4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
87 if (!blk_end_request(rq, error, nr_bytes))
90 if (ret == 0 && dequeue)
91 drive->hwif->hwgroup->rq = NULL;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->hwgroup->rq;
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
116 nr_bytes = rq->hard_cur_sectors << 9;
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
121 EXPORT_SYMBOL(ide_end_request);
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
127 * @nr_sectors: number of sectors completed
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
134 * NOTE: This path does not handle barrier, but barrier is not supported
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
141 BUG_ON(!blk_rq_started(rq));
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
148 * ide_end_drive_cmd - end an explicit drive command
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
163 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
164 struct request *rq = hwgroup->rq;
166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 ide_task_t *task = (ide_task_t *)rq->special;
170 struct ide_taskfile *tf = &task->tf;
175 drive->hwif->tp_ops->tf_read(drive, task);
177 if (task->tf_flags & IDE_TFLAG_DYN)
180 } else if (blk_pm_request(rq)) {
181 struct request_pm_state *pm = rq->data;
183 ide_complete_power_step(drive, rq);
184 if (pm->pm_step == IDE_PM_COMPLETED)
185 ide_complete_pm_request(drive, rq);
193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
197 EXPORT_SYMBOL(ide_end_drive_cmd);
199 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
204 drv = *(ide_driver_t **)rq->rq_disk->private_data;
205 drv->end_request(drive, 0, 0);
207 ide_end_request(drive, 0, 0);
210 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
212 ide_hwif_t *hwif = drive->hwif;
214 if ((stat & ATA_BUSY) ||
215 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216 /* other bits are useless when BUSY */
217 rq->errors |= ERROR_RESET;
218 } else if (stat & ATA_ERR) {
219 /* err has different meaning on cdrom and tape */
220 if (err == ATA_ABORTED) {
221 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
225 } else if ((err & BAD_CRC) == BAD_CRC) {
226 /* UDMA crc error, just retry the operation */
228 } else if (err & (ATA_BBK | ATA_UNC)) {
229 /* retries won't help these */
230 rq->errors = ERROR_MAX;
231 } else if (err & ATA_TRK0NF) {
232 /* help it find track zero */
233 rq->errors |= ERROR_RECAL;
237 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239 int nsect = drive->mult_count ? drive->mult_count : 1;
241 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
244 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245 ide_kill_rq(drive, rq);
249 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250 rq->errors |= ERROR_RESET;
252 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
254 return ide_do_reset(drive);
257 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258 drive->special.b.recalibrate = 1;
265 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
267 ide_hwif_t *hwif = drive->hwif;
269 if ((stat & ATA_BUSY) ||
270 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271 /* other bits are useless when BUSY */
272 rq->errors |= ERROR_RESET;
274 /* add decoding error stuff */
277 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
279 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
281 if (rq->errors >= ERROR_MAX) {
282 ide_kill_rq(drive, rq);
284 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
286 return ide_do_reset(drive);
295 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
297 if (drive->media == ide_disk)
298 return ide_ata_error(drive, rq, stat, err);
299 return ide_atapi_error(drive, rq, stat, err);
302 EXPORT_SYMBOL_GPL(__ide_error);
305 * ide_error - handle an error on the IDE
306 * @drive: drive the error occurred on
307 * @msg: message to report
310 * ide_error() takes action based on the error returned by the drive.
311 * For normal I/O that may well include retries. We deal with
312 * both new-style (taskfile) and old style command handling here.
313 * In the case of taskfile command handling there is work left to
317 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
322 err = ide_dump_status(drive, msg, stat);
324 if ((rq = HWGROUP(drive)->rq) == NULL)
327 /* retry only "normal" I/O: */
328 if (!blk_fs_request(rq)) {
330 ide_end_drive_cmd(drive, stat, err);
337 drv = *(ide_driver_t **)rq->rq_disk->private_data;
338 return drv->error(drive, rq, stat, err);
340 return __ide_error(drive, rq, stat, err);
343 EXPORT_SYMBOL_GPL(ide_error);
345 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
347 tf->nsect = drive->sect;
348 tf->lbal = drive->sect;
349 tf->lbam = drive->cyl;
350 tf->lbah = drive->cyl >> 8;
351 tf->device = (drive->head - 1) | drive->select;
352 tf->command = ATA_CMD_INIT_DEV_PARAMS;
355 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
357 tf->nsect = drive->sect;
358 tf->command = ATA_CMD_RESTORE;
361 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
363 tf->nsect = drive->mult_req;
364 tf->command = ATA_CMD_SET_MULTI;
367 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
369 special_t *s = &drive->special;
372 memset(&args, 0, sizeof(ide_task_t));
373 args.data_phase = TASKFILE_NO_DATA;
375 if (s->b.set_geometry) {
376 s->b.set_geometry = 0;
377 ide_tf_set_specify_cmd(drive, &args.tf);
378 } else if (s->b.recalibrate) {
379 s->b.recalibrate = 0;
380 ide_tf_set_restore_cmd(drive, &args.tf);
381 } else if (s->b.set_multmode) {
382 s->b.set_multmode = 0;
383 ide_tf_set_setmult_cmd(drive, &args.tf);
385 int special = s->all;
387 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
391 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
392 IDE_TFLAG_CUSTOM_HANDLER;
394 do_rw_taskfile(drive, &args);
400 * do_special - issue some special commands
401 * @drive: drive the command is for
403 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
404 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
406 * It used to do much more, but has been scaled back.
409 static ide_startstop_t do_special (ide_drive_t *drive)
411 special_t *s = &drive->special;
414 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
416 if (drive->media == ide_disk)
417 return ide_disk_special(drive);
424 void ide_map_sg(ide_drive_t *drive, struct request *rq)
426 ide_hwif_t *hwif = drive->hwif;
427 struct scatterlist *sg = hwif->sg_table;
429 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
430 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
432 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
437 EXPORT_SYMBOL_GPL(ide_map_sg);
439 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
441 ide_hwif_t *hwif = drive->hwif;
443 hwif->nsect = hwif->nleft = rq->nr_sectors;
448 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
451 * execute_drive_command - issue special drive command
452 * @drive: the drive to issue the command on
453 * @rq: the request structure holding the command
455 * execute_drive_cmd() issues a special drive command, usually
456 * initiated by ioctl() from the external hdparm program. The
457 * command can be a drive command, drive task or taskfile
458 * operation. Weirdly you can call it with NULL to wait for
459 * all commands to finish. Don't do this as that is due to change
462 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
465 ide_hwif_t *hwif = HWIF(drive);
466 ide_task_t *task = rq->special;
469 hwif->data_phase = task->data_phase;
471 switch (hwif->data_phase) {
472 case TASKFILE_MULTI_OUT:
474 case TASKFILE_MULTI_IN:
476 ide_init_sg_cmd(drive, rq);
477 ide_map_sg(drive, rq);
482 return do_rw_taskfile(drive, task);
486 * NULL is actually a valid way of waiting for
487 * all current requests to be flushed from the queue.
490 printk("%s: DRIVE_CMD (null)\n", drive->name);
492 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
493 ide_read_error(drive));
498 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
501 struct request_queue *q = drive->queue;
505 if (!(setting->flags & DS_SYNC))
506 return setting->set(drive, arg);
508 rq = blk_get_request(q, READ, __GFP_WAIT);
509 rq->cmd_type = REQ_TYPE_SPECIAL;
511 rq->cmd[0] = REQ_DEVSET_EXEC;
512 *(int *)&rq->cmd[1] = arg;
513 rq->special = setting->set;
515 if (blk_execute_rq(q, NULL, rq, 0))
521 EXPORT_SYMBOL_GPL(ide_devset_execute);
523 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
527 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
529 struct ide_taskfile *tf = &task.tf;
531 memset(&task, 0, sizeof(task));
532 if (cmd == REQ_PARK_HEADS) {
533 drive->sleep = *(unsigned long *)rq->special;
534 drive->dev_flags |= IDE_DFLAG_SLEEPING;
535 tf->command = ATA_CMD_IDLEIMMEDIATE;
540 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
541 } else /* cmd == REQ_UNPARK_HEADS */
542 tf->command = ATA_CMD_CHK_POWER;
544 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
546 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
547 return do_rw_taskfile(drive, &task);
551 case REQ_DEVSET_EXEC:
553 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
555 err = setfunc(drive, *(int *)&rq->cmd[1]);
560 ide_end_request(drive, err, 0);
563 case REQ_DRIVE_RESET:
564 return ide_do_reset(drive);
566 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
567 ide_end_request(drive, 0, 0);
573 * start_request - start of I/O and command issuing for IDE
575 * start_request() initiates handling of a new I/O request. It
576 * accepts commands and I/O (read/write) requests.
578 * FIXME: this function needs a rename
581 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
583 ide_startstop_t startstop;
585 BUG_ON(!blk_rq_started(rq));
588 printk("%s: start_request: current=0x%08lx\n",
589 HWIF(drive)->name, (unsigned long) rq);
592 /* bail early if we've exceeded max_failures */
593 if (drive->max_failures && (drive->failures > drive->max_failures)) {
594 rq->cmd_flags |= REQ_FAILED;
598 if (blk_pm_request(rq))
599 ide_check_pm_state(drive, rq);
602 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
603 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
604 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
607 if (!drive->special.all) {
611 * We reset the drive so we need to issue a SETFEATURES.
612 * Do it _after_ do_special() restored device parameters.
614 if (drive->current_speed == 0xff)
615 ide_config_drive_speed(drive, drive->desired_speed);
617 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
618 return execute_drive_cmd(drive, rq);
619 else if (blk_pm_request(rq)) {
620 struct request_pm_state *pm = rq->data;
622 printk("%s: start_power_step(step: %d)\n",
623 drive->name, pm->pm_step);
625 startstop = ide_start_power_step(drive, rq);
626 if (startstop == ide_stopped &&
627 pm->pm_step == IDE_PM_COMPLETED)
628 ide_complete_pm_request(drive, rq);
630 } else if (!rq->rq_disk && blk_special_request(rq))
632 * TODO: Once all ULDs have been modified to
633 * check for specific op codes rather than
634 * blindly accepting any special request, the
635 * check for ->rq_disk above may be replaced
636 * by a more suitable mechanism or even
639 return ide_special_rq(drive, rq);
641 drv = *(ide_driver_t **)rq->rq_disk->private_data;
643 return drv->do_request(drive, rq, rq->sector);
645 return do_special(drive);
647 ide_kill_rq(drive, rq);
652 * ide_stall_queue - pause an IDE device
653 * @drive: drive to stall
654 * @timeout: time to stall for (jiffies)
656 * ide_stall_queue() can be used by a drive to give excess bandwidth back
657 * to the hwgroup by sleeping for timeout jiffies.
660 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
662 if (timeout > WAIT_WORSTCASE)
663 timeout = WAIT_WORSTCASE;
664 drive->sleep = timeout + jiffies;
665 drive->dev_flags |= IDE_DFLAG_SLEEPING;
667 EXPORT_SYMBOL(ide_stall_queue);
670 * Issue a new request to a drive from hwgroup
672 * A hwgroup is a serialized group of IDE interfaces. Usually there is
673 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
674 * may have both interfaces in a single hwgroup to "serialize" access.
675 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
676 * together into one hwgroup for serialized access.
678 * Note also that several hwgroups can end up sharing a single IRQ,
679 * possibly along with many other devices. This is especially common in
680 * PCI-based systems with off-board IDE controller cards.
682 * The IDE driver uses a per-hwgroup lock to protect the hwgroup->busy flag.
684 * The first thread into the driver for a particular hwgroup sets the
685 * hwgroup->busy flag to indicate that this hwgroup is now active,
686 * and then initiates processing of the top request from the request queue.
688 * Other threads attempting entry notice the busy setting, and will simply
689 * queue their new requests and exit immediately. Note that hwgroup->busy
690 * remains set even when the driver is merely awaiting the next interrupt.
691 * Thus, the meaning is "this hwgroup is busy processing a request".
693 * When processing of a request completes, the completing thread or IRQ-handler
694 * will start the next request from the queue. If no more work remains,
695 * the driver will clear the hwgroup->busy flag and exit.
697 * The per-hwgroup spinlock is used to protect all access to the
698 * hwgroup->busy flag, but is otherwise not needed for most processing in
699 * the driver. This makes the driver much more friendlier to shared IRQs
700 * than previous designs, while remaining 100% (?) SMP safe and capable.
702 void do_ide_request(struct request_queue *q)
704 ide_drive_t *drive = q->queuedata;
705 ide_hwif_t *hwif = drive->hwif;
706 ide_hwgroup_t *hwgroup = hwif->hwgroup;
708 ide_startstop_t startstop;
711 * drive is doing pre-flush, ordered write, post-flush sequence. even
712 * though that is 3 requests, it must be seen as a single transaction.
713 * we must not preempt this drive until that is complete
715 if (blk_queue_flushing(q))
717 * small race where queue could get replugged during
718 * the 3-request flush cycle, just yank the plug since
719 * we want it to finish asap
723 spin_unlock_irq(q->queue_lock);
724 spin_lock_irq(&hwgroup->lock);
726 if (!ide_lock_hwgroup(hwgroup)) {
730 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
731 if (time_before(drive->sleep, jiffies)) {
732 ide_unlock_hwgroup(hwgroup);
737 if (hwif != hwgroup->hwif) {
739 * set nIEN for previous hwif, drives in the
740 * quirk_list may not like intr setups/cleanups
742 if (drive->quirk_list == 0)
743 hwif->tp_ops->set_irq(hwif, 0);
745 hwgroup->hwif = hwif;
746 hwgroup->drive = drive;
747 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
749 spin_unlock_irq(&hwgroup->lock);
750 spin_lock_irq(q->queue_lock);
752 * we know that the queue isn't empty, but this can happen
753 * if the q->prep_rq_fn() decides to kill a request
755 rq = elv_next_request(drive->queue);
756 spin_unlock_irq(q->queue_lock);
757 spin_lock_irq(&hwgroup->lock);
760 ide_unlock_hwgroup(hwgroup);
765 * Sanity: don't accept a request that isn't a PM request
766 * if we are currently power managed. This is very important as
767 * blk_stop_queue() doesn't prevent the elv_next_request()
768 * above to return us whatever is in the queue. Since we call
769 * ide_do_request() ourselves, we end up taking requests while
770 * the queue is blocked...
772 * We let requests forced at head of queue with ide-preempt
773 * though. I hope that doesn't happen too much, hopefully not
774 * unless the subdriver triggers such a thing in its own PM
777 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
778 blk_pm_request(rq) == 0 &&
779 (rq->cmd_flags & REQ_PREEMPT) == 0) {
780 /* there should be no pending command at this point */
781 ide_unlock_hwgroup(hwgroup);
787 spin_unlock_irq(&hwgroup->lock);
788 startstop = start_request(drive, rq);
789 spin_lock_irq(&hwgroup->lock);
791 if (startstop == ide_stopped)
796 spin_unlock_irq(&hwgroup->lock);
797 spin_lock_irq(q->queue_lock);
801 spin_unlock_irq(&hwgroup->lock);
802 spin_lock_irq(q->queue_lock);
804 if (!elv_queue_empty(q))
809 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
810 * retry the current request in pio mode instead of risking tossing it
813 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
815 ide_hwif_t *hwif = HWIF(drive);
817 ide_startstop_t ret = ide_stopped;
820 * end current dma transaction
824 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
825 (void)hwif->dma_ops->dma_end(drive);
826 ret = ide_error(drive, "dma timeout error",
827 hwif->tp_ops->read_status(hwif));
829 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
830 hwif->dma_ops->dma_timeout(drive);
834 * disable dma for now, but remember that we did so because of
835 * a timeout -- we'll reenable after we finish this next request
836 * (or rather the first chunk of it) in pio.
838 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
840 ide_dma_off_quietly(drive);
843 * un-busy drive etc (hwgroup->busy is cleared on return) and
844 * make sure request is sane
846 rq = HWGROUP(drive)->rq;
851 HWGROUP(drive)->rq = NULL;
858 rq->sector = rq->bio->bi_sector;
859 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
860 rq->hard_cur_sectors = rq->current_nr_sectors;
861 rq->buffer = bio_data(rq->bio);
866 static void ide_plug_device(ide_drive_t *drive)
868 struct request_queue *q = drive->queue;
871 spin_lock_irqsave(q->queue_lock, flags);
872 if (!elv_queue_empty(q))
874 spin_unlock_irqrestore(q->queue_lock, flags);
878 * ide_timer_expiry - handle lack of an IDE interrupt
879 * @data: timer callback magic (hwgroup)
881 * An IDE command has timed out before the expected drive return
882 * occurred. At this point we attempt to clean up the current
883 * mess. If the current handler includes an expiry handler then
884 * we invoke the expiry handler, and providing it is happy the
885 * work is done. If that fails we apply generic recovery rules
886 * invoking the handler and checking the drive DMA status. We
887 * have an excessively incestuous relationship with the DMA
888 * logic that wants cleaning up.
891 void ide_timer_expiry (unsigned long data)
893 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
894 ide_drive_t *uninitialized_var(drive);
895 ide_handler_t *handler;
896 ide_expiry_t *expiry;
898 unsigned long wait = -1;
901 spin_lock_irqsave(&hwgroup->lock, flags);
903 if (((handler = hwgroup->handler) == NULL) ||
904 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
906 * Either a marginal timeout occurred
907 * (got the interrupt just as timer expired),
908 * or we were "sleeping" to give other devices a chance.
909 * Either way, we don't really want to complain about anything.
912 drive = hwgroup->drive;
914 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
915 hwgroup->handler = NULL;
918 ide_startstop_t startstop = ide_stopped;
920 if ((expiry = hwgroup->expiry) != NULL) {
922 if ((wait = expiry(drive)) > 0) {
924 hwgroup->timer.expires = jiffies + wait;
925 hwgroup->req_gen_timer = hwgroup->req_gen;
926 add_timer(&hwgroup->timer);
927 spin_unlock_irqrestore(&hwgroup->lock, flags);
931 hwgroup->handler = NULL;
933 * We need to simulate a real interrupt when invoking
934 * the handler() function, which means we need to
935 * globally mask the specific IRQ:
937 spin_unlock(&hwgroup->lock);
939 /* disable_irq_nosync ?? */
940 disable_irq(hwif->irq);
942 * as if we were handling an interrupt */
944 if (hwgroup->polling) {
945 startstop = handler(drive);
946 } else if (drive_is_ready(drive)) {
947 if (drive->waiting_for_dma)
948 hwif->dma_ops->dma_lost_irq(drive);
949 (void)ide_ack_intr(hwif);
950 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
951 startstop = handler(drive);
953 if (drive->waiting_for_dma) {
954 startstop = ide_dma_timeout_retry(drive, wait);
957 ide_error(drive, "irq timeout",
958 hwif->tp_ops->read_status(hwif));
960 spin_lock_irq(&hwgroup->lock);
961 enable_irq(hwif->irq);
962 if (startstop == ide_stopped) {
963 ide_unlock_hwgroup(hwgroup);
968 spin_unlock_irqrestore(&hwgroup->lock, flags);
971 ide_plug_device(drive);
975 * unexpected_intr - handle an unexpected IDE interrupt
976 * @irq: interrupt line
977 * @hwgroup: hwgroup being processed
979 * There's nothing really useful we can do with an unexpected interrupt,
980 * other than reading the status register (to clear it), and logging it.
981 * There should be no way that an irq can happen before we're ready for it,
982 * so we needn't worry much about losing an "important" interrupt here.
984 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
985 * the drive enters "idle", "standby", or "sleep" mode, so if the status
986 * looks "good", we just ignore the interrupt completely.
988 * This routine assumes __cli() is in effect when called.
990 * If an unexpected interrupt happens on irq15 while we are handling irq14
991 * and if the two interfaces are "serialized" (CMD640), then it looks like
992 * we could screw up by interfering with a new request being set up for
995 * In reality, this is a non-issue. The new command is not sent unless
996 * the drive is ready to accept one, in which case we know the drive is
997 * not trying to interrupt us. And ide_set_handler() is always invoked
998 * before completing the issuance of any new drive command, so we will not
999 * be accidentally invoked as a result of any valid command completion
1002 * Note that we must walk the entire hwgroup here. We know which hwif
1003 * is doing the current command, but we don't know which hwif burped
1007 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1010 ide_hwif_t *hwif = hwgroup->hwif;
1013 * handle the unexpected interrupt
1016 if (hwif->irq == irq) {
1017 stat = hwif->tp_ops->read_status(hwif);
1019 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1020 /* Try to not flood the console with msgs */
1021 static unsigned long last_msgtime, count;
1023 if (time_after(jiffies, last_msgtime + HZ)) {
1024 last_msgtime = jiffies;
1025 printk(KERN_ERR "%s%s: unexpected interrupt, "
1026 "status=0x%02x, count=%ld\n",
1028 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1032 } while ((hwif = hwif->next) != hwgroup->hwif);
1036 * ide_intr - default IDE interrupt handler
1037 * @irq: interrupt number
1038 * @dev_id: hwif group
1039 * @regs: unused weirdness from the kernel irq layer
1041 * This is the default IRQ handler for the IDE layer. You should
1042 * not need to override it. If you do be aware it is subtle in
1045 * hwgroup->hwif is the interface in the group currently performing
1046 * a command. hwgroup->drive is the drive and hwgroup->handler is
1047 * the IRQ handler to call. As we issue a command the handlers
1048 * step through multiple states, reassigning the handler to the
1049 * next step in the process. Unlike a smart SCSI controller IDE
1050 * expects the main processor to sequence the various transfer
1051 * stages. We also manage a poll timer to catch up with most
1052 * timeout situations. There are still a few where the handlers
1053 * don't ever decide to give up.
1055 * The handler eventually returns ide_stopped to indicate the
1056 * request completed. At this point we issue the next request
1057 * on the hwgroup and the process begins again.
1060 irqreturn_t ide_intr (int irq, void *dev_id)
1062 unsigned long flags;
1063 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1064 ide_hwif_t *hwif = hwgroup->hwif;
1065 ide_drive_t *uninitialized_var(drive);
1066 ide_handler_t *handler;
1067 ide_startstop_t startstop;
1068 irqreturn_t irq_ret = IRQ_NONE;
1069 int plug_device = 0;
1071 spin_lock_irqsave(&hwgroup->lock, flags);
1073 if (!ide_ack_intr(hwif))
1076 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1078 * Not expecting an interrupt from this drive.
1079 * That means this could be:
1080 * (1) an interrupt from another PCI device
1081 * sharing the same PCI INT# as us.
1082 * or (2) a drive just entered sleep or standby mode,
1083 * and is interrupting to let us know.
1084 * or (3) a spurious interrupt of unknown origin.
1086 * For PCI, we cannot tell the difference,
1087 * so in that case we just ignore it and hope it goes away.
1089 * FIXME: unexpected_intr should be hwif-> then we can
1090 * remove all the ifdef PCI crap
1092 #ifdef CONFIG_BLK_DEV_IDEPCI
1093 if (hwif->chipset != ide_pci)
1094 #endif /* CONFIG_BLK_DEV_IDEPCI */
1097 * Probably not a shared PCI interrupt,
1098 * so we can safely try to do something about it:
1100 unexpected_intr(irq, hwgroup);
1101 #ifdef CONFIG_BLK_DEV_IDEPCI
1104 * Whack the status register, just in case
1105 * we have a leftover pending IRQ.
1107 (void)hwif->tp_ops->read_status(hwif);
1108 #endif /* CONFIG_BLK_DEV_IDEPCI */
1113 drive = hwgroup->drive;
1116 * This should NEVER happen, and there isn't much
1117 * we could do about it here.
1119 * [Note - this can occur if the drive is hot unplugged]
1124 if (!drive_is_ready(drive))
1126 * This happens regularly when we share a PCI IRQ with
1127 * another device. Unfortunately, it can also happen
1128 * with some buggy drives that trigger the IRQ before
1129 * their status register is up to date. Hopefully we have
1130 * enough advance overhead that the latter isn't a problem.
1134 hwgroup->handler = NULL;
1136 del_timer(&hwgroup->timer);
1137 spin_unlock(&hwgroup->lock);
1139 if (hwif->port_ops && hwif->port_ops->clear_irq)
1140 hwif->port_ops->clear_irq(drive);
1142 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1143 local_irq_enable_in_hardirq();
1145 /* service this interrupt, may set handler for next interrupt */
1146 startstop = handler(drive);
1148 spin_lock_irq(&hwgroup->lock);
1150 * Note that handler() may have set things up for another
1151 * interrupt to occur soon, but it cannot happen until
1152 * we exit from this routine, because it will be the
1153 * same irq as is currently being serviced here, and Linux
1154 * won't allow another of the same (on any CPU) until we return.
1156 if (startstop == ide_stopped) {
1157 if (hwgroup->handler == NULL) { /* paranoia */
1158 ide_unlock_hwgroup(hwgroup);
1161 printk(KERN_ERR "%s: %s: huh? expected NULL handler "
1162 "on exit\n", __func__, drive->name);
1165 irq_ret = IRQ_HANDLED;
1167 spin_unlock_irqrestore(&hwgroup->lock, flags);
1170 ide_plug_device(drive);
1176 * ide_do_drive_cmd - issue IDE special command
1177 * @drive: device to issue command
1178 * @rq: request to issue
1180 * This function issues a special IDE device request
1181 * onto the request queue.
1183 * the rq is queued at the head of the request queue, displacing
1184 * the currently-being-processed request and this function
1185 * returns immediately without waiting for the new rq to be
1186 * completed. This is VERY DANGEROUS, and is intended for
1187 * careful use by the ATAPI tape/cdrom driver code.
1190 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1192 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1193 struct request_queue *q = drive->queue;
1194 unsigned long flags;
1198 spin_lock_irqsave(q->queue_lock, flags);
1199 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1200 blk_start_queueing(q);
1201 spin_unlock_irqrestore(q->queue_lock, flags);
1203 EXPORT_SYMBOL(ide_do_drive_cmd);
1205 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1207 ide_hwif_t *hwif = drive->hwif;
1210 memset(&task, 0, sizeof(task));
1211 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1212 IDE_TFLAG_OUT_FEATURE | tf_flags;
1213 task.tf.feature = dma; /* Use PIO/DMA */
1214 task.tf.lbam = bcount & 0xff;
1215 task.tf.lbah = (bcount >> 8) & 0xff;
1217 ide_tf_dump(drive->name, &task.tf);
1218 hwif->tp_ops->set_irq(hwif, 1);
1219 SELECT_MASK(drive, 0);
1220 hwif->tp_ops->tf_load(drive, &task);
1223 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1225 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1227 ide_hwif_t *hwif = drive->hwif;
1232 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1234 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1238 EXPORT_SYMBOL_GPL(ide_pad_transfer);