2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54 const unsigned int offset,
58 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59 USB_VENDOR_REQUEST_IN, offset,
60 ®, sizeof(u16), REGISTER_TIMEOUT);
61 *value = le16_to_cpu(reg);
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65 const unsigned int offset,
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70 USB_VENDOR_REQUEST_IN, offset,
71 ®, sizeof(u16), REGISTER_TIMEOUT);
72 *value = le16_to_cpu(reg);
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76 const unsigned int offset,
77 void *value, const u16 length)
79 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
80 USB_VENDOR_REQUEST_IN, offset,
82 REGISTER_TIMEOUT16(length));
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86 const unsigned int offset,
89 __le16 reg = cpu_to_le16(value);
90 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91 USB_VENDOR_REQUEST_OUT, offset,
92 ®, sizeof(u16), REGISTER_TIMEOUT);
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96 const unsigned int offset,
99 __le16 reg = cpu_to_le16(value);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101 USB_VENDOR_REQUEST_OUT, offset,
102 ®, sizeof(u16), REGISTER_TIMEOUT);
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106 const unsigned int offset,
107 void *value, const u16 length)
109 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
110 USB_VENDOR_REQUEST_OUT, offset,
112 REGISTER_TIMEOUT16(length));
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
120 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, ®);
122 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
124 udelay(REGISTER_BUSY_DELAY);
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u8 value)
135 mutex_lock(&rt2x00dev->usb_cache_mutex);
138 * Wait until the BBP becomes ready.
140 reg = rt2500usb_bbp_check(rt2x00dev);
141 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
145 * Write the data into the BBP.
148 rt2x00_set_field16(®, PHY_CSR7_DATA, value);
149 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
150 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0);
152 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
154 mutex_unlock(&rt2x00dev->usb_cache_mutex);
159 mutex_unlock(&rt2x00dev->usb_cache_mutex);
161 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
164 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
165 const unsigned int word, u8 *value)
169 mutex_lock(&rt2x00dev->usb_cache_mutex);
172 * Wait until the BBP becomes ready.
174 reg = rt2500usb_bbp_check(rt2x00dev);
175 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
179 * Write the request into the BBP.
182 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
183 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1);
185 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188 * Wait until the BBP becomes ready.
190 reg = rt2500usb_bbp_check(rt2x00dev);
191 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
194 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, ®);
195 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
197 mutex_unlock(&rt2x00dev->usb_cache_mutex);
202 mutex_unlock(&rt2x00dev->usb_cache_mutex);
204 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
208 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
209 const unsigned int word, const u32 value)
217 mutex_lock(&rt2x00dev->usb_cache_mutex);
219 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
220 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, ®);
221 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
223 udelay(REGISTER_BUSY_DELAY);
226 mutex_unlock(&rt2x00dev->usb_cache_mutex);
227 ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
232 rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value);
233 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
236 rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16);
237 rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
238 rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0);
239 rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1);
241 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
242 rt2x00_rf_write(rt2x00dev, word, value);
244 mutex_unlock(&rt2x00dev->usb_cache_mutex);
247 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
248 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
250 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
251 const unsigned int word, u32 *data)
253 rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
256 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
257 const unsigned int word, u32 data)
259 rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
262 static const struct rt2x00debug rt2500usb_rt2x00debug = {
263 .owner = THIS_MODULE,
265 .read = rt2500usb_read_csr,
266 .write = rt2500usb_write_csr,
267 .word_size = sizeof(u16),
268 .word_count = CSR_REG_SIZE / sizeof(u16),
271 .read = rt2x00_eeprom_read,
272 .write = rt2x00_eeprom_write,
273 .word_size = sizeof(u16),
274 .word_count = EEPROM_SIZE / sizeof(u16),
277 .read = rt2500usb_bbp_read,
278 .write = rt2500usb_bbp_write,
279 .word_size = sizeof(u8),
280 .word_count = BBP_SIZE / sizeof(u8),
283 .read = rt2x00_rf_read,
284 .write = rt2500usb_rf_write,
285 .word_size = sizeof(u32),
286 .word_count = RF_SIZE / sizeof(u32),
289 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
291 #ifdef CONFIG_RT2500USB_LEDS
292 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
293 enum led_brightness brightness)
295 struct rt2x00_led *led =
296 container_of(led_cdev, struct rt2x00_led, led_dev);
297 unsigned int enabled = brightness != LED_OFF;
300 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, ®);
302 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
303 rt2x00_set_field16(®, MAC_CSR20_LINK, enabled);
304 else if (led->type == LED_TYPE_ACTIVITY)
305 rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled);
307 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
310 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
311 unsigned long *delay_on,
312 unsigned long *delay_off)
314 struct rt2x00_led *led =
315 container_of(led_cdev, struct rt2x00_led, led_dev);
318 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, ®);
319 rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on);
320 rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off);
321 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
326 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
327 struct rt2x00_led *led,
330 led->rt2x00dev = rt2x00dev;
332 led->led_dev.brightness_set = rt2500usb_brightness_set;
333 led->led_dev.blink_set = rt2500usb_blink_set;
334 led->flags = LED_INITIALIZED;
336 #endif /* CONFIG_RT2500USB_LEDS */
339 * Configuration handlers.
341 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
342 const unsigned int filter_flags)
347 * Start configuration steps.
348 * Note that the version error will always be dropped
349 * and broadcast frames will always be accepted since
350 * there is no filter for it at this time.
352 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®);
353 rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC,
354 !(filter_flags & FIF_FCSFAIL));
355 rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL,
356 !(filter_flags & FIF_PLCPFAIL));
357 rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL,
358 !(filter_flags & FIF_CONTROL));
359 rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME,
360 !(filter_flags & FIF_PROMISC_IN_BSS));
361 rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS,
362 !(filter_flags & FIF_PROMISC_IN_BSS) &&
363 !rt2x00dev->intf_ap_count);
364 rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1);
365 rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST,
366 !(filter_flags & FIF_ALLMULTI));
367 rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0);
368 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
371 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
372 struct rt2x00_intf *intf,
373 struct rt2x00intf_conf *conf,
374 const unsigned int flags)
376 unsigned int bcn_preload;
379 if (flags & CONFIG_UPDATE_TYPE) {
381 * Enable beacon config
383 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
384 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, ®);
385 rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6);
386 rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW,
387 2 * (conf->type != IEEE80211_IF_TYPE_STA));
388 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
391 * Enable synchronisation.
393 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®);
394 rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0);
395 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
397 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®);
398 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
399 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync);
400 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
401 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
404 if (flags & CONFIG_UPDATE_MAC)
405 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
406 (3 * sizeof(__le16)));
408 if (flags & CONFIG_UPDATE_BSSID)
409 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
410 (3 * sizeof(__le16)));
413 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
414 struct rt2x00lib_erp *erp)
418 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®);
419 rt2x00_set_field16(®, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
420 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
422 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, ®);
423 rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE,
424 !!erp->short_preamble);
425 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
428 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
429 const int basic_rate_mask)
431 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
434 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
435 struct rf_channel *rf, const int txpower)
440 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
443 * For RT2525E we should first set the channel to half band higher.
445 if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
446 static const u32 vals[] = {
447 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
448 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
449 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
450 0x00000902, 0x00000906
453 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
455 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
458 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
459 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
460 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
462 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
465 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
470 rt2x00_rf_read(rt2x00dev, 3, &rf3);
471 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
472 rt2500usb_rf_write(rt2x00dev, 3, rf3);
475 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
476 struct antenna_setup *ant)
484 * We should never come here because rt2x00lib is supposed
485 * to catch this and send us the correct antenna explicitely.
487 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
488 ant->tx == ANTENNA_SW_DIVERSITY);
490 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
491 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
492 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
493 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
496 * Configure the TX antenna.
499 case ANTENNA_HW_DIVERSITY:
500 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
501 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
502 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
505 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
506 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
507 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
511 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
512 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
513 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
518 * Configure the RX antenna.
521 case ANTENNA_HW_DIVERSITY:
522 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
525 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
529 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
534 * RT2525E and RT5222 need to flip TX I/Q
536 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
537 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
538 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
539 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
540 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
543 * RT2525E does not need RX I/Q Flip.
545 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
546 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
548 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
549 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
552 rt2500usb_bbp_write(rt2x00dev, 2, r2);
553 rt2500usb_bbp_write(rt2x00dev, 14, r14);
554 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
555 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
558 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
559 struct rt2x00lib_conf *libconf)
563 rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
564 rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
565 rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
567 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®);
568 rt2x00_set_field16(®, TXRX_CSR18_INTERVAL,
569 libconf->conf->beacon_int * 4);
570 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
573 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
574 struct rt2x00lib_conf *libconf,
575 const unsigned int flags)
577 if (flags & CONFIG_UPDATE_PHYMODE)
578 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
579 if (flags & CONFIG_UPDATE_CHANNEL)
580 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
581 libconf->conf->power_level);
582 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
583 rt2500usb_config_txpower(rt2x00dev,
584 libconf->conf->power_level);
585 if (flags & CONFIG_UPDATE_ANTENNA)
586 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
587 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
588 rt2500usb_config_duration(rt2x00dev, libconf);
594 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
595 struct link_qual *qual)
600 * Update FCS error count from register.
602 rt2500usb_register_read(rt2x00dev, STA_CSR0, ®);
603 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
606 * Update False CCA count from register.
608 rt2500usb_register_read(rt2x00dev, STA_CSR3, ®);
609 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
612 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
617 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
618 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
619 rt2500usb_bbp_write(rt2x00dev, 24, value);
621 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
622 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
623 rt2500usb_bbp_write(rt2x00dev, 25, value);
625 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
626 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
627 rt2500usb_bbp_write(rt2x00dev, 61, value);
629 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
630 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
631 rt2500usb_bbp_write(rt2x00dev, 17, value);
633 rt2x00dev->link.vgc_level = value;
636 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
638 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
651 * Read current r17 value, as well as the sensitivity values
652 * for the r17 register.
654 rt2500usb_bbp_read(rt2x00dev, 17, &r17);
655 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
657 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
658 up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
659 low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
662 * If we are not associated, we should go straight to the
663 * dynamic CCA tuning.
665 if (!rt2x00dev->intf_associated)
666 goto dynamic_cca_tune;
669 * Determine the BBP tuning threshold and correctly
670 * set BBP 24, 25 and 61.
672 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
673 bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
675 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
676 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
677 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
679 if ((rssi + bbp_thresh) > 0) {
680 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
681 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
682 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
684 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
685 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
686 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
689 rt2500usb_bbp_write(rt2x00dev, 24, r24);
690 rt2500usb_bbp_write(rt2x00dev, 25, r25);
691 rt2500usb_bbp_write(rt2x00dev, 61, r61);
694 * A too low RSSI will cause too much false CCA which will
695 * then corrupt the R17 tuning. To remidy this the tuning should
696 * be stopped (While making sure the R17 value will not exceed limits)
700 rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
705 * Special big-R17 for short distance
708 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
710 rt2500usb_bbp_write(rt2x00dev, 17, sens);
715 * Special mid-R17 for middle distance
718 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
720 rt2500usb_bbp_write(rt2x00dev, 17, sens);
725 * Leave short or middle distance condition, restore r17
726 * to the dynamic tuning range.
730 up_bound -= (-77 - rssi);
732 if (up_bound < low_bound)
733 up_bound = low_bound;
735 if (r17 > up_bound) {
736 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
737 rt2x00dev->link.vgc_level = up_bound;
744 * R17 is inside the dynamic tuning range,
745 * start tuning the link based on the false cca counter.
747 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
748 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
749 rt2x00dev->link.vgc_level = r17;
750 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
751 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
752 rt2x00dev->link.vgc_level = r17;
757 * Initialization functions.
759 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
763 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
764 USB_MODE_TEST, REGISTER_TIMEOUT);
765 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
766 0x00f0, REGISTER_TIMEOUT);
768 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®);
769 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1);
770 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
772 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
773 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
775 rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®);
776 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1);
777 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1);
778 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
779 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
781 rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®);
782 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
783 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
784 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
785 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
787 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, ®);
788 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13);
789 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1);
790 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12);
791 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1);
792 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
794 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, ®);
795 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10);
796 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1);
797 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11);
798 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1);
799 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
801 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, ®);
802 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7);
803 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1);
804 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6);
805 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1);
806 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
808 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, ®);
809 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5);
810 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1);
811 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0);
812 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0);
813 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
815 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
816 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
818 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
821 rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®);
822 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
823 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
824 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1);
825 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
827 if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
828 rt2500usb_register_read(rt2x00dev, PHY_CSR2, ®);
829 rt2x00_set_field16(®, PHY_CSR2_LNA, 0);
832 rt2x00_set_field16(®, PHY_CSR2_LNA, 1);
833 rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3);
835 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
837 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
838 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
839 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
840 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
842 rt2500usb_register_read(rt2x00dev, MAC_CSR8, ®);
843 rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT,
844 rt2x00dev->rx->data_size);
845 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
847 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®);
848 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
849 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0xff);
850 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
852 rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®);
853 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90);
854 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
856 rt2500usb_register_read(rt2x00dev, PHY_CSR4, ®);
857 rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1);
858 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
860 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®);
861 rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1);
862 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
867 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
872 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
873 rt2500usb_bbp_read(rt2x00dev, 0, &value);
874 if ((value != 0xff) && (value != 0x00))
876 udelay(REGISTER_BUSY_DELAY);
879 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
883 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
890 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
893 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
894 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
895 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
896 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
897 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
898 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
899 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
900 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
901 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
902 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
903 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
904 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
905 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
906 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
907 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
908 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
909 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
910 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
911 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
912 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
913 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
914 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
915 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
916 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
917 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
918 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
919 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
920 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
921 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
922 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
923 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
925 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
926 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
928 if (eeprom != 0xffff && eeprom != 0x0000) {
929 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
930 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
931 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
939 * Device state switch handlers.
941 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
942 enum dev_state state)
946 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®);
947 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX,
948 (state == STATE_RADIO_RX_OFF) ||
949 (state == STATE_RADIO_RX_OFF_LINK));
950 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
953 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
956 * Initialize all registers.
958 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
959 rt2500usb_init_bbp(rt2x00dev)))
965 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
967 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
968 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
971 * Disable synchronisation.
973 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
975 rt2x00usb_disable_radio(rt2x00dev);
978 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
979 enum dev_state state)
988 put_to_sleep = (state != STATE_AWAKE);
991 rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state);
992 rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state);
993 rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
994 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
995 rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1);
996 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
999 * Device is not guaranteed to be in the requested state yet.
1000 * We must wait until the register indicates that the
1001 * device has entered the correct state.
1003 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1004 rt2500usb_register_read(rt2x00dev, MAC_CSR17, ®2);
1005 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1006 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1007 if (bbp_state == state && rf_state == state)
1009 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1016 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1017 enum dev_state state)
1022 case STATE_RADIO_ON:
1023 retval = rt2500usb_enable_radio(rt2x00dev);
1025 case STATE_RADIO_OFF:
1026 rt2500usb_disable_radio(rt2x00dev);
1028 case STATE_RADIO_RX_ON:
1029 case STATE_RADIO_RX_ON_LINK:
1030 case STATE_RADIO_RX_OFF:
1031 case STATE_RADIO_RX_OFF_LINK:
1032 rt2500usb_toggle_rx(rt2x00dev, state);
1034 case STATE_RADIO_IRQ_ON:
1035 case STATE_RADIO_IRQ_OFF:
1036 /* No support, but no error either */
1038 case STATE_DEEP_SLEEP:
1042 retval = rt2500usb_set_state(rt2x00dev, state);
1049 if (unlikely(retval))
1050 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1057 * TX descriptor initialization
1059 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1060 struct sk_buff *skb,
1061 struct txentry_desc *txdesc)
1063 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1064 __le32 *txd = skbdesc->desc;
1068 * Start writing the descriptor words.
1070 rt2x00_desc_read(txd, 1, &word);
1071 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1072 rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1073 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1074 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1075 rt2x00_desc_write(txd, 1, word);
1077 rt2x00_desc_read(txd, 2, &word);
1078 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1079 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1080 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1081 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1082 rt2x00_desc_write(txd, 2, word);
1084 rt2x00_desc_read(txd, 0, &word);
1085 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1086 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1087 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1088 rt2x00_set_field32(&word, TXD_W0_ACK,
1089 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1090 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1091 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1092 rt2x00_set_field32(&word, TXD_W0_OFDM,
1093 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1094 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1095 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1096 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1097 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT,
1098 skb->len - skbdesc->desc_len);
1099 rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1100 rt2x00_desc_write(txd, 0, word);
1103 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1104 struct sk_buff *skb)
1109 * The length _must_ be a multiple of 2,
1110 * but it must _not_ be a multiple of the USB packet size.
1112 length = roundup(skb->len, 2);
1113 length += (2 * !(length % rt2x00dev->usb_maxpacket));
1119 * TX data initialization
1121 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1122 const enum data_queue_qid queue)
1126 if (queue != QID_BEACON) {
1127 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1131 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®);
1132 if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1133 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
1134 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
1135 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1);
1137 * Beacon generation will fail initially.
1138 * To prevent this we need to register the TXRX_CSR19
1139 * register several times.
1141 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1142 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1143 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1144 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1145 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1150 * RX control handlers
1152 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1153 struct rxdone_entry_desc *rxdesc)
1155 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1156 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1158 (__le32 *)(entry->skb->data +
1159 (entry_priv->urb->actual_length -
1160 entry->queue->desc_size));
1165 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1166 * frame data in rt2x00usb.
1168 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1169 rxd = (__le32 *)skbdesc->desc;
1172 * It is now safe to read the descriptor on all architectures.
1174 rt2x00_desc_read(rxd, 0, &word0);
1175 rt2x00_desc_read(rxd, 1, &word1);
1177 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1178 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1179 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1180 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1183 * Obtain the status about this packet.
1184 * When frame was received with an OFDM bitrate,
1185 * the signal is the PLCP value. If it was received with
1186 * a CCK bitrate the signal is the rate in 100kbit/s.
1188 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1189 rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1190 entry->queue->rt2x00dev->rssi_offset;
1191 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1193 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1194 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1195 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1196 rxdesc->dev_flags |= RXDONE_MY_BSS;
1199 * Adjust the skb memory window to the frame boundaries.
1201 skb_trim(entry->skb, rxdesc->size);
1205 * Interrupt functions.
1207 static void rt2500usb_beacondone(struct urb *urb)
1209 struct queue_entry *entry = (struct queue_entry *)urb->context;
1210 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1212 if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1216 * Check if this was the guardian beacon,
1217 * if that was the case we need to send the real beacon now.
1218 * Otherwise we should free the sk_buffer, the device
1219 * should be doing the rest of the work now.
1221 if (bcn_priv->guardian_urb == urb) {
1222 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1223 } else if (bcn_priv->urb == urb) {
1224 dev_kfree_skb(entry->skb);
1230 * Device probe functions.
1232 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1238 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1241 * Start validation of the data that has been read.
1243 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1244 if (!is_valid_ether_addr(mac)) {
1245 DECLARE_MAC_BUF(macbuf);
1247 random_ether_addr(mac);
1248 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1251 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1252 if (word == 0xffff) {
1253 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1254 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1255 ANTENNA_SW_DIVERSITY);
1256 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1257 ANTENNA_SW_DIVERSITY);
1258 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1260 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1261 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1262 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1263 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1264 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1267 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1268 if (word == 0xffff) {
1269 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1270 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1271 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1272 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1273 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1276 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1277 if (word == 0xffff) {
1278 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1279 DEFAULT_RSSI_OFFSET);
1280 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1281 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1284 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1285 if (word == 0xffff) {
1286 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1287 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1288 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1292 * Switch lower vgc bound to current BBP R17 value,
1293 * lower the value a bit for better quality.
1295 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1298 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1299 if (word == 0xffff) {
1300 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1301 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1302 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1303 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1306 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1307 if (word == 0xffff) {
1308 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1309 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1310 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1311 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1313 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1314 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1317 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1318 if (word == 0xffff) {
1319 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1320 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1321 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1322 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1325 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1326 if (word == 0xffff) {
1327 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1328 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1329 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1330 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1333 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1334 if (word == 0xffff) {
1335 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1336 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1337 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1338 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1344 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1351 * Read EEPROM word for configuration.
1353 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1356 * Identify RF chipset.
1358 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1359 rt2500usb_register_read(rt2x00dev, MAC_CSR0, ®);
1360 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1362 if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1363 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1367 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1368 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1369 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1370 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1371 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1372 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1373 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1378 * Identify default antenna configuration.
1380 rt2x00dev->default_ant.tx =
1381 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1382 rt2x00dev->default_ant.rx =
1383 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1386 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1387 * I am not 100% sure about this, but the legacy drivers do not
1388 * indicate antenna swapping in software is required when
1389 * diversity is enabled.
1391 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1392 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1393 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1394 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1397 * Store led mode, for correct led behaviour.
1399 #ifdef CONFIG_RT2500USB_LEDS
1400 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1402 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1403 if (value == LED_MODE_TXRX_ACTIVITY)
1404 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1406 #endif /* CONFIG_RT2500USB_LEDS */
1409 * Check if the BBP tuning should be disabled.
1411 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1412 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1413 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1416 * Read the RSSI <-> dBm offset information.
1418 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1419 rt2x00dev->rssi_offset =
1420 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1426 * RF value list for RF2522
1429 static const struct rf_channel rf_vals_bg_2522[] = {
1430 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1431 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1432 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1433 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1434 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1435 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1436 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1437 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1438 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1439 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1440 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1441 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1442 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1443 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1447 * RF value list for RF2523
1450 static const struct rf_channel rf_vals_bg_2523[] = {
1451 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1452 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1453 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1454 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1455 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1456 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1457 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1458 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1459 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1460 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1461 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1462 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1463 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1464 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1468 * RF value list for RF2524
1471 static const struct rf_channel rf_vals_bg_2524[] = {
1472 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1473 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1474 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1475 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1476 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1477 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1478 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1479 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1480 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1481 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1482 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1483 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1484 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1485 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1489 * RF value list for RF2525
1492 static const struct rf_channel rf_vals_bg_2525[] = {
1493 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1494 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1495 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1496 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1497 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1498 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1499 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1500 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1501 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1502 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1503 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1504 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1505 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1506 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1510 * RF value list for RF2525e
1513 static const struct rf_channel rf_vals_bg_2525e[] = {
1514 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1515 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1516 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1517 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1518 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1519 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1520 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1521 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1522 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1523 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1524 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1525 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1526 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1527 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1531 * RF value list for RF5222
1532 * Supports: 2.4 GHz & 5.2 GHz
1534 static const struct rf_channel rf_vals_5222[] = {
1535 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1536 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1537 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1538 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1539 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1540 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1541 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1542 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1543 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1544 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1545 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1546 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1547 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1548 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1550 /* 802.11 UNI / HyperLan 2 */
1551 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1552 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1553 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1554 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1555 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1556 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1557 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1558 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1560 /* 802.11 HyperLan 2 */
1561 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1562 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1563 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1564 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1565 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1566 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1567 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1568 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1569 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1570 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1573 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1574 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1575 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1576 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1577 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1580 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1582 struct hw_mode_spec *spec = &rt2x00dev->spec;
1587 * Initialize all hw fields.
1589 rt2x00dev->hw->flags =
1590 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1591 IEEE80211_HW_RX_INCLUDES_FCS |
1592 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1593 IEEE80211_HW_SIGNAL_DBM;
1595 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1597 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1598 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1599 rt2x00_eeprom_addr(rt2x00dev,
1600 EEPROM_MAC_ADDR_0));
1603 * Convert tx_power array in eeprom.
1605 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1606 for (i = 0; i < 14; i++)
1607 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1610 * Initialize hw_mode information.
1612 spec->supported_bands = SUPPORT_BAND_2GHZ;
1613 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1614 spec->tx_power_a = NULL;
1615 spec->tx_power_bg = txpower;
1616 spec->tx_power_default = DEFAULT_TXPOWER;
1618 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1619 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1620 spec->channels = rf_vals_bg_2522;
1621 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1622 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1623 spec->channels = rf_vals_bg_2523;
1624 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1625 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1626 spec->channels = rf_vals_bg_2524;
1627 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1628 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1629 spec->channels = rf_vals_bg_2525;
1630 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1631 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1632 spec->channels = rf_vals_bg_2525e;
1633 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1634 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1635 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1636 spec->channels = rf_vals_5222;
1640 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1645 * Allocate eeprom data.
1647 retval = rt2500usb_validate_eeprom(rt2x00dev);
1651 retval = rt2500usb_init_eeprom(rt2x00dev);
1656 * Initialize hw specifications.
1658 rt2500usb_probe_hw_mode(rt2x00dev);
1661 * This device requires the atim queue
1663 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1664 __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1665 __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1668 * Set the rssi offset.
1670 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1676 * IEEE80211 stack callback functions.
1678 static int rt2500usb_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
1680 struct rt2x00_dev *rt2x00dev = hw->priv;
1681 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1682 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1683 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
1684 struct queue_entry_priv_usb_bcn *bcn_priv;
1685 struct skb_frame_desc *skbdesc;
1686 struct txentry_desc txdesc;
1687 int pipe = usb_sndbulkpipe(usb_dev, 1);
1691 if (unlikely(!intf->beacon))
1694 bcn_priv = intf->beacon->priv_data;
1697 * Copy all TX descriptor information into txdesc,
1698 * after that we are free to use the skb->cb array
1699 * for our information.
1701 intf->beacon->skb = skb;
1702 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
1705 * Add the descriptor in front of the skb.
1707 skb_push(skb, intf->beacon->queue->desc_size);
1708 memset(skb->data, 0, intf->beacon->queue->desc_size);
1711 * Fill in skb descriptor
1713 skbdesc = get_skb_frame_desc(skb);
1714 memset(skbdesc, 0, sizeof(*skbdesc));
1715 skbdesc->desc = skb->data;
1716 skbdesc->desc_len = intf->beacon->queue->desc_size;
1717 skbdesc->entry = intf->beacon;
1720 * Disable beaconing while we are reloading the beacon data,
1721 * otherwise we might be sending out invalid data.
1723 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®);
1724 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0);
1725 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0);
1726 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
1727 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1729 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
1732 * USB devices cannot blindly pass the skb->len as the
1733 * length of the data to usb_fill_bulk_urb. Pass the skb
1734 * to the driver to determine what the length should be.
1736 length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1738 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1739 skb->data, length, rt2500usb_beacondone,
1743 * Second we need to create the guardian byte.
1744 * We only need a single byte, so lets recycle
1745 * the 'flags' field we are not using for beacons.
1747 bcn_priv->guardian_data = 0;
1748 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1749 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1753 * Send out the guardian byte.
1755 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1758 * Enable beacon generation.
1760 rt2500usb_kick_tx_queue(rt2x00dev, QID_BEACON);
1765 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1767 .start = rt2x00mac_start,
1768 .stop = rt2x00mac_stop,
1769 .add_interface = rt2x00mac_add_interface,
1770 .remove_interface = rt2x00mac_remove_interface,
1771 .config = rt2x00mac_config,
1772 .config_interface = rt2x00mac_config_interface,
1773 .configure_filter = rt2x00mac_configure_filter,
1774 .get_stats = rt2x00mac_get_stats,
1775 .bss_info_changed = rt2x00mac_bss_info_changed,
1776 .conf_tx = rt2x00mac_conf_tx,
1777 .get_tx_stats = rt2x00mac_get_tx_stats,
1778 .beacon_update = rt2500usb_beacon_update,
1781 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1782 .probe_hw = rt2500usb_probe_hw,
1783 .initialize = rt2x00usb_initialize,
1784 .uninitialize = rt2x00usb_uninitialize,
1785 .init_rxentry = rt2x00usb_init_rxentry,
1786 .init_txentry = rt2x00usb_init_txentry,
1787 .set_device_state = rt2500usb_set_device_state,
1788 .link_stats = rt2500usb_link_stats,
1789 .reset_tuner = rt2500usb_reset_tuner,
1790 .link_tuner = rt2500usb_link_tuner,
1791 .write_tx_desc = rt2500usb_write_tx_desc,
1792 .write_tx_data = rt2x00usb_write_tx_data,
1793 .get_tx_data_len = rt2500usb_get_tx_data_len,
1794 .kick_tx_queue = rt2500usb_kick_tx_queue,
1795 .fill_rxdone = rt2500usb_fill_rxdone,
1796 .config_filter = rt2500usb_config_filter,
1797 .config_intf = rt2500usb_config_intf,
1798 .config_erp = rt2500usb_config_erp,
1799 .config = rt2500usb_config,
1802 static const struct data_queue_desc rt2500usb_queue_rx = {
1803 .entry_num = RX_ENTRIES,
1804 .data_size = DATA_FRAME_SIZE,
1805 .desc_size = RXD_DESC_SIZE,
1806 .priv_size = sizeof(struct queue_entry_priv_usb),
1809 static const struct data_queue_desc rt2500usb_queue_tx = {
1810 .entry_num = TX_ENTRIES,
1811 .data_size = DATA_FRAME_SIZE,
1812 .desc_size = TXD_DESC_SIZE,
1813 .priv_size = sizeof(struct queue_entry_priv_usb),
1816 static const struct data_queue_desc rt2500usb_queue_bcn = {
1817 .entry_num = BEACON_ENTRIES,
1818 .data_size = MGMT_FRAME_SIZE,
1819 .desc_size = TXD_DESC_SIZE,
1820 .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1823 static const struct data_queue_desc rt2500usb_queue_atim = {
1824 .entry_num = ATIM_ENTRIES,
1825 .data_size = DATA_FRAME_SIZE,
1826 .desc_size = TXD_DESC_SIZE,
1827 .priv_size = sizeof(struct queue_entry_priv_usb),
1830 static const struct rt2x00_ops rt2500usb_ops = {
1831 .name = KBUILD_MODNAME,
1834 .eeprom_size = EEPROM_SIZE,
1836 .tx_queues = NUM_TX_QUEUES,
1837 .rx = &rt2500usb_queue_rx,
1838 .tx = &rt2500usb_queue_tx,
1839 .bcn = &rt2500usb_queue_bcn,
1840 .atim = &rt2500usb_queue_atim,
1841 .lib = &rt2500usb_rt2x00_ops,
1842 .hw = &rt2500usb_mac80211_ops,
1843 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1844 .debugfs = &rt2500usb_rt2x00debug,
1845 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1849 * rt2500usb module information.
1851 static struct usb_device_id rt2500usb_device_table[] = {
1853 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1854 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1856 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1857 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1858 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1860 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1861 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1862 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1864 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1866 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1868 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1869 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1871 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1873 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1874 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1875 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1876 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1877 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1879 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1880 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1881 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1883 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1884 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1885 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1886 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1888 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1890 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1892 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1894 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1896 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1900 MODULE_AUTHOR(DRV_PROJECT);
1901 MODULE_VERSION(DRV_VERSION);
1902 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1903 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1904 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1905 MODULE_LICENSE("GPL");
1907 static struct usb_driver rt2500usb_driver = {
1908 .name = KBUILD_MODNAME,
1909 .id_table = rt2500usb_device_table,
1910 .probe = rt2x00usb_probe,
1911 .disconnect = rt2x00usb_disconnect,
1912 .suspend = rt2x00usb_suspend,
1913 .resume = rt2x00usb_resume,
1916 static int __init rt2500usb_init(void)
1918 return usb_register(&rt2500usb_driver);
1921 static void __exit rt2500usb_exit(void)
1923 usb_deregister(&rt2500usb_driver);
1926 module_init(rt2500usb_init);
1927 module_exit(rt2500usb_exit);