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6884 /* Setup the mask of cpus configured for isolated domains */
6885 static int __init isolated_cpu_setup(char *str)
6887 int ints[NR_CPUS], i;
6889 str = get_options(str, ARRAY_SIZE(ints), ints);
6890 cpus_clear(cpu_isolated_map);
6891 for (i = 1; i <= ints[0]; i++)
6892 if (ints[i] < NR_CPUS)
6893 cpu_set(ints[i], cpu_isolated_map);
6897 __setup("isolcpus=", isolated_cpu_setup);
6900 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6901 * to a function which identifies what group(along with sched group) a CPU
6902 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6903 * (due to the fact that we keep track of groups covered with a cpumask_t).
6905 * init_sched_build_groups will build a circular linked list of the groups
6906 * covered by the given span, and will set each group's ->cpumask correctly,
6907 * and ->cpu_power to 0.
6910 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6911 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6912 struct sched_group **sg,
6913 cpumask_t *tmpmask),
6914 cpumask_t *covered, cpumask_t *tmpmask)
6916 struct sched_group *first = NULL, *last = NULL;
6919 cpus_clear(*covered);
6921 for_each_cpu_mask(i, *span) {
6922 struct sched_group *sg;
6923 int group = group_fn(i, cpu_map, &sg, tmpmask);
6926 if (cpu_isset(i, *covered))
6929 cpus_clear(sg->cpumask);
6930 sg->__cpu_power = 0;
6932 for_each_cpu_mask(j, *span) {
6933 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6936 cpu_set(j, *covered);
6937 cpu_set(j, sg->cpumask);
6948 #define SD_NODES_PER_DOMAIN 16
6953 * find_next_best_node - find the next node to include in a sched_domain
6954 * @node: node whose sched_domain we're building
6955 * @used_nodes: nodes already in the sched_domain
6957 * Find the next node to include in a given scheduling domain. Simply
6958 * finds the closest node not already in the @used_nodes map.
6960 * Should use nodemask_t.
6962 static int find_next_best_node(int node, nodemask_t *used_nodes)
6964 int i, n, val, min_val, best_node = 0;
6968 for (i = 0; i < MAX_NUMNODES; i++) {
6969 /* Start at @node */
6970 n = (node + i) % MAX_NUMNODES;
6972 if (!nr_cpus_node(n))
6975 /* Skip already used nodes */
6976 if (node_isset(n, *used_nodes))
6979 /* Simple min distance search */
6980 val = node_distance(node, n);
6982 if (val < min_val) {
6988 node_set(best_node, *used_nodes);
6993 * sched_domain_node_span - get a cpumask for a node's sched_domain
6994 * @node: node whose cpumask we're constructing
6995 * @span: resulting cpumask
6997 * Given a node, construct a good cpumask for its sched_domain to span. It
6998 * should be one that prevents unnecessary balancing, but also spreads tasks
7001 static void sched_domain_node_span(int node, cpumask_t *span)
7003 nodemask_t used_nodes;
7004 node_to_cpumask_ptr(nodemask, node);
7008 nodes_clear(used_nodes);
7010 cpus_or(*span, *span, *nodemask);
7011 node_set(node, used_nodes);
7013 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7014 int next_node = find_next_best_node(node, &used_nodes);
7016 node_to_cpumask_ptr_next(nodemask, next_node);
7017 cpus_or(*span, *span, *nodemask);
7022 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7025 * SMT sched-domains:
7027 #ifdef CONFIG_SCHED_SMT
7028 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7029 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7032 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7036 *sg = &per_cpu(sched_group_cpus, cpu);
7042 * multi-core sched-domains:
7044 #ifdef CONFIG_SCHED_MC
7045 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7046 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7049 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7051 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7056 *mask = per_cpu(cpu_sibling_map, cpu);
7057 cpus_and(*mask, *mask, *cpu_map);
7058 group = first_cpu(*mask);
7060 *sg = &per_cpu(sched_group_core, group);
7063 #elif defined(CONFIG_SCHED_MC)
7065 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7069 *sg = &per_cpu(sched_group_core, cpu);
7074 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7075 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7078 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7082 #ifdef CONFIG_SCHED_MC
7083 *mask = cpu_coregroup_map(cpu);
7084 cpus_and(*mask, *mask, *cpu_map);
7085 group = first_cpu(*mask);
7086 #elif defined(CONFIG_SCHED_SMT)
7087 *mask = per_cpu(cpu_sibling_map, cpu);
7088 cpus_and(*mask, *mask, *cpu_map);
7089 group = first_cpu(*mask);
7094 *sg = &per_cpu(sched_group_phys, group);
7100 * The init_sched_build_groups can't handle what we want to do with node
7101 * groups, so roll our own. Now each node has its own list of groups which
7102 * gets dynamically allocated.
7104 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7105 static struct sched_group ***sched_group_nodes_bycpu;
7107 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7108 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7110 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7111 struct sched_group **sg, cpumask_t *nodemask)
7115 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7116 cpus_and(*nodemask, *nodemask, *cpu_map);
7117 group = first_cpu(*nodemask);
7120 *sg = &per_cpu(sched_group_allnodes, group);
7124 static void init_numa_sched_groups_power(struct sched_group *group_head)
7126 struct sched_group *sg = group_head;
7132 for_each_cpu_mask(j, sg->cpumask) {
7133 struct sched_domain *sd;
7135 sd = &per_cpu(phys_domains, j);
7136 if (j != first_cpu(sd->groups->cpumask)) {
7138 * Only add "power" once for each
7144 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7147 } while (sg != group_head);
7152 /* Free memory allocated for various sched_group structures */
7153 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7157 for_each_cpu_mask(cpu, *cpu_map) {
7158 struct sched_group **sched_group_nodes
7159 = sched_group_nodes_bycpu[cpu];
7161 if (!sched_group_nodes)
7164 for (i = 0; i < MAX_NUMNODES; i++) {
7165 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7167 *nodemask = node_to_cpumask(i);
7168 cpus_and(*nodemask, *nodemask, *cpu_map);
7169 if (cpus_empty(*nodemask))
7179 if (oldsg != sched_group_nodes[i])
7182 kfree(sched_group_nodes);
7183 sched_group_nodes_bycpu[cpu] = NULL;
7187 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7193 * Initialize sched groups cpu_power.
7195 * cpu_power indicates the capacity of sched group, which is used while
7196 * distributing the load between different sched groups in a sched domain.
7197 * Typically cpu_power for all the groups in a sched domain will be same unless
7198 * there are asymmetries in the topology. If there are asymmetries, group
7199 * having more cpu_power will pickup more load compared to the group having
7202 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7203 * the maximum number of tasks a group can handle in the presence of other idle
7204 * or lightly loaded groups in the same sched domain.
7206 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7208 struct sched_domain *child;
7209 struct sched_group *group;
7211 WARN_ON(!sd || !sd->groups);
7213 if (cpu != first_cpu(sd->groups->cpumask))
7218 sd->groups->__cpu_power = 0;
7221 * For perf policy, if the groups in child domain share resources
7222 * (for example cores sharing some portions of the cache hierarchy
7223 * or SMT), then set this domain groups cpu_power such that each group
7224 * can handle only one task, when there are other idle groups in the
7225 * same sched domain.
7227 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7229 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7230 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7235 * add cpu_power of each child group to this groups cpu_power
7237 group = child->groups;
7239 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7240 group = group->next;
7241 } while (group != child->groups);
7245 * Initializers for schedule domains
7246 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7249 #define SD_INIT(sd, type) sd_init_##type(sd)
7250 #define SD_INIT_FUNC(type) \
7251 static noinline void sd_init_##type(struct sched_domain *sd) \
7253 memset(sd, 0, sizeof(*sd)); \
7254 *sd = SD_##type##_INIT; \
7255 sd->level = SD_LV_##type; \
7260 SD_INIT_FUNC(ALLNODES)
7263 #ifdef CONFIG_SCHED_SMT
7264 SD_INIT_FUNC(SIBLING)
7266 #ifdef CONFIG_SCHED_MC
7271 * To minimize stack usage kmalloc room for cpumasks and share the
7272 * space as the usage in build_sched_domains() dictates. Used only
7273 * if the amount of space is significant.
7276 cpumask_t tmpmask; /* make this one first */
7279 cpumask_t this_sibling_map;
7280 cpumask_t this_core_map;
7282 cpumask_t send_covered;
7285 cpumask_t domainspan;
7287 cpumask_t notcovered;
7292 #define SCHED_CPUMASK_ALLOC 1
7293 #define SCHED_CPUMASK_FREE(v) kfree(v)
7294 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7296 #define SCHED_CPUMASK_ALLOC 0
7297 #define SCHED_CPUMASK_FREE(v)
7298 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7301 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7302 ((unsigned long)(a) + offsetof(struct allmasks, v))
7304 static int default_relax_domain_level = -1;
7306 static int __init setup_relax_domain_level(char *str)
7308 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7311 __setup("relax_domain_level=", setup_relax_domain_level);
7313 static void set_domain_attribute(struct sched_domain *sd,
7314 struct sched_domain_attr *attr)
7318 if (!attr || attr->relax_domain_level < 0) {
7319 if (default_relax_domain_level < 0)
7322 request = default_relax_domain_level;
7324 request = attr->relax_domain_level;
7325 if (request < sd->level) {
7326 /* turn off idle balance on this domain */
7327 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7329 /* turn on idle balance on this domain */
7330 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7335 * Build sched domains for a given set of cpus and attach the sched domains
7336 * to the individual cpus
7338 static int __build_sched_domains(const cpumask_t *cpu_map,
7339 struct sched_domain_attr *attr)
7342 struct root_domain *rd;
7343 SCHED_CPUMASK_DECLARE(allmasks);
7346 struct sched_group **sched_group_nodes = NULL;
7347 int sd_allnodes = 0;
7350 * Allocate the per-node list of sched groups
7352 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
7354 if (!sched_group_nodes) {
7355 printk(KERN_WARNING "Can not alloc sched group node list\n");
7360 rd = alloc_rootdomain();
7362 printk(KERN_WARNING "Cannot alloc root domain\n");
7364 kfree(sched_group_nodes);
7369 #if SCHED_CPUMASK_ALLOC
7370 /* get space for all scratch cpumask variables */
7371 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7373 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7376 kfree(sched_group_nodes);
7381 tmpmask = (cpumask_t *)allmasks;
7385 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7389 * Set up domains for cpus specified by the cpu_map.
7391 for_each_cpu_mask(i, *cpu_map) {
7392 struct sched_domain *sd = NULL, *p;
7393 SCHED_CPUMASK_VAR(nodemask, allmasks);
7395 *nodemask = node_to_cpumask(cpu_to_node(i));
7396 cpus_and(*nodemask, *nodemask, *cpu_map);
7399 if (cpus_weight(*cpu_map) >
7400 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7401 sd = &per_cpu(allnodes_domains, i);
7402 SD_INIT(sd, ALLNODES);
7403 set_domain_attribute(sd, attr);
7404 sd->span = *cpu_map;
7405 sd->first_cpu = first_cpu(sd->span);
7406 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7412 sd = &per_cpu(node_domains, i);
7414 set_domain_attribute(sd, attr);
7415 sched_domain_node_span(cpu_to_node(i), &sd->span);
7416 sd->first_cpu = first_cpu(sd->span);
7420 cpus_and(sd->span, sd->span, *cpu_map);
7424 sd = &per_cpu(phys_domains, i);
7426 set_domain_attribute(sd, attr);
7427 sd->span = *nodemask;
7428 sd->first_cpu = first_cpu(sd->span);
7432 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7434 #ifdef CONFIG_SCHED_MC
7436 sd = &per_cpu(core_domains, i);
7438 set_domain_attribute(sd, attr);
7439 sd->span = cpu_coregroup_map(i);
7440 sd->first_cpu = first_cpu(sd->span);
7441 cpus_and(sd->span, sd->span, *cpu_map);
7444 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7447 #ifdef CONFIG_SCHED_SMT
7449 sd = &per_cpu(cpu_domains, i);
7450 SD_INIT(sd, SIBLING);
7451 set_domain_attribute(sd, attr);
7452 sd->span = per_cpu(cpu_sibling_map, i);
7453 sd->first_cpu = first_cpu(sd->span);
7454 cpus_and(sd->span, sd->span, *cpu_map);
7457 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7461 #ifdef CONFIG_SCHED_SMT
7462 /* Set up CPU (sibling) groups */
7463 for_each_cpu_mask(i, *cpu_map) {
7464 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7465 SCHED_CPUMASK_VAR(send_covered, allmasks);
7467 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7468 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7469 if (i != first_cpu(*this_sibling_map))
7472 init_sched_build_groups(this_sibling_map, cpu_map,
7474 send_covered, tmpmask);
7478 #ifdef CONFIG_SCHED_MC
7479 /* Set up multi-core groups */
7480 for_each_cpu_mask(i, *cpu_map) {
7481 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7482 SCHED_CPUMASK_VAR(send_covered, allmasks);
7484 *this_core_map = cpu_coregroup_map(i);
7485 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7486 if (i != first_cpu(*this_core_map))
7489 init_sched_build_groups(this_core_map, cpu_map,
7491 send_covered, tmpmask);
7495 /* Set up physical groups */
7496 for (i = 0; i < MAX_NUMNODES; i++) {
7497 SCHED_CPUMASK_VAR(nodemask, allmasks);
7498 SCHED_CPUMASK_VAR(send_covered, allmasks);
7500 *nodemask = node_to_cpumask(i);
7501 cpus_and(*nodemask, *nodemask, *cpu_map);
7502 if (cpus_empty(*nodemask))
7505 init_sched_build_groups(nodemask, cpu_map,
7507 send_covered, tmpmask);
7511 /* Set up node groups */
7513 SCHED_CPUMASK_VAR(send_covered, allmasks);
7515 init_sched_build_groups(cpu_map, cpu_map,
7516 &cpu_to_allnodes_group,
7517 send_covered, tmpmask);
7520 for (i = 0; i < MAX_NUMNODES; i++) {
7521 /* Set up node groups */
7522 struct sched_group *sg, *prev;
7523 SCHED_CPUMASK_VAR(nodemask, allmasks);
7524 SCHED_CPUMASK_VAR(domainspan, allmasks);
7525 SCHED_CPUMASK_VAR(covered, allmasks);
7528 *nodemask = node_to_cpumask(i);
7529 cpus_clear(*covered);
7531 cpus_and(*nodemask, *nodemask, *cpu_map);
7532 if (cpus_empty(*nodemask)) {
7533 sched_group_nodes[i] = NULL;
7537 sched_domain_node_span(i, domainspan);
7538 cpus_and(*domainspan, *domainspan, *cpu_map);
7540 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7542 printk(KERN_WARNING "Can not alloc domain group for "
7546 sched_group_nodes[i] = sg;
7547 for_each_cpu_mask(j, *nodemask) {
7548 struct sched_domain *sd;
7550 sd = &per_cpu(node_domains, j);
7553 sg->__cpu_power = 0;
7554 sg->cpumask = *nodemask;
7556 cpus_or(*covered, *covered, *nodemask);
7559 for (j = 0; j < MAX_NUMNODES; j++) {
7560 SCHED_CPUMASK_VAR(notcovered, allmasks);
7561 int n = (i + j) % MAX_NUMNODES;
7562 node_to_cpumask_ptr(pnodemask, n);
7564 cpus_complement(*notcovered, *covered);
7565 cpus_and(*tmpmask, *notcovered, *cpu_map);
7566 cpus_and(*tmpmask, *tmpmask, *domainspan);
7567 if (cpus_empty(*tmpmask))
7570 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7571 if (cpus_empty(*tmpmask))
7574 sg = kmalloc_node(sizeof(struct sched_group),
7578 "Can not alloc domain group for node %d\n", j);
7581 sg->__cpu_power = 0;
7582 sg->cpumask = *tmpmask;
7583 sg->next = prev->next;
7584 cpus_or(*covered, *covered, *tmpmask);
7591 /* Calculate CPU power for physical packages and nodes */
7592 #ifdef CONFIG_SCHED_SMT
7593 for_each_cpu_mask(i, *cpu_map) {
7594 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7596 init_sched_groups_power(i, sd);
7599 #ifdef CONFIG_SCHED_MC
7600 for_each_cpu_mask(i, *cpu_map) {
7601 struct sched_domain *sd = &per_cpu(core_domains, i);
7603 init_sched_groups_power(i, sd);
7607 for_each_cpu_mask(i, *cpu_map) {
7608 struct sched_domain *sd = &per_cpu(phys_domains, i);
7610 init_sched_groups_power(i, sd);
7614 for (i = 0; i < MAX_NUMNODES; i++)
7615 init_numa_sched_groups_power(sched_group_nodes[i]);
7618 struct sched_group *sg;
7620 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7622 init_numa_sched_groups_power(sg);
7626 /* Attach the domains */
7627 for_each_cpu_mask(i, *cpu_map) {
7628 struct sched_domain *sd;
7629 #ifdef CONFIG_SCHED_SMT
7630 sd = &per_cpu(cpu_domains, i);
7631 #elif defined(CONFIG_SCHED_MC)
7632 sd = &per_cpu(core_domains, i);
7634 sd = &per_cpu(phys_domains, i);
7636 cpu_attach_domain(sd, rd, i);
7639 SCHED_CPUMASK_FREE((void *)allmasks);
7644 free_sched_groups(cpu_map, tmpmask);
7645 SCHED_CPUMASK_FREE((void *)allmasks);
7650 static int build_sched_domains(const cpumask_t *cpu_map)
7652 return __build_sched_domains(cpu_map, NULL);
7655 static cpumask_t *doms_cur; /* current sched domains */
7656 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7657 static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7661 * Special case: If a kmalloc of a doms_cur partition (array of
7662 * cpumask_t) fails, then fallback to a single sched domain,
7663 * as determined by the single cpumask_t fallback_doms.
7665 static cpumask_t fallback_doms;
7667 void __attribute__((weak)) arch_update_cpu_topology(void)
7672 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7673 * For now this just excludes isolated cpus, but could be used to
7674 * exclude other special cases in the future.
7676 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7680 arch_update_cpu_topology();
7682 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7684 doms_cur = &fallback_doms;
7685 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7687 err = build_sched_domains(doms_cur);
7688 register_sched_domain_sysctl();
7693 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7696 free_sched_groups(cpu_map, tmpmask);
7700 * Detach sched domains from a group of cpus specified in cpu_map
7701 * These cpus will now be attached to the NULL domain
7703 static void detach_destroy_domains(const cpumask_t *cpu_map)
7708 unregister_sched_domain_sysctl();
7710 for_each_cpu_mask(i, *cpu_map)
7711 cpu_attach_domain(NULL, &def_root_domain, i);
7712 synchronize_sched();
7713 arch_destroy_sched_domains(cpu_map, &tmpmask);
7716 /* handle null as "default" */
7717 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7718 struct sched_domain_attr *new, int idx_new)
7720 struct sched_domain_attr tmp;
7727 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7728 new ? (new + idx_new) : &tmp,
7729 sizeof(struct sched_domain_attr));
7733 * Partition sched domains as specified by the 'ndoms_new'
7734 * cpumasks in the array doms_new[] of cpumasks. This compares
7735 * doms_new[] to the current sched domain partitioning, doms_cur[].
7736 * It destroys each deleted domain and builds each new domain.
7738 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7739 * The masks don't intersect (don't overlap.) We should setup one
7740 * sched domain for each mask. CPUs not in any of the cpumasks will
7741 * not be load balanced. If the same cpumask appears both in the
7742 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7745 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7746 * ownership of it and will kfree it when done with it. If the caller
7747 * failed the kmalloc call, then it can pass in doms_new == NULL,
7748 * and partition_sched_domains() will fallback to the single partition
7751 * Call with hotplug lock held
7753 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7754 struct sched_domain_attr *dattr_new)
7760 /* always unregister in case we don't destroy any domains */
7761 unregister_sched_domain_sysctl();
7763 if (doms_new == NULL) {
7765 doms_new = &fallback_doms;
7766 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7770 /* Destroy deleted domains */
7771 for (i = 0; i < ndoms_cur; i++) {
7772 for (j = 0; j < ndoms_new; j++) {
7773 if (cpus_equal(doms_cur[i], doms_new[j])
7774 && dattrs_equal(dattr_cur, i, dattr_new, j))
7777 /* no match - a current sched domain not in new doms_new[] */
7778 detach_destroy_domains(doms_cur + i);
7783 /* Build new domains */
7784 for (i = 0; i < ndoms_new; i++) {
7785 for (j = 0; j < ndoms_cur; j++) {
7786 if (cpus_equal(doms_new[i], doms_cur[j])
7787 && dattrs_equal(dattr_new, i, dattr_cur, j))
7790 /* no match - add a new doms_new */
7791 __build_sched_domains(doms_new + i,
7792 dattr_new ? dattr_new + i : NULL);
7797 /* Remember the new sched domains */
7798 if (doms_cur != &fallback_doms)
7800 kfree(dattr_cur); /* kfree(NULL) is safe */
7801 doms_cur = doms_new;
7802 dattr_cur = dattr_new;
7803 ndoms_cur = ndoms_new;
7805 register_sched_domain_sysctl();
7810 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7811 int arch_reinit_sched_domains(void)
7816 detach_destroy_domains(&cpu_online_map);
7817 err = arch_init_sched_domains(&cpu_online_map);
7823 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7827 if (buf[0] != '0' && buf[0] != '1')
7831 sched_smt_power_savings = (buf[0] == '1');
7833 sched_mc_power_savings = (buf[0] == '1');
7835 ret = arch_reinit_sched_domains();
7837 return ret ? ret : count;
7840 #ifdef CONFIG_SCHED_MC
7841 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7843 return sprintf(page, "%u\n", sched_mc_power_savings);
7845 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7846 const char *buf, size_t count)
7848 return sched_power_savings_store(buf, count, 0);
7850 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7851 sched_mc_power_savings_store);
7854 #ifdef CONFIG_SCHED_SMT
7855 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7857 return sprintf(page, "%u\n", sched_smt_power_savings);
7859 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7860 const char *buf, size_t count)
7862 return sched_power_savings_store(buf, count, 1);
7864 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7865 sched_smt_power_savings_store);
7868 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7872 #ifdef CONFIG_SCHED_SMT
7874 err = sysfs_create_file(&cls->kset.kobj,
7875 &attr_sched_smt_power_savings.attr);
7877 #ifdef CONFIG_SCHED_MC
7878 if (!err && mc_capable())
7879 err = sysfs_create_file(&cls->kset.kobj,
7880 &attr_sched_mc_power_savings.attr);
7887 * Force a reinitialization of the sched domains hierarchy. The domains
7888 * and groups cannot be updated in place without racing with the balancing
7889 * code, so we temporarily attach all running cpus to the NULL domain
7890 * which will prevent rebalancing while the sched domains are recalculated.
7892 static int update_sched_domains(struct notifier_block *nfb,
7893 unsigned long action, void *hcpu)
7896 case CPU_UP_PREPARE:
7897 case CPU_UP_PREPARE_FROZEN:
7898 case CPU_DOWN_PREPARE:
7899 case CPU_DOWN_PREPARE_FROZEN:
7900 detach_destroy_domains(&cpu_online_map);
7903 case CPU_UP_CANCELED:
7904 case CPU_UP_CANCELED_FROZEN:
7905 case CPU_DOWN_FAILED:
7906 case CPU_DOWN_FAILED_FROZEN:
7908 case CPU_ONLINE_FROZEN:
7910 case CPU_DEAD_FROZEN:
7912 * Fall through and re-initialise the domains.
7919 /* The hotplug lock is already held by cpu_up/cpu_down */
7920 arch_init_sched_domains(&cpu_online_map);
7925 void __init sched_init_smp(void)
7927 cpumask_t non_isolated_cpus;
7929 #if defined(CONFIG_NUMA)
7930 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7932 BUG_ON(sched_group_nodes_bycpu == NULL);
7935 arch_init_sched_domains(&cpu_online_map);
7936 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7937 if (cpus_empty(non_isolated_cpus))
7938 cpu_set(smp_processor_id(), non_isolated_cpus);
7940 /* XXX: Theoretical race here - CPU may be hotplugged now */
7941 hotcpu_notifier(update_sched_domains, 0);
7943 /* Move init over to a non-isolated CPU */
7944 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7946 sched_init_granularity();
7949 void __init sched_init_smp(void)
7951 sched_init_granularity();
7953 #endif /* CONFIG_SMP */
7955 int in_sched_functions(unsigned long addr)
7957 return in_lock_functions(addr) ||
7958 (addr >= (unsigned long)__sched_text_start
7959 && addr < (unsigned long)__sched_text_end);
7962 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7964 cfs_rq->tasks_timeline = RB_ROOT;
7965 INIT_LIST_HEAD(&cfs_rq->tasks);
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7969 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7972 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7974 struct rt_prio_array *array;
7977 array = &rt_rq->active;
7978 for (i = 0; i < MAX_RT_PRIO; i++) {
7979 INIT_LIST_HEAD(array->queue + i);
7980 __clear_bit(i, array->bitmap);
7982 /* delimiter for bitsearch: */
7983 __set_bit(MAX_RT_PRIO, array->bitmap);
7985 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7986 rt_rq->highest_prio = MAX_RT_PRIO;
7989 rt_rq->rt_nr_migratory = 0;
7990 rt_rq->overloaded = 0;
7994 rt_rq->rt_throttled = 0;
7995 rt_rq->rt_runtime = 0;
7996 spin_lock_init(&rt_rq->rt_runtime_lock);
7998 #ifdef CONFIG_RT_GROUP_SCHED
7999 rt_rq->rt_nr_boosted = 0;
8004 #ifdef CONFIG_FAIR_GROUP_SCHED
8005 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8006 struct sched_entity *se, int cpu, int add,
8007 struct sched_entity *parent)
8009 struct rq *rq = cpu_rq(cpu);
8010 tg->cfs_rq[cpu] = cfs_rq;
8011 init_cfs_rq(cfs_rq, rq);
8014 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8017 /* se could be NULL for init_task_group */
8022 se->cfs_rq = &rq->cfs;
8024 se->cfs_rq = parent->my_q;
8027 se->load.weight = tg->shares;
8028 se->load.inv_weight = div64_u64(1ULL<<32, se->load.weight);
8029 se->parent = parent;
8033 #ifdef CONFIG_RT_GROUP_SCHED
8034 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8035 struct sched_rt_entity *rt_se, int cpu, int add,
8036 struct sched_rt_entity *parent)
8038 struct rq *rq = cpu_rq(cpu);
8040 tg->rt_rq[cpu] = rt_rq;
8041 init_rt_rq(rt_rq, rq);
8043 rt_rq->rt_se = rt_se;
8044 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8046 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8048 tg->rt_se[cpu] = rt_se;
8053 rt_se->rt_rq = &rq->rt;
8055 rt_se->rt_rq = parent->my_q;
8057 rt_se->rt_rq = &rq->rt;
8058 rt_se->my_q = rt_rq;
8059 rt_se->parent = parent;
8060 INIT_LIST_HEAD(&rt_se->run_list);
8064 void __init sched_init(void)
8067 unsigned long alloc_size = 0, ptr;
8069 #ifdef CONFIG_FAIR_GROUP_SCHED
8070 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8072 #ifdef CONFIG_RT_GROUP_SCHED
8073 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8075 #ifdef CONFIG_USER_SCHED
8079 * As sched_init() is called before page_alloc is setup,
8080 * we use alloc_bootmem().
8083 ptr = (unsigned long)alloc_bootmem(alloc_size);
8085 #ifdef CONFIG_FAIR_GROUP_SCHED
8086 init_task_group.se = (struct sched_entity **)ptr;
8087 ptr += nr_cpu_ids * sizeof(void **);
8089 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8090 ptr += nr_cpu_ids * sizeof(void **);
8092 #ifdef CONFIG_USER_SCHED
8093 root_task_group.se = (struct sched_entity **)ptr;
8094 ptr += nr_cpu_ids * sizeof(void **);
8096 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8097 ptr += nr_cpu_ids * sizeof(void **);
8100 #ifdef CONFIG_RT_GROUP_SCHED
8101 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8102 ptr += nr_cpu_ids * sizeof(void **);
8104 init_task_group.rt_rq = (struct rt_rq **)ptr;
8105 ptr += nr_cpu_ids * sizeof(void **);
8107 #ifdef CONFIG_USER_SCHED
8108 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8109 ptr += nr_cpu_ids * sizeof(void **);
8111 root_task_group.rt_rq = (struct rt_rq **)ptr;
8112 ptr += nr_cpu_ids * sizeof(void **);
8119 init_defrootdomain();
8122 init_rt_bandwidth(&def_rt_bandwidth,
8123 global_rt_period(), global_rt_runtime());
8125 #ifdef CONFIG_RT_GROUP_SCHED
8126 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8127 global_rt_period(), global_rt_runtime());
8128 #ifdef CONFIG_USER_SCHED
8129 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8130 global_rt_period(), RUNTIME_INF);
8134 #ifdef CONFIG_GROUP_SCHED
8135 list_add(&init_task_group.list, &task_groups);
8136 INIT_LIST_HEAD(&init_task_group.children);
8138 #ifdef CONFIG_USER_SCHED
8139 INIT_LIST_HEAD(&root_task_group.children);
8140 init_task_group.parent = &root_task_group;
8141 list_add(&init_task_group.siblings, &root_task_group.children);
8145 for_each_possible_cpu(i) {
8149 spin_lock_init(&rq->lock);
8150 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
8153 update_last_tick_seen(rq);
8154 init_cfs_rq(&rq->cfs, rq);
8155 init_rt_rq(&rq->rt, rq);
8156 #ifdef CONFIG_FAIR_GROUP_SCHED
8157 init_task_group.shares = init_task_group_load;
8158 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8159 #ifdef CONFIG_CGROUP_SCHED
8161 * How much cpu bandwidth does init_task_group get?
8163 * In case of task-groups formed thr' the cgroup filesystem, it
8164 * gets 100% of the cpu resources in the system. This overall
8165 * system cpu resource is divided among the tasks of
8166 * init_task_group and its child task-groups in a fair manner,
8167 * based on each entity's (task or task-group's) weight
8168 * (se->load.weight).
8170 * In other words, if init_task_group has 10 tasks of weight
8171 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8172 * then A0's share of the cpu resource is:
8174 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8176 * We achieve this by letting init_task_group's tasks sit
8177 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8179 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8180 #elif defined CONFIG_USER_SCHED
8181 root_task_group.shares = NICE_0_LOAD;
8182 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8184 * In case of task-groups formed thr' the user id of tasks,
8185 * init_task_group represents tasks belonging to root user.
8186 * Hence it forms a sibling of all subsequent groups formed.
8187 * In this case, init_task_group gets only a fraction of overall
8188 * system cpu resource, based on the weight assigned to root
8189 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8190 * by letting tasks of init_task_group sit in a separate cfs_rq
8191 * (init_cfs_rq) and having one entity represent this group of
8192 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8194 init_tg_cfs_entry(&init_task_group,
8195 &per_cpu(init_cfs_rq, i),
8196 &per_cpu(init_sched_entity, i), i, 1,
8197 root_task_group.se[i]);
8200 #endif /* CONFIG_FAIR_GROUP_SCHED */
8202 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8203 #ifdef CONFIG_RT_GROUP_SCHED
8204 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8205 #ifdef CONFIG_CGROUP_SCHED
8206 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8207 #elif defined CONFIG_USER_SCHED
8208 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8209 init_tg_rt_entry(&init_task_group,
8210 &per_cpu(init_rt_rq, i),
8211 &per_cpu(init_sched_rt_entity, i), i, 1,
8212 root_task_group.rt_se[i]);
8216 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8217 rq->cpu_load[j] = 0;
8221 rq->active_balance = 0;
8222 rq->next_balance = jiffies;
8225 rq->migration_thread = NULL;
8226 INIT_LIST_HEAD(&rq->migration_queue);
8227 rq_attach_root(rq, &def_root_domain);
8230 atomic_set(&rq->nr_iowait, 0);
8233 set_load_weight(&init_task);
8235 #ifdef CONFIG_PREEMPT_NOTIFIERS
8236 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8240 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8243 #ifdef CONFIG_RT_MUTEXES
8244 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8248 * The boot idle thread does lazy MMU switching as well:
8250 atomic_inc(&init_mm.mm_count);
8251 enter_lazy_tlb(&init_mm, current);
8254 * Make us the idle thread. Technically, schedule() should not be
8255 * called from this thread, however somewhere below it might be,
8256 * but because we are the idle thread, we just pick up running again
8257 * when this runqueue becomes "idle".
8259 init_idle(current, smp_processor_id());
8261 * During early bootup we pretend to be a normal task:
8263 current->sched_class = &fair_sched_class;
8265 scheduler_running = 1;
8268 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8269 void __might_sleep(char *file, int line)
8272 static unsigned long prev_jiffy; /* ratelimiting */
8274 if ((in_atomic() || irqs_disabled()) &&
8275 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8276 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8278 prev_jiffy = jiffies;
8279 printk(KERN_ERR "BUG: sleeping function called from invalid"
8280 " context at %s:%d\n", file, line);
8281 printk("in_atomic():%d, irqs_disabled():%d\n",
8282 in_atomic(), irqs_disabled());
8283 debug_show_held_locks(current);
8284 if (irqs_disabled())
8285 print_irqtrace_events(current);
8290 EXPORT_SYMBOL(__might_sleep);
8293 #ifdef CONFIG_MAGIC_SYSRQ
8294 static void normalize_task(struct rq *rq, struct task_struct *p)
8297 update_rq_clock(rq);
8298 on_rq = p->se.on_rq;
8300 deactivate_task(rq, p, 0);
8301 __setscheduler(rq, p, SCHED_NORMAL, 0);
8303 activate_task(rq, p, 0);
8304 resched_task(rq->curr);
8308 void normalize_rt_tasks(void)
8310 struct task_struct *g, *p;
8311 unsigned long flags;
8314 read_lock_irqsave(&tasklist_lock, flags);
8315 do_each_thread(g, p) {
8317 * Only normalize user tasks:
8322 p->se.exec_start = 0;
8323 #ifdef CONFIG_SCHEDSTATS
8324 p->se.wait_start = 0;
8325 p->se.sleep_start = 0;
8326 p->se.block_start = 0;
8328 task_rq(p)->clock = 0;
8332 * Renice negative nice level userspace
8335 if (TASK_NICE(p) < 0 && p->mm)
8336 set_user_nice(p, 0);
8340 spin_lock(&p->pi_lock);
8341 rq = __task_rq_lock(p);
8343 normalize_task(rq, p);
8345 __task_rq_unlock(rq);
8346 spin_unlock(&p->pi_lock);
8347 } while_each_thread(g, p);
8349 read_unlock_irqrestore(&tasklist_lock, flags);
8352 #endif /* CONFIG_MAGIC_SYSRQ */
8356 * These functions are only useful for the IA64 MCA handling.
8358 * They can only be called when the whole system has been
8359 * stopped - every CPU needs to be quiescent, and no scheduling
8360 * activity can take place. Using them for anything else would
8361 * be a serious bug, and as a result, they aren't even visible
8362 * under any other configuration.
8366 * curr_task - return the current task for a given cpu.
8367 * @cpu: the processor in question.
8369 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8371 struct task_struct *curr_task(int cpu)
8373 return cpu_curr(cpu);
8377 * set_curr_task - set the current task for a given cpu.
8378 * @cpu: the processor in question.
8379 * @p: the task pointer to set.
8381 * Description: This function must only be used when non-maskable interrupts
8382 * are serviced on a separate stack. It allows the architecture to switch the
8383 * notion of the current task on a cpu in a non-blocking manner. This function
8384 * must be called with all CPU's synchronized, and interrupts disabled, the
8385 * and caller must save the original value of the current task (see
8386 * curr_task() above) and restore that value before reenabling interrupts and
8387 * re-starting the system.
8389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8391 void set_curr_task(int cpu, struct task_struct *p)
8398 #ifdef CONFIG_FAIR_GROUP_SCHED
8399 static void free_fair_sched_group(struct task_group *tg)
8403 for_each_possible_cpu(i) {
8405 kfree(tg->cfs_rq[i]);
8415 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8417 struct cfs_rq *cfs_rq;
8418 struct sched_entity *se, *parent_se;
8422 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8425 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8429 tg->shares = NICE_0_LOAD;
8431 for_each_possible_cpu(i) {
8434 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8435 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8439 se = kmalloc_node(sizeof(struct sched_entity),
8440 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8444 parent_se = parent ? parent->se[i] : NULL;
8445 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8454 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8456 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8457 &cpu_rq(cpu)->leaf_cfs_rq_list);
8460 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8462 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8465 static inline void free_fair_sched_group(struct task_group *tg)
8470 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8475 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8479 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8484 #ifdef CONFIG_RT_GROUP_SCHED
8485 static void free_rt_sched_group(struct task_group *tg)
8489 destroy_rt_bandwidth(&tg->rt_bandwidth);
8491 for_each_possible_cpu(i) {
8493 kfree(tg->rt_rq[i]);
8495 kfree(tg->rt_se[i]);
8503 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8505 struct rt_rq *rt_rq;
8506 struct sched_rt_entity *rt_se, *parent_se;
8510 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8513 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8517 init_rt_bandwidth(&tg->rt_bandwidth,
8518 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8520 for_each_possible_cpu(i) {
8523 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8524 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8528 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8529 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8533 parent_se = parent ? parent->rt_se[i] : NULL;
8534 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8543 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8545 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8546 &cpu_rq(cpu)->leaf_rt_rq_list);
8549 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8551 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8554 static inline void free_rt_sched_group(struct task_group *tg)
8559 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8564 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8568 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8573 #ifdef CONFIG_GROUP_SCHED
8574 static void free_sched_group(struct task_group *tg)
8576 free_fair_sched_group(tg);
8577 free_rt_sched_group(tg);
8581 /* allocate runqueue etc for a new task group */
8582 struct task_group *sched_create_group(struct task_group *parent)
8584 struct task_group *tg;
8585 unsigned long flags;
8588 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8590 return ERR_PTR(-ENOMEM);
8592 if (!alloc_fair_sched_group(tg, parent))
8595 if (!alloc_rt_sched_group(tg, parent))
8598 spin_lock_irqsave(&task_group_lock, flags);
8599 for_each_possible_cpu(i) {
8600 register_fair_sched_group(tg, i);
8601 register_rt_sched_group(tg, i);
8603 list_add_rcu(&tg->list, &task_groups);
8605 WARN_ON(!parent); /* root should already exist */
8607 tg->parent = parent;
8608 list_add_rcu(&tg->siblings, &parent->children);
8609 INIT_LIST_HEAD(&tg->children);
8610 spin_unlock_irqrestore(&task_group_lock, flags);
8615 free_sched_group(tg);
8616 return ERR_PTR(-ENOMEM);
8619 /* rcu callback to free various structures associated with a task group */
8620 static void free_sched_group_rcu(struct rcu_head *rhp)
8622 /* now it should be safe to free those cfs_rqs */
8623 free_sched_group(container_of(rhp, struct task_group, rcu));
8626 /* Destroy runqueue etc associated with a task group */
8627 void sched_destroy_group(struct task_group *tg)
8629 unsigned long flags;
8632 spin_lock_irqsave(&task_group_lock, flags);
8633 for_each_possible_cpu(i) {
8634 unregister_fair_sched_group(tg, i);
8635 unregister_rt_sched_group(tg, i);
8637 list_del_rcu(&tg->list);
8638 list_del_rcu(&tg->siblings);
8639 spin_unlock_irqrestore(&task_group_lock, flags);
8641 /* wait for possible concurrent references to cfs_rqs complete */
8642 call_rcu(&tg->rcu, free_sched_group_rcu);
8645 /* change task's runqueue when it moves between groups.
8646 * The caller of this function should have put the task in its new group
8647 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8648 * reflect its new group.
8650 void sched_move_task(struct task_struct *tsk)
8653 unsigned long flags;
8656 rq = task_rq_lock(tsk, &flags);
8658 update_rq_clock(rq);
8660 running = task_current(rq, tsk);
8661 on_rq = tsk->se.on_rq;
8664 dequeue_task(rq, tsk, 0);
8665 if (unlikely(running))
8666 tsk->sched_class->put_prev_task(rq, tsk);
8668 set_task_rq(tsk, task_cpu(tsk));
8670 #ifdef CONFIG_FAIR_GROUP_SCHED
8671 if (tsk->sched_class->moved_group)
8672 tsk->sched_class->moved_group(tsk);
8675 if (unlikely(running))
8676 tsk->sched_class->set_curr_task(rq);
8678 enqueue_task(rq, tsk, 0);
8680 task_rq_unlock(rq, &flags);
8684 #ifdef CONFIG_FAIR_GROUP_SCHED
8685 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8687 struct cfs_rq *cfs_rq = se->cfs_rq;
8692 dequeue_entity(cfs_rq, se, 0);
8694 se->load.weight = shares;
8695 se->load.inv_weight = div64_u64((1ULL<<32), shares);
8698 enqueue_entity(cfs_rq, se, 0);
8701 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8703 struct cfs_rq *cfs_rq = se->cfs_rq;
8704 struct rq *rq = cfs_rq->rq;
8705 unsigned long flags;
8707 spin_lock_irqsave(&rq->lock, flags);
8708 __set_se_shares(se, shares);
8709 spin_unlock_irqrestore(&rq->lock, flags);
8712 static DEFINE_MUTEX(shares_mutex);
8714 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8717 unsigned long flags;
8720 * We can't change the weight of the root cgroup.
8726 * A weight of 0 or 1 can cause arithmetics problems.
8727 * (The default weight is 1024 - so there's no practical
8728 * limitation from this.)
8730 if (shares < MIN_SHARES)
8731 shares = MIN_SHARES;
8733 mutex_lock(&shares_mutex);
8734 if (tg->shares == shares)
8737 spin_lock_irqsave(&task_group_lock, flags);
8738 for_each_possible_cpu(i)
8739 unregister_fair_sched_group(tg, i);
8740 list_del_rcu(&tg->siblings);
8741 spin_unlock_irqrestore(&task_group_lock, flags);
8743 /* wait for any ongoing reference to this group to finish */
8744 synchronize_sched();
8747 * Now we are free to modify the group's share on each cpu
8748 * w/o tripping rebalance_share or load_balance_fair.
8750 tg->shares = shares;
8751 for_each_possible_cpu(i) {
8755 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8756 set_se_shares(tg->se[i], shares/nr_cpu_ids);
8760 * Enable load balance activity on this group, by inserting it back on
8761 * each cpu's rq->leaf_cfs_rq_list.
8763 spin_lock_irqsave(&task_group_lock, flags);
8764 for_each_possible_cpu(i)
8765 register_fair_sched_group(tg, i);
8766 list_add_rcu(&tg->siblings, &tg->parent->children);
8767 spin_unlock_irqrestore(&task_group_lock, flags);
8769 mutex_unlock(&shares_mutex);
8773 unsigned long sched_group_shares(struct task_group *tg)
8779 #ifdef CONFIG_RT_GROUP_SCHED
8781 * Ensure that the real time constraints are schedulable.
8783 static DEFINE_MUTEX(rt_constraints_mutex);
8785 static unsigned long to_ratio(u64 period, u64 runtime)
8787 if (runtime == RUNTIME_INF)
8790 return div64_u64(runtime << 16, period);
8793 #ifdef CONFIG_CGROUP_SCHED
8794 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8796 struct task_group *tgi, *parent = tg->parent;
8797 unsigned long total = 0;
8800 if (global_rt_period() < period)
8803 return to_ratio(period, runtime) <
8804 to_ratio(global_rt_period(), global_rt_runtime());
8807 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8811 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8815 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8816 tgi->rt_bandwidth.rt_runtime);
8820 return total + to_ratio(period, runtime) <
8821 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8822 parent->rt_bandwidth.rt_runtime);
8824 #elif defined CONFIG_USER_SCHED
8825 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8827 struct task_group *tgi;
8828 unsigned long total = 0;
8829 unsigned long global_ratio =
8830 to_ratio(global_rt_period(), global_rt_runtime());
8833 list_for_each_entry_rcu(tgi, &task_groups, list) {
8837 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8838 tgi->rt_bandwidth.rt_runtime);
8842 return total + to_ratio(period, runtime) < global_ratio;
8846 /* Must be called with tasklist_lock held */
8847 static inline int tg_has_rt_tasks(struct task_group *tg)
8849 struct task_struct *g, *p;
8850 do_each_thread(g, p) {
8851 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8853 } while_each_thread(g, p);
8857 static int tg_set_bandwidth(struct task_group *tg,
8858 u64 rt_period, u64 rt_runtime)
8862 mutex_lock(&rt_constraints_mutex);
8863 read_lock(&tasklist_lock);
8864 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8868 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8873 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8874 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8875 tg->rt_bandwidth.rt_runtime = rt_runtime;
8877 for_each_possible_cpu(i) {
8878 struct rt_rq *rt_rq = tg->rt_rq[i];
8880 spin_lock(&rt_rq->rt_runtime_lock);
8881 rt_rq->rt_runtime = rt_runtime;
8882 spin_unlock(&rt_rq->rt_runtime_lock);
8884 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8886 read_unlock(&tasklist_lock);
8887 mutex_unlock(&rt_constraints_mutex);
8892 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8894 u64 rt_runtime, rt_period;
8896 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8897 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8898 if (rt_runtime_us < 0)
8899 rt_runtime = RUNTIME_INF;
8901 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8904 long sched_group_rt_runtime(struct task_group *tg)
8908 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8911 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8912 do_div(rt_runtime_us, NSEC_PER_USEC);
8913 return rt_runtime_us;
8916 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8918 u64 rt_runtime, rt_period;
8920 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8921 rt_runtime = tg->rt_bandwidth.rt_runtime;
8923 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8926 long sched_group_rt_period(struct task_group *tg)
8930 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8931 do_div(rt_period_us, NSEC_PER_USEC);
8932 return rt_period_us;
8935 static int sched_rt_global_constraints(void)
8939 mutex_lock(&rt_constraints_mutex);
8940 if (!__rt_schedulable(NULL, 1, 0))
8942 mutex_unlock(&rt_constraints_mutex);
8947 static int sched_rt_global_constraints(void)
8949 unsigned long flags;
8952 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8953 for_each_possible_cpu(i) {
8954 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8956 spin_lock(&rt_rq->rt_runtime_lock);
8957 rt_rq->rt_runtime = global_rt_runtime();
8958 spin_unlock(&rt_rq->rt_runtime_lock);
8960 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8966 int sched_rt_handler(struct ctl_table *table, int write,
8967 struct file *filp, void __user *buffer, size_t *lenp,
8971 int old_period, old_runtime;
8972 static DEFINE_MUTEX(mutex);
8975 old_period = sysctl_sched_rt_period;
8976 old_runtime = sysctl_sched_rt_runtime;
8978 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8980 if (!ret && write) {
8981 ret = sched_rt_global_constraints();
8983 sysctl_sched_rt_period = old_period;
8984 sysctl_sched_rt_runtime = old_runtime;
8986 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8987 def_rt_bandwidth.rt_period =
8988 ns_to_ktime(global_rt_period());
8991 mutex_unlock(&mutex);
8996 #ifdef CONFIG_CGROUP_SCHED
8998 /* return corresponding task_group object of a cgroup */
8999 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9001 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9002 struct task_group, css);
9005 static struct cgroup_subsys_state *
9006 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9008 struct task_group *tg, *parent;
9010 if (!cgrp->parent) {
9011 /* This is early initialization for the top cgroup */
9012 init_task_group.css.cgroup = cgrp;
9013 return &init_task_group.css;
9016 parent = cgroup_tg(cgrp->parent);
9017 tg = sched_create_group(parent);
9019 return ERR_PTR(-ENOMEM);
9021 /* Bind the cgroup to task_group object we just created */
9022 tg->css.cgroup = cgrp;
9028 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9030 struct task_group *tg = cgroup_tg(cgrp);
9032 sched_destroy_group(tg);
9036 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9037 struct task_struct *tsk)
9039 #ifdef CONFIG_RT_GROUP_SCHED
9040 /* Don't accept realtime tasks when there is no way for them to run */
9041 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9044 /* We don't support RT-tasks being in separate groups */
9045 if (tsk->sched_class != &fair_sched_class)
9053 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9054 struct cgroup *old_cont, struct task_struct *tsk)
9056 sched_move_task(tsk);
9059 #ifdef CONFIG_FAIR_GROUP_SCHED
9060 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9063 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9066 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9068 struct task_group *tg = cgroup_tg(cgrp);
9070 return (u64) tg->shares;
9074 #ifdef CONFIG_RT_GROUP_SCHED
9075 static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9078 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9081 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9083 return sched_group_rt_runtime(cgroup_tg(cgrp));
9086 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9089 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9092 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9094 return sched_group_rt_period(cgroup_tg(cgrp));
9098 static struct cftype cpu_files[] = {
9099 #ifdef CONFIG_FAIR_GROUP_SCHED
9102 .read_u64 = cpu_shares_read_u64,
9103 .write_u64 = cpu_shares_write_u64,
9106 #ifdef CONFIG_RT_GROUP_SCHED
9108 .name = "rt_runtime_us",
9109 .read_s64 = cpu_rt_runtime_read,
9110 .write_s64 = cpu_rt_runtime_write,
9113 .name = "rt_period_us",
9114 .read_u64 = cpu_rt_period_read_uint,
9115 .write_u64 = cpu_rt_period_write_uint,
9120 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9122 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9125 struct cgroup_subsys cpu_cgroup_subsys = {
9127 .create = cpu_cgroup_create,
9128 .destroy = cpu_cgroup_destroy,
9129 .can_attach = cpu_cgroup_can_attach,
9130 .attach = cpu_cgroup_attach,
9131 .populate = cpu_cgroup_populate,
9132 .subsys_id = cpu_cgroup_subsys_id,
9136 #endif /* CONFIG_CGROUP_SCHED */
9138 #ifdef CONFIG_CGROUP_CPUACCT
9141 * CPU accounting code for task groups.
9143 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9144 * (balbir@in.ibm.com).
9147 /* track cpu usage of a group of tasks */
9149 struct cgroup_subsys_state css;
9150 /* cpuusage holds pointer to a u64-type object on every cpu */
9154 struct cgroup_subsys cpuacct_subsys;
9156 /* return cpu accounting group corresponding to this container */
9157 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9159 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9160 struct cpuacct, css);
9163 /* return cpu accounting group to which this task belongs */
9164 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9166 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9167 struct cpuacct, css);
9170 /* create a new cpu accounting group */
9171 static struct cgroup_subsys_state *cpuacct_create(
9172 struct cgroup_subsys *ss, struct cgroup *cgrp)
9174 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9177 return ERR_PTR(-ENOMEM);
9179 ca->cpuusage = alloc_percpu(u64);
9180 if (!ca->cpuusage) {
9182 return ERR_PTR(-ENOMEM);
9188 /* destroy an existing cpu accounting group */
9190 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9192 struct cpuacct *ca = cgroup_ca(cgrp);
9194 free_percpu(ca->cpuusage);
9198 /* return total cpu usage (in nanoseconds) of a group */
9199 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9201 struct cpuacct *ca = cgroup_ca(cgrp);
9202 u64 totalcpuusage = 0;
9205 for_each_possible_cpu(i) {
9206 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9209 * Take rq->lock to make 64-bit addition safe on 32-bit
9212 spin_lock_irq(&cpu_rq(i)->lock);
9213 totalcpuusage += *cpuusage;
9214 spin_unlock_irq(&cpu_rq(i)->lock);
9217 return totalcpuusage;
9220 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9223 struct cpuacct *ca = cgroup_ca(cgrp);
9232 for_each_possible_cpu(i) {
9233 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9235 spin_lock_irq(&cpu_rq(i)->lock);
9237 spin_unlock_irq(&cpu_rq(i)->lock);
9243 static struct cftype files[] = {
9246 .read_u64 = cpuusage_read,
9247 .write_u64 = cpuusage_write,
9251 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9253 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9257 * charge this task's execution time to its accounting group.
9259 * called with rq->lock held.
9261 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9265 if (!cpuacct_subsys.active)
9270 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9272 *cpuusage += cputime;
9276 struct cgroup_subsys cpuacct_subsys = {
9278 .create = cpuacct_create,
9279 .destroy = cpuacct_destroy,
9280 .populate = cpuacct_populate,
9281 .subsys_id = cpuacct_subsys_id,
9283 #endif /* CONFIG_CGROUP_CPUACCT */