2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/config.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
43 #define USECS_PER_JIFFY TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
46 #define TICK_SIZE (tick_nsec / 1000)
48 u64 jiffies_64 = INITIAL_JIFFIES;
50 EXPORT_SYMBOL(jiffies_64);
55 extern volatile unsigned long wall_jiffies;
57 DEFINE_SPINLOCK(rtc_lock);
60 * By default we provide the null RTC ops
62 static unsigned long null_rtc_get_time(void)
64 return mktime(2000, 1, 1, 0, 0, 0);
67 static int null_rtc_set_time(unsigned long sec)
72 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
73 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
74 int (*rtc_set_mmss)(unsigned long);
77 /* usecs per counter cycle, shifted to left by 32 bits */
78 static unsigned int sll32_usecs_per_cycle;
80 /* how many counter cycles in a jiffy */
81 static unsigned long cycles_per_jiffy __read_mostly;
83 /* Cycle counter value at the previous timer interrupt.. */
84 static unsigned int timerhi, timerlo;
86 /* expirelo is the count value for next CPU timer interrupt */
87 static unsigned int expirelo;
91 * Null timer ack for systems not needing one (e.g. i8254).
93 static void null_timer_ack(void) { /* nothing */ }
96 * Null high precision timer functions for systems lacking one.
98 static unsigned int null_hpt_read(void)
103 static void null_hpt_init(unsigned int count)
110 * Timer ack for an R4k-compatible timer of a known frequency.
112 static void c0_timer_ack(void)
116 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
117 /* Ack this timer interrupt and set the next one. */
118 expirelo += cycles_per_jiffy;
120 write_c0_compare(expirelo);
122 /* Check to see if we have missed any timer interrupts. */
123 count = read_c0_count();
124 if ((count - expirelo) < 0x7fffffff) {
125 /* missed_timer_count++; */
126 expirelo = count + cycles_per_jiffy;
127 write_c0_compare(expirelo);
132 * High precision timer functions for a R4k-compatible timer.
134 static unsigned int c0_hpt_read(void)
136 return read_c0_count();
139 /* For use solely as a high precision timer. */
140 static void c0_hpt_init(unsigned int count)
142 write_c0_count(read_c0_count() - count);
145 /* For use both as a high precision timer and an interrupt source. */
146 static void c0_hpt_timer_init(unsigned int count)
148 count = read_c0_count() - count;
149 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
150 write_c0_count(expirelo - cycles_per_jiffy);
151 write_c0_compare(expirelo);
152 write_c0_count(count);
155 int (*mips_timer_state)(void);
156 void (*mips_timer_ack)(void);
157 unsigned int (*mips_hpt_read)(void);
158 void (*mips_hpt_init)(unsigned int);
162 * This version of gettimeofday has microsecond resolution and better than
163 * microsecond precision on fast machines with cycle counter.
165 void do_gettimeofday(struct timeval *tv)
169 unsigned long usec, sec;
170 unsigned long max_ntp_tick = tick_usec - tickadj;
173 seq = read_seqbegin(&xtime_lock);
175 usec = do_gettimeoffset();
177 lost = jiffies - wall_jiffies;
180 * If time_adjust is negative then NTP is slowing the clock
181 * so make sure not to go into next possible interval.
182 * Better to lose some accuracy than have time go backwards..
184 if (unlikely(time_adjust < 0)) {
185 usec = min(usec, max_ntp_tick);
188 usec += lost * max_ntp_tick;
189 } else if (unlikely(lost))
190 usec += lost * tick_usec;
193 usec += (xtime.tv_nsec / 1000);
195 } while (read_seqretry(&xtime_lock, seq));
197 while (usec >= 1000000) {
206 EXPORT_SYMBOL(do_gettimeofday);
208 int do_settimeofday(struct timespec *tv)
210 time_t wtm_sec, sec = tv->tv_sec;
211 long wtm_nsec, nsec = tv->tv_nsec;
213 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
216 write_seqlock_irq(&xtime_lock);
219 * This is revolting. We need to set "xtime" correctly. However,
220 * the value in this location is the value at the most recent update
221 * of wall time. Discover what correction gettimeofday() would have
222 * made, and then undo it!
224 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
225 nsec -= (jiffies - wall_jiffies) * tick_nsec;
227 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
228 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
230 set_normalized_timespec(&xtime, sec, nsec);
231 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
234 write_sequnlock_irq(&xtime_lock);
239 EXPORT_SYMBOL(do_settimeofday);
242 * Gettimeoffset routines. These routines returns the time duration
243 * since last timer interrupt in usecs.
245 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
246 * Otherwise use calibrate_gettimeoffset()
248 * If the CPU does not have the counter register, you can either supply
249 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
250 * gives the same resolution as HZ.
253 static unsigned long null_gettimeoffset(void)
259 /* The function pointer to one of the gettimeoffset funcs. */
260 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
263 static unsigned long fixed_rate_gettimeoffset(void)
268 /* Get last timer tick in absolute kernel time */
269 count = mips_hpt_read();
271 /* .. relative to previous jiffy (32 bits is enough) */
274 __asm__("multu %1,%2"
276 : "r" (count), "r" (sll32_usecs_per_cycle)
277 : "lo", GCC_REG_ACCUM);
280 * Due to possible jiffies inconsistencies, we need to check
281 * the result so that we'll get a timer that is monotonic.
283 if (res >= USECS_PER_JIFFY)
284 res = USECS_PER_JIFFY - 1;
291 * Cached "1/(clocks per usec) * 2^32" value.
292 * It has to be recalculated once each jiffy.
294 static unsigned long cached_quotient;
296 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
297 static unsigned long last_jiffies;
300 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
302 static unsigned long calibrate_div32_gettimeoffset(void)
305 unsigned long res, tmp;
306 unsigned long quotient;
310 quotient = cached_quotient;
312 if (last_jiffies != tmp) {
314 if (last_jiffies != 0) {
316 do_div64_32(r0, timerhi, timerlo, tmp);
317 do_div64_32(quotient, USECS_PER_JIFFY,
318 USECS_PER_JIFFY_FRAC, r0);
319 cached_quotient = quotient;
323 /* Get last timer tick in absolute kernel time */
324 count = mips_hpt_read();
326 /* .. relative to previous jiffy (32 bits is enough) */
329 __asm__("multu %1,%2"
331 : "r" (count), "r" (quotient)
332 : "lo", GCC_REG_ACCUM);
335 * Due to possible jiffies inconsistencies, we need to check
336 * the result so that we'll get a timer that is monotonic.
338 if (res >= USECS_PER_JIFFY)
339 res = USECS_PER_JIFFY - 1;
344 static unsigned long calibrate_div64_gettimeoffset(void)
347 unsigned long res, tmp;
348 unsigned long quotient;
352 quotient = cached_quotient;
354 if (last_jiffies != tmp) {
358 __asm__(".set push\n\t"
370 : "=&r" (quotient), "=&r" (r0)
371 : "r" (timerhi), "m" (timerlo),
372 "r" (tmp), "r" (USECS_PER_JIFFY),
373 "r" (USECS_PER_JIFFY_FRAC)
374 : "hi", "lo", GCC_REG_ACCUM);
375 cached_quotient = quotient;
379 /* Get last timer tick in absolute kernel time */
380 count = mips_hpt_read();
382 /* .. relative to previous jiffy (32 bits is enough) */
385 __asm__("multu %1,%2"
387 : "r" (count), "r" (quotient)
388 : "lo", GCC_REG_ACCUM);
391 * Due to possible jiffies inconsistencies, we need to check
392 * the result so that we'll get a timer that is monotonic.
394 if (res >= USECS_PER_JIFFY)
395 res = USECS_PER_JIFFY - 1;
401 /* last time when xtime and rtc are sync'ed up */
402 static long last_rtc_update;
405 * local_timer_interrupt() does profiling and process accounting
406 * on a per-CPU basis.
408 * In UP mode, it is invoked from the (global) timer_interrupt.
410 * In SMP mode, it might invoked by per-CPU timer interrupt, or
411 * a broadcasted inter-processor interrupt which itself is triggered
412 * by the global timer interrupt.
414 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
417 profile_tick(CPU_PROFILING, regs);
418 update_process_times(user_mode(regs));
422 * High-level timer interrupt service routines. This function
423 * is set as irqaction->handler and is invoked through do_IRQ.
425 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
430 count = mips_hpt_read();
433 /* Update timerhi/timerlo for intra-jiffy calibration. */
434 timerhi += count < timerlo; /* Wrap around */
438 * call the generic timer interrupt handling
443 * If we have an externally synchronized Linux clock, then update
444 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
445 * called as close as possible to 500 ms before the new second starts.
447 write_seqlock(&xtime_lock);
449 xtime.tv_sec > last_rtc_update + 660 &&
450 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
451 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
452 if (rtc_set_mmss(xtime.tv_sec) == 0) {
453 last_rtc_update = xtime.tv_sec;
455 /* do it again in 60 s */
456 last_rtc_update = xtime.tv_sec - 600;
459 write_sequnlock(&xtime_lock);
462 * If jiffies has overflown in this timer_interrupt, we must
463 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
464 * quotient calc still valid. -arca
466 * The first timer interrupt comes late as interrupts are
467 * enabled long after timers are initialized. Therefore the
468 * high precision timer is fast, leading to wrong gettimeoffset()
469 * calculations. We deal with it by setting it based on the
470 * number of its ticks between the second and the third interrupt.
471 * That is still somewhat imprecise, but it's a good estimate.
476 static unsigned int prev_count;
477 static int hpt_initialized;
481 timerhi = timerlo = 0;
482 mips_hpt_init(count);
488 if (!hpt_initialized) {
489 unsigned int c3 = 3 * (count - prev_count);
493 mips_hpt_init(count - c3);
503 * In UP mode, we call local_timer_interrupt() to do profiling
504 * and process accouting.
506 * In SMP mode, local_timer_interrupt() is invoked by appropriate
507 * low-level local timer interrupt handler.
509 local_timer_interrupt(irq, dev_id, regs);
514 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
517 kstat_this_cpu.irqs[irq]++;
519 /* we keep interrupt disabled all the time */
520 timer_interrupt(irq, NULL, regs);
525 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
528 if (smp_processor_id() != 0)
529 kstat_this_cpu.irqs[irq]++;
531 /* we keep interrupt disabled all the time */
532 local_timer_interrupt(irq, NULL, regs);
538 * time_init() - it does the following things.
540 * 1) board_time_init() -
541 * a) (optional) set up RTC routines,
542 * b) (optional) calibrate and set the mips_hpt_frequency
543 * (only needed if you intended to use fixed_rate_gettimeoffset
544 * or use cpu counter as timer interrupt source)
545 * 2) setup xtime based on rtc_get_time().
546 * 3) choose a appropriate gettimeoffset routine.
547 * 4) calculate a couple of cached variables for later usage
548 * 5) board_timer_setup() -
549 * a) (optional) over-write any choices made above by time_init().
550 * b) machine specific code should setup the timer irqaction.
551 * c) enable the timer interrupt
554 void (*board_time_init)(void);
555 void (*board_timer_setup)(struct irqaction *irq);
557 unsigned int mips_hpt_frequency;
559 static struct irqaction timer_irqaction = {
560 .handler = timer_interrupt,
561 .flags = SA_INTERRUPT,
565 static unsigned int __init calibrate_hpt(void)
568 u32 hpt_start, hpt_end, hpt_count, hz;
570 const int loops = HZ / 10;
575 * We want to calibrate for 0.1s, but to avoid a 64-bit
576 * division we round the number of loops up to the nearest
579 while (loops > 1 << log_2_loops)
581 i = 1 << log_2_loops;
584 * Wait for a rising edge of the timer interrupt.
586 while (mips_timer_state());
587 while (!mips_timer_state());
590 * Now see how many high precision timer ticks happen
591 * during the calculated number of periods between timer
594 hpt_start = mips_hpt_read();
596 while (mips_timer_state());
597 while (!mips_timer_state());
599 hpt_end = mips_hpt_read();
601 hpt_count = hpt_end - hpt_start;
603 frequency = (u64)hpt_count * (u64)hz;
605 return frequency >> log_2_loops;
608 void __init time_init(void)
614 rtc_set_mmss = rtc_set_time;
616 xtime.tv_sec = rtc_get_time();
619 set_normalized_timespec(&wall_to_monotonic,
620 -xtime.tv_sec, -xtime.tv_nsec);
622 /* Choose appropriate high precision timer routines. */
623 if (!cpu_has_counter && !mips_hpt_read) {
624 /* No high precision timer -- sorry. */
625 mips_hpt_read = null_hpt_read;
626 mips_hpt_init = null_hpt_init;
627 } else if (!mips_hpt_frequency && !mips_timer_state) {
628 /* A high precision timer of unknown frequency. */
629 if (!mips_hpt_read) {
630 /* No external high precision timer -- use R4k. */
631 mips_hpt_read = c0_hpt_read;
632 mips_hpt_init = c0_hpt_init;
635 if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
636 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
637 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
639 * We need to calibrate the counter but we don't have
642 do_gettimeoffset = calibrate_div32_gettimeoffset;
645 * We need to calibrate the counter but we *do* have
648 do_gettimeoffset = calibrate_div64_gettimeoffset;
650 /* We know counter frequency. Or we can get it. */
651 if (!mips_hpt_read) {
652 /* No external high precision timer -- use R4k. */
653 mips_hpt_read = c0_hpt_read;
655 if (mips_timer_state)
656 mips_hpt_init = c0_hpt_init;
658 /* No external timer interrupt -- use R4k. */
659 mips_hpt_init = c0_hpt_timer_init;
660 mips_timer_ack = c0_timer_ack;
663 if (!mips_hpt_frequency)
664 mips_hpt_frequency = calibrate_hpt();
666 do_gettimeoffset = fixed_rate_gettimeoffset;
668 /* Calculate cache parameters. */
669 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
671 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
672 do_div64_32(sll32_usecs_per_cycle,
673 1000000, mips_hpt_frequency / 2,
676 /* Report the high precision timer rate for a reference. */
677 printk("Using %u.%03u MHz high precision timer.\n",
678 ((mips_hpt_frequency + 500) / 1000) / 1000,
679 ((mips_hpt_frequency + 500) / 1000) % 1000);
683 /* No timer interrupt ack (e.g. i8254). */
684 mips_timer_ack = null_timer_ack;
686 /* This sets up the high precision timer for the first interrupt. */
687 mips_hpt_init(mips_hpt_read());
690 * Call board specific timer interrupt setup.
692 * this pointer must be setup in machine setup routine.
694 * Even if a machine chooses to use a low-level timer interrupt,
695 * it still needs to setup the timer_irqaction.
696 * In that case, it might be better to set timer_irqaction.handler
697 * to be NULL function so that we are sure the high-level code
698 * is not invoked accidentally.
700 board_timer_setup(&timer_irqaction);
704 #define STARTOFTIME 1970
705 #define SECDAY 86400L
706 #define SECYR (SECDAY * 365)
707 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
708 #define days_in_year(y) (leapyear(y) ? 366 : 365)
709 #define days_in_month(m) (month_days[(m) - 1])
711 static int month_days[12] = {
712 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
715 void to_tm(unsigned long tim, struct rtc_time *tm)
720 gday = day = tim / SECDAY;
723 /* Hours, minutes, seconds are easy */
724 tm->tm_hour = hms / 3600;
725 tm->tm_min = (hms % 3600) / 60;
726 tm->tm_sec = (hms % 3600) % 60;
728 /* Number of years in days */
729 for (i = STARTOFTIME; day >= days_in_year(i); i++)
730 day -= days_in_year(i);
733 /* Number of months in days left */
734 if (leapyear(tm->tm_year))
735 days_in_month(FEBRUARY) = 29;
736 for (i = 1; day >= days_in_month(i); i++)
737 day -= days_in_month(i);
738 days_in_month(FEBRUARY) = 28;
739 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
741 /* Days are what is left over (+1) from all that. */
742 tm->tm_mday = day + 1;
745 * Determine the day of week
747 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
750 EXPORT_SYMBOL(rtc_lock);
751 EXPORT_SYMBOL(to_tm);
752 EXPORT_SYMBOL(rtc_set_time);
753 EXPORT_SYMBOL(rtc_get_time);
755 unsigned long long sched_clock(void)
757 return (unsigned long long)jiffies*(1000000000/HZ);