[ARM] kthread: switch arch/arm/kernel/apm.c
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev)
157                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158         return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 static void __fsync_super(struct super_block *sb)
163 {
164         sync_inodes_sb(sb, 0);
165         DQUOT_SYNC(sb);
166         lock_super(sb);
167         if (sb->s_dirt && sb->s_op->write_super)
168                 sb->s_op->write_super(sb);
169         unlock_super(sb);
170         if (sb->s_op->sync_fs)
171                 sb->s_op->sync_fs(sb, 1);
172         sync_blockdev(sb->s_bdev);
173         sync_inodes_sb(sb, 1);
174 }
175
176 /*
177  * Write out and wait upon all dirty data associated with this
178  * superblock.  Filesystem data as well as the underlying block
179  * device.  Takes the superblock lock.
180  */
181 int fsync_super(struct super_block *sb)
182 {
183         __fsync_super(sb);
184         return sync_blockdev(sb->s_bdev);
185 }
186
187 /*
188  * Write out and wait upon all dirty data associated with this
189  * device.   Filesystem data as well as the underlying block
190  * device.  Takes the superblock lock.
191  */
192 int fsync_bdev(struct block_device *bdev)
193 {
194         struct super_block *sb = get_super(bdev);
195         if (sb) {
196                 int res = fsync_super(sb);
197                 drop_super(sb);
198                 return res;
199         }
200         return sync_blockdev(bdev);
201 }
202
203 /**
204  * freeze_bdev  --  lock a filesystem and force it into a consistent state
205  * @bdev:       blockdevice to lock
206  *
207  * This takes the block device bd_mount_mutex to make sure no new mounts
208  * happen on bdev until thaw_bdev() is called.
209  * If a superblock is found on this device, we take the s_umount semaphore
210  * on it to make sure nobody unmounts until the snapshot creation is done.
211  */
212 struct super_block *freeze_bdev(struct block_device *bdev)
213 {
214         struct super_block *sb;
215
216         mutex_lock(&bdev->bd_mount_mutex);
217         sb = get_super(bdev);
218         if (sb && !(sb->s_flags & MS_RDONLY)) {
219                 sb->s_frozen = SB_FREEZE_WRITE;
220                 smp_wmb();
221
222                 __fsync_super(sb);
223
224                 sb->s_frozen = SB_FREEZE_TRANS;
225                 smp_wmb();
226
227                 sync_blockdev(sb->s_bdev);
228
229                 if (sb->s_op->write_super_lockfs)
230                         sb->s_op->write_super_lockfs(sb);
231         }
232
233         sync_blockdev(bdev);
234         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
235 }
236 EXPORT_SYMBOL(freeze_bdev);
237
238 /**
239  * thaw_bdev  -- unlock filesystem
240  * @bdev:       blockdevice to unlock
241  * @sb:         associated superblock
242  *
243  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
244  */
245 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
246 {
247         if (sb) {
248                 BUG_ON(sb->s_bdev != bdev);
249
250                 if (sb->s_op->unlockfs)
251                         sb->s_op->unlockfs(sb);
252                 sb->s_frozen = SB_UNFROZEN;
253                 smp_wmb();
254                 wake_up(&sb->s_wait_unfrozen);
255                 drop_super(sb);
256         }
257
258         mutex_unlock(&bdev->bd_mount_mutex);
259 }
260 EXPORT_SYMBOL(thaw_bdev);
261
262 /*
263  * sync everything.  Start out by waking pdflush, because that writes back
264  * all queues in parallel.
265  */
266 static void do_sync(unsigned long wait)
267 {
268         wakeup_pdflush(0);
269         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
270         DQUOT_SYNC(NULL);
271         sync_supers();          /* Write the superblocks */
272         sync_filesystems(0);    /* Start syncing the filesystems */
273         sync_filesystems(wait); /* Waitingly sync the filesystems */
274         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
275         if (!wait)
276                 printk("Emergency Sync complete\n");
277         if (unlikely(laptop_mode))
278                 laptop_sync_completion();
279 }
280
281 asmlinkage long sys_sync(void)
282 {
283         do_sync(1);
284         return 0;
285 }
286
287 void emergency_sync(void)
288 {
289         pdflush_operation(do_sync, 0);
290 }
291
292 /*
293  * Generic function to fsync a file.
294  *
295  * filp may be NULL if called via the msync of a vma.
296  */
297  
298 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
299 {
300         struct inode * inode = dentry->d_inode;
301         struct super_block * sb;
302         int ret, err;
303
304         /* sync the inode to buffers */
305         ret = write_inode_now(inode, 0);
306
307         /* sync the superblock to buffers */
308         sb = inode->i_sb;
309         lock_super(sb);
310         if (sb->s_op->write_super)
311                 sb->s_op->write_super(sb);
312         unlock_super(sb);
313
314         /* .. finally sync the buffers to disk */
315         err = sync_blockdev(sb->s_bdev);
316         if (!ret)
317                 ret = err;
318         return ret;
319 }
320
321 long do_fsync(struct file *file, int datasync)
322 {
323         int ret;
324         int err;
325         struct address_space *mapping = file->f_mapping;
326
327         if (!file->f_op || !file->f_op->fsync) {
328                 /* Why?  We can still call filemap_fdatawrite */
329                 ret = -EINVAL;
330                 goto out;
331         }
332
333         ret = filemap_fdatawrite(mapping);
334
335         /*
336          * We need to protect against concurrent writers, which could cause
337          * livelocks in fsync_buffers_list().
338          */
339         mutex_lock(&mapping->host->i_mutex);
340         err = file->f_op->fsync(file, file->f_dentry, datasync);
341         if (!ret)
342                 ret = err;
343         mutex_unlock(&mapping->host->i_mutex);
344         err = filemap_fdatawait(mapping);
345         if (!ret)
346                 ret = err;
347 out:
348         return ret;
349 }
350
351 static long __do_fsync(unsigned int fd, int datasync)
352 {
353         struct file *file;
354         int ret = -EBADF;
355
356         file = fget(fd);
357         if (file) {
358                 ret = do_fsync(file, datasync);
359                 fput(file);
360         }
361         return ret;
362 }
363
364 asmlinkage long sys_fsync(unsigned int fd)
365 {
366         return __do_fsync(fd, 0);
367 }
368
369 asmlinkage long sys_fdatasync(unsigned int fd)
370 {
371         return __do_fsync(fd, 1);
372 }
373
374 /*
375  * Various filesystems appear to want __find_get_block to be non-blocking.
376  * But it's the page lock which protects the buffers.  To get around this,
377  * we get exclusion from try_to_free_buffers with the blockdev mapping's
378  * private_lock.
379  *
380  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
381  * may be quite high.  This code could TryLock the page, and if that
382  * succeeds, there is no need to take private_lock. (But if
383  * private_lock is contended then so is mapping->tree_lock).
384  */
385 static struct buffer_head *
386 __find_get_block_slow(struct block_device *bdev, sector_t block)
387 {
388         struct inode *bd_inode = bdev->bd_inode;
389         struct address_space *bd_mapping = bd_inode->i_mapping;
390         struct buffer_head *ret = NULL;
391         pgoff_t index;
392         struct buffer_head *bh;
393         struct buffer_head *head;
394         struct page *page;
395         int all_mapped = 1;
396
397         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
398         page = find_get_page(bd_mapping, index);
399         if (!page)
400                 goto out;
401
402         spin_lock(&bd_mapping->private_lock);
403         if (!page_has_buffers(page))
404                 goto out_unlock;
405         head = page_buffers(page);
406         bh = head;
407         do {
408                 if (bh->b_blocknr == block) {
409                         ret = bh;
410                         get_bh(bh);
411                         goto out_unlock;
412                 }
413                 if (!buffer_mapped(bh))
414                         all_mapped = 0;
415                 bh = bh->b_this_page;
416         } while (bh != head);
417
418         /* we might be here because some of the buffers on this page are
419          * not mapped.  This is due to various races between
420          * file io on the block device and getblk.  It gets dealt with
421          * elsewhere, don't buffer_error if we had some unmapped buffers
422          */
423         if (all_mapped) {
424                 printk("__find_get_block_slow() failed. "
425                         "block=%llu, b_blocknr=%llu\n",
426                         (unsigned long long)block,
427                         (unsigned long long)bh->b_blocknr);
428                 printk("b_state=0x%08lx, b_size=%zu\n",
429                         bh->b_state, bh->b_size);
430                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
431         }
432 out_unlock:
433         spin_unlock(&bd_mapping->private_lock);
434         page_cache_release(page);
435 out:
436         return ret;
437 }
438
439 /* If invalidate_buffers() will trash dirty buffers, it means some kind
440    of fs corruption is going on. Trashing dirty data always imply losing
441    information that was supposed to be just stored on the physical layer
442    by the user.
443
444    Thus invalidate_buffers in general usage is not allwowed to trash
445    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
446    be preserved.  These buffers are simply skipped.
447   
448    We also skip buffers which are still in use.  For example this can
449    happen if a userspace program is reading the block device.
450
451    NOTE: In the case where the user removed a removable-media-disk even if
452    there's still dirty data not synced on disk (due a bug in the device driver
453    or due an error of the user), by not destroying the dirty buffers we could
454    generate corruption also on the next media inserted, thus a parameter is
455    necessary to handle this case in the most safe way possible (trying
456    to not corrupt also the new disk inserted with the data belonging to
457    the old now corrupted disk). Also for the ramdisk the natural thing
458    to do in order to release the ramdisk memory is to destroy dirty buffers.
459
460    These are two special cases. Normal usage imply the device driver
461    to issue a sync on the device (without waiting I/O completion) and
462    then an invalidate_buffers call that doesn't trash dirty buffers.
463
464    For handling cache coherency with the blkdev pagecache the 'update' case
465    is been introduced. It is needed to re-read from disk any pinned
466    buffer. NOTE: re-reading from disk is destructive so we can do it only
467    when we assume nobody is changing the buffercache under our I/O and when
468    we think the disk contains more recent information than the buffercache.
469    The update == 1 pass marks the buffers we need to update, the update == 2
470    pass does the actual I/O. */
471 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
472 {
473         struct address_space *mapping = bdev->bd_inode->i_mapping;
474
475         if (mapping->nrpages == 0)
476                 return;
477
478         invalidate_bh_lrus();
479         /*
480          * FIXME: what about destroy_dirty_buffers?
481          * We really want to use invalidate_inode_pages2() for
482          * that, but not until that's cleaned up.
483          */
484         invalidate_inode_pages(mapping);
485 }
486
487 /*
488  * Kick pdflush then try to free up some ZONE_NORMAL memory.
489  */
490 static void free_more_memory(void)
491 {
492         struct zone **zones;
493         pg_data_t *pgdat;
494
495         wakeup_pdflush(1024);
496         yield();
497
498         for_each_online_pgdat(pgdat) {
499                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
500                 if (*zones)
501                         try_to_free_pages(zones, GFP_NOFS);
502         }
503 }
504
505 /*
506  * I/O completion handler for block_read_full_page() - pages
507  * which come unlocked at the end of I/O.
508  */
509 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
510 {
511         unsigned long flags;
512         struct buffer_head *first;
513         struct buffer_head *tmp;
514         struct page *page;
515         int page_uptodate = 1;
516
517         BUG_ON(!buffer_async_read(bh));
518
519         page = bh->b_page;
520         if (uptodate) {
521                 set_buffer_uptodate(bh);
522         } else {
523                 clear_buffer_uptodate(bh);
524                 if (printk_ratelimit())
525                         buffer_io_error(bh);
526                 SetPageError(page);
527         }
528
529         /*
530          * Be _very_ careful from here on. Bad things can happen if
531          * two buffer heads end IO at almost the same time and both
532          * decide that the page is now completely done.
533          */
534         first = page_buffers(page);
535         local_irq_save(flags);
536         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537         clear_buffer_async_read(bh);
538         unlock_buffer(bh);
539         tmp = bh;
540         do {
541                 if (!buffer_uptodate(tmp))
542                         page_uptodate = 0;
543                 if (buffer_async_read(tmp)) {
544                         BUG_ON(!buffer_locked(tmp));
545                         goto still_busy;
546                 }
547                 tmp = tmp->b_this_page;
548         } while (tmp != bh);
549         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
550         local_irq_restore(flags);
551
552         /*
553          * If none of the buffers had errors and they are all
554          * uptodate then we can set the page uptodate.
555          */
556         if (page_uptodate && !PageError(page))
557                 SetPageUptodate(page);
558         unlock_page(page);
559         return;
560
561 still_busy:
562         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
563         local_irq_restore(flags);
564         return;
565 }
566
567 /*
568  * Completion handler for block_write_full_page() - pages which are unlocked
569  * during I/O, and which have PageWriteback cleared upon I/O completion.
570  */
571 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
572 {
573         char b[BDEVNAME_SIZE];
574         unsigned long flags;
575         struct buffer_head *first;
576         struct buffer_head *tmp;
577         struct page *page;
578
579         BUG_ON(!buffer_async_write(bh));
580
581         page = bh->b_page;
582         if (uptodate) {
583                 set_buffer_uptodate(bh);
584         } else {
585                 if (printk_ratelimit()) {
586                         buffer_io_error(bh);
587                         printk(KERN_WARNING "lost page write due to "
588                                         "I/O error on %s\n",
589                                bdevname(bh->b_bdev, b));
590                 }
591                 set_bit(AS_EIO, &page->mapping->flags);
592                 clear_buffer_uptodate(bh);
593                 SetPageError(page);
594         }
595
596         first = page_buffers(page);
597         local_irq_save(flags);
598         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
599
600         clear_buffer_async_write(bh);
601         unlock_buffer(bh);
602         tmp = bh->b_this_page;
603         while (tmp != bh) {
604                 if (buffer_async_write(tmp)) {
605                         BUG_ON(!buffer_locked(tmp));
606                         goto still_busy;
607                 }
608                 tmp = tmp->b_this_page;
609         }
610         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
611         local_irq_restore(flags);
612         end_page_writeback(page);
613         return;
614
615 still_busy:
616         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617         local_irq_restore(flags);
618         return;
619 }
620
621 /*
622  * If a page's buffers are under async readin (end_buffer_async_read
623  * completion) then there is a possibility that another thread of
624  * control could lock one of the buffers after it has completed
625  * but while some of the other buffers have not completed.  This
626  * locked buffer would confuse end_buffer_async_read() into not unlocking
627  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
628  * that this buffer is not under async I/O.
629  *
630  * The page comes unlocked when it has no locked buffer_async buffers
631  * left.
632  *
633  * PageLocked prevents anyone starting new async I/O reads any of
634  * the buffers.
635  *
636  * PageWriteback is used to prevent simultaneous writeout of the same
637  * page.
638  *
639  * PageLocked prevents anyone from starting writeback of a page which is
640  * under read I/O (PageWriteback is only ever set against a locked page).
641  */
642 static void mark_buffer_async_read(struct buffer_head *bh)
643 {
644         bh->b_end_io = end_buffer_async_read;
645         set_buffer_async_read(bh);
646 }
647
648 void mark_buffer_async_write(struct buffer_head *bh)
649 {
650         bh->b_end_io = end_buffer_async_write;
651         set_buffer_async_write(bh);
652 }
653 EXPORT_SYMBOL(mark_buffer_async_write);
654
655
656 /*
657  * fs/buffer.c contains helper functions for buffer-backed address space's
658  * fsync functions.  A common requirement for buffer-based filesystems is
659  * that certain data from the backing blockdev needs to be written out for
660  * a successful fsync().  For example, ext2 indirect blocks need to be
661  * written back and waited upon before fsync() returns.
662  *
663  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
664  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
665  * management of a list of dependent buffers at ->i_mapping->private_list.
666  *
667  * Locking is a little subtle: try_to_free_buffers() will remove buffers
668  * from their controlling inode's queue when they are being freed.  But
669  * try_to_free_buffers() will be operating against the *blockdev* mapping
670  * at the time, not against the S_ISREG file which depends on those buffers.
671  * So the locking for private_list is via the private_lock in the address_space
672  * which backs the buffers.  Which is different from the address_space 
673  * against which the buffers are listed.  So for a particular address_space,
674  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
675  * mapping->private_list will always be protected by the backing blockdev's
676  * ->private_lock.
677  *
678  * Which introduces a requirement: all buffers on an address_space's
679  * ->private_list must be from the same address_space: the blockdev's.
680  *
681  * address_spaces which do not place buffers at ->private_list via these
682  * utility functions are free to use private_lock and private_list for
683  * whatever they want.  The only requirement is that list_empty(private_list)
684  * be true at clear_inode() time.
685  *
686  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
687  * filesystems should do that.  invalidate_inode_buffers() should just go
688  * BUG_ON(!list_empty).
689  *
690  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
691  * take an address_space, not an inode.  And it should be called
692  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
693  * queued up.
694  *
695  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
696  * list if it is already on a list.  Because if the buffer is on a list,
697  * it *must* already be on the right one.  If not, the filesystem is being
698  * silly.  This will save a ton of locking.  But first we have to ensure
699  * that buffers are taken *off* the old inode's list when they are freed
700  * (presumably in truncate).  That requires careful auditing of all
701  * filesystems (do it inside bforget()).  It could also be done by bringing
702  * b_inode back.
703  */
704
705 /*
706  * The buffer's backing address_space's private_lock must be held
707  */
708 static inline void __remove_assoc_queue(struct buffer_head *bh)
709 {
710         list_del_init(&bh->b_assoc_buffers);
711 }
712
713 int inode_has_buffers(struct inode *inode)
714 {
715         return !list_empty(&inode->i_data.private_list);
716 }
717
718 /*
719  * osync is designed to support O_SYNC io.  It waits synchronously for
720  * all already-submitted IO to complete, but does not queue any new
721  * writes to the disk.
722  *
723  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
724  * you dirty the buffers, and then use osync_inode_buffers to wait for
725  * completion.  Any other dirty buffers which are not yet queued for
726  * write will not be flushed to disk by the osync.
727  */
728 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
729 {
730         struct buffer_head *bh;
731         struct list_head *p;
732         int err = 0;
733
734         spin_lock(lock);
735 repeat:
736         list_for_each_prev(p, list) {
737                 bh = BH_ENTRY(p);
738                 if (buffer_locked(bh)) {
739                         get_bh(bh);
740                         spin_unlock(lock);
741                         wait_on_buffer(bh);
742                         if (!buffer_uptodate(bh))
743                                 err = -EIO;
744                         brelse(bh);
745                         spin_lock(lock);
746                         goto repeat;
747                 }
748         }
749         spin_unlock(lock);
750         return err;
751 }
752
753 /**
754  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
755  *                        buffers
756  * @mapping: the mapping which wants those buffers written
757  *
758  * Starts I/O against the buffers at mapping->private_list, and waits upon
759  * that I/O.
760  *
761  * Basically, this is a convenience function for fsync().
762  * @mapping is a file or directory which needs those buffers to be written for
763  * a successful fsync().
764  */
765 int sync_mapping_buffers(struct address_space *mapping)
766 {
767         struct address_space *buffer_mapping = mapping->assoc_mapping;
768
769         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
770                 return 0;
771
772         return fsync_buffers_list(&buffer_mapping->private_lock,
773                                         &mapping->private_list);
774 }
775 EXPORT_SYMBOL(sync_mapping_buffers);
776
777 /*
778  * Called when we've recently written block `bblock', and it is known that
779  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
780  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
781  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
782  */
783 void write_boundary_block(struct block_device *bdev,
784                         sector_t bblock, unsigned blocksize)
785 {
786         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
787         if (bh) {
788                 if (buffer_dirty(bh))
789                         ll_rw_block(WRITE, 1, &bh);
790                 put_bh(bh);
791         }
792 }
793
794 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
795 {
796         struct address_space *mapping = inode->i_mapping;
797         struct address_space *buffer_mapping = bh->b_page->mapping;
798
799         mark_buffer_dirty(bh);
800         if (!mapping->assoc_mapping) {
801                 mapping->assoc_mapping = buffer_mapping;
802         } else {
803                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
804         }
805         if (list_empty(&bh->b_assoc_buffers)) {
806                 spin_lock(&buffer_mapping->private_lock);
807                 list_move_tail(&bh->b_assoc_buffers,
808                                 &mapping->private_list);
809                 spin_unlock(&buffer_mapping->private_lock);
810         }
811 }
812 EXPORT_SYMBOL(mark_buffer_dirty_inode);
813
814 /*
815  * Add a page to the dirty page list.
816  *
817  * It is a sad fact of life that this function is called from several places
818  * deeply under spinlocking.  It may not sleep.
819  *
820  * If the page has buffers, the uptodate buffers are set dirty, to preserve
821  * dirty-state coherency between the page and the buffers.  It the page does
822  * not have buffers then when they are later attached they will all be set
823  * dirty.
824  *
825  * The buffers are dirtied before the page is dirtied.  There's a small race
826  * window in which a writepage caller may see the page cleanness but not the
827  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
828  * before the buffers, a concurrent writepage caller could clear the page dirty
829  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
830  * page on the dirty page list.
831  *
832  * We use private_lock to lock against try_to_free_buffers while using the
833  * page's buffer list.  Also use this to protect against clean buffers being
834  * added to the page after it was set dirty.
835  *
836  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
837  * address_space though.
838  */
839 int __set_page_dirty_buffers(struct page *page)
840 {
841         struct address_space * const mapping = page->mapping;
842
843         spin_lock(&mapping->private_lock);
844         if (page_has_buffers(page)) {
845                 struct buffer_head *head = page_buffers(page);
846                 struct buffer_head *bh = head;
847
848                 do {
849                         set_buffer_dirty(bh);
850                         bh = bh->b_this_page;
851                 } while (bh != head);
852         }
853         spin_unlock(&mapping->private_lock);
854
855         if (!TestSetPageDirty(page)) {
856                 write_lock_irq(&mapping->tree_lock);
857                 if (page->mapping) {    /* Race with truncate? */
858                         if (mapping_cap_account_dirty(mapping))
859                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
860                         radix_tree_tag_set(&mapping->page_tree,
861                                                 page_index(page),
862                                                 PAGECACHE_TAG_DIRTY);
863                 }
864                 write_unlock_irq(&mapping->tree_lock);
865                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
866                 return 1;
867         }
868         return 0;
869 }
870 EXPORT_SYMBOL(__set_page_dirty_buffers);
871
872 /*
873  * Write out and wait upon a list of buffers.
874  *
875  * We have conflicting pressures: we want to make sure that all
876  * initially dirty buffers get waited on, but that any subsequently
877  * dirtied buffers don't.  After all, we don't want fsync to last
878  * forever if somebody is actively writing to the file.
879  *
880  * Do this in two main stages: first we copy dirty buffers to a
881  * temporary inode list, queueing the writes as we go.  Then we clean
882  * up, waiting for those writes to complete.
883  * 
884  * During this second stage, any subsequent updates to the file may end
885  * up refiling the buffer on the original inode's dirty list again, so
886  * there is a chance we will end up with a buffer queued for write but
887  * not yet completed on that list.  So, as a final cleanup we go through
888  * the osync code to catch these locked, dirty buffers without requeuing
889  * any newly dirty buffers for write.
890  */
891 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
892 {
893         struct buffer_head *bh;
894         struct list_head tmp;
895         int err = 0, err2;
896
897         INIT_LIST_HEAD(&tmp);
898
899         spin_lock(lock);
900         while (!list_empty(list)) {
901                 bh = BH_ENTRY(list->next);
902                 list_del_init(&bh->b_assoc_buffers);
903                 if (buffer_dirty(bh) || buffer_locked(bh)) {
904                         list_add(&bh->b_assoc_buffers, &tmp);
905                         if (buffer_dirty(bh)) {
906                                 get_bh(bh);
907                                 spin_unlock(lock);
908                                 /*
909                                  * Ensure any pending I/O completes so that
910                                  * ll_rw_block() actually writes the current
911                                  * contents - it is a noop if I/O is still in
912                                  * flight on potentially older contents.
913                                  */
914                                 ll_rw_block(SWRITE, 1, &bh);
915                                 brelse(bh);
916                                 spin_lock(lock);
917                         }
918                 }
919         }
920
921         while (!list_empty(&tmp)) {
922                 bh = BH_ENTRY(tmp.prev);
923                 __remove_assoc_queue(bh);
924                 get_bh(bh);
925                 spin_unlock(lock);
926                 wait_on_buffer(bh);
927                 if (!buffer_uptodate(bh))
928                         err = -EIO;
929                 brelse(bh);
930                 spin_lock(lock);
931         }
932         
933         spin_unlock(lock);
934         err2 = osync_buffers_list(lock, list);
935         if (err)
936                 return err;
937         else
938                 return err2;
939 }
940
941 /*
942  * Invalidate any and all dirty buffers on a given inode.  We are
943  * probably unmounting the fs, but that doesn't mean we have already
944  * done a sync().  Just drop the buffers from the inode list.
945  *
946  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
947  * assumes that all the buffers are against the blockdev.  Not true
948  * for reiserfs.
949  */
950 void invalidate_inode_buffers(struct inode *inode)
951 {
952         if (inode_has_buffers(inode)) {
953                 struct address_space *mapping = &inode->i_data;
954                 struct list_head *list = &mapping->private_list;
955                 struct address_space *buffer_mapping = mapping->assoc_mapping;
956
957                 spin_lock(&buffer_mapping->private_lock);
958                 while (!list_empty(list))
959                         __remove_assoc_queue(BH_ENTRY(list->next));
960                 spin_unlock(&buffer_mapping->private_lock);
961         }
962 }
963
964 /*
965  * Remove any clean buffers from the inode's buffer list.  This is called
966  * when we're trying to free the inode itself.  Those buffers can pin it.
967  *
968  * Returns true if all buffers were removed.
969  */
970 int remove_inode_buffers(struct inode *inode)
971 {
972         int ret = 1;
973
974         if (inode_has_buffers(inode)) {
975                 struct address_space *mapping = &inode->i_data;
976                 struct list_head *list = &mapping->private_list;
977                 struct address_space *buffer_mapping = mapping->assoc_mapping;
978
979                 spin_lock(&buffer_mapping->private_lock);
980                 while (!list_empty(list)) {
981                         struct buffer_head *bh = BH_ENTRY(list->next);
982                         if (buffer_dirty(bh)) {
983                                 ret = 0;
984                                 break;
985                         }
986                         __remove_assoc_queue(bh);
987                 }
988                 spin_unlock(&buffer_mapping->private_lock);
989         }
990         return ret;
991 }
992
993 /*
994  * Create the appropriate buffers when given a page for data area and
995  * the size of each buffer.. Use the bh->b_this_page linked list to
996  * follow the buffers created.  Return NULL if unable to create more
997  * buffers.
998  *
999  * The retry flag is used to differentiate async IO (paging, swapping)
1000  * which may not fail from ordinary buffer allocations.
1001  */
1002 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1003                 int retry)
1004 {
1005         struct buffer_head *bh, *head;
1006         long offset;
1007
1008 try_again:
1009         head = NULL;
1010         offset = PAGE_SIZE;
1011         while ((offset -= size) >= 0) {
1012                 bh = alloc_buffer_head(GFP_NOFS);
1013                 if (!bh)
1014                         goto no_grow;
1015
1016                 bh->b_bdev = NULL;
1017                 bh->b_this_page = head;
1018                 bh->b_blocknr = -1;
1019                 head = bh;
1020
1021                 bh->b_state = 0;
1022                 atomic_set(&bh->b_count, 0);
1023                 bh->b_private = NULL;
1024                 bh->b_size = size;
1025
1026                 /* Link the buffer to its page */
1027                 set_bh_page(bh, page, offset);
1028
1029                 init_buffer(bh, NULL, NULL);
1030         }
1031         return head;
1032 /*
1033  * In case anything failed, we just free everything we got.
1034  */
1035 no_grow:
1036         if (head) {
1037                 do {
1038                         bh = head;
1039                         head = head->b_this_page;
1040                         free_buffer_head(bh);
1041                 } while (head);
1042         }
1043
1044         /*
1045          * Return failure for non-async IO requests.  Async IO requests
1046          * are not allowed to fail, so we have to wait until buffer heads
1047          * become available.  But we don't want tasks sleeping with 
1048          * partially complete buffers, so all were released above.
1049          */
1050         if (!retry)
1051                 return NULL;
1052
1053         /* We're _really_ low on memory. Now we just
1054          * wait for old buffer heads to become free due to
1055          * finishing IO.  Since this is an async request and
1056          * the reserve list is empty, we're sure there are 
1057          * async buffer heads in use.
1058          */
1059         free_more_memory();
1060         goto try_again;
1061 }
1062 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1063
1064 static inline void
1065 link_dev_buffers(struct page *page, struct buffer_head *head)
1066 {
1067         struct buffer_head *bh, *tail;
1068
1069         bh = head;
1070         do {
1071                 tail = bh;
1072                 bh = bh->b_this_page;
1073         } while (bh);
1074         tail->b_this_page = head;
1075         attach_page_buffers(page, head);
1076 }
1077
1078 /*
1079  * Initialise the state of a blockdev page's buffers.
1080  */ 
1081 static void
1082 init_page_buffers(struct page *page, struct block_device *bdev,
1083                         sector_t block, int size)
1084 {
1085         struct buffer_head *head = page_buffers(page);
1086         struct buffer_head *bh = head;
1087         int uptodate = PageUptodate(page);
1088
1089         do {
1090                 if (!buffer_mapped(bh)) {
1091                         init_buffer(bh, NULL, NULL);
1092                         bh->b_bdev = bdev;
1093                         bh->b_blocknr = block;
1094                         if (uptodate)
1095                                 set_buffer_uptodate(bh);
1096                         set_buffer_mapped(bh);
1097                 }
1098                 block++;
1099                 bh = bh->b_this_page;
1100         } while (bh != head);
1101 }
1102
1103 /*
1104  * Create the page-cache page that contains the requested block.
1105  *
1106  * This is user purely for blockdev mappings.
1107  */
1108 static struct page *
1109 grow_dev_page(struct block_device *bdev, sector_t block,
1110                 pgoff_t index, int size)
1111 {
1112         struct inode *inode = bdev->bd_inode;
1113         struct page *page;
1114         struct buffer_head *bh;
1115
1116         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1117         if (!page)
1118                 return NULL;
1119
1120         BUG_ON(!PageLocked(page));
1121
1122         if (page_has_buffers(page)) {
1123                 bh = page_buffers(page);
1124                 if (bh->b_size == size) {
1125                         init_page_buffers(page, bdev, block, size);
1126                         return page;
1127                 }
1128                 if (!try_to_free_buffers(page))
1129                         goto failed;
1130         }
1131
1132         /*
1133          * Allocate some buffers for this page
1134          */
1135         bh = alloc_page_buffers(page, size, 0);
1136         if (!bh)
1137                 goto failed;
1138
1139         /*
1140          * Link the page to the buffers and initialise them.  Take the
1141          * lock to be atomic wrt __find_get_block(), which does not
1142          * run under the page lock.
1143          */
1144         spin_lock(&inode->i_mapping->private_lock);
1145         link_dev_buffers(page, bh);
1146         init_page_buffers(page, bdev, block, size);
1147         spin_unlock(&inode->i_mapping->private_lock);
1148         return page;
1149
1150 failed:
1151         BUG();
1152         unlock_page(page);
1153         page_cache_release(page);
1154         return NULL;
1155 }
1156
1157 /*
1158  * Create buffers for the specified block device block's page.  If
1159  * that page was dirty, the buffers are set dirty also.
1160  *
1161  * Except that's a bug.  Attaching dirty buffers to a dirty
1162  * blockdev's page can result in filesystem corruption, because
1163  * some of those buffers may be aliases of filesystem data.
1164  * grow_dev_page() will go BUG() if this happens.
1165  */
1166 static int
1167 grow_buffers(struct block_device *bdev, sector_t block, int size)
1168 {
1169         struct page *page;
1170         pgoff_t index;
1171         int sizebits;
1172
1173         sizebits = -1;
1174         do {
1175                 sizebits++;
1176         } while ((size << sizebits) < PAGE_SIZE);
1177
1178         index = block >> sizebits;
1179         block = index << sizebits;
1180
1181         /* Create a page with the proper size buffers.. */
1182         page = grow_dev_page(bdev, block, index, size);
1183         if (!page)
1184                 return 0;
1185         unlock_page(page);
1186         page_cache_release(page);
1187         return 1;
1188 }
1189
1190 static struct buffer_head *
1191 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1192 {
1193         /* Size must be multiple of hard sectorsize */
1194         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1195                         (size < 512 || size > PAGE_SIZE))) {
1196                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1197                                         size);
1198                 printk(KERN_ERR "hardsect size: %d\n",
1199                                         bdev_hardsect_size(bdev));
1200
1201                 dump_stack();
1202                 return NULL;
1203         }
1204
1205         for (;;) {
1206                 struct buffer_head * bh;
1207
1208                 bh = __find_get_block(bdev, block, size);
1209                 if (bh)
1210                         return bh;
1211
1212                 if (!grow_buffers(bdev, block, size))
1213                         free_more_memory();
1214         }
1215 }
1216
1217 /*
1218  * The relationship between dirty buffers and dirty pages:
1219  *
1220  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1221  * the page is tagged dirty in its radix tree.
1222  *
1223  * At all times, the dirtiness of the buffers represents the dirtiness of
1224  * subsections of the page.  If the page has buffers, the page dirty bit is
1225  * merely a hint about the true dirty state.
1226  *
1227  * When a page is set dirty in its entirety, all its buffers are marked dirty
1228  * (if the page has buffers).
1229  *
1230  * When a buffer is marked dirty, its page is dirtied, but the page's other
1231  * buffers are not.
1232  *
1233  * Also.  When blockdev buffers are explicitly read with bread(), they
1234  * individually become uptodate.  But their backing page remains not
1235  * uptodate - even if all of its buffers are uptodate.  A subsequent
1236  * block_read_full_page() against that page will discover all the uptodate
1237  * buffers, will set the page uptodate and will perform no I/O.
1238  */
1239
1240 /**
1241  * mark_buffer_dirty - mark a buffer_head as needing writeout
1242  * @bh: the buffer_head to mark dirty
1243  *
1244  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1245  * backing page dirty, then tag the page as dirty in its address_space's radix
1246  * tree and then attach the address_space's inode to its superblock's dirty
1247  * inode list.
1248  *
1249  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1250  * mapping->tree_lock and the global inode_lock.
1251  */
1252 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1253 {
1254         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1255                 __set_page_dirty_nobuffers(bh->b_page);
1256 }
1257
1258 /*
1259  * Decrement a buffer_head's reference count.  If all buffers against a page
1260  * have zero reference count, are clean and unlocked, and if the page is clean
1261  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1262  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1263  * a page but it ends up not being freed, and buffers may later be reattached).
1264  */
1265 void __brelse(struct buffer_head * buf)
1266 {
1267         if (atomic_read(&buf->b_count)) {
1268                 put_bh(buf);
1269                 return;
1270         }
1271         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1272         WARN_ON(1);
1273 }
1274
1275 /*
1276  * bforget() is like brelse(), except it discards any
1277  * potentially dirty data.
1278  */
1279 void __bforget(struct buffer_head *bh)
1280 {
1281         clear_buffer_dirty(bh);
1282         if (!list_empty(&bh->b_assoc_buffers)) {
1283                 struct address_space *buffer_mapping = bh->b_page->mapping;
1284
1285                 spin_lock(&buffer_mapping->private_lock);
1286                 list_del_init(&bh->b_assoc_buffers);
1287                 spin_unlock(&buffer_mapping->private_lock);
1288         }
1289         __brelse(bh);
1290 }
1291
1292 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1293 {
1294         lock_buffer(bh);
1295         if (buffer_uptodate(bh)) {
1296                 unlock_buffer(bh);
1297                 return bh;
1298         } else {
1299                 get_bh(bh);
1300                 bh->b_end_io = end_buffer_read_sync;
1301                 submit_bh(READ, bh);
1302                 wait_on_buffer(bh);
1303                 if (buffer_uptodate(bh))
1304                         return bh;
1305         }
1306         brelse(bh);
1307         return NULL;
1308 }
1309
1310 /*
1311  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1312  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1313  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1314  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1315  * CPU's LRUs at the same time.
1316  *
1317  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1318  * sb_find_get_block().
1319  *
1320  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1321  * a local interrupt disable for that.
1322  */
1323
1324 #define BH_LRU_SIZE     8
1325
1326 struct bh_lru {
1327         struct buffer_head *bhs[BH_LRU_SIZE];
1328 };
1329
1330 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1331
1332 #ifdef CONFIG_SMP
1333 #define bh_lru_lock()   local_irq_disable()
1334 #define bh_lru_unlock() local_irq_enable()
1335 #else
1336 #define bh_lru_lock()   preempt_disable()
1337 #define bh_lru_unlock() preempt_enable()
1338 #endif
1339
1340 static inline void check_irqs_on(void)
1341 {
1342 #ifdef irqs_disabled
1343         BUG_ON(irqs_disabled());
1344 #endif
1345 }
1346
1347 /*
1348  * The LRU management algorithm is dopey-but-simple.  Sorry.
1349  */
1350 static void bh_lru_install(struct buffer_head *bh)
1351 {
1352         struct buffer_head *evictee = NULL;
1353         struct bh_lru *lru;
1354
1355         check_irqs_on();
1356         bh_lru_lock();
1357         lru = &__get_cpu_var(bh_lrus);
1358         if (lru->bhs[0] != bh) {
1359                 struct buffer_head *bhs[BH_LRU_SIZE];
1360                 int in;
1361                 int out = 0;
1362
1363                 get_bh(bh);
1364                 bhs[out++] = bh;
1365                 for (in = 0; in < BH_LRU_SIZE; in++) {
1366                         struct buffer_head *bh2 = lru->bhs[in];
1367
1368                         if (bh2 == bh) {
1369                                 __brelse(bh2);
1370                         } else {
1371                                 if (out >= BH_LRU_SIZE) {
1372                                         BUG_ON(evictee != NULL);
1373                                         evictee = bh2;
1374                                 } else {
1375                                         bhs[out++] = bh2;
1376                                 }
1377                         }
1378                 }
1379                 while (out < BH_LRU_SIZE)
1380                         bhs[out++] = NULL;
1381                 memcpy(lru->bhs, bhs, sizeof(bhs));
1382         }
1383         bh_lru_unlock();
1384
1385         if (evictee)
1386                 __brelse(evictee);
1387 }
1388
1389 /*
1390  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1391  */
1392 static struct buffer_head *
1393 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1394 {
1395         struct buffer_head *ret = NULL;
1396         struct bh_lru *lru;
1397         int i;
1398
1399         check_irqs_on();
1400         bh_lru_lock();
1401         lru = &__get_cpu_var(bh_lrus);
1402         for (i = 0; i < BH_LRU_SIZE; i++) {
1403                 struct buffer_head *bh = lru->bhs[i];
1404
1405                 if (bh && bh->b_bdev == bdev &&
1406                                 bh->b_blocknr == block && bh->b_size == size) {
1407                         if (i) {
1408                                 while (i) {
1409                                         lru->bhs[i] = lru->bhs[i - 1];
1410                                         i--;
1411                                 }
1412                                 lru->bhs[0] = bh;
1413                         }
1414                         get_bh(bh);
1415                         ret = bh;
1416                         break;
1417                 }
1418         }
1419         bh_lru_unlock();
1420         return ret;
1421 }
1422
1423 /*
1424  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1425  * it in the LRU and mark it as accessed.  If it is not present then return
1426  * NULL
1427  */
1428 struct buffer_head *
1429 __find_get_block(struct block_device *bdev, sector_t block, int size)
1430 {
1431         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1432
1433         if (bh == NULL) {
1434                 bh = __find_get_block_slow(bdev, block);
1435                 if (bh)
1436                         bh_lru_install(bh);
1437         }
1438         if (bh)
1439                 touch_buffer(bh);
1440         return bh;
1441 }
1442 EXPORT_SYMBOL(__find_get_block);
1443
1444 /*
1445  * __getblk will locate (and, if necessary, create) the buffer_head
1446  * which corresponds to the passed block_device, block and size. The
1447  * returned buffer has its reference count incremented.
1448  *
1449  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1450  * illegal block number, __getblk() will happily return a buffer_head
1451  * which represents the non-existent block.  Very weird.
1452  *
1453  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1454  * attempt is failing.  FIXME, perhaps?
1455  */
1456 struct buffer_head *
1457 __getblk(struct block_device *bdev, sector_t block, int size)
1458 {
1459         struct buffer_head *bh = __find_get_block(bdev, block, size);
1460
1461         might_sleep();
1462         if (bh == NULL)
1463                 bh = __getblk_slow(bdev, block, size);
1464         return bh;
1465 }
1466 EXPORT_SYMBOL(__getblk);
1467
1468 /*
1469  * Do async read-ahead on a buffer..
1470  */
1471 void __breadahead(struct block_device *bdev, sector_t block, int size)
1472 {
1473         struct buffer_head *bh = __getblk(bdev, block, size);
1474         if (likely(bh)) {
1475                 ll_rw_block(READA, 1, &bh);
1476                 brelse(bh);
1477         }
1478 }
1479 EXPORT_SYMBOL(__breadahead);
1480
1481 /**
1482  *  __bread() - reads a specified block and returns the bh
1483  *  @bdev: the block_device to read from
1484  *  @block: number of block
1485  *  @size: size (in bytes) to read
1486  * 
1487  *  Reads a specified block, and returns buffer head that contains it.
1488  *  It returns NULL if the block was unreadable.
1489  */
1490 struct buffer_head *
1491 __bread(struct block_device *bdev, sector_t block, int size)
1492 {
1493         struct buffer_head *bh = __getblk(bdev, block, size);
1494
1495         if (likely(bh) && !buffer_uptodate(bh))
1496                 bh = __bread_slow(bh);
1497         return bh;
1498 }
1499 EXPORT_SYMBOL(__bread);
1500
1501 /*
1502  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1503  * This doesn't race because it runs in each cpu either in irq
1504  * or with preempt disabled.
1505  */
1506 static void invalidate_bh_lru(void *arg)
1507 {
1508         struct bh_lru *b = &get_cpu_var(bh_lrus);
1509         int i;
1510
1511         for (i = 0; i < BH_LRU_SIZE; i++) {
1512                 brelse(b->bhs[i]);
1513                 b->bhs[i] = NULL;
1514         }
1515         put_cpu_var(bh_lrus);
1516 }
1517         
1518 static void invalidate_bh_lrus(void)
1519 {
1520         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1521 }
1522
1523 void set_bh_page(struct buffer_head *bh,
1524                 struct page *page, unsigned long offset)
1525 {
1526         bh->b_page = page;
1527         BUG_ON(offset >= PAGE_SIZE);
1528         if (PageHighMem(page))
1529                 /*
1530                  * This catches illegal uses and preserves the offset:
1531                  */
1532                 bh->b_data = (char *)(0 + offset);
1533         else
1534                 bh->b_data = page_address(page) + offset;
1535 }
1536 EXPORT_SYMBOL(set_bh_page);
1537
1538 /*
1539  * Called when truncating a buffer on a page completely.
1540  */
1541 static void discard_buffer(struct buffer_head * bh)
1542 {
1543         lock_buffer(bh);
1544         clear_buffer_dirty(bh);
1545         bh->b_bdev = NULL;
1546         clear_buffer_mapped(bh);
1547         clear_buffer_req(bh);
1548         clear_buffer_new(bh);
1549         clear_buffer_delay(bh);
1550         unlock_buffer(bh);
1551 }
1552
1553 /**
1554  * try_to_release_page() - release old fs-specific metadata on a page
1555  *
1556  * @page: the page which the kernel is trying to free
1557  * @gfp_mask: memory allocation flags (and I/O mode)
1558  *
1559  * The address_space is to try to release any data against the page
1560  * (presumably at page->private).  If the release was successful, return `1'.
1561  * Otherwise return zero.
1562  *
1563  * The @gfp_mask argument specifies whether I/O may be performed to release
1564  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1565  *
1566  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1567  */
1568 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1569 {
1570         struct address_space * const mapping = page->mapping;
1571
1572         BUG_ON(!PageLocked(page));
1573         if (PageWriteback(page))
1574                 return 0;
1575         
1576         if (mapping && mapping->a_ops->releasepage)
1577                 return mapping->a_ops->releasepage(page, gfp_mask);
1578         return try_to_free_buffers(page);
1579 }
1580 EXPORT_SYMBOL(try_to_release_page);
1581
1582 /**
1583  * block_invalidatepage - invalidate part of all of a buffer-backed page
1584  *
1585  * @page: the page which is affected
1586  * @offset: the index of the truncation point
1587  *
1588  * block_invalidatepage() is called when all or part of the page has become
1589  * invalidatedby a truncate operation.
1590  *
1591  * block_invalidatepage() does not have to release all buffers, but it must
1592  * ensure that no dirty buffer is left outside @offset and that no I/O
1593  * is underway against any of the blocks which are outside the truncation
1594  * point.  Because the caller is about to free (and possibly reuse) those
1595  * blocks on-disk.
1596  */
1597 void block_invalidatepage(struct page *page, unsigned long offset)
1598 {
1599         struct buffer_head *head, *bh, *next;
1600         unsigned int curr_off = 0;
1601
1602         BUG_ON(!PageLocked(page));
1603         if (!page_has_buffers(page))
1604                 goto out;
1605
1606         head = page_buffers(page);
1607         bh = head;
1608         do {
1609                 unsigned int next_off = curr_off + bh->b_size;
1610                 next = bh->b_this_page;
1611
1612                 /*
1613                  * is this block fully invalidated?
1614                  */
1615                 if (offset <= curr_off)
1616                         discard_buffer(bh);
1617                 curr_off = next_off;
1618                 bh = next;
1619         } while (bh != head);
1620
1621         /*
1622          * We release buffers only if the entire page is being invalidated.
1623          * The get_block cached value has been unconditionally invalidated,
1624          * so real IO is not possible anymore.
1625          */
1626         if (offset == 0)
1627                 try_to_release_page(page, 0);
1628 out:
1629         return;
1630 }
1631 EXPORT_SYMBOL(block_invalidatepage);
1632
1633 void do_invalidatepage(struct page *page, unsigned long offset)
1634 {
1635         void (*invalidatepage)(struct page *, unsigned long);
1636         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1637                 block_invalidatepage;
1638         (*invalidatepage)(page, offset);
1639 }
1640
1641 /*
1642  * We attach and possibly dirty the buffers atomically wrt
1643  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1644  * is already excluded via the page lock.
1645  */
1646 void create_empty_buffers(struct page *page,
1647                         unsigned long blocksize, unsigned long b_state)
1648 {
1649         struct buffer_head *bh, *head, *tail;
1650
1651         head = alloc_page_buffers(page, blocksize, 1);
1652         bh = head;
1653         do {
1654                 bh->b_state |= b_state;
1655                 tail = bh;
1656                 bh = bh->b_this_page;
1657         } while (bh);
1658         tail->b_this_page = head;
1659
1660         spin_lock(&page->mapping->private_lock);
1661         if (PageUptodate(page) || PageDirty(page)) {
1662                 bh = head;
1663                 do {
1664                         if (PageDirty(page))
1665                                 set_buffer_dirty(bh);
1666                         if (PageUptodate(page))
1667                                 set_buffer_uptodate(bh);
1668                         bh = bh->b_this_page;
1669                 } while (bh != head);
1670         }
1671         attach_page_buffers(page, head);
1672         spin_unlock(&page->mapping->private_lock);
1673 }
1674 EXPORT_SYMBOL(create_empty_buffers);
1675
1676 /*
1677  * We are taking a block for data and we don't want any output from any
1678  * buffer-cache aliases starting from return from that function and
1679  * until the moment when something will explicitly mark the buffer
1680  * dirty (hopefully that will not happen until we will free that block ;-)
1681  * We don't even need to mark it not-uptodate - nobody can expect
1682  * anything from a newly allocated buffer anyway. We used to used
1683  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1684  * don't want to mark the alias unmapped, for example - it would confuse
1685  * anyone who might pick it with bread() afterwards...
1686  *
1687  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1688  * be writeout I/O going on against recently-freed buffers.  We don't
1689  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1690  * only if we really need to.  That happens here.
1691  */
1692 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1693 {
1694         struct buffer_head *old_bh;
1695
1696         might_sleep();
1697
1698         old_bh = __find_get_block_slow(bdev, block);
1699         if (old_bh) {
1700                 clear_buffer_dirty(old_bh);
1701                 wait_on_buffer(old_bh);
1702                 clear_buffer_req(old_bh);
1703                 __brelse(old_bh);
1704         }
1705 }
1706 EXPORT_SYMBOL(unmap_underlying_metadata);
1707
1708 /*
1709  * NOTE! All mapped/uptodate combinations are valid:
1710  *
1711  *      Mapped  Uptodate        Meaning
1712  *
1713  *      No      No              "unknown" - must do get_block()
1714  *      No      Yes             "hole" - zero-filled
1715  *      Yes     No              "allocated" - allocated on disk, not read in
1716  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1717  *
1718  * "Dirty" is valid only with the last case (mapped+uptodate).
1719  */
1720
1721 /*
1722  * While block_write_full_page is writing back the dirty buffers under
1723  * the page lock, whoever dirtied the buffers may decide to clean them
1724  * again at any time.  We handle that by only looking at the buffer
1725  * state inside lock_buffer().
1726  *
1727  * If block_write_full_page() is called for regular writeback
1728  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1729  * locked buffer.   This only can happen if someone has written the buffer
1730  * directly, with submit_bh().  At the address_space level PageWriteback
1731  * prevents this contention from occurring.
1732  */
1733 static int __block_write_full_page(struct inode *inode, struct page *page,
1734                         get_block_t *get_block, struct writeback_control *wbc)
1735 {
1736         int err;
1737         sector_t block;
1738         sector_t last_block;
1739         struct buffer_head *bh, *head;
1740         const unsigned blocksize = 1 << inode->i_blkbits;
1741         int nr_underway = 0;
1742
1743         BUG_ON(!PageLocked(page));
1744
1745         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1746
1747         if (!page_has_buffers(page)) {
1748                 create_empty_buffers(page, blocksize,
1749                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1750         }
1751
1752         /*
1753          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1754          * here, and the (potentially unmapped) buffers may become dirty at
1755          * any time.  If a buffer becomes dirty here after we've inspected it
1756          * then we just miss that fact, and the page stays dirty.
1757          *
1758          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1759          * handle that here by just cleaning them.
1760          */
1761
1762         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1763         head = page_buffers(page);
1764         bh = head;
1765
1766         /*
1767          * Get all the dirty buffers mapped to disk addresses and
1768          * handle any aliases from the underlying blockdev's mapping.
1769          */
1770         do {
1771                 if (block > last_block) {
1772                         /*
1773                          * mapped buffers outside i_size will occur, because
1774                          * this page can be outside i_size when there is a
1775                          * truncate in progress.
1776                          */
1777                         /*
1778                          * The buffer was zeroed by block_write_full_page()
1779                          */
1780                         clear_buffer_dirty(bh);
1781                         set_buffer_uptodate(bh);
1782                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1783                         WARN_ON(bh->b_size != blocksize);
1784                         err = get_block(inode, block, bh, 1);
1785                         if (err)
1786                                 goto recover;
1787                         if (buffer_new(bh)) {
1788                                 /* blockdev mappings never come here */
1789                                 clear_buffer_new(bh);
1790                                 unmap_underlying_metadata(bh->b_bdev,
1791                                                         bh->b_blocknr);
1792                         }
1793                 }
1794                 bh = bh->b_this_page;
1795                 block++;
1796         } while (bh != head);
1797
1798         do {
1799                 if (!buffer_mapped(bh))
1800                         continue;
1801                 /*
1802                  * If it's a fully non-blocking write attempt and we cannot
1803                  * lock the buffer then redirty the page.  Note that this can
1804                  * potentially cause a busy-wait loop from pdflush and kswapd
1805                  * activity, but those code paths have their own higher-level
1806                  * throttling.
1807                  */
1808                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1809                         lock_buffer(bh);
1810                 } else if (test_set_buffer_locked(bh)) {
1811                         redirty_page_for_writepage(wbc, page);
1812                         continue;
1813                 }
1814                 if (test_clear_buffer_dirty(bh)) {
1815                         mark_buffer_async_write(bh);
1816                 } else {
1817                         unlock_buffer(bh);
1818                 }
1819         } while ((bh = bh->b_this_page) != head);
1820
1821         /*
1822          * The page and its buffers are protected by PageWriteback(), so we can
1823          * drop the bh refcounts early.
1824          */
1825         BUG_ON(PageWriteback(page));
1826         set_page_writeback(page);
1827
1828         do {
1829                 struct buffer_head *next = bh->b_this_page;
1830                 if (buffer_async_write(bh)) {
1831                         submit_bh(WRITE, bh);
1832                         nr_underway++;
1833                 }
1834                 bh = next;
1835         } while (bh != head);
1836         unlock_page(page);
1837
1838         err = 0;
1839 done:
1840         if (nr_underway == 0) {
1841                 /*
1842                  * The page was marked dirty, but the buffers were
1843                  * clean.  Someone wrote them back by hand with
1844                  * ll_rw_block/submit_bh.  A rare case.
1845                  */
1846                 int uptodate = 1;
1847                 do {
1848                         if (!buffer_uptodate(bh)) {
1849                                 uptodate = 0;
1850                                 break;
1851                         }
1852                         bh = bh->b_this_page;
1853                 } while (bh != head);
1854                 if (uptodate)
1855                         SetPageUptodate(page);
1856                 end_page_writeback(page);
1857                 /*
1858                  * The page and buffer_heads can be released at any time from
1859                  * here on.
1860                  */
1861                 wbc->pages_skipped++;   /* We didn't write this page */
1862         }
1863         return err;
1864
1865 recover:
1866         /*
1867          * ENOSPC, or some other error.  We may already have added some
1868          * blocks to the file, so we need to write these out to avoid
1869          * exposing stale data.
1870          * The page is currently locked and not marked for writeback
1871          */
1872         bh = head;
1873         /* Recovery: lock and submit the mapped buffers */
1874         do {
1875                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1876                         lock_buffer(bh);
1877                         mark_buffer_async_write(bh);
1878                 } else {
1879                         /*
1880                          * The buffer may have been set dirty during
1881                          * attachment to a dirty page.
1882                          */
1883                         clear_buffer_dirty(bh);
1884                 }
1885         } while ((bh = bh->b_this_page) != head);
1886         SetPageError(page);
1887         BUG_ON(PageWriteback(page));
1888         set_page_writeback(page);
1889         unlock_page(page);
1890         do {
1891                 struct buffer_head *next = bh->b_this_page;
1892                 if (buffer_async_write(bh)) {
1893                         clear_buffer_dirty(bh);
1894                         submit_bh(WRITE, bh);
1895                         nr_underway++;
1896                 }
1897                 bh = next;
1898         } while (bh != head);
1899         goto done;
1900 }
1901
1902 static int __block_prepare_write(struct inode *inode, struct page *page,
1903                 unsigned from, unsigned to, get_block_t *get_block)
1904 {
1905         unsigned block_start, block_end;
1906         sector_t block;
1907         int err = 0;
1908         unsigned blocksize, bbits;
1909         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1910
1911         BUG_ON(!PageLocked(page));
1912         BUG_ON(from > PAGE_CACHE_SIZE);
1913         BUG_ON(to > PAGE_CACHE_SIZE);
1914         BUG_ON(from > to);
1915
1916         blocksize = 1 << inode->i_blkbits;
1917         if (!page_has_buffers(page))
1918                 create_empty_buffers(page, blocksize, 0);
1919         head = page_buffers(page);
1920
1921         bbits = inode->i_blkbits;
1922         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1923
1924         for(bh = head, block_start = 0; bh != head || !block_start;
1925             block++, block_start=block_end, bh = bh->b_this_page) {
1926                 block_end = block_start + blocksize;
1927                 if (block_end <= from || block_start >= to) {
1928                         if (PageUptodate(page)) {
1929                                 if (!buffer_uptodate(bh))
1930                                         set_buffer_uptodate(bh);
1931                         }
1932                         continue;
1933                 }
1934                 if (buffer_new(bh))
1935                         clear_buffer_new(bh);
1936                 if (!buffer_mapped(bh)) {
1937                         WARN_ON(bh->b_size != blocksize);
1938                         err = get_block(inode, block, bh, 1);
1939                         if (err)
1940                                 break;
1941                         if (buffer_new(bh)) {
1942                                 unmap_underlying_metadata(bh->b_bdev,
1943                                                         bh->b_blocknr);
1944                                 if (PageUptodate(page)) {
1945                                         set_buffer_uptodate(bh);
1946                                         continue;
1947                                 }
1948                                 if (block_end > to || block_start < from) {
1949                                         void *kaddr;
1950
1951                                         kaddr = kmap_atomic(page, KM_USER0);
1952                                         if (block_end > to)
1953                                                 memset(kaddr+to, 0,
1954                                                         block_end-to);
1955                                         if (block_start < from)
1956                                                 memset(kaddr+block_start,
1957                                                         0, from-block_start);
1958                                         flush_dcache_page(page);
1959                                         kunmap_atomic(kaddr, KM_USER0);
1960                                 }
1961                                 continue;
1962                         }
1963                 }
1964                 if (PageUptodate(page)) {
1965                         if (!buffer_uptodate(bh))
1966                                 set_buffer_uptodate(bh);
1967                         continue; 
1968                 }
1969                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1970                      (block_start < from || block_end > to)) {
1971                         ll_rw_block(READ, 1, &bh);
1972                         *wait_bh++=bh;
1973                 }
1974         }
1975         /*
1976          * If we issued read requests - let them complete.
1977          */
1978         while(wait_bh > wait) {
1979                 wait_on_buffer(*--wait_bh);
1980                 if (!buffer_uptodate(*wait_bh))
1981                         err = -EIO;
1982         }
1983         if (!err) {
1984                 bh = head;
1985                 do {
1986                         if (buffer_new(bh))
1987                                 clear_buffer_new(bh);
1988                 } while ((bh = bh->b_this_page) != head);
1989                 return 0;
1990         }
1991         /* Error case: */
1992         /*
1993          * Zero out any newly allocated blocks to avoid exposing stale
1994          * data.  If BH_New is set, we know that the block was newly
1995          * allocated in the above loop.
1996          */
1997         bh = head;
1998         block_start = 0;
1999         do {
2000                 block_end = block_start+blocksize;
2001                 if (block_end <= from)
2002                         goto next_bh;
2003                 if (block_start >= to)
2004                         break;
2005                 if (buffer_new(bh)) {
2006                         void *kaddr;
2007
2008                         clear_buffer_new(bh);
2009                         kaddr = kmap_atomic(page, KM_USER0);
2010                         memset(kaddr+block_start, 0, bh->b_size);
2011                         kunmap_atomic(kaddr, KM_USER0);
2012                         set_buffer_uptodate(bh);
2013                         mark_buffer_dirty(bh);
2014                 }
2015 next_bh:
2016                 block_start = block_end;
2017                 bh = bh->b_this_page;
2018         } while (bh != head);
2019         return err;
2020 }
2021
2022 static int __block_commit_write(struct inode *inode, struct page *page,
2023                 unsigned from, unsigned to)
2024 {
2025         unsigned block_start, block_end;
2026         int partial = 0;
2027         unsigned blocksize;
2028         struct buffer_head *bh, *head;
2029
2030         blocksize = 1 << inode->i_blkbits;
2031
2032         for(bh = head = page_buffers(page), block_start = 0;
2033             bh != head || !block_start;
2034             block_start=block_end, bh = bh->b_this_page) {
2035                 block_end = block_start + blocksize;
2036                 if (block_end <= from || block_start >= to) {
2037                         if (!buffer_uptodate(bh))
2038                                 partial = 1;
2039                 } else {
2040                         set_buffer_uptodate(bh);
2041                         mark_buffer_dirty(bh);
2042                 }
2043         }
2044
2045         /*
2046          * If this is a partial write which happened to make all buffers
2047          * uptodate then we can optimize away a bogus readpage() for
2048          * the next read(). Here we 'discover' whether the page went
2049          * uptodate as a result of this (potentially partial) write.
2050          */
2051         if (!partial)
2052                 SetPageUptodate(page);
2053         return 0;
2054 }
2055
2056 /*
2057  * Generic "read page" function for block devices that have the normal
2058  * get_block functionality. This is most of the block device filesystems.
2059  * Reads the page asynchronously --- the unlock_buffer() and
2060  * set/clear_buffer_uptodate() functions propagate buffer state into the
2061  * page struct once IO has completed.
2062  */
2063 int block_read_full_page(struct page *page, get_block_t *get_block)
2064 {
2065         struct inode *inode = page->mapping->host;
2066         sector_t iblock, lblock;
2067         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2068         unsigned int blocksize;
2069         int nr, i;
2070         int fully_mapped = 1;
2071
2072         BUG_ON(!PageLocked(page));
2073         blocksize = 1 << inode->i_blkbits;
2074         if (!page_has_buffers(page))
2075                 create_empty_buffers(page, blocksize, 0);
2076         head = page_buffers(page);
2077
2078         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2079         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2080         bh = head;
2081         nr = 0;
2082         i = 0;
2083
2084         do {
2085                 if (buffer_uptodate(bh))
2086                         continue;
2087
2088                 if (!buffer_mapped(bh)) {
2089                         int err = 0;
2090
2091                         fully_mapped = 0;
2092                         if (iblock < lblock) {
2093                                 WARN_ON(bh->b_size != blocksize);
2094                                 err = get_block(inode, iblock, bh, 0);
2095                                 if (err)
2096                                         SetPageError(page);
2097                         }
2098                         if (!buffer_mapped(bh)) {
2099                                 void *kaddr = kmap_atomic(page, KM_USER0);
2100                                 memset(kaddr + i * blocksize, 0, blocksize);
2101                                 flush_dcache_page(page);
2102                                 kunmap_atomic(kaddr, KM_USER0);
2103                                 if (!err)
2104                                         set_buffer_uptodate(bh);
2105                                 continue;
2106                         }
2107                         /*
2108                          * get_block() might have updated the buffer
2109                          * synchronously
2110                          */
2111                         if (buffer_uptodate(bh))
2112                                 continue;
2113                 }
2114                 arr[nr++] = bh;
2115         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2116
2117         if (fully_mapped)
2118                 SetPageMappedToDisk(page);
2119
2120         if (!nr) {
2121                 /*
2122                  * All buffers are uptodate - we can set the page uptodate
2123                  * as well. But not if get_block() returned an error.
2124                  */
2125                 if (!PageError(page))
2126                         SetPageUptodate(page);
2127                 unlock_page(page);
2128                 return 0;
2129         }
2130
2131         /* Stage two: lock the buffers */
2132         for (i = 0; i < nr; i++) {
2133                 bh = arr[i];
2134                 lock_buffer(bh);
2135                 mark_buffer_async_read(bh);
2136         }
2137
2138         /*
2139          * Stage 3: start the IO.  Check for uptodateness
2140          * inside the buffer lock in case another process reading
2141          * the underlying blockdev brought it uptodate (the sct fix).
2142          */
2143         for (i = 0; i < nr; i++) {
2144                 bh = arr[i];
2145                 if (buffer_uptodate(bh))
2146                         end_buffer_async_read(bh, 1);
2147                 else
2148                         submit_bh(READ, bh);
2149         }
2150         return 0;
2151 }
2152
2153 /* utility function for filesystems that need to do work on expanding
2154  * truncates.  Uses prepare/commit_write to allow the filesystem to
2155  * deal with the hole.  
2156  */
2157 static int __generic_cont_expand(struct inode *inode, loff_t size,
2158                                  pgoff_t index, unsigned int offset)
2159 {
2160         struct address_space *mapping = inode->i_mapping;
2161         struct page *page;
2162         unsigned long limit;
2163         int err;
2164
2165         err = -EFBIG;
2166         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2167         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2168                 send_sig(SIGXFSZ, current, 0);
2169                 goto out;
2170         }
2171         if (size > inode->i_sb->s_maxbytes)
2172                 goto out;
2173
2174         err = -ENOMEM;
2175         page = grab_cache_page(mapping, index);
2176         if (!page)
2177                 goto out;
2178         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2179         if (err) {
2180                 /*
2181                  * ->prepare_write() may have instantiated a few blocks
2182                  * outside i_size.  Trim these off again.
2183                  */
2184                 unlock_page(page);
2185                 page_cache_release(page);
2186                 vmtruncate(inode, inode->i_size);
2187                 goto out;
2188         }
2189
2190         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2191
2192         unlock_page(page);
2193         page_cache_release(page);
2194         if (err > 0)
2195                 err = 0;
2196 out:
2197         return err;
2198 }
2199
2200 int generic_cont_expand(struct inode *inode, loff_t size)
2201 {
2202         pgoff_t index;
2203         unsigned int offset;
2204
2205         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2206
2207         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2208         ** skip the prepare.  make sure we never send an offset for the start
2209         ** of a block
2210         */
2211         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2212                 /* caller must handle this extra byte. */
2213                 offset++;
2214         }
2215         index = size >> PAGE_CACHE_SHIFT;
2216
2217         return __generic_cont_expand(inode, size, index, offset);
2218 }
2219
2220 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2221 {
2222         loff_t pos = size - 1;
2223         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2224         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2225
2226         /* prepare/commit_write can handle even if from==to==start of block. */
2227         return __generic_cont_expand(inode, size, index, offset);
2228 }
2229
2230 /*
2231  * For moronic filesystems that do not allow holes in file.
2232  * We may have to extend the file.
2233  */
2234
2235 int cont_prepare_write(struct page *page, unsigned offset,
2236                 unsigned to, get_block_t *get_block, loff_t *bytes)
2237 {
2238         struct address_space *mapping = page->mapping;
2239         struct inode *inode = mapping->host;
2240         struct page *new_page;
2241         pgoff_t pgpos;
2242         long status;
2243         unsigned zerofrom;
2244         unsigned blocksize = 1 << inode->i_blkbits;
2245         void *kaddr;
2246
2247         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2248                 status = -ENOMEM;
2249                 new_page = grab_cache_page(mapping, pgpos);
2250                 if (!new_page)
2251                         goto out;
2252                 /* we might sleep */
2253                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2254                         unlock_page(new_page);
2255                         page_cache_release(new_page);
2256                         continue;
2257                 }
2258                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2259                 if (zerofrom & (blocksize-1)) {
2260                         *bytes |= (blocksize-1);
2261                         (*bytes)++;
2262                 }
2263                 status = __block_prepare_write(inode, new_page, zerofrom,
2264                                                 PAGE_CACHE_SIZE, get_block);
2265                 if (status)
2266                         goto out_unmap;
2267                 kaddr = kmap_atomic(new_page, KM_USER0);
2268                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2269                 flush_dcache_page(new_page);
2270                 kunmap_atomic(kaddr, KM_USER0);
2271                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2272                 unlock_page(new_page);
2273                 page_cache_release(new_page);
2274         }
2275
2276         if (page->index < pgpos) {
2277                 /* completely inside the area */
2278                 zerofrom = offset;
2279         } else {
2280                 /* page covers the boundary, find the boundary offset */
2281                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2282
2283                 /* if we will expand the thing last block will be filled */
2284                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2285                         *bytes |= (blocksize-1);
2286                         (*bytes)++;
2287                 }
2288
2289                 /* starting below the boundary? Nothing to zero out */
2290                 if (offset <= zerofrom)
2291                         zerofrom = offset;
2292         }
2293         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2294         if (status)
2295                 goto out1;
2296         if (zerofrom < offset) {
2297                 kaddr = kmap_atomic(page, KM_USER0);
2298                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2299                 flush_dcache_page(page);
2300                 kunmap_atomic(kaddr, KM_USER0);
2301                 __block_commit_write(inode, page, zerofrom, offset);
2302         }
2303         return 0;
2304 out1:
2305         ClearPageUptodate(page);
2306         return status;
2307
2308 out_unmap:
2309         ClearPageUptodate(new_page);
2310         unlock_page(new_page);
2311         page_cache_release(new_page);
2312 out:
2313         return status;
2314 }
2315
2316 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2317                         get_block_t *get_block)
2318 {
2319         struct inode *inode = page->mapping->host;
2320         int err = __block_prepare_write(inode, page, from, to, get_block);
2321         if (err)
2322                 ClearPageUptodate(page);
2323         return err;
2324 }
2325
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2327 {
2328         struct inode *inode = page->mapping->host;
2329         __block_commit_write(inode,page,from,to);
2330         return 0;
2331 }
2332
2333 int generic_commit_write(struct file *file, struct page *page,
2334                 unsigned from, unsigned to)
2335 {
2336         struct inode *inode = page->mapping->host;
2337         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2338         __block_commit_write(inode,page,from,to);
2339         /*
2340          * No need to use i_size_read() here, the i_size
2341          * cannot change under us because we hold i_mutex.
2342          */
2343         if (pos > inode->i_size) {
2344                 i_size_write(inode, pos);
2345                 mark_inode_dirty(inode);
2346         }
2347         return 0;
2348 }
2349
2350
2351 /*
2352  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2353  * immediately, while under the page lock.  So it needs a special end_io
2354  * handler which does not touch the bh after unlocking it.
2355  *
2356  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2357  * a race there is benign: unlock_buffer() only use the bh's address for
2358  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2359  * itself.
2360  */
2361 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2362 {
2363         if (uptodate) {
2364                 set_buffer_uptodate(bh);
2365         } else {
2366                 /* This happens, due to failed READA attempts. */
2367                 clear_buffer_uptodate(bh);
2368         }
2369         unlock_buffer(bh);
2370 }
2371
2372 /*
2373  * On entry, the page is fully not uptodate.
2374  * On exit the page is fully uptodate in the areas outside (from,to)
2375  */
2376 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2377                         get_block_t *get_block)
2378 {
2379         struct inode *inode = page->mapping->host;
2380         const unsigned blkbits = inode->i_blkbits;
2381         const unsigned blocksize = 1 << blkbits;
2382         struct buffer_head map_bh;
2383         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2384         unsigned block_in_page;
2385         unsigned block_start;
2386         sector_t block_in_file;
2387         char *kaddr;
2388         int nr_reads = 0;
2389         int i;
2390         int ret = 0;
2391         int is_mapped_to_disk = 1;
2392         int dirtied_it = 0;
2393
2394         if (PageMappedToDisk(page))
2395                 return 0;
2396
2397         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2398         map_bh.b_page = page;
2399
2400         /*
2401          * We loop across all blocks in the page, whether or not they are
2402          * part of the affected region.  This is so we can discover if the
2403          * page is fully mapped-to-disk.
2404          */
2405         for (block_start = 0, block_in_page = 0;
2406                   block_start < PAGE_CACHE_SIZE;
2407                   block_in_page++, block_start += blocksize) {
2408                 unsigned block_end = block_start + blocksize;
2409                 int create;
2410
2411                 map_bh.b_state = 0;
2412                 create = 1;
2413                 if (block_start >= to)
2414                         create = 0;
2415                 map_bh.b_size = blocksize;
2416                 ret = get_block(inode, block_in_file + block_in_page,
2417                                         &map_bh, create);
2418                 if (ret)
2419                         goto failed;
2420                 if (!buffer_mapped(&map_bh))
2421                         is_mapped_to_disk = 0;
2422                 if (buffer_new(&map_bh))
2423                         unmap_underlying_metadata(map_bh.b_bdev,
2424                                                         map_bh.b_blocknr);
2425                 if (PageUptodate(page))
2426                         continue;
2427                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2428                         kaddr = kmap_atomic(page, KM_USER0);
2429                         if (block_start < from) {
2430                                 memset(kaddr+block_start, 0, from-block_start);
2431                                 dirtied_it = 1;
2432                         }
2433                         if (block_end > to) {
2434                                 memset(kaddr + to, 0, block_end - to);
2435                                 dirtied_it = 1;
2436                         }
2437                         flush_dcache_page(page);
2438                         kunmap_atomic(kaddr, KM_USER0);
2439                         continue;
2440                 }
2441                 if (buffer_uptodate(&map_bh))
2442                         continue;       /* reiserfs does this */
2443                 if (block_start < from || block_end > to) {
2444                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2445
2446                         if (!bh) {
2447                                 ret = -ENOMEM;
2448                                 goto failed;
2449                         }
2450                         bh->b_state = map_bh.b_state;
2451                         atomic_set(&bh->b_count, 0);
2452                         bh->b_this_page = NULL;
2453                         bh->b_page = page;
2454                         bh->b_blocknr = map_bh.b_blocknr;
2455                         bh->b_size = blocksize;
2456                         bh->b_data = (char *)(long)block_start;
2457                         bh->b_bdev = map_bh.b_bdev;
2458                         bh->b_private = NULL;
2459                         read_bh[nr_reads++] = bh;
2460                 }
2461         }
2462
2463         if (nr_reads) {
2464                 struct buffer_head *bh;
2465
2466                 /*
2467                  * The page is locked, so these buffers are protected from
2468                  * any VM or truncate activity.  Hence we don't need to care
2469                  * for the buffer_head refcounts.
2470                  */
2471                 for (i = 0; i < nr_reads; i++) {
2472                         bh = read_bh[i];
2473                         lock_buffer(bh);
2474                         bh->b_end_io = end_buffer_read_nobh;
2475                         submit_bh(READ, bh);
2476                 }
2477                 for (i = 0; i < nr_reads; i++) {
2478                         bh = read_bh[i];
2479                         wait_on_buffer(bh);
2480                         if (!buffer_uptodate(bh))
2481                                 ret = -EIO;
2482                         free_buffer_head(bh);
2483                         read_bh[i] = NULL;
2484                 }
2485                 if (ret)
2486                         goto failed;
2487         }
2488
2489         if (is_mapped_to_disk)
2490                 SetPageMappedToDisk(page);
2491         SetPageUptodate(page);
2492
2493         /*
2494          * Setting the page dirty here isn't necessary for the prepare_write
2495          * function - commit_write will do that.  But if/when this function is
2496          * used within the pagefault handler to ensure that all mmapped pages
2497          * have backing space in the filesystem, we will need to dirty the page
2498          * if its contents were altered.
2499          */
2500         if (dirtied_it)
2501                 set_page_dirty(page);
2502
2503         return 0;
2504
2505 failed:
2506         for (i = 0; i < nr_reads; i++) {
2507                 if (read_bh[i])
2508                         free_buffer_head(read_bh[i]);
2509         }
2510
2511         /*
2512          * Error recovery is pretty slack.  Clear the page and mark it dirty
2513          * so we'll later zero out any blocks which _were_ allocated.
2514          */
2515         kaddr = kmap_atomic(page, KM_USER0);
2516         memset(kaddr, 0, PAGE_CACHE_SIZE);
2517         kunmap_atomic(kaddr, KM_USER0);
2518         SetPageUptodate(page);
2519         set_page_dirty(page);
2520         return ret;
2521 }
2522 EXPORT_SYMBOL(nobh_prepare_write);
2523
2524 int nobh_commit_write(struct file *file, struct page *page,
2525                 unsigned from, unsigned to)
2526 {
2527         struct inode *inode = page->mapping->host;
2528         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2529
2530         set_page_dirty(page);
2531         if (pos > inode->i_size) {
2532                 i_size_write(inode, pos);
2533                 mark_inode_dirty(inode);
2534         }
2535         return 0;
2536 }
2537 EXPORT_SYMBOL(nobh_commit_write);
2538
2539 /*
2540  * nobh_writepage() - based on block_full_write_page() except
2541  * that it tries to operate without attaching bufferheads to
2542  * the page.
2543  */
2544 int nobh_writepage(struct page *page, get_block_t *get_block,
2545                         struct writeback_control *wbc)
2546 {
2547         struct inode * const inode = page->mapping->host;
2548         loff_t i_size = i_size_read(inode);
2549         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2550         unsigned offset;
2551         void *kaddr;
2552         int ret;
2553
2554         /* Is the page fully inside i_size? */
2555         if (page->index < end_index)
2556                 goto out;
2557
2558         /* Is the page fully outside i_size? (truncate in progress) */
2559         offset = i_size & (PAGE_CACHE_SIZE-1);
2560         if (page->index >= end_index+1 || !offset) {
2561                 /*
2562                  * The page may have dirty, unmapped buffers.  For example,
2563                  * they may have been added in ext3_writepage().  Make them
2564                  * freeable here, so the page does not leak.
2565                  */
2566 #if 0
2567                 /* Not really sure about this  - do we need this ? */
2568                 if (page->mapping->a_ops->invalidatepage)
2569                         page->mapping->a_ops->invalidatepage(page, offset);
2570 #endif
2571                 unlock_page(page);
2572                 return 0; /* don't care */
2573         }
2574
2575         /*
2576          * The page straddles i_size.  It must be zeroed out on each and every
2577          * writepage invocation because it may be mmapped.  "A file is mapped
2578          * in multiples of the page size.  For a file that is not a multiple of
2579          * the  page size, the remaining memory is zeroed when mapped, and
2580          * writes to that region are not written out to the file."
2581          */
2582         kaddr = kmap_atomic(page, KM_USER0);
2583         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2584         flush_dcache_page(page);
2585         kunmap_atomic(kaddr, KM_USER0);
2586 out:
2587         ret = mpage_writepage(page, get_block, wbc);
2588         if (ret == -EAGAIN)
2589                 ret = __block_write_full_page(inode, page, get_block, wbc);
2590         return ret;
2591 }
2592 EXPORT_SYMBOL(nobh_writepage);
2593
2594 /*
2595  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2596  */
2597 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2598 {
2599         struct inode *inode = mapping->host;
2600         unsigned blocksize = 1 << inode->i_blkbits;
2601         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2602         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2603         unsigned to;
2604         struct page *page;
2605         const struct address_space_operations *a_ops = mapping->a_ops;
2606         char *kaddr;
2607         int ret = 0;
2608
2609         if ((offset & (blocksize - 1)) == 0)
2610                 goto out;
2611
2612         ret = -ENOMEM;
2613         page = grab_cache_page(mapping, index);
2614         if (!page)
2615                 goto out;
2616
2617         to = (offset + blocksize) & ~(blocksize - 1);
2618         ret = a_ops->prepare_write(NULL, page, offset, to);
2619         if (ret == 0) {
2620                 kaddr = kmap_atomic(page, KM_USER0);
2621                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2622                 flush_dcache_page(page);
2623                 kunmap_atomic(kaddr, KM_USER0);
2624                 set_page_dirty(page);
2625         }
2626         unlock_page(page);
2627         page_cache_release(page);
2628 out:
2629         return ret;
2630 }
2631 EXPORT_SYMBOL(nobh_truncate_page);
2632
2633 int block_truncate_page(struct address_space *mapping,
2634                         loff_t from, get_block_t *get_block)
2635 {
2636         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2637         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2638         unsigned blocksize;
2639         sector_t iblock;
2640         unsigned length, pos;
2641         struct inode *inode = mapping->host;
2642         struct page *page;
2643         struct buffer_head *bh;
2644         void *kaddr;
2645         int err;
2646
2647         blocksize = 1 << inode->i_blkbits;
2648         length = offset & (blocksize - 1);
2649
2650         /* Block boundary? Nothing to do */
2651         if (!length)
2652                 return 0;
2653
2654         length = blocksize - length;
2655         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2656         
2657         page = grab_cache_page(mapping, index);
2658         err = -ENOMEM;
2659         if (!page)
2660                 goto out;
2661
2662         if (!page_has_buffers(page))
2663                 create_empty_buffers(page, blocksize, 0);
2664
2665         /* Find the buffer that contains "offset" */
2666         bh = page_buffers(page);
2667         pos = blocksize;
2668         while (offset >= pos) {
2669                 bh = bh->b_this_page;
2670                 iblock++;
2671                 pos += blocksize;
2672         }
2673
2674         err = 0;
2675         if (!buffer_mapped(bh)) {
2676                 WARN_ON(bh->b_size != blocksize);
2677                 err = get_block(inode, iblock, bh, 0);
2678                 if (err)
2679                         goto unlock;
2680                 /* unmapped? It's a hole - nothing to do */
2681                 if (!buffer_mapped(bh))
2682                         goto unlock;
2683         }
2684
2685         /* Ok, it's mapped. Make sure it's up-to-date */
2686         if (PageUptodate(page))
2687                 set_buffer_uptodate(bh);
2688
2689         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2690                 err = -EIO;
2691                 ll_rw_block(READ, 1, &bh);
2692                 wait_on_buffer(bh);
2693                 /* Uhhuh. Read error. Complain and punt. */
2694                 if (!buffer_uptodate(bh))
2695                         goto unlock;
2696         }
2697
2698         kaddr = kmap_atomic(page, KM_USER0);
2699         memset(kaddr + offset, 0, length);
2700         flush_dcache_page(page);
2701         kunmap_atomic(kaddr, KM_USER0);
2702
2703         mark_buffer_dirty(bh);
2704         err = 0;
2705
2706 unlock:
2707         unlock_page(page);
2708         page_cache_release(page);
2709 out:
2710         return err;
2711 }
2712
2713 /*
2714  * The generic ->writepage function for buffer-backed address_spaces
2715  */
2716 int block_write_full_page(struct page *page, get_block_t *get_block,
2717                         struct writeback_control *wbc)
2718 {
2719         struct inode * const inode = page->mapping->host;
2720         loff_t i_size = i_size_read(inode);
2721         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2722         unsigned offset;
2723         void *kaddr;
2724
2725         /* Is the page fully inside i_size? */
2726         if (page->index < end_index)
2727                 return __block_write_full_page(inode, page, get_block, wbc);
2728
2729         /* Is the page fully outside i_size? (truncate in progress) */
2730         offset = i_size & (PAGE_CACHE_SIZE-1);
2731         if (page->index >= end_index+1 || !offset) {
2732                 /*
2733                  * The page may have dirty, unmapped buffers.  For example,
2734                  * they may have been added in ext3_writepage().  Make them
2735                  * freeable here, so the page does not leak.
2736                  */
2737                 do_invalidatepage(page, 0);
2738                 unlock_page(page);
2739                 return 0; /* don't care */
2740         }
2741
2742         /*
2743          * The page straddles i_size.  It must be zeroed out on each and every
2744          * writepage invokation because it may be mmapped.  "A file is mapped
2745          * in multiples of the page size.  For a file that is not a multiple of
2746          * the  page size, the remaining memory is zeroed when mapped, and
2747          * writes to that region are not written out to the file."
2748          */
2749         kaddr = kmap_atomic(page, KM_USER0);
2750         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2751         flush_dcache_page(page);
2752         kunmap_atomic(kaddr, KM_USER0);
2753         return __block_write_full_page(inode, page, get_block, wbc);
2754 }
2755
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757                             get_block_t *get_block)
2758 {
2759         struct buffer_head tmp;
2760         struct inode *inode = mapping->host;
2761         tmp.b_state = 0;
2762         tmp.b_blocknr = 0;
2763         tmp.b_size = 1 << inode->i_blkbits;
2764         get_block(inode, block, &tmp, 0);
2765         return tmp.b_blocknr;
2766 }
2767
2768 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2769 {
2770         struct buffer_head *bh = bio->bi_private;
2771
2772         if (bio->bi_size)
2773                 return 1;
2774
2775         if (err == -EOPNOTSUPP) {
2776                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2777                 set_bit(BH_Eopnotsupp, &bh->b_state);
2778         }
2779
2780         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2781         bio_put(bio);
2782         return 0;
2783 }
2784
2785 int submit_bh(int rw, struct buffer_head * bh)
2786 {
2787         struct bio *bio;
2788         int ret = 0;
2789
2790         BUG_ON(!buffer_locked(bh));
2791         BUG_ON(!buffer_mapped(bh));
2792         BUG_ON(!bh->b_end_io);
2793
2794         if (buffer_ordered(bh) && (rw == WRITE))
2795                 rw = WRITE_BARRIER;
2796
2797         /*
2798          * Only clear out a write error when rewriting, should this
2799          * include WRITE_SYNC as well?
2800          */
2801         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2802                 clear_buffer_write_io_error(bh);
2803
2804         /*
2805          * from here on down, it's all bio -- do the initial mapping,
2806          * submit_bio -> generic_make_request may further map this bio around
2807          */
2808         bio = bio_alloc(GFP_NOIO, 1);
2809
2810         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2811         bio->bi_bdev = bh->b_bdev;
2812         bio->bi_io_vec[0].bv_page = bh->b_page;
2813         bio->bi_io_vec[0].bv_len = bh->b_size;
2814         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2815
2816         bio->bi_vcnt = 1;
2817         bio->bi_idx = 0;
2818         bio->bi_size = bh->b_size;
2819
2820         bio->bi_end_io = end_bio_bh_io_sync;
2821         bio->bi_private = bh;
2822
2823         bio_get(bio);
2824         submit_bio(rw, bio);
2825
2826         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2827                 ret = -EOPNOTSUPP;
2828
2829         bio_put(bio);
2830         return ret;
2831 }
2832
2833 /**
2834  * ll_rw_block: low-level access to block devices (DEPRECATED)
2835  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2836  * @nr: number of &struct buffer_heads in the array
2837  * @bhs: array of pointers to &struct buffer_head
2838  *
2839  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2840  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2841  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2842  * are sent to disk. The fourth %READA option is described in the documentation
2843  * for generic_make_request() which ll_rw_block() calls.
2844  *
2845  * This function drops any buffer that it cannot get a lock on (with the
2846  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2847  * clean when doing a write request, and any buffer that appears to be
2848  * up-to-date when doing read request.  Further it marks as clean buffers that
2849  * are processed for writing (the buffer cache won't assume that they are
2850  * actually clean until the buffer gets unlocked).
2851  *
2852  * ll_rw_block sets b_end_io to simple completion handler that marks
2853  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2854  * any waiters. 
2855  *
2856  * All of the buffers must be for the same device, and must also be a
2857  * multiple of the current approved size for the device.
2858  */
2859 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2860 {
2861         int i;
2862
2863         for (i = 0; i < nr; i++) {
2864                 struct buffer_head *bh = bhs[i];
2865
2866                 if (rw == SWRITE)
2867                         lock_buffer(bh);
2868                 else if (test_set_buffer_locked(bh))
2869                         continue;
2870
2871                 if (rw == WRITE || rw == SWRITE) {
2872                         if (test_clear_buffer_dirty(bh)) {
2873                                 bh->b_end_io = end_buffer_write_sync;
2874                                 get_bh(bh);
2875                                 submit_bh(WRITE, bh);
2876                                 continue;
2877                         }
2878                 } else {
2879                         if (!buffer_uptodate(bh)) {
2880                                 bh->b_end_io = end_buffer_read_sync;
2881                                 get_bh(bh);
2882                                 submit_bh(rw, bh);
2883                                 continue;
2884                         }
2885                 }
2886                 unlock_buffer(bh);
2887         }
2888 }
2889
2890 /*
2891  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2892  * and then start new I/O and then wait upon it.  The caller must have a ref on
2893  * the buffer_head.
2894  */
2895 int sync_dirty_buffer(struct buffer_head *bh)
2896 {
2897         int ret = 0;
2898
2899         WARN_ON(atomic_read(&bh->b_count) < 1);
2900         lock_buffer(bh);
2901         if (test_clear_buffer_dirty(bh)) {
2902                 get_bh(bh);
2903                 bh->b_end_io = end_buffer_write_sync;
2904                 ret = submit_bh(WRITE, bh);
2905                 wait_on_buffer(bh);
2906                 if (buffer_eopnotsupp(bh)) {
2907                         clear_buffer_eopnotsupp(bh);
2908                         ret = -EOPNOTSUPP;
2909                 }
2910                 if (!ret && !buffer_uptodate(bh))
2911                         ret = -EIO;
2912         } else {
2913                 unlock_buffer(bh);
2914         }
2915         return ret;
2916 }
2917
2918 /*
2919  * try_to_free_buffers() checks if all the buffers on this particular page
2920  * are unused, and releases them if so.
2921  *
2922  * Exclusion against try_to_free_buffers may be obtained by either
2923  * locking the page or by holding its mapping's private_lock.
2924  *
2925  * If the page is dirty but all the buffers are clean then we need to
2926  * be sure to mark the page clean as well.  This is because the page
2927  * may be against a block device, and a later reattachment of buffers
2928  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2929  * filesystem data on the same device.
2930  *
2931  * The same applies to regular filesystem pages: if all the buffers are
2932  * clean then we set the page clean and proceed.  To do that, we require
2933  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2934  * private_lock.
2935  *
2936  * try_to_free_buffers() is non-blocking.
2937  */
2938 static inline int buffer_busy(struct buffer_head *bh)
2939 {
2940         return atomic_read(&bh->b_count) |
2941                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2942 }
2943
2944 static int
2945 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2946 {
2947         struct buffer_head *head = page_buffers(page);
2948         struct buffer_head *bh;
2949
2950         bh = head;
2951         do {
2952                 if (buffer_write_io_error(bh) && page->mapping)
2953                         set_bit(AS_EIO, &page->mapping->flags);
2954                 if (buffer_busy(bh))
2955                         goto failed;
2956                 bh = bh->b_this_page;
2957         } while (bh != head);
2958
2959         do {
2960                 struct buffer_head *next = bh->b_this_page;
2961
2962                 if (!list_empty(&bh->b_assoc_buffers))
2963                         __remove_assoc_queue(bh);
2964                 bh = next;
2965         } while (bh != head);
2966         *buffers_to_free = head;
2967         __clear_page_buffers(page);
2968         return 1;
2969 failed:
2970         return 0;
2971 }
2972
2973 int try_to_free_buffers(struct page *page)
2974 {
2975         struct address_space * const mapping = page->mapping;
2976         struct buffer_head *buffers_to_free = NULL;
2977         int ret = 0;
2978
2979         BUG_ON(!PageLocked(page));
2980         if (PageWriteback(page))
2981                 return 0;
2982
2983         if (mapping == NULL) {          /* can this still happen? */
2984                 ret = drop_buffers(page, &buffers_to_free);
2985                 goto out;
2986         }
2987
2988         spin_lock(&mapping->private_lock);
2989         ret = drop_buffers(page, &buffers_to_free);
2990         if (ret) {
2991                 /*
2992                  * If the filesystem writes its buffers by hand (eg ext3)
2993                  * then we can have clean buffers against a dirty page.  We
2994                  * clean the page here; otherwise later reattachment of buffers
2995                  * could encounter a non-uptodate page, which is unresolvable.
2996                  * This only applies in the rare case where try_to_free_buffers
2997                  * succeeds but the page is not freed.
2998                  */
2999                 clear_page_dirty(page);
3000         }
3001         spin_unlock(&mapping->private_lock);
3002 out:
3003         if (buffers_to_free) {
3004                 struct buffer_head *bh = buffers_to_free;
3005
3006                 do {
3007                         struct buffer_head *next = bh->b_this_page;
3008                         free_buffer_head(bh);
3009                         bh = next;
3010                 } while (bh != buffers_to_free);
3011         }
3012         return ret;
3013 }
3014 EXPORT_SYMBOL(try_to_free_buffers);
3015
3016 void block_sync_page(struct page *page)
3017 {
3018         struct address_space *mapping;
3019
3020         smp_mb();
3021         mapping = page_mapping(page);
3022         if (mapping)
3023                 blk_run_backing_dev(mapping->backing_dev_info, page);
3024 }
3025
3026 /*
3027  * There are no bdflush tunables left.  But distributions are
3028  * still running obsolete flush daemons, so we terminate them here.
3029  *
3030  * Use of bdflush() is deprecated and will be removed in a future kernel.
3031  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3032  */
3033 asmlinkage long sys_bdflush(int func, long data)
3034 {
3035         static int msg_count;
3036
3037         if (!capable(CAP_SYS_ADMIN))
3038                 return -EPERM;
3039
3040         if (msg_count < 5) {
3041                 msg_count++;
3042                 printk(KERN_INFO
3043                         "warning: process `%s' used the obsolete bdflush"
3044                         " system call\n", current->comm);
3045                 printk(KERN_INFO "Fix your initscripts?\n");
3046         }
3047
3048         if (func == 1)
3049                 do_exit(0);
3050         return 0;
3051 }
3052
3053 /*
3054  * Buffer-head allocation
3055  */
3056 static kmem_cache_t *bh_cachep;
3057
3058 /*
3059  * Once the number of bh's in the machine exceeds this level, we start
3060  * stripping them in writeback.
3061  */
3062 static int max_buffer_heads;
3063
3064 int buffer_heads_over_limit;
3065
3066 struct bh_accounting {
3067         int nr;                 /* Number of live bh's */
3068         int ratelimit;          /* Limit cacheline bouncing */
3069 };
3070
3071 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3072
3073 static void recalc_bh_state(void)
3074 {
3075         int i;
3076         int tot = 0;
3077
3078         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3079                 return;
3080         __get_cpu_var(bh_accounting).ratelimit = 0;
3081         for_each_online_cpu(i)
3082                 tot += per_cpu(bh_accounting, i).nr;
3083         buffer_heads_over_limit = (tot > max_buffer_heads);
3084 }
3085         
3086 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3087 {
3088         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3089         if (ret) {
3090                 get_cpu_var(bh_accounting).nr++;
3091                 recalc_bh_state();
3092                 put_cpu_var(bh_accounting);
3093         }
3094         return ret;
3095 }
3096 EXPORT_SYMBOL(alloc_buffer_head);
3097
3098 void free_buffer_head(struct buffer_head *bh)
3099 {
3100         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3101         kmem_cache_free(bh_cachep, bh);
3102         get_cpu_var(bh_accounting).nr--;
3103         recalc_bh_state();
3104         put_cpu_var(bh_accounting);
3105 }
3106 EXPORT_SYMBOL(free_buffer_head);
3107
3108 static void
3109 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3110 {
3111         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3112                             SLAB_CTOR_CONSTRUCTOR) {
3113                 struct buffer_head * bh = (struct buffer_head *)data;
3114
3115                 memset(bh, 0, sizeof(*bh));
3116                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3117         }
3118 }
3119
3120 #ifdef CONFIG_HOTPLUG_CPU
3121 static void buffer_exit_cpu(int cpu)
3122 {
3123         int i;
3124         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3125
3126         for (i = 0; i < BH_LRU_SIZE; i++) {
3127                 brelse(b->bhs[i]);
3128                 b->bhs[i] = NULL;
3129         }
3130         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3131         per_cpu(bh_accounting, cpu).nr = 0;
3132         put_cpu_var(bh_accounting);
3133 }
3134
3135 static int buffer_cpu_notify(struct notifier_block *self,
3136                               unsigned long action, void *hcpu)
3137 {
3138         if (action == CPU_DEAD)
3139                 buffer_exit_cpu((unsigned long)hcpu);
3140         return NOTIFY_OK;
3141 }
3142 #endif /* CONFIG_HOTPLUG_CPU */
3143
3144 void __init buffer_init(void)
3145 {
3146         int nrpages;
3147
3148         bh_cachep = kmem_cache_create("buffer_head",
3149                                         sizeof(struct buffer_head), 0,
3150                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3151                                         SLAB_MEM_SPREAD),
3152                                         init_buffer_head,
3153                                         NULL);
3154
3155         /*
3156          * Limit the bh occupancy to 10% of ZONE_NORMAL
3157          */
3158         nrpages = (nr_free_buffer_pages() * 10) / 100;
3159         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3160         hotcpu_notifier(buffer_cpu_notify, 0);
3161 }
3162
3163 EXPORT_SYMBOL(__bforget);
3164 EXPORT_SYMBOL(__brelse);
3165 EXPORT_SYMBOL(__wait_on_buffer);
3166 EXPORT_SYMBOL(block_commit_write);
3167 EXPORT_SYMBOL(block_prepare_write);
3168 EXPORT_SYMBOL(block_read_full_page);
3169 EXPORT_SYMBOL(block_sync_page);
3170 EXPORT_SYMBOL(block_truncate_page);
3171 EXPORT_SYMBOL(block_write_full_page);
3172 EXPORT_SYMBOL(cont_prepare_write);
3173 EXPORT_SYMBOL(end_buffer_read_sync);
3174 EXPORT_SYMBOL(end_buffer_write_sync);
3175 EXPORT_SYMBOL(file_fsync);
3176 EXPORT_SYMBOL(fsync_bdev);
3177 EXPORT_SYMBOL(generic_block_bmap);
3178 EXPORT_SYMBOL(generic_commit_write);
3179 EXPORT_SYMBOL(generic_cont_expand);
3180 EXPORT_SYMBOL(generic_cont_expand_simple);
3181 EXPORT_SYMBOL(init_buffer);
3182 EXPORT_SYMBOL(invalidate_bdev);
3183 EXPORT_SYMBOL(ll_rw_block);
3184 EXPORT_SYMBOL(mark_buffer_dirty);
3185 EXPORT_SYMBOL(submit_bh);
3186 EXPORT_SYMBOL(sync_dirty_buffer);
3187 EXPORT_SYMBOL(unlock_buffer);