4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 bh->b_end_io = handler;
54 bh->b_private = private;
57 static int sync_buffer(void *word)
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
66 blk_run_address_space(bd->bd_inode->i_mapping);
71 void fastcall __lock_buffer(struct buffer_head *bh)
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
76 EXPORT_SYMBOL(__lock_buffer);
78 void fastcall unlock_buffer(struct buffer_head *bh)
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 set_buffer_uptodate(bh);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 char b[BDEVNAME_SIZE];
133 set_buffer_uptodate(bh);
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 printk(KERN_WARNING "lost page write due to "
139 bdevname(bh->b_bdev, b));
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device *bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 EXPORT_SYMBOL(sync_blockdev);
162 static void __fsync_super(struct super_block *sb)
164 sync_inodes_sb(sb, 0);
167 if (sb->s_dirt && sb->s_op->write_super)
168 sb->s_op->write_super(sb);
170 if (sb->s_op->sync_fs)
171 sb->s_op->sync_fs(sb, 1);
172 sync_blockdev(sb->s_bdev);
173 sync_inodes_sb(sb, 1);
177 * Write out and wait upon all dirty data associated with this
178 * superblock. Filesystem data as well as the underlying block
179 * device. Takes the superblock lock.
181 int fsync_super(struct super_block *sb)
184 return sync_blockdev(sb->s_bdev);
188 * Write out and wait upon all dirty data associated with this
189 * device. Filesystem data as well as the underlying block
190 * device. Takes the superblock lock.
192 int fsync_bdev(struct block_device *bdev)
194 struct super_block *sb = get_super(bdev);
196 int res = fsync_super(sb);
200 return sync_blockdev(bdev);
204 * freeze_bdev -- lock a filesystem and force it into a consistent state
205 * @bdev: blockdevice to lock
207 * This takes the block device bd_mount_mutex to make sure no new mounts
208 * happen on bdev until thaw_bdev() is called.
209 * If a superblock is found on this device, we take the s_umount semaphore
210 * on it to make sure nobody unmounts until the snapshot creation is done.
212 struct super_block *freeze_bdev(struct block_device *bdev)
214 struct super_block *sb;
216 mutex_lock(&bdev->bd_mount_mutex);
217 sb = get_super(bdev);
218 if (sb && !(sb->s_flags & MS_RDONLY)) {
219 sb->s_frozen = SB_FREEZE_WRITE;
224 sb->s_frozen = SB_FREEZE_TRANS;
227 sync_blockdev(sb->s_bdev);
229 if (sb->s_op->write_super_lockfs)
230 sb->s_op->write_super_lockfs(sb);
234 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 EXPORT_SYMBOL(freeze_bdev);
239 * thaw_bdev -- unlock filesystem
240 * @bdev: blockdevice to unlock
241 * @sb: associated superblock
243 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
248 BUG_ON(sb->s_bdev != bdev);
250 if (sb->s_op->unlockfs)
251 sb->s_op->unlockfs(sb);
252 sb->s_frozen = SB_UNFROZEN;
254 wake_up(&sb->s_wait_unfrozen);
258 mutex_unlock(&bdev->bd_mount_mutex);
260 EXPORT_SYMBOL(thaw_bdev);
263 * sync everything. Start out by waking pdflush, because that writes back
264 * all queues in parallel.
266 static void do_sync(unsigned long wait)
269 sync_inodes(0); /* All mappings, inodes and their blockdevs */
271 sync_supers(); /* Write the superblocks */
272 sync_filesystems(0); /* Start syncing the filesystems */
273 sync_filesystems(wait); /* Waitingly sync the filesystems */
274 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
276 printk("Emergency Sync complete\n");
277 if (unlikely(laptop_mode))
278 laptop_sync_completion();
281 asmlinkage long sys_sync(void)
287 void emergency_sync(void)
289 pdflush_operation(do_sync, 0);
293 * Generic function to fsync a file.
295 * filp may be NULL if called via the msync of a vma.
298 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 struct inode * inode = dentry->d_inode;
301 struct super_block * sb;
304 /* sync the inode to buffers */
305 ret = write_inode_now(inode, 0);
307 /* sync the superblock to buffers */
310 if (sb->s_op->write_super)
311 sb->s_op->write_super(sb);
314 /* .. finally sync the buffers to disk */
315 err = sync_blockdev(sb->s_bdev);
321 long do_fsync(struct file *file, int datasync)
325 struct address_space *mapping = file->f_mapping;
327 if (!file->f_op || !file->f_op->fsync) {
328 /* Why? We can still call filemap_fdatawrite */
333 ret = filemap_fdatawrite(mapping);
336 * We need to protect against concurrent writers, which could cause
337 * livelocks in fsync_buffers_list().
339 mutex_lock(&mapping->host->i_mutex);
340 err = file->f_op->fsync(file, file->f_dentry, datasync);
343 mutex_unlock(&mapping->host->i_mutex);
344 err = filemap_fdatawait(mapping);
351 static long __do_fsync(unsigned int fd, int datasync)
358 ret = do_fsync(file, datasync);
364 asmlinkage long sys_fsync(unsigned int fd)
366 return __do_fsync(fd, 0);
369 asmlinkage long sys_fdatasync(unsigned int fd)
371 return __do_fsync(fd, 1);
375 * Various filesystems appear to want __find_get_block to be non-blocking.
376 * But it's the page lock which protects the buffers. To get around this,
377 * we get exclusion from try_to_free_buffers with the blockdev mapping's
380 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
381 * may be quite high. This code could TryLock the page, and if that
382 * succeeds, there is no need to take private_lock. (But if
383 * private_lock is contended then so is mapping->tree_lock).
385 static struct buffer_head *
386 __find_get_block_slow(struct block_device *bdev, sector_t block)
388 struct inode *bd_inode = bdev->bd_inode;
389 struct address_space *bd_mapping = bd_inode->i_mapping;
390 struct buffer_head *ret = NULL;
392 struct buffer_head *bh;
393 struct buffer_head *head;
397 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
398 page = find_get_page(bd_mapping, index);
402 spin_lock(&bd_mapping->private_lock);
403 if (!page_has_buffers(page))
405 head = page_buffers(page);
408 if (bh->b_blocknr == block) {
413 if (!buffer_mapped(bh))
415 bh = bh->b_this_page;
416 } while (bh != head);
418 /* we might be here because some of the buffers on this page are
419 * not mapped. This is due to various races between
420 * file io on the block device and getblk. It gets dealt with
421 * elsewhere, don't buffer_error if we had some unmapped buffers
424 printk("__find_get_block_slow() failed. "
425 "block=%llu, b_blocknr=%llu\n",
426 (unsigned long long)block,
427 (unsigned long long)bh->b_blocknr);
428 printk("b_state=0x%08lx, b_size=%zu\n",
429 bh->b_state, bh->b_size);
430 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
433 spin_unlock(&bd_mapping->private_lock);
434 page_cache_release(page);
439 /* If invalidate_buffers() will trash dirty buffers, it means some kind
440 of fs corruption is going on. Trashing dirty data always imply losing
441 information that was supposed to be just stored on the physical layer
444 Thus invalidate_buffers in general usage is not allwowed to trash
445 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
446 be preserved. These buffers are simply skipped.
448 We also skip buffers which are still in use. For example this can
449 happen if a userspace program is reading the block device.
451 NOTE: In the case where the user removed a removable-media-disk even if
452 there's still dirty data not synced on disk (due a bug in the device driver
453 or due an error of the user), by not destroying the dirty buffers we could
454 generate corruption also on the next media inserted, thus a parameter is
455 necessary to handle this case in the most safe way possible (trying
456 to not corrupt also the new disk inserted with the data belonging to
457 the old now corrupted disk). Also for the ramdisk the natural thing
458 to do in order to release the ramdisk memory is to destroy dirty buffers.
460 These are two special cases. Normal usage imply the device driver
461 to issue a sync on the device (without waiting I/O completion) and
462 then an invalidate_buffers call that doesn't trash dirty buffers.
464 For handling cache coherency with the blkdev pagecache the 'update' case
465 is been introduced. It is needed to re-read from disk any pinned
466 buffer. NOTE: re-reading from disk is destructive so we can do it only
467 when we assume nobody is changing the buffercache under our I/O and when
468 we think the disk contains more recent information than the buffercache.
469 The update == 1 pass marks the buffers we need to update, the update == 2
470 pass does the actual I/O. */
471 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
473 struct address_space *mapping = bdev->bd_inode->i_mapping;
475 if (mapping->nrpages == 0)
478 invalidate_bh_lrus();
480 * FIXME: what about destroy_dirty_buffers?
481 * We really want to use invalidate_inode_pages2() for
482 * that, but not until that's cleaned up.
484 invalidate_inode_pages(mapping);
488 * Kick pdflush then try to free up some ZONE_NORMAL memory.
490 static void free_more_memory(void)
495 wakeup_pdflush(1024);
498 for_each_online_pgdat(pgdat) {
499 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
501 try_to_free_pages(zones, GFP_NOFS);
506 * I/O completion handler for block_read_full_page() - pages
507 * which come unlocked at the end of I/O.
509 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
512 struct buffer_head *first;
513 struct buffer_head *tmp;
515 int page_uptodate = 1;
517 BUG_ON(!buffer_async_read(bh));
521 set_buffer_uptodate(bh);
523 clear_buffer_uptodate(bh);
524 if (printk_ratelimit())
530 * Be _very_ careful from here on. Bad things can happen if
531 * two buffer heads end IO at almost the same time and both
532 * decide that the page is now completely done.
534 first = page_buffers(page);
535 local_irq_save(flags);
536 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537 clear_buffer_async_read(bh);
541 if (!buffer_uptodate(tmp))
543 if (buffer_async_read(tmp)) {
544 BUG_ON(!buffer_locked(tmp));
547 tmp = tmp->b_this_page;
549 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
550 local_irq_restore(flags);
553 * If none of the buffers had errors and they are all
554 * uptodate then we can set the page uptodate.
556 if (page_uptodate && !PageError(page))
557 SetPageUptodate(page);
562 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
563 local_irq_restore(flags);
568 * Completion handler for block_write_full_page() - pages which are unlocked
569 * during I/O, and which have PageWriteback cleared upon I/O completion.
571 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
573 char b[BDEVNAME_SIZE];
575 struct buffer_head *first;
576 struct buffer_head *tmp;
579 BUG_ON(!buffer_async_write(bh));
583 set_buffer_uptodate(bh);
585 if (printk_ratelimit()) {
587 printk(KERN_WARNING "lost page write due to "
589 bdevname(bh->b_bdev, b));
591 set_bit(AS_EIO, &page->mapping->flags);
592 clear_buffer_uptodate(bh);
596 first = page_buffers(page);
597 local_irq_save(flags);
598 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
600 clear_buffer_async_write(bh);
602 tmp = bh->b_this_page;
604 if (buffer_async_write(tmp)) {
605 BUG_ON(!buffer_locked(tmp));
608 tmp = tmp->b_this_page;
610 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
611 local_irq_restore(flags);
612 end_page_writeback(page);
616 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617 local_irq_restore(flags);
622 * If a page's buffers are under async readin (end_buffer_async_read
623 * completion) then there is a possibility that another thread of
624 * control could lock one of the buffers after it has completed
625 * but while some of the other buffers have not completed. This
626 * locked buffer would confuse end_buffer_async_read() into not unlocking
627 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
628 * that this buffer is not under async I/O.
630 * The page comes unlocked when it has no locked buffer_async buffers
633 * PageLocked prevents anyone starting new async I/O reads any of
636 * PageWriteback is used to prevent simultaneous writeout of the same
639 * PageLocked prevents anyone from starting writeback of a page which is
640 * under read I/O (PageWriteback is only ever set against a locked page).
642 static void mark_buffer_async_read(struct buffer_head *bh)
644 bh->b_end_io = end_buffer_async_read;
645 set_buffer_async_read(bh);
648 void mark_buffer_async_write(struct buffer_head *bh)
650 bh->b_end_io = end_buffer_async_write;
651 set_buffer_async_write(bh);
653 EXPORT_SYMBOL(mark_buffer_async_write);
657 * fs/buffer.c contains helper functions for buffer-backed address space's
658 * fsync functions. A common requirement for buffer-based filesystems is
659 * that certain data from the backing blockdev needs to be written out for
660 * a successful fsync(). For example, ext2 indirect blocks need to be
661 * written back and waited upon before fsync() returns.
663 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
664 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
665 * management of a list of dependent buffers at ->i_mapping->private_list.
667 * Locking is a little subtle: try_to_free_buffers() will remove buffers
668 * from their controlling inode's queue when they are being freed. But
669 * try_to_free_buffers() will be operating against the *blockdev* mapping
670 * at the time, not against the S_ISREG file which depends on those buffers.
671 * So the locking for private_list is via the private_lock in the address_space
672 * which backs the buffers. Which is different from the address_space
673 * against which the buffers are listed. So for a particular address_space,
674 * mapping->private_lock does *not* protect mapping->private_list! In fact,
675 * mapping->private_list will always be protected by the backing blockdev's
678 * Which introduces a requirement: all buffers on an address_space's
679 * ->private_list must be from the same address_space: the blockdev's.
681 * address_spaces which do not place buffers at ->private_list via these
682 * utility functions are free to use private_lock and private_list for
683 * whatever they want. The only requirement is that list_empty(private_list)
684 * be true at clear_inode() time.
686 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
687 * filesystems should do that. invalidate_inode_buffers() should just go
688 * BUG_ON(!list_empty).
690 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
691 * take an address_space, not an inode. And it should be called
692 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
695 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
696 * list if it is already on a list. Because if the buffer is on a list,
697 * it *must* already be on the right one. If not, the filesystem is being
698 * silly. This will save a ton of locking. But first we have to ensure
699 * that buffers are taken *off* the old inode's list when they are freed
700 * (presumably in truncate). That requires careful auditing of all
701 * filesystems (do it inside bforget()). It could also be done by bringing
706 * The buffer's backing address_space's private_lock must be held
708 static inline void __remove_assoc_queue(struct buffer_head *bh)
710 list_del_init(&bh->b_assoc_buffers);
713 int inode_has_buffers(struct inode *inode)
715 return !list_empty(&inode->i_data.private_list);
719 * osync is designed to support O_SYNC io. It waits synchronously for
720 * all already-submitted IO to complete, but does not queue any new
721 * writes to the disk.
723 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
724 * you dirty the buffers, and then use osync_inode_buffers to wait for
725 * completion. Any other dirty buffers which are not yet queued for
726 * write will not be flushed to disk by the osync.
728 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
730 struct buffer_head *bh;
736 list_for_each_prev(p, list) {
738 if (buffer_locked(bh)) {
742 if (!buffer_uptodate(bh))
754 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
756 * @mapping: the mapping which wants those buffers written
758 * Starts I/O against the buffers at mapping->private_list, and waits upon
761 * Basically, this is a convenience function for fsync().
762 * @mapping is a file or directory which needs those buffers to be written for
763 * a successful fsync().
765 int sync_mapping_buffers(struct address_space *mapping)
767 struct address_space *buffer_mapping = mapping->assoc_mapping;
769 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
772 return fsync_buffers_list(&buffer_mapping->private_lock,
773 &mapping->private_list);
775 EXPORT_SYMBOL(sync_mapping_buffers);
778 * Called when we've recently written block `bblock', and it is known that
779 * `bblock' was for a buffer_boundary() buffer. This means that the block at
780 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
781 * dirty, schedule it for IO. So that indirects merge nicely with their data.
783 void write_boundary_block(struct block_device *bdev,
784 sector_t bblock, unsigned blocksize)
786 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
788 if (buffer_dirty(bh))
789 ll_rw_block(WRITE, 1, &bh);
794 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
796 struct address_space *mapping = inode->i_mapping;
797 struct address_space *buffer_mapping = bh->b_page->mapping;
799 mark_buffer_dirty(bh);
800 if (!mapping->assoc_mapping) {
801 mapping->assoc_mapping = buffer_mapping;
803 BUG_ON(mapping->assoc_mapping != buffer_mapping);
805 if (list_empty(&bh->b_assoc_buffers)) {
806 spin_lock(&buffer_mapping->private_lock);
807 list_move_tail(&bh->b_assoc_buffers,
808 &mapping->private_list);
809 spin_unlock(&buffer_mapping->private_lock);
812 EXPORT_SYMBOL(mark_buffer_dirty_inode);
815 * Add a page to the dirty page list.
817 * It is a sad fact of life that this function is called from several places
818 * deeply under spinlocking. It may not sleep.
820 * If the page has buffers, the uptodate buffers are set dirty, to preserve
821 * dirty-state coherency between the page and the buffers. It the page does
822 * not have buffers then when they are later attached they will all be set
825 * The buffers are dirtied before the page is dirtied. There's a small race
826 * window in which a writepage caller may see the page cleanness but not the
827 * buffer dirtiness. That's fine. If this code were to set the page dirty
828 * before the buffers, a concurrent writepage caller could clear the page dirty
829 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
830 * page on the dirty page list.
832 * We use private_lock to lock against try_to_free_buffers while using the
833 * page's buffer list. Also use this to protect against clean buffers being
834 * added to the page after it was set dirty.
836 * FIXME: may need to call ->reservepage here as well. That's rather up to the
837 * address_space though.
839 int __set_page_dirty_buffers(struct page *page)
841 struct address_space * const mapping = page->mapping;
843 spin_lock(&mapping->private_lock);
844 if (page_has_buffers(page)) {
845 struct buffer_head *head = page_buffers(page);
846 struct buffer_head *bh = head;
849 set_buffer_dirty(bh);
850 bh = bh->b_this_page;
851 } while (bh != head);
853 spin_unlock(&mapping->private_lock);
855 if (!TestSetPageDirty(page)) {
856 write_lock_irq(&mapping->tree_lock);
857 if (page->mapping) { /* Race with truncate? */
858 if (mapping_cap_account_dirty(mapping))
859 __inc_zone_page_state(page, NR_FILE_DIRTY);
860 radix_tree_tag_set(&mapping->page_tree,
862 PAGECACHE_TAG_DIRTY);
864 write_unlock_irq(&mapping->tree_lock);
865 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
870 EXPORT_SYMBOL(__set_page_dirty_buffers);
873 * Write out and wait upon a list of buffers.
875 * We have conflicting pressures: we want to make sure that all
876 * initially dirty buffers get waited on, but that any subsequently
877 * dirtied buffers don't. After all, we don't want fsync to last
878 * forever if somebody is actively writing to the file.
880 * Do this in two main stages: first we copy dirty buffers to a
881 * temporary inode list, queueing the writes as we go. Then we clean
882 * up, waiting for those writes to complete.
884 * During this second stage, any subsequent updates to the file may end
885 * up refiling the buffer on the original inode's dirty list again, so
886 * there is a chance we will end up with a buffer queued for write but
887 * not yet completed on that list. So, as a final cleanup we go through
888 * the osync code to catch these locked, dirty buffers without requeuing
889 * any newly dirty buffers for write.
891 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
893 struct buffer_head *bh;
894 struct list_head tmp;
897 INIT_LIST_HEAD(&tmp);
900 while (!list_empty(list)) {
901 bh = BH_ENTRY(list->next);
902 list_del_init(&bh->b_assoc_buffers);
903 if (buffer_dirty(bh) || buffer_locked(bh)) {
904 list_add(&bh->b_assoc_buffers, &tmp);
905 if (buffer_dirty(bh)) {
909 * Ensure any pending I/O completes so that
910 * ll_rw_block() actually writes the current
911 * contents - it is a noop if I/O is still in
912 * flight on potentially older contents.
914 ll_rw_block(SWRITE, 1, &bh);
921 while (!list_empty(&tmp)) {
922 bh = BH_ENTRY(tmp.prev);
923 __remove_assoc_queue(bh);
927 if (!buffer_uptodate(bh))
934 err2 = osync_buffers_list(lock, list);
942 * Invalidate any and all dirty buffers on a given inode. We are
943 * probably unmounting the fs, but that doesn't mean we have already
944 * done a sync(). Just drop the buffers from the inode list.
946 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
947 * assumes that all the buffers are against the blockdev. Not true
950 void invalidate_inode_buffers(struct inode *inode)
952 if (inode_has_buffers(inode)) {
953 struct address_space *mapping = &inode->i_data;
954 struct list_head *list = &mapping->private_list;
955 struct address_space *buffer_mapping = mapping->assoc_mapping;
957 spin_lock(&buffer_mapping->private_lock);
958 while (!list_empty(list))
959 __remove_assoc_queue(BH_ENTRY(list->next));
960 spin_unlock(&buffer_mapping->private_lock);
965 * Remove any clean buffers from the inode's buffer list. This is called
966 * when we're trying to free the inode itself. Those buffers can pin it.
968 * Returns true if all buffers were removed.
970 int remove_inode_buffers(struct inode *inode)
974 if (inode_has_buffers(inode)) {
975 struct address_space *mapping = &inode->i_data;
976 struct list_head *list = &mapping->private_list;
977 struct address_space *buffer_mapping = mapping->assoc_mapping;
979 spin_lock(&buffer_mapping->private_lock);
980 while (!list_empty(list)) {
981 struct buffer_head *bh = BH_ENTRY(list->next);
982 if (buffer_dirty(bh)) {
986 __remove_assoc_queue(bh);
988 spin_unlock(&buffer_mapping->private_lock);
994 * Create the appropriate buffers when given a page for data area and
995 * the size of each buffer.. Use the bh->b_this_page linked list to
996 * follow the buffers created. Return NULL if unable to create more
999 * The retry flag is used to differentiate async IO (paging, swapping)
1000 * which may not fail from ordinary buffer allocations.
1002 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1005 struct buffer_head *bh, *head;
1011 while ((offset -= size) >= 0) {
1012 bh = alloc_buffer_head(GFP_NOFS);
1017 bh->b_this_page = head;
1022 atomic_set(&bh->b_count, 0);
1023 bh->b_private = NULL;
1026 /* Link the buffer to its page */
1027 set_bh_page(bh, page, offset);
1029 init_buffer(bh, NULL, NULL);
1033 * In case anything failed, we just free everything we got.
1039 head = head->b_this_page;
1040 free_buffer_head(bh);
1045 * Return failure for non-async IO requests. Async IO requests
1046 * are not allowed to fail, so we have to wait until buffer heads
1047 * become available. But we don't want tasks sleeping with
1048 * partially complete buffers, so all were released above.
1053 /* We're _really_ low on memory. Now we just
1054 * wait for old buffer heads to become free due to
1055 * finishing IO. Since this is an async request and
1056 * the reserve list is empty, we're sure there are
1057 * async buffer heads in use.
1062 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1065 link_dev_buffers(struct page *page, struct buffer_head *head)
1067 struct buffer_head *bh, *tail;
1072 bh = bh->b_this_page;
1074 tail->b_this_page = head;
1075 attach_page_buffers(page, head);
1079 * Initialise the state of a blockdev page's buffers.
1082 init_page_buffers(struct page *page, struct block_device *bdev,
1083 sector_t block, int size)
1085 struct buffer_head *head = page_buffers(page);
1086 struct buffer_head *bh = head;
1087 int uptodate = PageUptodate(page);
1090 if (!buffer_mapped(bh)) {
1091 init_buffer(bh, NULL, NULL);
1093 bh->b_blocknr = block;
1095 set_buffer_uptodate(bh);
1096 set_buffer_mapped(bh);
1099 bh = bh->b_this_page;
1100 } while (bh != head);
1104 * Create the page-cache page that contains the requested block.
1106 * This is user purely for blockdev mappings.
1108 static struct page *
1109 grow_dev_page(struct block_device *bdev, sector_t block,
1110 pgoff_t index, int size)
1112 struct inode *inode = bdev->bd_inode;
1114 struct buffer_head *bh;
1116 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1120 BUG_ON(!PageLocked(page));
1122 if (page_has_buffers(page)) {
1123 bh = page_buffers(page);
1124 if (bh->b_size == size) {
1125 init_page_buffers(page, bdev, block, size);
1128 if (!try_to_free_buffers(page))
1133 * Allocate some buffers for this page
1135 bh = alloc_page_buffers(page, size, 0);
1140 * Link the page to the buffers and initialise them. Take the
1141 * lock to be atomic wrt __find_get_block(), which does not
1142 * run under the page lock.
1144 spin_lock(&inode->i_mapping->private_lock);
1145 link_dev_buffers(page, bh);
1146 init_page_buffers(page, bdev, block, size);
1147 spin_unlock(&inode->i_mapping->private_lock);
1153 page_cache_release(page);
1158 * Create buffers for the specified block device block's page. If
1159 * that page was dirty, the buffers are set dirty also.
1161 * Except that's a bug. Attaching dirty buffers to a dirty
1162 * blockdev's page can result in filesystem corruption, because
1163 * some of those buffers may be aliases of filesystem data.
1164 * grow_dev_page() will go BUG() if this happens.
1167 grow_buffers(struct block_device *bdev, sector_t block, int size)
1176 } while ((size << sizebits) < PAGE_SIZE);
1178 index = block >> sizebits;
1179 block = index << sizebits;
1181 /* Create a page with the proper size buffers.. */
1182 page = grow_dev_page(bdev, block, index, size);
1186 page_cache_release(page);
1190 static struct buffer_head *
1191 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1193 /* Size must be multiple of hard sectorsize */
1194 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1195 (size < 512 || size > PAGE_SIZE))) {
1196 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1198 printk(KERN_ERR "hardsect size: %d\n",
1199 bdev_hardsect_size(bdev));
1206 struct buffer_head * bh;
1208 bh = __find_get_block(bdev, block, size);
1212 if (!grow_buffers(bdev, block, size))
1218 * The relationship between dirty buffers and dirty pages:
1220 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1221 * the page is tagged dirty in its radix tree.
1223 * At all times, the dirtiness of the buffers represents the dirtiness of
1224 * subsections of the page. If the page has buffers, the page dirty bit is
1225 * merely a hint about the true dirty state.
1227 * When a page is set dirty in its entirety, all its buffers are marked dirty
1228 * (if the page has buffers).
1230 * When a buffer is marked dirty, its page is dirtied, but the page's other
1233 * Also. When blockdev buffers are explicitly read with bread(), they
1234 * individually become uptodate. But their backing page remains not
1235 * uptodate - even if all of its buffers are uptodate. A subsequent
1236 * block_read_full_page() against that page will discover all the uptodate
1237 * buffers, will set the page uptodate and will perform no I/O.
1241 * mark_buffer_dirty - mark a buffer_head as needing writeout
1242 * @bh: the buffer_head to mark dirty
1244 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1245 * backing page dirty, then tag the page as dirty in its address_space's radix
1246 * tree and then attach the address_space's inode to its superblock's dirty
1249 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1250 * mapping->tree_lock and the global inode_lock.
1252 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1254 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1255 __set_page_dirty_nobuffers(bh->b_page);
1259 * Decrement a buffer_head's reference count. If all buffers against a page
1260 * have zero reference count, are clean and unlocked, and if the page is clean
1261 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1262 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1263 * a page but it ends up not being freed, and buffers may later be reattached).
1265 void __brelse(struct buffer_head * buf)
1267 if (atomic_read(&buf->b_count)) {
1271 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1276 * bforget() is like brelse(), except it discards any
1277 * potentially dirty data.
1279 void __bforget(struct buffer_head *bh)
1281 clear_buffer_dirty(bh);
1282 if (!list_empty(&bh->b_assoc_buffers)) {
1283 struct address_space *buffer_mapping = bh->b_page->mapping;
1285 spin_lock(&buffer_mapping->private_lock);
1286 list_del_init(&bh->b_assoc_buffers);
1287 spin_unlock(&buffer_mapping->private_lock);
1292 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1295 if (buffer_uptodate(bh)) {
1300 bh->b_end_io = end_buffer_read_sync;
1301 submit_bh(READ, bh);
1303 if (buffer_uptodate(bh))
1311 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1312 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1313 * refcount elevated by one when they're in an LRU. A buffer can only appear
1314 * once in a particular CPU's LRU. A single buffer can be present in multiple
1315 * CPU's LRUs at the same time.
1317 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1318 * sb_find_get_block().
1320 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1321 * a local interrupt disable for that.
1324 #define BH_LRU_SIZE 8
1327 struct buffer_head *bhs[BH_LRU_SIZE];
1330 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1333 #define bh_lru_lock() local_irq_disable()
1334 #define bh_lru_unlock() local_irq_enable()
1336 #define bh_lru_lock() preempt_disable()
1337 #define bh_lru_unlock() preempt_enable()
1340 static inline void check_irqs_on(void)
1342 #ifdef irqs_disabled
1343 BUG_ON(irqs_disabled());
1348 * The LRU management algorithm is dopey-but-simple. Sorry.
1350 static void bh_lru_install(struct buffer_head *bh)
1352 struct buffer_head *evictee = NULL;
1357 lru = &__get_cpu_var(bh_lrus);
1358 if (lru->bhs[0] != bh) {
1359 struct buffer_head *bhs[BH_LRU_SIZE];
1365 for (in = 0; in < BH_LRU_SIZE; in++) {
1366 struct buffer_head *bh2 = lru->bhs[in];
1371 if (out >= BH_LRU_SIZE) {
1372 BUG_ON(evictee != NULL);
1379 while (out < BH_LRU_SIZE)
1381 memcpy(lru->bhs, bhs, sizeof(bhs));
1390 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1392 static struct buffer_head *
1393 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1395 struct buffer_head *ret = NULL;
1401 lru = &__get_cpu_var(bh_lrus);
1402 for (i = 0; i < BH_LRU_SIZE; i++) {
1403 struct buffer_head *bh = lru->bhs[i];
1405 if (bh && bh->b_bdev == bdev &&
1406 bh->b_blocknr == block && bh->b_size == size) {
1409 lru->bhs[i] = lru->bhs[i - 1];
1424 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1425 * it in the LRU and mark it as accessed. If it is not present then return
1428 struct buffer_head *
1429 __find_get_block(struct block_device *bdev, sector_t block, int size)
1431 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1434 bh = __find_get_block_slow(bdev, block);
1442 EXPORT_SYMBOL(__find_get_block);
1445 * __getblk will locate (and, if necessary, create) the buffer_head
1446 * which corresponds to the passed block_device, block and size. The
1447 * returned buffer has its reference count incremented.
1449 * __getblk() cannot fail - it just keeps trying. If you pass it an
1450 * illegal block number, __getblk() will happily return a buffer_head
1451 * which represents the non-existent block. Very weird.
1453 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1454 * attempt is failing. FIXME, perhaps?
1456 struct buffer_head *
1457 __getblk(struct block_device *bdev, sector_t block, int size)
1459 struct buffer_head *bh = __find_get_block(bdev, block, size);
1463 bh = __getblk_slow(bdev, block, size);
1466 EXPORT_SYMBOL(__getblk);
1469 * Do async read-ahead on a buffer..
1471 void __breadahead(struct block_device *bdev, sector_t block, int size)
1473 struct buffer_head *bh = __getblk(bdev, block, size);
1475 ll_rw_block(READA, 1, &bh);
1479 EXPORT_SYMBOL(__breadahead);
1482 * __bread() - reads a specified block and returns the bh
1483 * @bdev: the block_device to read from
1484 * @block: number of block
1485 * @size: size (in bytes) to read
1487 * Reads a specified block, and returns buffer head that contains it.
1488 * It returns NULL if the block was unreadable.
1490 struct buffer_head *
1491 __bread(struct block_device *bdev, sector_t block, int size)
1493 struct buffer_head *bh = __getblk(bdev, block, size);
1495 if (likely(bh) && !buffer_uptodate(bh))
1496 bh = __bread_slow(bh);
1499 EXPORT_SYMBOL(__bread);
1502 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1503 * This doesn't race because it runs in each cpu either in irq
1504 * or with preempt disabled.
1506 static void invalidate_bh_lru(void *arg)
1508 struct bh_lru *b = &get_cpu_var(bh_lrus);
1511 for (i = 0; i < BH_LRU_SIZE; i++) {
1515 put_cpu_var(bh_lrus);
1518 static void invalidate_bh_lrus(void)
1520 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1523 void set_bh_page(struct buffer_head *bh,
1524 struct page *page, unsigned long offset)
1527 BUG_ON(offset >= PAGE_SIZE);
1528 if (PageHighMem(page))
1530 * This catches illegal uses and preserves the offset:
1532 bh->b_data = (char *)(0 + offset);
1534 bh->b_data = page_address(page) + offset;
1536 EXPORT_SYMBOL(set_bh_page);
1539 * Called when truncating a buffer on a page completely.
1541 static void discard_buffer(struct buffer_head * bh)
1544 clear_buffer_dirty(bh);
1546 clear_buffer_mapped(bh);
1547 clear_buffer_req(bh);
1548 clear_buffer_new(bh);
1549 clear_buffer_delay(bh);
1554 * try_to_release_page() - release old fs-specific metadata on a page
1556 * @page: the page which the kernel is trying to free
1557 * @gfp_mask: memory allocation flags (and I/O mode)
1559 * The address_space is to try to release any data against the page
1560 * (presumably at page->private). If the release was successful, return `1'.
1561 * Otherwise return zero.
1563 * The @gfp_mask argument specifies whether I/O may be performed to release
1564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1566 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1568 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1570 struct address_space * const mapping = page->mapping;
1572 BUG_ON(!PageLocked(page));
1573 if (PageWriteback(page))
1576 if (mapping && mapping->a_ops->releasepage)
1577 return mapping->a_ops->releasepage(page, gfp_mask);
1578 return try_to_free_buffers(page);
1580 EXPORT_SYMBOL(try_to_release_page);
1583 * block_invalidatepage - invalidate part of all of a buffer-backed page
1585 * @page: the page which is affected
1586 * @offset: the index of the truncation point
1588 * block_invalidatepage() is called when all or part of the page has become
1589 * invalidatedby a truncate operation.
1591 * block_invalidatepage() does not have to release all buffers, but it must
1592 * ensure that no dirty buffer is left outside @offset and that no I/O
1593 * is underway against any of the blocks which are outside the truncation
1594 * point. Because the caller is about to free (and possibly reuse) those
1597 void block_invalidatepage(struct page *page, unsigned long offset)
1599 struct buffer_head *head, *bh, *next;
1600 unsigned int curr_off = 0;
1602 BUG_ON(!PageLocked(page));
1603 if (!page_has_buffers(page))
1606 head = page_buffers(page);
1609 unsigned int next_off = curr_off + bh->b_size;
1610 next = bh->b_this_page;
1613 * is this block fully invalidated?
1615 if (offset <= curr_off)
1617 curr_off = next_off;
1619 } while (bh != head);
1622 * We release buffers only if the entire page is being invalidated.
1623 * The get_block cached value has been unconditionally invalidated,
1624 * so real IO is not possible anymore.
1627 try_to_release_page(page, 0);
1631 EXPORT_SYMBOL(block_invalidatepage);
1633 void do_invalidatepage(struct page *page, unsigned long offset)
1635 void (*invalidatepage)(struct page *, unsigned long);
1636 invalidatepage = page->mapping->a_ops->invalidatepage ? :
1637 block_invalidatepage;
1638 (*invalidatepage)(page, offset);
1642 * We attach and possibly dirty the buffers atomically wrt
1643 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1644 * is already excluded via the page lock.
1646 void create_empty_buffers(struct page *page,
1647 unsigned long blocksize, unsigned long b_state)
1649 struct buffer_head *bh, *head, *tail;
1651 head = alloc_page_buffers(page, blocksize, 1);
1654 bh->b_state |= b_state;
1656 bh = bh->b_this_page;
1658 tail->b_this_page = head;
1660 spin_lock(&page->mapping->private_lock);
1661 if (PageUptodate(page) || PageDirty(page)) {
1664 if (PageDirty(page))
1665 set_buffer_dirty(bh);
1666 if (PageUptodate(page))
1667 set_buffer_uptodate(bh);
1668 bh = bh->b_this_page;
1669 } while (bh != head);
1671 attach_page_buffers(page, head);
1672 spin_unlock(&page->mapping->private_lock);
1674 EXPORT_SYMBOL(create_empty_buffers);
1677 * We are taking a block for data and we don't want any output from any
1678 * buffer-cache aliases starting from return from that function and
1679 * until the moment when something will explicitly mark the buffer
1680 * dirty (hopefully that will not happen until we will free that block ;-)
1681 * We don't even need to mark it not-uptodate - nobody can expect
1682 * anything from a newly allocated buffer anyway. We used to used
1683 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1684 * don't want to mark the alias unmapped, for example - it would confuse
1685 * anyone who might pick it with bread() afterwards...
1687 * Also.. Note that bforget() doesn't lock the buffer. So there can
1688 * be writeout I/O going on against recently-freed buffers. We don't
1689 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1690 * only if we really need to. That happens here.
1692 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1694 struct buffer_head *old_bh;
1698 old_bh = __find_get_block_slow(bdev, block);
1700 clear_buffer_dirty(old_bh);
1701 wait_on_buffer(old_bh);
1702 clear_buffer_req(old_bh);
1706 EXPORT_SYMBOL(unmap_underlying_metadata);
1709 * NOTE! All mapped/uptodate combinations are valid:
1711 * Mapped Uptodate Meaning
1713 * No No "unknown" - must do get_block()
1714 * No Yes "hole" - zero-filled
1715 * Yes No "allocated" - allocated on disk, not read in
1716 * Yes Yes "valid" - allocated and up-to-date in memory.
1718 * "Dirty" is valid only with the last case (mapped+uptodate).
1722 * While block_write_full_page is writing back the dirty buffers under
1723 * the page lock, whoever dirtied the buffers may decide to clean them
1724 * again at any time. We handle that by only looking at the buffer
1725 * state inside lock_buffer().
1727 * If block_write_full_page() is called for regular writeback
1728 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1729 * locked buffer. This only can happen if someone has written the buffer
1730 * directly, with submit_bh(). At the address_space level PageWriteback
1731 * prevents this contention from occurring.
1733 static int __block_write_full_page(struct inode *inode, struct page *page,
1734 get_block_t *get_block, struct writeback_control *wbc)
1738 sector_t last_block;
1739 struct buffer_head *bh, *head;
1740 const unsigned blocksize = 1 << inode->i_blkbits;
1741 int nr_underway = 0;
1743 BUG_ON(!PageLocked(page));
1745 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1747 if (!page_has_buffers(page)) {
1748 create_empty_buffers(page, blocksize,
1749 (1 << BH_Dirty)|(1 << BH_Uptodate));
1753 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1754 * here, and the (potentially unmapped) buffers may become dirty at
1755 * any time. If a buffer becomes dirty here after we've inspected it
1756 * then we just miss that fact, and the page stays dirty.
1758 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1759 * handle that here by just cleaning them.
1762 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1763 head = page_buffers(page);
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1771 if (block > last_block) {
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1778 * The buffer was zeroed by block_write_full_page()
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1783 WARN_ON(bh->b_size != blocksize);
1784 err = get_block(inode, block, bh, 1);
1787 if (buffer_new(bh)) {
1788 /* blockdev mappings never come here */
1789 clear_buffer_new(bh);
1790 unmap_underlying_metadata(bh->b_bdev,
1794 bh = bh->b_this_page;
1796 } while (bh != head);
1799 if (!buffer_mapped(bh))
1802 * If it's a fully non-blocking write attempt and we cannot
1803 * lock the buffer then redirty the page. Note that this can
1804 * potentially cause a busy-wait loop from pdflush and kswapd
1805 * activity, but those code paths have their own higher-level
1808 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1810 } else if (test_set_buffer_locked(bh)) {
1811 redirty_page_for_writepage(wbc, page);
1814 if (test_clear_buffer_dirty(bh)) {
1815 mark_buffer_async_write(bh);
1819 } while ((bh = bh->b_this_page) != head);
1822 * The page and its buffers are protected by PageWriteback(), so we can
1823 * drop the bh refcounts early.
1825 BUG_ON(PageWriteback(page));
1826 set_page_writeback(page);
1829 struct buffer_head *next = bh->b_this_page;
1830 if (buffer_async_write(bh)) {
1831 submit_bh(WRITE, bh);
1835 } while (bh != head);
1840 if (nr_underway == 0) {
1842 * The page was marked dirty, but the buffers were
1843 * clean. Someone wrote them back by hand with
1844 * ll_rw_block/submit_bh. A rare case.
1848 if (!buffer_uptodate(bh)) {
1852 bh = bh->b_this_page;
1853 } while (bh != head);
1855 SetPageUptodate(page);
1856 end_page_writeback(page);
1858 * The page and buffer_heads can be released at any time from
1861 wbc->pages_skipped++; /* We didn't write this page */
1867 * ENOSPC, or some other error. We may already have added some
1868 * blocks to the file, so we need to write these out to avoid
1869 * exposing stale data.
1870 * The page is currently locked and not marked for writeback
1873 /* Recovery: lock and submit the mapped buffers */
1875 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1877 mark_buffer_async_write(bh);
1880 * The buffer may have been set dirty during
1881 * attachment to a dirty page.
1883 clear_buffer_dirty(bh);
1885 } while ((bh = bh->b_this_page) != head);
1887 BUG_ON(PageWriteback(page));
1888 set_page_writeback(page);
1891 struct buffer_head *next = bh->b_this_page;
1892 if (buffer_async_write(bh)) {
1893 clear_buffer_dirty(bh);
1894 submit_bh(WRITE, bh);
1898 } while (bh != head);
1902 static int __block_prepare_write(struct inode *inode, struct page *page,
1903 unsigned from, unsigned to, get_block_t *get_block)
1905 unsigned block_start, block_end;
1908 unsigned blocksize, bbits;
1909 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911 BUG_ON(!PageLocked(page));
1912 BUG_ON(from > PAGE_CACHE_SIZE);
1913 BUG_ON(to > PAGE_CACHE_SIZE);
1916 blocksize = 1 << inode->i_blkbits;
1917 if (!page_has_buffers(page))
1918 create_empty_buffers(page, blocksize, 0);
1919 head = page_buffers(page);
1921 bbits = inode->i_blkbits;
1922 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924 for(bh = head, block_start = 0; bh != head || !block_start;
1925 block++, block_start=block_end, bh = bh->b_this_page) {
1926 block_end = block_start + blocksize;
1927 if (block_end <= from || block_start >= to) {
1928 if (PageUptodate(page)) {
1929 if (!buffer_uptodate(bh))
1930 set_buffer_uptodate(bh);
1935 clear_buffer_new(bh);
1936 if (!buffer_mapped(bh)) {
1937 WARN_ON(bh->b_size != blocksize);
1938 err = get_block(inode, block, bh, 1);
1941 if (buffer_new(bh)) {
1942 unmap_underlying_metadata(bh->b_bdev,
1944 if (PageUptodate(page)) {
1945 set_buffer_uptodate(bh);
1948 if (block_end > to || block_start < from) {
1951 kaddr = kmap_atomic(page, KM_USER0);
1955 if (block_start < from)
1956 memset(kaddr+block_start,
1957 0, from-block_start);
1958 flush_dcache_page(page);
1959 kunmap_atomic(kaddr, KM_USER0);
1964 if (PageUptodate(page)) {
1965 if (!buffer_uptodate(bh))
1966 set_buffer_uptodate(bh);
1969 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1970 (block_start < from || block_end > to)) {
1971 ll_rw_block(READ, 1, &bh);
1976 * If we issued read requests - let them complete.
1978 while(wait_bh > wait) {
1979 wait_on_buffer(*--wait_bh);
1980 if (!buffer_uptodate(*wait_bh))
1987 clear_buffer_new(bh);
1988 } while ((bh = bh->b_this_page) != head);
1993 * Zero out any newly allocated blocks to avoid exposing stale
1994 * data. If BH_New is set, we know that the block was newly
1995 * allocated in the above loop.
2000 block_end = block_start+blocksize;
2001 if (block_end <= from)
2003 if (block_start >= to)
2005 if (buffer_new(bh)) {
2008 clear_buffer_new(bh);
2009 kaddr = kmap_atomic(page, KM_USER0);
2010 memset(kaddr+block_start, 0, bh->b_size);
2011 kunmap_atomic(kaddr, KM_USER0);
2012 set_buffer_uptodate(bh);
2013 mark_buffer_dirty(bh);
2016 block_start = block_end;
2017 bh = bh->b_this_page;
2018 } while (bh != head);
2022 static int __block_commit_write(struct inode *inode, struct page *page,
2023 unsigned from, unsigned to)
2025 unsigned block_start, block_end;
2028 struct buffer_head *bh, *head;
2030 blocksize = 1 << inode->i_blkbits;
2032 for(bh = head = page_buffers(page), block_start = 0;
2033 bh != head || !block_start;
2034 block_start=block_end, bh = bh->b_this_page) {
2035 block_end = block_start + blocksize;
2036 if (block_end <= from || block_start >= to) {
2037 if (!buffer_uptodate(bh))
2040 set_buffer_uptodate(bh);
2041 mark_buffer_dirty(bh);
2046 * If this is a partial write which happened to make all buffers
2047 * uptodate then we can optimize away a bogus readpage() for
2048 * the next read(). Here we 'discover' whether the page went
2049 * uptodate as a result of this (potentially partial) write.
2052 SetPageUptodate(page);
2057 * Generic "read page" function for block devices that have the normal
2058 * get_block functionality. This is most of the block device filesystems.
2059 * Reads the page asynchronously --- the unlock_buffer() and
2060 * set/clear_buffer_uptodate() functions propagate buffer state into the
2061 * page struct once IO has completed.
2063 int block_read_full_page(struct page *page, get_block_t *get_block)
2065 struct inode *inode = page->mapping->host;
2066 sector_t iblock, lblock;
2067 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2068 unsigned int blocksize;
2070 int fully_mapped = 1;
2072 BUG_ON(!PageLocked(page));
2073 blocksize = 1 << inode->i_blkbits;
2074 if (!page_has_buffers(page))
2075 create_empty_buffers(page, blocksize, 0);
2076 head = page_buffers(page);
2078 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2079 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2085 if (buffer_uptodate(bh))
2088 if (!buffer_mapped(bh)) {
2092 if (iblock < lblock) {
2093 WARN_ON(bh->b_size != blocksize);
2094 err = get_block(inode, iblock, bh, 0);
2098 if (!buffer_mapped(bh)) {
2099 void *kaddr = kmap_atomic(page, KM_USER0);
2100 memset(kaddr + i * blocksize, 0, blocksize);
2101 flush_dcache_page(page);
2102 kunmap_atomic(kaddr, KM_USER0);
2104 set_buffer_uptodate(bh);
2108 * get_block() might have updated the buffer
2111 if (buffer_uptodate(bh))
2115 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2118 SetPageMappedToDisk(page);
2122 * All buffers are uptodate - we can set the page uptodate
2123 * as well. But not if get_block() returned an error.
2125 if (!PageError(page))
2126 SetPageUptodate(page);
2131 /* Stage two: lock the buffers */
2132 for (i = 0; i < nr; i++) {
2135 mark_buffer_async_read(bh);
2139 * Stage 3: start the IO. Check for uptodateness
2140 * inside the buffer lock in case another process reading
2141 * the underlying blockdev brought it uptodate (the sct fix).
2143 for (i = 0; i < nr; i++) {
2145 if (buffer_uptodate(bh))
2146 end_buffer_async_read(bh, 1);
2148 submit_bh(READ, bh);
2153 /* utility function for filesystems that need to do work on expanding
2154 * truncates. Uses prepare/commit_write to allow the filesystem to
2155 * deal with the hole.
2157 static int __generic_cont_expand(struct inode *inode, loff_t size,
2158 pgoff_t index, unsigned int offset)
2160 struct address_space *mapping = inode->i_mapping;
2162 unsigned long limit;
2166 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2167 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2168 send_sig(SIGXFSZ, current, 0);
2171 if (size > inode->i_sb->s_maxbytes)
2175 page = grab_cache_page(mapping, index);
2178 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2181 * ->prepare_write() may have instantiated a few blocks
2182 * outside i_size. Trim these off again.
2185 page_cache_release(page);
2186 vmtruncate(inode, inode->i_size);
2190 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2193 page_cache_release(page);
2200 int generic_cont_expand(struct inode *inode, loff_t size)
2203 unsigned int offset;
2205 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2207 /* ugh. in prepare/commit_write, if from==to==start of block, we
2208 ** skip the prepare. make sure we never send an offset for the start
2211 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2212 /* caller must handle this extra byte. */
2215 index = size >> PAGE_CACHE_SHIFT;
2217 return __generic_cont_expand(inode, size, index, offset);
2220 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2222 loff_t pos = size - 1;
2223 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2224 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2226 /* prepare/commit_write can handle even if from==to==start of block. */
2227 return __generic_cont_expand(inode, size, index, offset);
2231 * For moronic filesystems that do not allow holes in file.
2232 * We may have to extend the file.
2235 int cont_prepare_write(struct page *page, unsigned offset,
2236 unsigned to, get_block_t *get_block, loff_t *bytes)
2238 struct address_space *mapping = page->mapping;
2239 struct inode *inode = mapping->host;
2240 struct page *new_page;
2244 unsigned blocksize = 1 << inode->i_blkbits;
2247 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2249 new_page = grab_cache_page(mapping, pgpos);
2252 /* we might sleep */
2253 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2254 unlock_page(new_page);
2255 page_cache_release(new_page);
2258 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2259 if (zerofrom & (blocksize-1)) {
2260 *bytes |= (blocksize-1);
2263 status = __block_prepare_write(inode, new_page, zerofrom,
2264 PAGE_CACHE_SIZE, get_block);
2267 kaddr = kmap_atomic(new_page, KM_USER0);
2268 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2269 flush_dcache_page(new_page);
2270 kunmap_atomic(kaddr, KM_USER0);
2271 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2272 unlock_page(new_page);
2273 page_cache_release(new_page);
2276 if (page->index < pgpos) {
2277 /* completely inside the area */
2280 /* page covers the boundary, find the boundary offset */
2281 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2283 /* if we will expand the thing last block will be filled */
2284 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2285 *bytes |= (blocksize-1);
2289 /* starting below the boundary? Nothing to zero out */
2290 if (offset <= zerofrom)
2293 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2296 if (zerofrom < offset) {
2297 kaddr = kmap_atomic(page, KM_USER0);
2298 memset(kaddr+zerofrom, 0, offset-zerofrom);
2299 flush_dcache_page(page);
2300 kunmap_atomic(kaddr, KM_USER0);
2301 __block_commit_write(inode, page, zerofrom, offset);
2305 ClearPageUptodate(page);
2309 ClearPageUptodate(new_page);
2310 unlock_page(new_page);
2311 page_cache_release(new_page);
2316 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2317 get_block_t *get_block)
2319 struct inode *inode = page->mapping->host;
2320 int err = __block_prepare_write(inode, page, from, to, get_block);
2322 ClearPageUptodate(page);
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2328 struct inode *inode = page->mapping->host;
2329 __block_commit_write(inode,page,from,to);
2333 int generic_commit_write(struct file *file, struct page *page,
2334 unsigned from, unsigned to)
2336 struct inode *inode = page->mapping->host;
2337 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2338 __block_commit_write(inode,page,from,to);
2340 * No need to use i_size_read() here, the i_size
2341 * cannot change under us because we hold i_mutex.
2343 if (pos > inode->i_size) {
2344 i_size_write(inode, pos);
2345 mark_inode_dirty(inode);
2352 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2353 * immediately, while under the page lock. So it needs a special end_io
2354 * handler which does not touch the bh after unlocking it.
2356 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2357 * a race there is benign: unlock_buffer() only use the bh's address for
2358 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2361 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2364 set_buffer_uptodate(bh);
2366 /* This happens, due to failed READA attempts. */
2367 clear_buffer_uptodate(bh);
2373 * On entry, the page is fully not uptodate.
2374 * On exit the page is fully uptodate in the areas outside (from,to)
2376 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2377 get_block_t *get_block)
2379 struct inode *inode = page->mapping->host;
2380 const unsigned blkbits = inode->i_blkbits;
2381 const unsigned blocksize = 1 << blkbits;
2382 struct buffer_head map_bh;
2383 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2384 unsigned block_in_page;
2385 unsigned block_start;
2386 sector_t block_in_file;
2391 int is_mapped_to_disk = 1;
2394 if (PageMappedToDisk(page))
2397 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2398 map_bh.b_page = page;
2401 * We loop across all blocks in the page, whether or not they are
2402 * part of the affected region. This is so we can discover if the
2403 * page is fully mapped-to-disk.
2405 for (block_start = 0, block_in_page = 0;
2406 block_start < PAGE_CACHE_SIZE;
2407 block_in_page++, block_start += blocksize) {
2408 unsigned block_end = block_start + blocksize;
2413 if (block_start >= to)
2415 map_bh.b_size = blocksize;
2416 ret = get_block(inode, block_in_file + block_in_page,
2420 if (!buffer_mapped(&map_bh))
2421 is_mapped_to_disk = 0;
2422 if (buffer_new(&map_bh))
2423 unmap_underlying_metadata(map_bh.b_bdev,
2425 if (PageUptodate(page))
2427 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2428 kaddr = kmap_atomic(page, KM_USER0);
2429 if (block_start < from) {
2430 memset(kaddr+block_start, 0, from-block_start);
2433 if (block_end > to) {
2434 memset(kaddr + to, 0, block_end - to);
2437 flush_dcache_page(page);
2438 kunmap_atomic(kaddr, KM_USER0);
2441 if (buffer_uptodate(&map_bh))
2442 continue; /* reiserfs does this */
2443 if (block_start < from || block_end > to) {
2444 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2450 bh->b_state = map_bh.b_state;
2451 atomic_set(&bh->b_count, 0);
2452 bh->b_this_page = NULL;
2454 bh->b_blocknr = map_bh.b_blocknr;
2455 bh->b_size = blocksize;
2456 bh->b_data = (char *)(long)block_start;
2457 bh->b_bdev = map_bh.b_bdev;
2458 bh->b_private = NULL;
2459 read_bh[nr_reads++] = bh;
2464 struct buffer_head *bh;
2467 * The page is locked, so these buffers are protected from
2468 * any VM or truncate activity. Hence we don't need to care
2469 * for the buffer_head refcounts.
2471 for (i = 0; i < nr_reads; i++) {
2474 bh->b_end_io = end_buffer_read_nobh;
2475 submit_bh(READ, bh);
2477 for (i = 0; i < nr_reads; i++) {
2480 if (!buffer_uptodate(bh))
2482 free_buffer_head(bh);
2489 if (is_mapped_to_disk)
2490 SetPageMappedToDisk(page);
2491 SetPageUptodate(page);
2494 * Setting the page dirty here isn't necessary for the prepare_write
2495 * function - commit_write will do that. But if/when this function is
2496 * used within the pagefault handler to ensure that all mmapped pages
2497 * have backing space in the filesystem, we will need to dirty the page
2498 * if its contents were altered.
2501 set_page_dirty(page);
2506 for (i = 0; i < nr_reads; i++) {
2508 free_buffer_head(read_bh[i]);
2512 * Error recovery is pretty slack. Clear the page and mark it dirty
2513 * so we'll later zero out any blocks which _were_ allocated.
2515 kaddr = kmap_atomic(page, KM_USER0);
2516 memset(kaddr, 0, PAGE_CACHE_SIZE);
2517 kunmap_atomic(kaddr, KM_USER0);
2518 SetPageUptodate(page);
2519 set_page_dirty(page);
2522 EXPORT_SYMBOL(nobh_prepare_write);
2524 int nobh_commit_write(struct file *file, struct page *page,
2525 unsigned from, unsigned to)
2527 struct inode *inode = page->mapping->host;
2528 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2530 set_page_dirty(page);
2531 if (pos > inode->i_size) {
2532 i_size_write(inode, pos);
2533 mark_inode_dirty(inode);
2537 EXPORT_SYMBOL(nobh_commit_write);
2540 * nobh_writepage() - based on block_full_write_page() except
2541 * that it tries to operate without attaching bufferheads to
2544 int nobh_writepage(struct page *page, get_block_t *get_block,
2545 struct writeback_control *wbc)
2547 struct inode * const inode = page->mapping->host;
2548 loff_t i_size = i_size_read(inode);
2549 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2554 /* Is the page fully inside i_size? */
2555 if (page->index < end_index)
2558 /* Is the page fully outside i_size? (truncate in progress) */
2559 offset = i_size & (PAGE_CACHE_SIZE-1);
2560 if (page->index >= end_index+1 || !offset) {
2562 * The page may have dirty, unmapped buffers. For example,
2563 * they may have been added in ext3_writepage(). Make them
2564 * freeable here, so the page does not leak.
2567 /* Not really sure about this - do we need this ? */
2568 if (page->mapping->a_ops->invalidatepage)
2569 page->mapping->a_ops->invalidatepage(page, offset);
2572 return 0; /* don't care */
2576 * The page straddles i_size. It must be zeroed out on each and every
2577 * writepage invocation because it may be mmapped. "A file is mapped
2578 * in multiples of the page size. For a file that is not a multiple of
2579 * the page size, the remaining memory is zeroed when mapped, and
2580 * writes to that region are not written out to the file."
2582 kaddr = kmap_atomic(page, KM_USER0);
2583 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2584 flush_dcache_page(page);
2585 kunmap_atomic(kaddr, KM_USER0);
2587 ret = mpage_writepage(page, get_block, wbc);
2589 ret = __block_write_full_page(inode, page, get_block, wbc);
2592 EXPORT_SYMBOL(nobh_writepage);
2595 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2597 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2599 struct inode *inode = mapping->host;
2600 unsigned blocksize = 1 << inode->i_blkbits;
2601 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2602 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2605 const struct address_space_operations *a_ops = mapping->a_ops;
2609 if ((offset & (blocksize - 1)) == 0)
2613 page = grab_cache_page(mapping, index);
2617 to = (offset + blocksize) & ~(blocksize - 1);
2618 ret = a_ops->prepare_write(NULL, page, offset, to);
2620 kaddr = kmap_atomic(page, KM_USER0);
2621 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2622 flush_dcache_page(page);
2623 kunmap_atomic(kaddr, KM_USER0);
2624 set_page_dirty(page);
2627 page_cache_release(page);
2631 EXPORT_SYMBOL(nobh_truncate_page);
2633 int block_truncate_page(struct address_space *mapping,
2634 loff_t from, get_block_t *get_block)
2636 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2637 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2640 unsigned length, pos;
2641 struct inode *inode = mapping->host;
2643 struct buffer_head *bh;
2647 blocksize = 1 << inode->i_blkbits;
2648 length = offset & (blocksize - 1);
2650 /* Block boundary? Nothing to do */
2654 length = blocksize - length;
2655 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2657 page = grab_cache_page(mapping, index);
2662 if (!page_has_buffers(page))
2663 create_empty_buffers(page, blocksize, 0);
2665 /* Find the buffer that contains "offset" */
2666 bh = page_buffers(page);
2668 while (offset >= pos) {
2669 bh = bh->b_this_page;
2675 if (!buffer_mapped(bh)) {
2676 WARN_ON(bh->b_size != blocksize);
2677 err = get_block(inode, iblock, bh, 0);
2680 /* unmapped? It's a hole - nothing to do */
2681 if (!buffer_mapped(bh))
2685 /* Ok, it's mapped. Make sure it's up-to-date */
2686 if (PageUptodate(page))
2687 set_buffer_uptodate(bh);
2689 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2691 ll_rw_block(READ, 1, &bh);
2693 /* Uhhuh. Read error. Complain and punt. */
2694 if (!buffer_uptodate(bh))
2698 kaddr = kmap_atomic(page, KM_USER0);
2699 memset(kaddr + offset, 0, length);
2700 flush_dcache_page(page);
2701 kunmap_atomic(kaddr, KM_USER0);
2703 mark_buffer_dirty(bh);
2708 page_cache_release(page);
2714 * The generic ->writepage function for buffer-backed address_spaces
2716 int block_write_full_page(struct page *page, get_block_t *get_block,
2717 struct writeback_control *wbc)
2719 struct inode * const inode = page->mapping->host;
2720 loff_t i_size = i_size_read(inode);
2721 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2725 /* Is the page fully inside i_size? */
2726 if (page->index < end_index)
2727 return __block_write_full_page(inode, page, get_block, wbc);
2729 /* Is the page fully outside i_size? (truncate in progress) */
2730 offset = i_size & (PAGE_CACHE_SIZE-1);
2731 if (page->index >= end_index+1 || !offset) {
2733 * The page may have dirty, unmapped buffers. For example,
2734 * they may have been added in ext3_writepage(). Make them
2735 * freeable here, so the page does not leak.
2737 do_invalidatepage(page, 0);
2739 return 0; /* don't care */
2743 * The page straddles i_size. It must be zeroed out on each and every
2744 * writepage invokation because it may be mmapped. "A file is mapped
2745 * in multiples of the page size. For a file that is not a multiple of
2746 * the page size, the remaining memory is zeroed when mapped, and
2747 * writes to that region are not written out to the file."
2749 kaddr = kmap_atomic(page, KM_USER0);
2750 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2751 flush_dcache_page(page);
2752 kunmap_atomic(kaddr, KM_USER0);
2753 return __block_write_full_page(inode, page, get_block, wbc);
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 get_block_t *get_block)
2759 struct buffer_head tmp;
2760 struct inode *inode = mapping->host;
2763 tmp.b_size = 1 << inode->i_blkbits;
2764 get_block(inode, block, &tmp, 0);
2765 return tmp.b_blocknr;
2768 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2770 struct buffer_head *bh = bio->bi_private;
2775 if (err == -EOPNOTSUPP) {
2776 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2777 set_bit(BH_Eopnotsupp, &bh->b_state);
2780 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2785 int submit_bh(int rw, struct buffer_head * bh)
2790 BUG_ON(!buffer_locked(bh));
2791 BUG_ON(!buffer_mapped(bh));
2792 BUG_ON(!bh->b_end_io);
2794 if (buffer_ordered(bh) && (rw == WRITE))
2798 * Only clear out a write error when rewriting, should this
2799 * include WRITE_SYNC as well?
2801 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2802 clear_buffer_write_io_error(bh);
2805 * from here on down, it's all bio -- do the initial mapping,
2806 * submit_bio -> generic_make_request may further map this bio around
2808 bio = bio_alloc(GFP_NOIO, 1);
2810 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2811 bio->bi_bdev = bh->b_bdev;
2812 bio->bi_io_vec[0].bv_page = bh->b_page;
2813 bio->bi_io_vec[0].bv_len = bh->b_size;
2814 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2818 bio->bi_size = bh->b_size;
2820 bio->bi_end_io = end_bio_bh_io_sync;
2821 bio->bi_private = bh;
2824 submit_bio(rw, bio);
2826 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2834 * ll_rw_block: low-level access to block devices (DEPRECATED)
2835 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2836 * @nr: number of &struct buffer_heads in the array
2837 * @bhs: array of pointers to &struct buffer_head
2839 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2840 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2841 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2842 * are sent to disk. The fourth %READA option is described in the documentation
2843 * for generic_make_request() which ll_rw_block() calls.
2845 * This function drops any buffer that it cannot get a lock on (with the
2846 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2847 * clean when doing a write request, and any buffer that appears to be
2848 * up-to-date when doing read request. Further it marks as clean buffers that
2849 * are processed for writing (the buffer cache won't assume that they are
2850 * actually clean until the buffer gets unlocked).
2852 * ll_rw_block sets b_end_io to simple completion handler that marks
2853 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2856 * All of the buffers must be for the same device, and must also be a
2857 * multiple of the current approved size for the device.
2859 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2863 for (i = 0; i < nr; i++) {
2864 struct buffer_head *bh = bhs[i];
2868 else if (test_set_buffer_locked(bh))
2871 if (rw == WRITE || rw == SWRITE) {
2872 if (test_clear_buffer_dirty(bh)) {
2873 bh->b_end_io = end_buffer_write_sync;
2875 submit_bh(WRITE, bh);
2879 if (!buffer_uptodate(bh)) {
2880 bh->b_end_io = end_buffer_read_sync;
2891 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2892 * and then start new I/O and then wait upon it. The caller must have a ref on
2895 int sync_dirty_buffer(struct buffer_head *bh)
2899 WARN_ON(atomic_read(&bh->b_count) < 1);
2901 if (test_clear_buffer_dirty(bh)) {
2903 bh->b_end_io = end_buffer_write_sync;
2904 ret = submit_bh(WRITE, bh);
2906 if (buffer_eopnotsupp(bh)) {
2907 clear_buffer_eopnotsupp(bh);
2910 if (!ret && !buffer_uptodate(bh))
2919 * try_to_free_buffers() checks if all the buffers on this particular page
2920 * are unused, and releases them if so.
2922 * Exclusion against try_to_free_buffers may be obtained by either
2923 * locking the page or by holding its mapping's private_lock.
2925 * If the page is dirty but all the buffers are clean then we need to
2926 * be sure to mark the page clean as well. This is because the page
2927 * may be against a block device, and a later reattachment of buffers
2928 * to a dirty page will set *all* buffers dirty. Which would corrupt
2929 * filesystem data on the same device.
2931 * The same applies to regular filesystem pages: if all the buffers are
2932 * clean then we set the page clean and proceed. To do that, we require
2933 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2936 * try_to_free_buffers() is non-blocking.
2938 static inline int buffer_busy(struct buffer_head *bh)
2940 return atomic_read(&bh->b_count) |
2941 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2945 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2947 struct buffer_head *head = page_buffers(page);
2948 struct buffer_head *bh;
2952 if (buffer_write_io_error(bh) && page->mapping)
2953 set_bit(AS_EIO, &page->mapping->flags);
2954 if (buffer_busy(bh))
2956 bh = bh->b_this_page;
2957 } while (bh != head);
2960 struct buffer_head *next = bh->b_this_page;
2962 if (!list_empty(&bh->b_assoc_buffers))
2963 __remove_assoc_queue(bh);
2965 } while (bh != head);
2966 *buffers_to_free = head;
2967 __clear_page_buffers(page);
2973 int try_to_free_buffers(struct page *page)
2975 struct address_space * const mapping = page->mapping;
2976 struct buffer_head *buffers_to_free = NULL;
2979 BUG_ON(!PageLocked(page));
2980 if (PageWriteback(page))
2983 if (mapping == NULL) { /* can this still happen? */
2984 ret = drop_buffers(page, &buffers_to_free);
2988 spin_lock(&mapping->private_lock);
2989 ret = drop_buffers(page, &buffers_to_free);
2992 * If the filesystem writes its buffers by hand (eg ext3)
2993 * then we can have clean buffers against a dirty page. We
2994 * clean the page here; otherwise later reattachment of buffers
2995 * could encounter a non-uptodate page, which is unresolvable.
2996 * This only applies in the rare case where try_to_free_buffers
2997 * succeeds but the page is not freed.
2999 clear_page_dirty(page);
3001 spin_unlock(&mapping->private_lock);
3003 if (buffers_to_free) {
3004 struct buffer_head *bh = buffers_to_free;
3007 struct buffer_head *next = bh->b_this_page;
3008 free_buffer_head(bh);
3010 } while (bh != buffers_to_free);
3014 EXPORT_SYMBOL(try_to_free_buffers);
3016 void block_sync_page(struct page *page)
3018 struct address_space *mapping;
3021 mapping = page_mapping(page);
3023 blk_run_backing_dev(mapping->backing_dev_info, page);
3027 * There are no bdflush tunables left. But distributions are
3028 * still running obsolete flush daemons, so we terminate them here.
3030 * Use of bdflush() is deprecated and will be removed in a future kernel.
3031 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3033 asmlinkage long sys_bdflush(int func, long data)
3035 static int msg_count;
3037 if (!capable(CAP_SYS_ADMIN))
3040 if (msg_count < 5) {
3043 "warning: process `%s' used the obsolete bdflush"
3044 " system call\n", current->comm);
3045 printk(KERN_INFO "Fix your initscripts?\n");
3054 * Buffer-head allocation
3056 static kmem_cache_t *bh_cachep;
3059 * Once the number of bh's in the machine exceeds this level, we start
3060 * stripping them in writeback.
3062 static int max_buffer_heads;
3064 int buffer_heads_over_limit;
3066 struct bh_accounting {
3067 int nr; /* Number of live bh's */
3068 int ratelimit; /* Limit cacheline bouncing */
3071 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3073 static void recalc_bh_state(void)
3078 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3080 __get_cpu_var(bh_accounting).ratelimit = 0;
3081 for_each_online_cpu(i)
3082 tot += per_cpu(bh_accounting, i).nr;
3083 buffer_heads_over_limit = (tot > max_buffer_heads);
3086 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3088 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3090 get_cpu_var(bh_accounting).nr++;
3092 put_cpu_var(bh_accounting);
3096 EXPORT_SYMBOL(alloc_buffer_head);
3098 void free_buffer_head(struct buffer_head *bh)
3100 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3101 kmem_cache_free(bh_cachep, bh);
3102 get_cpu_var(bh_accounting).nr--;
3104 put_cpu_var(bh_accounting);
3106 EXPORT_SYMBOL(free_buffer_head);
3109 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3111 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3112 SLAB_CTOR_CONSTRUCTOR) {
3113 struct buffer_head * bh = (struct buffer_head *)data;
3115 memset(bh, 0, sizeof(*bh));
3116 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3120 #ifdef CONFIG_HOTPLUG_CPU
3121 static void buffer_exit_cpu(int cpu)
3124 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3126 for (i = 0; i < BH_LRU_SIZE; i++) {
3130 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3131 per_cpu(bh_accounting, cpu).nr = 0;
3132 put_cpu_var(bh_accounting);
3135 static int buffer_cpu_notify(struct notifier_block *self,
3136 unsigned long action, void *hcpu)
3138 if (action == CPU_DEAD)
3139 buffer_exit_cpu((unsigned long)hcpu);
3142 #endif /* CONFIG_HOTPLUG_CPU */
3144 void __init buffer_init(void)
3148 bh_cachep = kmem_cache_create("buffer_head",
3149 sizeof(struct buffer_head), 0,
3150 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3156 * Limit the bh occupancy to 10% of ZONE_NORMAL
3158 nrpages = (nr_free_buffer_pages() * 10) / 100;
3159 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3160 hotcpu_notifier(buffer_cpu_notify, 0);
3163 EXPORT_SYMBOL(__bforget);
3164 EXPORT_SYMBOL(__brelse);
3165 EXPORT_SYMBOL(__wait_on_buffer);
3166 EXPORT_SYMBOL(block_commit_write);
3167 EXPORT_SYMBOL(block_prepare_write);
3168 EXPORT_SYMBOL(block_read_full_page);
3169 EXPORT_SYMBOL(block_sync_page);
3170 EXPORT_SYMBOL(block_truncate_page);
3171 EXPORT_SYMBOL(block_write_full_page);
3172 EXPORT_SYMBOL(cont_prepare_write);
3173 EXPORT_SYMBOL(end_buffer_read_sync);
3174 EXPORT_SYMBOL(end_buffer_write_sync);
3175 EXPORT_SYMBOL(file_fsync);
3176 EXPORT_SYMBOL(fsync_bdev);
3177 EXPORT_SYMBOL(generic_block_bmap);
3178 EXPORT_SYMBOL(generic_commit_write);
3179 EXPORT_SYMBOL(generic_cont_expand);
3180 EXPORT_SYMBOL(generic_cont_expand_simple);
3181 EXPORT_SYMBOL(init_buffer);
3182 EXPORT_SYMBOL(invalidate_bdev);
3183 EXPORT_SYMBOL(ll_rw_block);
3184 EXPORT_SYMBOL(mark_buffer_dirty);
3185 EXPORT_SYMBOL(submit_bh);
3186 EXPORT_SYMBOL(sync_dirty_buffer);
3187 EXPORT_SYMBOL(unlock_buffer);