Merge branch 'for-linus' of git://repo.or.cz/cris-mirror
[linux-2.6] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88                             struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90                              struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97                       const char *fmt, ...);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101         struct logicalVolIntegrityDesc *lvid =
102                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104         __u32 offset = number_of_partitions * 2 *
105                                 sizeof(uint32_t)/sizeof(uint8_t);
106         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111                       int flags, const char *dev_name, void *data,
112                       struct vfsmount *mnt)
113 {
114         return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116
117 static struct file_system_type udf_fstype = {
118         .owner          = THIS_MODULE,
119         .name           = "udf",
120         .get_sb         = udf_get_sb,
121         .kill_sb        = kill_block_super,
122         .fs_flags       = FS_REQUIRES_DEV,
123 };
124
125 static struct kmem_cache *udf_inode_cachep;
126
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129         struct udf_inode_info *ei;
130         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131         if (!ei)
132                 return NULL;
133
134         ei->i_unique = 0;
135         ei->i_lenExtents = 0;
136         ei->i_next_alloc_block = 0;
137         ei->i_next_alloc_goal = 0;
138         ei->i_strat4096 = 0;
139
140         return &ei->vfs_inode;
141 }
142
143 static void udf_destroy_inode(struct inode *inode)
144 {
145         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147
148 static void init_once(void *foo)
149 {
150         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151
152         ei->i_ext.i_data = NULL;
153         inode_init_once(&ei->vfs_inode);
154 }
155
156 static int init_inodecache(void)
157 {
158         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159                                              sizeof(struct udf_inode_info),
160                                              0, (SLAB_RECLAIM_ACCOUNT |
161                                                  SLAB_MEM_SPREAD),
162                                              init_once);
163         if (!udf_inode_cachep)
164                 return -ENOMEM;
165         return 0;
166 }
167
168 static void destroy_inodecache(void)
169 {
170         kmem_cache_destroy(udf_inode_cachep);
171 }
172
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175         .alloc_inode    = udf_alloc_inode,
176         .destroy_inode  = udf_destroy_inode,
177         .write_inode    = udf_write_inode,
178         .delete_inode   = udf_delete_inode,
179         .clear_inode    = udf_clear_inode,
180         .put_super      = udf_put_super,
181         .sync_fs        = udf_sync_fs,
182         .statfs         = udf_statfs,
183         .remount_fs     = udf_remount_fs,
184         .show_options   = udf_show_options,
185 };
186
187 struct udf_options {
188         unsigned char novrs;
189         unsigned int blocksize;
190         unsigned int session;
191         unsigned int lastblock;
192         unsigned int anchor;
193         unsigned int volume;
194         unsigned short partition;
195         unsigned int fileset;
196         unsigned int rootdir;
197         unsigned int flags;
198         mode_t umask;
199         gid_t gid;
200         uid_t uid;
201         mode_t fmode;
202         mode_t dmode;
203         struct nls_table *nls_map;
204 };
205
206 static int __init init_udf_fs(void)
207 {
208         int err;
209
210         err = init_inodecache();
211         if (err)
212                 goto out1;
213         err = register_filesystem(&udf_fstype);
214         if (err)
215                 goto out;
216
217         return 0;
218
219 out:
220         destroy_inodecache();
221
222 out1:
223         return err;
224 }
225
226 static void __exit exit_udf_fs(void)
227 {
228         unregister_filesystem(&udf_fstype);
229         destroy_inodecache();
230 }
231
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237         struct udf_sb_info *sbi = UDF_SB(sb);
238
239         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240                                   GFP_KERNEL);
241         if (!sbi->s_partmaps) {
242                 udf_error(sb, __func__,
243                           "Unable to allocate space for %d partition maps",
244                           count);
245                 sbi->s_partitions = 0;
246                 return -ENOMEM;
247         }
248
249         sbi->s_partitions = count;
250         return 0;
251 }
252
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255         struct super_block *sb = mnt->mnt_sb;
256         struct udf_sb_info *sbi = UDF_SB(sb);
257
258         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259                 seq_puts(seq, ",nostrict");
260         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263                 seq_puts(seq, ",unhide");
264         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265                 seq_puts(seq, ",undelete");
266         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267                 seq_puts(seq, ",noadinicb");
268         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269                 seq_puts(seq, ",shortad");
270         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271                 seq_puts(seq, ",uid=forget");
272         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273                 seq_puts(seq, ",uid=ignore");
274         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275                 seq_puts(seq, ",gid=forget");
276         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277                 seq_puts(seq, ",gid=ignore");
278         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279                 seq_printf(seq, ",uid=%u", sbi->s_uid);
280         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281                 seq_printf(seq, ",gid=%u", sbi->s_gid);
282         if (sbi->s_umask != 0)
283                 seq_printf(seq, ",umask=%o", sbi->s_umask);
284         if (sbi->s_fmode != UDF_INVALID_MODE)
285                 seq_printf(seq, ",mode=%o", sbi->s_fmode);
286         if (sbi->s_dmode != UDF_INVALID_MODE)
287                 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289                 seq_printf(seq, ",session=%u", sbi->s_session);
290         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292         if (sbi->s_anchor != 0)
293                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294         /*
295          * volume, partition, fileset and rootdir seem to be ignored
296          * currently
297          */
298         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299                 seq_puts(seq, ",utf8");
300         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302
303         return 0;
304 }
305
306 /*
307  * udf_parse_options
308  *
309  * PURPOSE
310  *      Parse mount options.
311  *
312  * DESCRIPTION
313  *      The following mount options are supported:
314  *
315  *      gid=            Set the default group.
316  *      umask=          Set the default umask.
317  *      mode=           Set the default file permissions.
318  *      dmode=          Set the default directory permissions.
319  *      uid=            Set the default user.
320  *      bs=             Set the block size.
321  *      unhide          Show otherwise hidden files.
322  *      undelete        Show deleted files in lists.
323  *      adinicb         Embed data in the inode (default)
324  *      noadinicb       Don't embed data in the inode
325  *      shortad         Use short ad's
326  *      longad          Use long ad's (default)
327  *      nostrict        Unset strict conformance
328  *      iocharset=      Set the NLS character set
329  *
330  *      The remaining are for debugging and disaster recovery:
331  *
332  *      novrs           Skip volume sequence recognition
333  *
334  *      The following expect a offset from 0.
335  *
336  *      session=        Set the CDROM session (default= last session)
337  *      anchor=         Override standard anchor location. (default= 256)
338  *      volume=         Override the VolumeDesc location. (unused)
339  *      partition=      Override the PartitionDesc location. (unused)
340  *      lastblock=      Set the last block of the filesystem/
341  *
342  *      The following expect a offset from the partition root.
343  *
344  *      fileset=        Override the fileset block location. (unused)
345  *      rootdir=        Override the root directory location. (unused)
346  *              WARNING: overriding the rootdir to a non-directory may
347  *              yield highly unpredictable results.
348  *
349  * PRE-CONDITIONS
350  *      options         Pointer to mount options string.
351  *      uopts           Pointer to mount options variable.
352  *
353  * POST-CONDITIONS
354  *      <return>        1       Mount options parsed okay.
355  *      <return>        0       Error parsing mount options.
356  *
357  * HISTORY
358  *      July 1, 1997 - Andrew E. Mileski
359  *      Written, tested, and released.
360  */
361
362 enum {
363         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367         Opt_rootdir, Opt_utf8, Opt_iocharset,
368         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369         Opt_fmode, Opt_dmode
370 };
371
372 static const match_table_t tokens = {
373         {Opt_novrs,     "novrs"},
374         {Opt_nostrict,  "nostrict"},
375         {Opt_bs,        "bs=%u"},
376         {Opt_unhide,    "unhide"},
377         {Opt_undelete,  "undelete"},
378         {Opt_noadinicb, "noadinicb"},
379         {Opt_adinicb,   "adinicb"},
380         {Opt_shortad,   "shortad"},
381         {Opt_longad,    "longad"},
382         {Opt_uforget,   "uid=forget"},
383         {Opt_uignore,   "uid=ignore"},
384         {Opt_gforget,   "gid=forget"},
385         {Opt_gignore,   "gid=ignore"},
386         {Opt_gid,       "gid=%u"},
387         {Opt_uid,       "uid=%u"},
388         {Opt_umask,     "umask=%o"},
389         {Opt_session,   "session=%u"},
390         {Opt_lastblock, "lastblock=%u"},
391         {Opt_anchor,    "anchor=%u"},
392         {Opt_volume,    "volume=%u"},
393         {Opt_partition, "partition=%u"},
394         {Opt_fileset,   "fileset=%u"},
395         {Opt_rootdir,   "rootdir=%u"},
396         {Opt_utf8,      "utf8"},
397         {Opt_iocharset, "iocharset=%s"},
398         {Opt_fmode,     "mode=%o"},
399         {Opt_dmode,     "dmode=%o"},
400         {Opt_err,       NULL}
401 };
402
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404                              bool remount)
405 {
406         char *p;
407         int option;
408
409         uopt->novrs = 0;
410         uopt->partition = 0xFFFF;
411         uopt->session = 0xFFFFFFFF;
412         uopt->lastblock = 0;
413         uopt->anchor = 0;
414         uopt->volume = 0xFFFFFFFF;
415         uopt->rootdir = 0xFFFFFFFF;
416         uopt->fileset = 0xFFFFFFFF;
417         uopt->nls_map = NULL;
418
419         if (!options)
420                 return 1;
421
422         while ((p = strsep(&options, ",")) != NULL) {
423                 substring_t args[MAX_OPT_ARGS];
424                 int token;
425                 if (!*p)
426                         continue;
427
428                 token = match_token(p, tokens, args);
429                 switch (token) {
430                 case Opt_novrs:
431                         uopt->novrs = 1;
432                         break;
433                 case Opt_bs:
434                         if (match_int(&args[0], &option))
435                                 return 0;
436                         uopt->blocksize = option;
437                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438                         break;
439                 case Opt_unhide:
440                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441                         break;
442                 case Opt_undelete:
443                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444                         break;
445                 case Opt_noadinicb:
446                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447                         break;
448                 case Opt_adinicb:
449                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450                         break;
451                 case Opt_shortad:
452                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453                         break;
454                 case Opt_longad:
455                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456                         break;
457                 case Opt_gid:
458                         if (match_int(args, &option))
459                                 return 0;
460                         uopt->gid = option;
461                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
462                         break;
463                 case Opt_uid:
464                         if (match_int(args, &option))
465                                 return 0;
466                         uopt->uid = option;
467                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
468                         break;
469                 case Opt_umask:
470                         if (match_octal(args, &option))
471                                 return 0;
472                         uopt->umask = option;
473                         break;
474                 case Opt_nostrict:
475                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476                         break;
477                 case Opt_session:
478                         if (match_int(args, &option))
479                                 return 0;
480                         uopt->session = option;
481                         if (!remount)
482                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483                         break;
484                 case Opt_lastblock:
485                         if (match_int(args, &option))
486                                 return 0;
487                         uopt->lastblock = option;
488                         if (!remount)
489                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490                         break;
491                 case Opt_anchor:
492                         if (match_int(args, &option))
493                                 return 0;
494                         uopt->anchor = option;
495                         break;
496                 case Opt_volume:
497                         if (match_int(args, &option))
498                                 return 0;
499                         uopt->volume = option;
500                         break;
501                 case Opt_partition:
502                         if (match_int(args, &option))
503                                 return 0;
504                         uopt->partition = option;
505                         break;
506                 case Opt_fileset:
507                         if (match_int(args, &option))
508                                 return 0;
509                         uopt->fileset = option;
510                         break;
511                 case Opt_rootdir:
512                         if (match_int(args, &option))
513                                 return 0;
514                         uopt->rootdir = option;
515                         break;
516                 case Opt_utf8:
517                         uopt->flags |= (1 << UDF_FLAG_UTF8);
518                         break;
519 #ifdef CONFIG_UDF_NLS
520                 case Opt_iocharset:
521                         uopt->nls_map = load_nls(args[0].from);
522                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523                         break;
524 #endif
525                 case Opt_uignore:
526                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527                         break;
528                 case Opt_uforget:
529                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530                         break;
531                 case Opt_gignore:
532                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533                         break;
534                 case Opt_gforget:
535                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536                         break;
537                 case Opt_fmode:
538                         if (match_octal(args, &option))
539                                 return 0;
540                         uopt->fmode = option & 0777;
541                         break;
542                 case Opt_dmode:
543                         if (match_octal(args, &option))
544                                 return 0;
545                         uopt->dmode = option & 0777;
546                         break;
547                 default:
548                         printk(KERN_ERR "udf: bad mount option \"%s\" "
549                                "or missing value\n", p);
550                         return 0;
551                 }
552         }
553         return 1;
554 }
555
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558         struct udf_options uopt;
559         struct udf_sb_info *sbi = UDF_SB(sb);
560
561         uopt.flags = sbi->s_flags;
562         uopt.uid   = sbi->s_uid;
563         uopt.gid   = sbi->s_gid;
564         uopt.umask = sbi->s_umask;
565         uopt.fmode = sbi->s_fmode;
566         uopt.dmode = sbi->s_dmode;
567
568         if (!udf_parse_options(options, &uopt, true))
569                 return -EINVAL;
570
571         sbi->s_flags = uopt.flags;
572         sbi->s_uid   = uopt.uid;
573         sbi->s_gid   = uopt.gid;
574         sbi->s_umask = uopt.umask;
575         sbi->s_fmode = uopt.fmode;
576         sbi->s_dmode = uopt.dmode;
577
578         if (sbi->s_lvid_bh) {
579                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
580                 if (write_rev > UDF_MAX_WRITE_VERSION)
581                         *flags |= MS_RDONLY;
582         }
583
584         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
585                 return 0;
586         if (*flags & MS_RDONLY)
587                 udf_close_lvid(sb);
588         else
589                 udf_open_lvid(sb);
590
591         return 0;
592 }
593
594 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
595 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
596 static loff_t udf_check_vsd(struct super_block *sb)
597 {
598         struct volStructDesc *vsd = NULL;
599         loff_t sector = 32768;
600         int sectorsize;
601         struct buffer_head *bh = NULL;
602         int nsr02 = 0;
603         int nsr03 = 0;
604         struct udf_sb_info *sbi;
605
606         sbi = UDF_SB(sb);
607         if (sb->s_blocksize < sizeof(struct volStructDesc))
608                 sectorsize = sizeof(struct volStructDesc);
609         else
610                 sectorsize = sb->s_blocksize;
611
612         sector += (sbi->s_session << sb->s_blocksize_bits);
613
614         udf_debug("Starting at sector %u (%ld byte sectors)\n",
615                   (unsigned int)(sector >> sb->s_blocksize_bits),
616                   sb->s_blocksize);
617         /* Process the sequence (if applicable) */
618         for (; !nsr02 && !nsr03; sector += sectorsize) {
619                 /* Read a block */
620                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
621                 if (!bh)
622                         break;
623
624                 /* Look for ISO  descriptors */
625                 vsd = (struct volStructDesc *)(bh->b_data +
626                                               (sector & (sb->s_blocksize - 1)));
627
628                 if (vsd->stdIdent[0] == 0) {
629                         brelse(bh);
630                         break;
631                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
632                                     VSD_STD_ID_LEN)) {
633                         switch (vsd->structType) {
634                         case 0:
635                                 udf_debug("ISO9660 Boot Record found\n");
636                                 break;
637                         case 1:
638                                 udf_debug("ISO9660 Primary Volume Descriptor "
639                                           "found\n");
640                                 break;
641                         case 2:
642                                 udf_debug("ISO9660 Supplementary Volume "
643                                           "Descriptor found\n");
644                                 break;
645                         case 3:
646                                 udf_debug("ISO9660 Volume Partition Descriptor "
647                                           "found\n");
648                                 break;
649                         case 255:
650                                 udf_debug("ISO9660 Volume Descriptor Set "
651                                           "Terminator found\n");
652                                 break;
653                         default:
654                                 udf_debug("ISO9660 VRS (%u) found\n",
655                                           vsd->structType);
656                                 break;
657                         }
658                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
659                                     VSD_STD_ID_LEN))
660                         ; /* nothing */
661                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
662                                     VSD_STD_ID_LEN)) {
663                         brelse(bh);
664                         break;
665                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
666                                     VSD_STD_ID_LEN))
667                         nsr02 = sector;
668                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
669                                     VSD_STD_ID_LEN))
670                         nsr03 = sector;
671                 brelse(bh);
672         }
673
674         if (nsr03)
675                 return nsr03;
676         else if (nsr02)
677                 return nsr02;
678         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
679                 return -1;
680         else
681                 return 0;
682 }
683
684 static int udf_find_fileset(struct super_block *sb,
685                             struct kernel_lb_addr *fileset,
686                             struct kernel_lb_addr *root)
687 {
688         struct buffer_head *bh = NULL;
689         long lastblock;
690         uint16_t ident;
691         struct udf_sb_info *sbi;
692
693         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
694             fileset->partitionReferenceNum != 0xFFFF) {
695                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
696
697                 if (!bh) {
698                         return 1;
699                 } else if (ident != TAG_IDENT_FSD) {
700                         brelse(bh);
701                         return 1;
702                 }
703
704         }
705
706         sbi = UDF_SB(sb);
707         if (!bh) {
708                 /* Search backwards through the partitions */
709                 struct kernel_lb_addr newfileset;
710
711 /* --> cvg: FIXME - is it reasonable? */
712                 return 1;
713
714                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
715                      (newfileset.partitionReferenceNum != 0xFFFF &&
716                       fileset->logicalBlockNum == 0xFFFFFFFF &&
717                       fileset->partitionReferenceNum == 0xFFFF);
718                      newfileset.partitionReferenceNum--) {
719                         lastblock = sbi->s_partmaps
720                                         [newfileset.partitionReferenceNum]
721                                                 .s_partition_len;
722                         newfileset.logicalBlockNum = 0;
723
724                         do {
725                                 bh = udf_read_ptagged(sb, &newfileset, 0,
726                                                       &ident);
727                                 if (!bh) {
728                                         newfileset.logicalBlockNum++;
729                                         continue;
730                                 }
731
732                                 switch (ident) {
733                                 case TAG_IDENT_SBD:
734                                 {
735                                         struct spaceBitmapDesc *sp;
736                                         sp = (struct spaceBitmapDesc *)
737                                                                 bh->b_data;
738                                         newfileset.logicalBlockNum += 1 +
739                                                 ((le32_to_cpu(sp->numOfBytes) +
740                                                   sizeof(struct spaceBitmapDesc)
741                                                   - 1) >> sb->s_blocksize_bits);
742                                         brelse(bh);
743                                         break;
744                                 }
745                                 case TAG_IDENT_FSD:
746                                         *fileset = newfileset;
747                                         break;
748                                 default:
749                                         newfileset.logicalBlockNum++;
750                                         brelse(bh);
751                                         bh = NULL;
752                                         break;
753                                 }
754                         } while (newfileset.logicalBlockNum < lastblock &&
755                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
756                                  fileset->partitionReferenceNum == 0xFFFF);
757                 }
758         }
759
760         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
761              fileset->partitionReferenceNum != 0xFFFF) && bh) {
762                 udf_debug("Fileset at block=%d, partition=%d\n",
763                           fileset->logicalBlockNum,
764                           fileset->partitionReferenceNum);
765
766                 sbi->s_partition = fileset->partitionReferenceNum;
767                 udf_load_fileset(sb, bh, root);
768                 brelse(bh);
769                 return 0;
770         }
771         return 1;
772 }
773
774 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
775 {
776         struct primaryVolDesc *pvoldesc;
777         struct ustr *instr, *outstr;
778         struct buffer_head *bh;
779         uint16_t ident;
780         int ret = 1;
781
782         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
783         if (!instr)
784                 return 1;
785
786         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
787         if (!outstr)
788                 goto out1;
789
790         bh = udf_read_tagged(sb, block, block, &ident);
791         if (!bh)
792                 goto out2;
793
794         BUG_ON(ident != TAG_IDENT_PVD);
795
796         pvoldesc = (struct primaryVolDesc *)bh->b_data;
797
798         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
799                               pvoldesc->recordingDateAndTime)) {
800 #ifdef UDFFS_DEBUG
801                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
802                 udf_debug("recording time %04u/%02u/%02u"
803                           " %02u:%02u (%x)\n",
804                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
807         }
808
809         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810                 if (udf_CS0toUTF8(outstr, instr)) {
811                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812                                 outstr->u_len > 31 ? 31 : outstr->u_len);
813                         udf_debug("volIdent[] = '%s'\n",
814                                         UDF_SB(sb)->s_volume_ident);
815                 }
816
817         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818                 if (udf_CS0toUTF8(outstr, instr))
819                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
820
821         brelse(bh);
822         ret = 0;
823 out2:
824         kfree(outstr);
825 out1:
826         kfree(instr);
827         return ret;
828 }
829
830 static int udf_load_metadata_files(struct super_block *sb, int partition)
831 {
832         struct udf_sb_info *sbi = UDF_SB(sb);
833         struct udf_part_map *map;
834         struct udf_meta_data *mdata;
835         struct kernel_lb_addr addr;
836         int fe_error = 0;
837
838         map = &sbi->s_partmaps[partition];
839         mdata = &map->s_type_specific.s_metadata;
840
841         /* metadata address */
842         addr.logicalBlockNum =  mdata->s_meta_file_loc;
843         addr.partitionReferenceNum = map->s_partition_num;
844
845         udf_debug("Metadata file location: block = %d part = %d\n",
846                           addr.logicalBlockNum, addr.partitionReferenceNum);
847
848         mdata->s_metadata_fe = udf_iget(sb, &addr);
849
850         if (mdata->s_metadata_fe == NULL) {
851                 udf_warning(sb, __func__, "metadata inode efe not found, "
852                                 "will try mirror inode.");
853                 fe_error = 1;
854         } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
855                  ICBTAG_FLAG_AD_SHORT) {
856                 udf_warning(sb, __func__, "metadata inode efe does not have "
857                         "short allocation descriptors!");
858                 fe_error = 1;
859                 iput(mdata->s_metadata_fe);
860                 mdata->s_metadata_fe = NULL;
861         }
862
863         /* mirror file entry */
864         addr.logicalBlockNum = mdata->s_mirror_file_loc;
865         addr.partitionReferenceNum = map->s_partition_num;
866
867         udf_debug("Mirror metadata file location: block = %d part = %d\n",
868                           addr.logicalBlockNum, addr.partitionReferenceNum);
869
870         mdata->s_mirror_fe = udf_iget(sb, &addr);
871
872         if (mdata->s_mirror_fe == NULL) {
873                 if (fe_error) {
874                         udf_error(sb, __func__, "mirror inode efe not found "
875                         "and metadata inode is missing too, exiting...");
876                         goto error_exit;
877                 } else
878                         udf_warning(sb, __func__, "mirror inode efe not found,"
879                                         " but metadata inode is OK");
880         } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
881                  ICBTAG_FLAG_AD_SHORT) {
882                 udf_warning(sb, __func__, "mirror inode efe does not have "
883                         "short allocation descriptors!");
884                 iput(mdata->s_mirror_fe);
885                 mdata->s_mirror_fe = NULL;
886                 if (fe_error)
887                         goto error_exit;
888         }
889
890         /*
891          * bitmap file entry
892          * Note:
893          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
894         */
895         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
896                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
897                 addr.partitionReferenceNum = map->s_partition_num;
898
899                 udf_debug("Bitmap file location: block = %d part = %d\n",
900                         addr.logicalBlockNum, addr.partitionReferenceNum);
901
902                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
903
904                 if (mdata->s_bitmap_fe == NULL) {
905                         if (sb->s_flags & MS_RDONLY)
906                                 udf_warning(sb, __func__, "bitmap inode efe "
907                                         "not found but it's ok since the disc"
908                                         " is mounted read-only");
909                         else {
910                                 udf_error(sb, __func__, "bitmap inode efe not "
911                                         "found and attempted read-write mount");
912                                 goto error_exit;
913                         }
914                 }
915         }
916
917         udf_debug("udf_load_metadata_files Ok\n");
918
919         return 0;
920
921 error_exit:
922         return 1;
923 }
924
925 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
926                              struct kernel_lb_addr *root)
927 {
928         struct fileSetDesc *fset;
929
930         fset = (struct fileSetDesc *)bh->b_data;
931
932         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
933
934         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
935
936         udf_debug("Rootdir at block=%d, partition=%d\n",
937                   root->logicalBlockNum, root->partitionReferenceNum);
938 }
939
940 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
941 {
942         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
943         return DIV_ROUND_UP(map->s_partition_len +
944                             (sizeof(struct spaceBitmapDesc) << 3),
945                             sb->s_blocksize * 8);
946 }
947
948 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
949 {
950         struct udf_bitmap *bitmap;
951         int nr_groups;
952         int size;
953
954         nr_groups = udf_compute_nr_groups(sb, index);
955         size = sizeof(struct udf_bitmap) +
956                 (sizeof(struct buffer_head *) * nr_groups);
957
958         if (size <= PAGE_SIZE)
959                 bitmap = kmalloc(size, GFP_KERNEL);
960         else
961                 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
962
963         if (bitmap == NULL) {
964                 udf_error(sb, __func__,
965                           "Unable to allocate space for bitmap "
966                           "and %d buffer_head pointers", nr_groups);
967                 return NULL;
968         }
969
970         memset(bitmap, 0x00, size);
971         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
972         bitmap->s_nr_groups = nr_groups;
973         return bitmap;
974 }
975
976 static int udf_fill_partdesc_info(struct super_block *sb,
977                 struct partitionDesc *p, int p_index)
978 {
979         struct udf_part_map *map;
980         struct udf_sb_info *sbi = UDF_SB(sb);
981         struct partitionHeaderDesc *phd;
982
983         map = &sbi->s_partmaps[p_index];
984
985         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
986         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
987
988         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
989                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
990         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
991                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
992         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
993                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
994         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
995                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
996
997         udf_debug("Partition (%d type %x) starts at physical %d, "
998                   "block length %d\n", p_index,
999                   map->s_partition_type, map->s_partition_root,
1000                   map->s_partition_len);
1001
1002         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1003             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1004                 return 0;
1005
1006         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1007         if (phd->unallocSpaceTable.extLength) {
1008                 struct kernel_lb_addr loc = {
1009                         .logicalBlockNum = le32_to_cpu(
1010                                 phd->unallocSpaceTable.extPosition),
1011                         .partitionReferenceNum = p_index,
1012                 };
1013
1014                 map->s_uspace.s_table = udf_iget(sb, &loc);
1015                 if (!map->s_uspace.s_table) {
1016                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1017                                         p_index);
1018                         return 1;
1019                 }
1020                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1021                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1022                                 p_index, map->s_uspace.s_table->i_ino);
1023         }
1024
1025         if (phd->unallocSpaceBitmap.extLength) {
1026                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1027                 if (!bitmap)
1028                         return 1;
1029                 map->s_uspace.s_bitmap = bitmap;
1030                 bitmap->s_extLength = le32_to_cpu(
1031                                 phd->unallocSpaceBitmap.extLength);
1032                 bitmap->s_extPosition = le32_to_cpu(
1033                                 phd->unallocSpaceBitmap.extPosition);
1034                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1035                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1036                                                 bitmap->s_extPosition);
1037         }
1038
1039         if (phd->partitionIntegrityTable.extLength)
1040                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1041
1042         if (phd->freedSpaceTable.extLength) {
1043                 struct kernel_lb_addr loc = {
1044                         .logicalBlockNum = le32_to_cpu(
1045                                 phd->freedSpaceTable.extPosition),
1046                         .partitionReferenceNum = p_index,
1047                 };
1048
1049                 map->s_fspace.s_table = udf_iget(sb, &loc);
1050                 if (!map->s_fspace.s_table) {
1051                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1052                                 p_index);
1053                         return 1;
1054                 }
1055
1056                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1057                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1058                                 p_index, map->s_fspace.s_table->i_ino);
1059         }
1060
1061         if (phd->freedSpaceBitmap.extLength) {
1062                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1063                 if (!bitmap)
1064                         return 1;
1065                 map->s_fspace.s_bitmap = bitmap;
1066                 bitmap->s_extLength = le32_to_cpu(
1067                                 phd->freedSpaceBitmap.extLength);
1068                 bitmap->s_extPosition = le32_to_cpu(
1069                                 phd->freedSpaceBitmap.extPosition);
1070                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1071                 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1072                                         bitmap->s_extPosition);
1073         }
1074         return 0;
1075 }
1076
1077 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1078 {
1079         struct udf_sb_info *sbi = UDF_SB(sb);
1080         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1081         struct kernel_lb_addr ino;
1082         struct buffer_head *bh = NULL;
1083         struct udf_inode_info *vati;
1084         uint32_t pos;
1085         struct virtualAllocationTable20 *vat20;
1086
1087         /* VAT file entry is in the last recorded block */
1088         ino.partitionReferenceNum = type1_index;
1089         ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1090         sbi->s_vat_inode = udf_iget(sb, &ino);
1091         if (!sbi->s_vat_inode)
1092                 return 1;
1093
1094         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1095                 map->s_type_specific.s_virtual.s_start_offset = 0;
1096                 map->s_type_specific.s_virtual.s_num_entries =
1097                         (sbi->s_vat_inode->i_size - 36) >> 2;
1098         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1099                 vati = UDF_I(sbi->s_vat_inode);
1100                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1101                         pos = udf_block_map(sbi->s_vat_inode, 0);
1102                         bh = sb_bread(sb, pos);
1103                         if (!bh)
1104                                 return 1;
1105                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1106                 } else {
1107                         vat20 = (struct virtualAllocationTable20 *)
1108                                                         vati->i_ext.i_data;
1109                 }
1110
1111                 map->s_type_specific.s_virtual.s_start_offset =
1112                         le16_to_cpu(vat20->lengthHeader);
1113                 map->s_type_specific.s_virtual.s_num_entries =
1114                         (sbi->s_vat_inode->i_size -
1115                                 map->s_type_specific.s_virtual.
1116                                         s_start_offset) >> 2;
1117                 brelse(bh);
1118         }
1119         return 0;
1120 }
1121
1122 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1123 {
1124         struct buffer_head *bh;
1125         struct partitionDesc *p;
1126         struct udf_part_map *map;
1127         struct udf_sb_info *sbi = UDF_SB(sb);
1128         int i, type1_idx;
1129         uint16_t partitionNumber;
1130         uint16_t ident;
1131         int ret = 0;
1132
1133         bh = udf_read_tagged(sb, block, block, &ident);
1134         if (!bh)
1135                 return 1;
1136         if (ident != TAG_IDENT_PD)
1137                 goto out_bh;
1138
1139         p = (struct partitionDesc *)bh->b_data;
1140         partitionNumber = le16_to_cpu(p->partitionNumber);
1141
1142         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1143         for (i = 0; i < sbi->s_partitions; i++) {
1144                 map = &sbi->s_partmaps[i];
1145                 udf_debug("Searching map: (%d == %d)\n",
1146                           map->s_partition_num, partitionNumber);
1147                 if (map->s_partition_num == partitionNumber &&
1148                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1149                      map->s_partition_type == UDF_SPARABLE_MAP15))
1150                         break;
1151         }
1152
1153         if (i >= sbi->s_partitions) {
1154                 udf_debug("Partition (%d) not found in partition map\n",
1155                           partitionNumber);
1156                 goto out_bh;
1157         }
1158
1159         ret = udf_fill_partdesc_info(sb, p, i);
1160
1161         /*
1162          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1163          * PHYSICAL partitions are already set up
1164          */
1165         type1_idx = i;
1166         for (i = 0; i < sbi->s_partitions; i++) {
1167                 map = &sbi->s_partmaps[i];
1168
1169                 if (map->s_partition_num == partitionNumber &&
1170                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1171                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1172                      map->s_partition_type == UDF_METADATA_MAP25))
1173                         break;
1174         }
1175
1176         if (i >= sbi->s_partitions)
1177                 goto out_bh;
1178
1179         ret = udf_fill_partdesc_info(sb, p, i);
1180         if (ret)
1181                 goto out_bh;
1182
1183         if (map->s_partition_type == UDF_METADATA_MAP25) {
1184                 ret = udf_load_metadata_files(sb, i);
1185                 if (ret) {
1186                         printk(KERN_ERR "UDF-fs: error loading MetaData "
1187                         "partition map %d\n", i);
1188                         goto out_bh;
1189                 }
1190         } else {
1191                 ret = udf_load_vat(sb, i, type1_idx);
1192                 if (ret)
1193                         goto out_bh;
1194                 /*
1195                  * Mark filesystem read-only if we have a partition with
1196                  * virtual map since we don't handle writing to it (we
1197                  * overwrite blocks instead of relocating them).
1198                  */
1199                 sb->s_flags |= MS_RDONLY;
1200                 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1201                         "because writing to pseudooverwrite partition is "
1202                         "not implemented.\n");
1203         }
1204 out_bh:
1205         /* In case loading failed, we handle cleanup in udf_fill_super */
1206         brelse(bh);
1207         return ret;
1208 }
1209
1210 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1211                                struct kernel_lb_addr *fileset)
1212 {
1213         struct logicalVolDesc *lvd;
1214         int i, j, offset;
1215         uint8_t type;
1216         struct udf_sb_info *sbi = UDF_SB(sb);
1217         struct genericPartitionMap *gpm;
1218         uint16_t ident;
1219         struct buffer_head *bh;
1220         int ret = 0;
1221
1222         bh = udf_read_tagged(sb, block, block, &ident);
1223         if (!bh)
1224                 return 1;
1225         BUG_ON(ident != TAG_IDENT_LVD);
1226         lvd = (struct logicalVolDesc *)bh->b_data;
1227
1228         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1229         if (i != 0) {
1230                 ret = i;
1231                 goto out_bh;
1232         }
1233
1234         for (i = 0, offset = 0;
1235              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1236              i++, offset += gpm->partitionMapLength) {
1237                 struct udf_part_map *map = &sbi->s_partmaps[i];
1238                 gpm = (struct genericPartitionMap *)
1239                                 &(lvd->partitionMaps[offset]);
1240                 type = gpm->partitionMapType;
1241                 if (type == 1) {
1242                         struct genericPartitionMap1 *gpm1 =
1243                                 (struct genericPartitionMap1 *)gpm;
1244                         map->s_partition_type = UDF_TYPE1_MAP15;
1245                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1246                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1247                         map->s_partition_func = NULL;
1248                 } else if (type == 2) {
1249                         struct udfPartitionMap2 *upm2 =
1250                                                 (struct udfPartitionMap2 *)gpm;
1251                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1252                                                 strlen(UDF_ID_VIRTUAL))) {
1253                                 u16 suf =
1254                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1255                                                         identSuffix)[0]);
1256                                 if (suf < 0x0200) {
1257                                         map->s_partition_type =
1258                                                         UDF_VIRTUAL_MAP15;
1259                                         map->s_partition_func =
1260                                                         udf_get_pblock_virt15;
1261                                 } else {
1262                                         map->s_partition_type =
1263                                                         UDF_VIRTUAL_MAP20;
1264                                         map->s_partition_func =
1265                                                         udf_get_pblock_virt20;
1266                                 }
1267                         } else if (!strncmp(upm2->partIdent.ident,
1268                                                 UDF_ID_SPARABLE,
1269                                                 strlen(UDF_ID_SPARABLE))) {
1270                                 uint32_t loc;
1271                                 struct sparingTable *st;
1272                                 struct sparablePartitionMap *spm =
1273                                         (struct sparablePartitionMap *)gpm;
1274
1275                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1276                                 map->s_type_specific.s_sparing.s_packet_len =
1277                                                 le16_to_cpu(spm->packetLength);
1278                                 for (j = 0; j < spm->numSparingTables; j++) {
1279                                         struct buffer_head *bh2;
1280
1281                                         loc = le32_to_cpu(
1282                                                 spm->locSparingTable[j]);
1283                                         bh2 = udf_read_tagged(sb, loc, loc,
1284                                                              &ident);
1285                                         map->s_type_specific.s_sparing.
1286                                                         s_spar_map[j] = bh2;
1287
1288                                         if (bh2 == NULL)
1289                                                 continue;
1290
1291                                         st = (struct sparingTable *)bh2->b_data;
1292                                         if (ident != 0 || strncmp(
1293                                                 st->sparingIdent.ident,
1294                                                 UDF_ID_SPARING,
1295                                                 strlen(UDF_ID_SPARING))) {
1296                                                 brelse(bh2);
1297                                                 map->s_type_specific.s_sparing.
1298                                                         s_spar_map[j] = NULL;
1299                                         }
1300                                 }
1301                                 map->s_partition_func = udf_get_pblock_spar15;
1302                         } else if (!strncmp(upm2->partIdent.ident,
1303                                                 UDF_ID_METADATA,
1304                                                 strlen(UDF_ID_METADATA))) {
1305                                 struct udf_meta_data *mdata =
1306                                         &map->s_type_specific.s_metadata;
1307                                 struct metadataPartitionMap *mdm =
1308                                                 (struct metadataPartitionMap *)
1309                                                 &(lvd->partitionMaps[offset]);
1310                                 udf_debug("Parsing Logical vol part %d "
1311                                         "type %d  id=%s\n", i, type,
1312                                         UDF_ID_METADATA);
1313
1314                                 map->s_partition_type = UDF_METADATA_MAP25;
1315                                 map->s_partition_func = udf_get_pblock_meta25;
1316
1317                                 mdata->s_meta_file_loc   =
1318                                         le32_to_cpu(mdm->metadataFileLoc);
1319                                 mdata->s_mirror_file_loc =
1320                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1321                                 mdata->s_bitmap_file_loc =
1322                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1323                                 mdata->s_alloc_unit_size =
1324                                         le32_to_cpu(mdm->allocUnitSize);
1325                                 mdata->s_align_unit_size =
1326                                         le16_to_cpu(mdm->alignUnitSize);
1327                                 mdata->s_dup_md_flag     =
1328                                         mdm->flags & 0x01;
1329
1330                                 udf_debug("Metadata Ident suffix=0x%x\n",
1331                                         (le16_to_cpu(
1332                                          ((__le16 *)
1333                                               mdm->partIdent.identSuffix)[0])));
1334                                 udf_debug("Metadata part num=%d\n",
1335                                         le16_to_cpu(mdm->partitionNum));
1336                                 udf_debug("Metadata part alloc unit size=%d\n",
1337                                         le32_to_cpu(mdm->allocUnitSize));
1338                                 udf_debug("Metadata file loc=%d\n",
1339                                         le32_to_cpu(mdm->metadataFileLoc));
1340                                 udf_debug("Mirror file loc=%d\n",
1341                                        le32_to_cpu(mdm->metadataMirrorFileLoc));
1342                                 udf_debug("Bitmap file loc=%d\n",
1343                                        le32_to_cpu(mdm->metadataBitmapFileLoc));
1344                                 udf_debug("Duplicate Flag: %d %d\n",
1345                                         mdata->s_dup_md_flag, mdm->flags);
1346                         } else {
1347                                 udf_debug("Unknown ident: %s\n",
1348                                           upm2->partIdent.ident);
1349                                 continue;
1350                         }
1351                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1352                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1353                 }
1354                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1355                           i, map->s_partition_num, type,
1356                           map->s_volumeseqnum);
1357         }
1358
1359         if (fileset) {
1360                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1361
1362                 *fileset = lelb_to_cpu(la->extLocation);
1363                 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1364                           "partition=%d\n", fileset->logicalBlockNum,
1365                           fileset->partitionReferenceNum);
1366         }
1367         if (lvd->integritySeqExt.extLength)
1368                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1369
1370 out_bh:
1371         brelse(bh);
1372         return ret;
1373 }
1374
1375 /*
1376  * udf_load_logicalvolint
1377  *
1378  */
1379 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1380 {
1381         struct buffer_head *bh = NULL;
1382         uint16_t ident;
1383         struct udf_sb_info *sbi = UDF_SB(sb);
1384         struct logicalVolIntegrityDesc *lvid;
1385
1386         while (loc.extLength > 0 &&
1387                (bh = udf_read_tagged(sb, loc.extLocation,
1388                                      loc.extLocation, &ident)) &&
1389                ident == TAG_IDENT_LVID) {
1390                 sbi->s_lvid_bh = bh;
1391                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1392
1393                 if (lvid->nextIntegrityExt.extLength)
1394                         udf_load_logicalvolint(sb,
1395                                 leea_to_cpu(lvid->nextIntegrityExt));
1396
1397                 if (sbi->s_lvid_bh != bh)
1398                         brelse(bh);
1399                 loc.extLength -= sb->s_blocksize;
1400                 loc.extLocation++;
1401         }
1402         if (sbi->s_lvid_bh != bh)
1403                 brelse(bh);
1404 }
1405
1406 /*
1407  * udf_process_sequence
1408  *
1409  * PURPOSE
1410  *      Process a main/reserve volume descriptor sequence.
1411  *
1412  * PRE-CONDITIONS
1413  *      sb                      Pointer to _locked_ superblock.
1414  *      block                   First block of first extent of the sequence.
1415  *      lastblock               Lastblock of first extent of the sequence.
1416  *
1417  * HISTORY
1418  *      July 1, 1997 - Andrew E. Mileski
1419  *      Written, tested, and released.
1420  */
1421 static noinline int udf_process_sequence(struct super_block *sb, long block,
1422                                 long lastblock, struct kernel_lb_addr *fileset)
1423 {
1424         struct buffer_head *bh = NULL;
1425         struct udf_vds_record vds[VDS_POS_LENGTH];
1426         struct udf_vds_record *curr;
1427         struct generic_desc *gd;
1428         struct volDescPtr *vdp;
1429         int done = 0;
1430         uint32_t vdsn;
1431         uint16_t ident;
1432         long next_s = 0, next_e = 0;
1433
1434         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1435
1436         /*
1437          * Read the main descriptor sequence and find which descriptors
1438          * are in it.
1439          */
1440         for (; (!done && block <= lastblock); block++) {
1441
1442                 bh = udf_read_tagged(sb, block, block, &ident);
1443                 if (!bh) {
1444                         printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1445                                "sequence is corrupted or we could not read "
1446                                "it.\n", (unsigned long long)block);
1447                         return 1;
1448                 }
1449
1450                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1451                 gd = (struct generic_desc *)bh->b_data;
1452                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1453                 switch (ident) {
1454                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1455                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1456                         if (vdsn >= curr->volDescSeqNum) {
1457                                 curr->volDescSeqNum = vdsn;
1458                                 curr->block = block;
1459                         }
1460                         break;
1461                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1462                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1463                         if (vdsn >= curr->volDescSeqNum) {
1464                                 curr->volDescSeqNum = vdsn;
1465                                 curr->block = block;
1466
1467                                 vdp = (struct volDescPtr *)bh->b_data;
1468                                 next_s = le32_to_cpu(
1469                                         vdp->nextVolDescSeqExt.extLocation);
1470                                 next_e = le32_to_cpu(
1471                                         vdp->nextVolDescSeqExt.extLength);
1472                                 next_e = next_e >> sb->s_blocksize_bits;
1473                                 next_e += next_s;
1474                         }
1475                         break;
1476                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1477                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1478                         if (vdsn >= curr->volDescSeqNum) {
1479                                 curr->volDescSeqNum = vdsn;
1480                                 curr->block = block;
1481                         }
1482                         break;
1483                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1484                         curr = &vds[VDS_POS_PARTITION_DESC];
1485                         if (!curr->block)
1486                                 curr->block = block;
1487                         break;
1488                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1489                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1490                         if (vdsn >= curr->volDescSeqNum) {
1491                                 curr->volDescSeqNum = vdsn;
1492                                 curr->block = block;
1493                         }
1494                         break;
1495                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1496                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1497                         if (vdsn >= curr->volDescSeqNum) {
1498                                 curr->volDescSeqNum = vdsn;
1499                                 curr->block = block;
1500                         }
1501                         break;
1502                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1503                         vds[VDS_POS_TERMINATING_DESC].block = block;
1504                         if (next_e) {
1505                                 block = next_s;
1506                                 lastblock = next_e;
1507                                 next_s = next_e = 0;
1508                         } else
1509                                 done = 1;
1510                         break;
1511                 }
1512                 brelse(bh);
1513         }
1514         /*
1515          * Now read interesting descriptors again and process them
1516          * in a suitable order
1517          */
1518         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1519                 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1520                 return 1;
1521         }
1522         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1523                 return 1;
1524
1525         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1526             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1527                 return 1;
1528
1529         if (vds[VDS_POS_PARTITION_DESC].block) {
1530                 /*
1531                  * We rescan the whole descriptor sequence to find
1532                  * partition descriptor blocks and process them.
1533                  */
1534                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1535                      block < vds[VDS_POS_TERMINATING_DESC].block;
1536                      block++)
1537                         if (udf_load_partdesc(sb, block))
1538                                 return 1;
1539         }
1540
1541         return 0;
1542 }
1543
1544 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1545                              struct kernel_lb_addr *fileset)
1546 {
1547         struct anchorVolDescPtr *anchor;
1548         long main_s, main_e, reserve_s, reserve_e;
1549         struct udf_sb_info *sbi;
1550
1551         sbi = UDF_SB(sb);
1552         anchor = (struct anchorVolDescPtr *)bh->b_data;
1553
1554         /* Locate the main sequence */
1555         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1556         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1557         main_e = main_e >> sb->s_blocksize_bits;
1558         main_e += main_s;
1559
1560         /* Locate the reserve sequence */
1561         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1562         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1563         reserve_e = reserve_e >> sb->s_blocksize_bits;
1564         reserve_e += reserve_s;
1565
1566         /* Process the main & reserve sequences */
1567         /* responsible for finding the PartitionDesc(s) */
1568         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1569                 return 1;
1570         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1571 }
1572
1573 /*
1574  * Check whether there is an anchor block in the given block and
1575  * load Volume Descriptor Sequence if so.
1576  */
1577 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1578                                   struct kernel_lb_addr *fileset)
1579 {
1580         struct buffer_head *bh;
1581         uint16_t ident;
1582         int ret;
1583
1584         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1585             udf_fixed_to_variable(block) >=
1586             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1587                 return 0;
1588
1589         bh = udf_read_tagged(sb, block, block, &ident);
1590         if (!bh)
1591                 return 0;
1592         if (ident != TAG_IDENT_AVDP) {
1593                 brelse(bh);
1594                 return 0;
1595         }
1596         ret = udf_load_sequence(sb, bh, fileset);
1597         brelse(bh);
1598         return ret;
1599 }
1600
1601 /* Search for an anchor volume descriptor pointer */
1602 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1603                                  struct kernel_lb_addr *fileset)
1604 {
1605         sector_t last[6];
1606         int i;
1607         struct udf_sb_info *sbi = UDF_SB(sb);
1608         int last_count = 0;
1609
1610         /* First try user provided anchor */
1611         if (sbi->s_anchor) {
1612                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1613                         return lastblock;
1614         }
1615         /*
1616          * according to spec, anchor is in either:
1617          *     block 256
1618          *     lastblock-256
1619          *     lastblock
1620          *  however, if the disc isn't closed, it could be 512.
1621          */
1622         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1623                 return lastblock;
1624         /*
1625          * The trouble is which block is the last one. Drives often misreport
1626          * this so we try various possibilities.
1627          */
1628         last[last_count++] = lastblock;
1629         if (lastblock >= 1)
1630                 last[last_count++] = lastblock - 1;
1631         last[last_count++] = lastblock + 1;
1632         if (lastblock >= 2)
1633                 last[last_count++] = lastblock - 2;
1634         if (lastblock >= 150)
1635                 last[last_count++] = lastblock - 150;
1636         if (lastblock >= 152)
1637                 last[last_count++] = lastblock - 152;
1638
1639         for (i = 0; i < last_count; i++) {
1640                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1641                                 sb->s_blocksize_bits)
1642                         continue;
1643                 if (udf_check_anchor_block(sb, last[i], fileset))
1644                         return last[i];
1645                 if (last[i] < 256)
1646                         continue;
1647                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1648                         return last[i];
1649         }
1650
1651         /* Finally try block 512 in case media is open */
1652         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1653                 return last[0];
1654         return 0;
1655 }
1656
1657 /*
1658  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1659  * area specified by it. The function expects sbi->s_lastblock to be the last
1660  * block on the media.
1661  *
1662  * Return 1 if ok, 0 if not found.
1663  *
1664  */
1665 static int udf_find_anchor(struct super_block *sb,
1666                            struct kernel_lb_addr *fileset)
1667 {
1668         sector_t lastblock;
1669         struct udf_sb_info *sbi = UDF_SB(sb);
1670
1671         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1672         if (lastblock)
1673                 goto out;
1674
1675         /* No anchor found? Try VARCONV conversion of block numbers */
1676         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1677         /* Firstly, we try to not convert number of the last block */
1678         lastblock = udf_scan_anchors(sb,
1679                                 udf_variable_to_fixed(sbi->s_last_block),
1680                                 fileset);
1681         if (lastblock)
1682                 goto out;
1683
1684         /* Secondly, we try with converted number of the last block */
1685         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1686         if (!lastblock) {
1687                 /* VARCONV didn't help. Clear it. */
1688                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1689                 return 0;
1690         }
1691 out:
1692         sbi->s_last_block = lastblock;
1693         return 1;
1694 }
1695
1696 /*
1697  * Check Volume Structure Descriptor, find Anchor block and load Volume
1698  * Descriptor Sequence
1699  */
1700 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1701                         int silent, struct kernel_lb_addr *fileset)
1702 {
1703         struct udf_sb_info *sbi = UDF_SB(sb);
1704         loff_t nsr_off;
1705
1706         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1707                 if (!silent)
1708                         printk(KERN_WARNING "UDF-fs: Bad block size\n");
1709                 return 0;
1710         }
1711         sbi->s_last_block = uopt->lastblock;
1712         if (!uopt->novrs) {
1713                 /* Check that it is NSR02 compliant */
1714                 nsr_off = udf_check_vsd(sb);
1715                 if (!nsr_off) {
1716                         if (!silent)
1717                                 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1718                         return 0;
1719                 }
1720                 if (nsr_off == -1)
1721                         udf_debug("Failed to read byte 32768. Assuming open "
1722                                   "disc. Skipping validity check\n");
1723                 if (!sbi->s_last_block)
1724                         sbi->s_last_block = udf_get_last_block(sb);
1725         } else {
1726                 udf_debug("Validity check skipped because of novrs option\n");
1727         }
1728
1729         /* Look for anchor block and load Volume Descriptor Sequence */
1730         sbi->s_anchor = uopt->anchor;
1731         if (!udf_find_anchor(sb, fileset)) {
1732                 if (!silent)
1733                         printk(KERN_WARNING "UDF-fs: No anchor found\n");
1734                 return 0;
1735         }
1736         return 1;
1737 }
1738
1739 static void udf_open_lvid(struct super_block *sb)
1740 {
1741         struct udf_sb_info *sbi = UDF_SB(sb);
1742         struct buffer_head *bh = sbi->s_lvid_bh;
1743         struct logicalVolIntegrityDesc *lvid;
1744         struct logicalVolIntegrityDescImpUse *lvidiu;
1745
1746         if (!bh)
1747                 return;
1748         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1749         lvidiu = udf_sb_lvidiu(sbi);
1750
1751         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1752         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1753         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1754                                 CURRENT_TIME);
1755         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1756
1757         lvid->descTag.descCRC = cpu_to_le16(
1758                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1759                         le16_to_cpu(lvid->descTag.descCRCLength)));
1760
1761         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1762         mark_buffer_dirty(bh);
1763         sbi->s_lvid_dirty = 0;
1764 }
1765
1766 static void udf_close_lvid(struct super_block *sb)
1767 {
1768         struct udf_sb_info *sbi = UDF_SB(sb);
1769         struct buffer_head *bh = sbi->s_lvid_bh;
1770         struct logicalVolIntegrityDesc *lvid;
1771         struct logicalVolIntegrityDescImpUse *lvidiu;
1772
1773         if (!bh)
1774                 return;
1775
1776         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1777         lvidiu = udf_sb_lvidiu(sbi);
1778         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1781         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1782                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1783         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1784                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1785         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1786                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1787         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1788
1789         lvid->descTag.descCRC = cpu_to_le16(
1790                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1791                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1792
1793         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1794         mark_buffer_dirty(bh);
1795         sbi->s_lvid_dirty = 0;
1796 }
1797
1798 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1799 {
1800         int i;
1801         int nr_groups = bitmap->s_nr_groups;
1802         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1803                                                 nr_groups);
1804
1805         for (i = 0; i < nr_groups; i++)
1806                 if (bitmap->s_block_bitmap[i])
1807                         brelse(bitmap->s_block_bitmap[i]);
1808
1809         if (size <= PAGE_SIZE)
1810                 kfree(bitmap);
1811         else
1812                 vfree(bitmap);
1813 }
1814
1815 static void udf_free_partition(struct udf_part_map *map)
1816 {
1817         int i;
1818         struct udf_meta_data *mdata;
1819
1820         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1821                 iput(map->s_uspace.s_table);
1822         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1823                 iput(map->s_fspace.s_table);
1824         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1825                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1826         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1827                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1828         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1829                 for (i = 0; i < 4; i++)
1830                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1831         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1832                 mdata = &map->s_type_specific.s_metadata;
1833                 iput(mdata->s_metadata_fe);
1834                 mdata->s_metadata_fe = NULL;
1835
1836                 iput(mdata->s_mirror_fe);
1837                 mdata->s_mirror_fe = NULL;
1838
1839                 iput(mdata->s_bitmap_fe);
1840                 mdata->s_bitmap_fe = NULL;
1841         }
1842 }
1843
1844 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1845 {
1846         int i;
1847         int ret;
1848         struct inode *inode = NULL;
1849         struct udf_options uopt;
1850         struct kernel_lb_addr rootdir, fileset;
1851         struct udf_sb_info *sbi;
1852
1853         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1854         uopt.uid = -1;
1855         uopt.gid = -1;
1856         uopt.umask = 0;
1857         uopt.fmode = UDF_INVALID_MODE;
1858         uopt.dmode = UDF_INVALID_MODE;
1859
1860         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1861         if (!sbi)
1862                 return -ENOMEM;
1863
1864         sb->s_fs_info = sbi;
1865
1866         mutex_init(&sbi->s_alloc_mutex);
1867
1868         if (!udf_parse_options((char *)options, &uopt, false))
1869                 goto error_out;
1870
1871         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1872             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1873                 udf_error(sb, "udf_read_super",
1874                           "utf8 cannot be combined with iocharset\n");
1875                 goto error_out;
1876         }
1877 #ifdef CONFIG_UDF_NLS
1878         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1879                 uopt.nls_map = load_nls_default();
1880                 if (!uopt.nls_map)
1881                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1882                 else
1883                         udf_debug("Using default NLS map\n");
1884         }
1885 #endif
1886         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1887                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1888
1889         fileset.logicalBlockNum = 0xFFFFFFFF;
1890         fileset.partitionReferenceNum = 0xFFFF;
1891
1892         sbi->s_flags = uopt.flags;
1893         sbi->s_uid = uopt.uid;
1894         sbi->s_gid = uopt.gid;
1895         sbi->s_umask = uopt.umask;
1896         sbi->s_fmode = uopt.fmode;
1897         sbi->s_dmode = uopt.dmode;
1898         sbi->s_nls_map = uopt.nls_map;
1899
1900         if (uopt.session == 0xFFFFFFFF)
1901                 sbi->s_session = udf_get_last_session(sb);
1902         else
1903                 sbi->s_session = uopt.session;
1904
1905         udf_debug("Multi-session=%d\n", sbi->s_session);
1906
1907         /* Fill in the rest of the superblock */
1908         sb->s_op = &udf_sb_ops;
1909         sb->s_export_op = &udf_export_ops;
1910         sb->dq_op = NULL;
1911         sb->s_dirt = 0;
1912         sb->s_magic = UDF_SUPER_MAGIC;
1913         sb->s_time_gran = 1000;
1914
1915         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1916                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1917         } else {
1918                 uopt.blocksize = bdev_hardsect_size(sb->s_bdev);
1919                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1920                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1921                         if (!silent)
1922                                 printk(KERN_NOTICE
1923                                        "UDF-fs: Rescanning with blocksize "
1924                                        "%d\n", UDF_DEFAULT_BLOCKSIZE);
1925                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1926                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1927                 }
1928         }
1929         if (!ret) {
1930                 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1931                 goto error_out;
1932         }
1933
1934         udf_debug("Lastblock=%d\n", sbi->s_last_block);
1935
1936         if (sbi->s_lvid_bh) {
1937                 struct logicalVolIntegrityDescImpUse *lvidiu =
1938                                                         udf_sb_lvidiu(sbi);
1939                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1940                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1941                 /* uint16_t maxUDFWriteRev =
1942                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1943
1944                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1945                         printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1946                                         "(max is %x)\n",
1947                                le16_to_cpu(lvidiu->minUDFReadRev),
1948                                UDF_MAX_READ_VERSION);
1949                         goto error_out;
1950                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1951                         sb->s_flags |= MS_RDONLY;
1952
1953                 sbi->s_udfrev = minUDFWriteRev;
1954
1955                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1956                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1957                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1958                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1959         }
1960
1961         if (!sbi->s_partitions) {
1962                 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1963                 goto error_out;
1964         }
1965
1966         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1967                         UDF_PART_FLAG_READ_ONLY) {
1968                 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1969                                    "forcing readonly mount\n");
1970                 sb->s_flags |= MS_RDONLY;
1971         }
1972
1973         if (udf_find_fileset(sb, &fileset, &rootdir)) {
1974                 printk(KERN_WARNING "UDF-fs: No fileset found\n");
1975                 goto error_out;
1976         }
1977
1978         if (!silent) {
1979                 struct timestamp ts;
1980                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
1981                 udf_info("UDF: Mounting volume '%s', "
1982                          "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1983                          sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
1984                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
1985         }
1986         if (!(sb->s_flags & MS_RDONLY))
1987                 udf_open_lvid(sb);
1988
1989         /* Assign the root inode */
1990         /* assign inodes by physical block number */
1991         /* perhaps it's not extensible enough, but for now ... */
1992         inode = udf_iget(sb, &rootdir);
1993         if (!inode) {
1994                 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
1995                                 "partition=%d\n",
1996                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
1997                 goto error_out;
1998         }
1999
2000         /* Allocate a dentry for the root inode */
2001         sb->s_root = d_alloc_root(inode);
2002         if (!sb->s_root) {
2003                 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2004                 iput(inode);
2005                 goto error_out;
2006         }
2007         sb->s_maxbytes = MAX_LFS_FILESIZE;
2008         return 0;
2009
2010 error_out:
2011         if (sbi->s_vat_inode)
2012                 iput(sbi->s_vat_inode);
2013         if (sbi->s_partitions)
2014                 for (i = 0; i < sbi->s_partitions; i++)
2015                         udf_free_partition(&sbi->s_partmaps[i]);
2016 #ifdef CONFIG_UDF_NLS
2017         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2018                 unload_nls(sbi->s_nls_map);
2019 #endif
2020         if (!(sb->s_flags & MS_RDONLY))
2021                 udf_close_lvid(sb);
2022         brelse(sbi->s_lvid_bh);
2023
2024         kfree(sbi->s_partmaps);
2025         kfree(sbi);
2026         sb->s_fs_info = NULL;
2027
2028         return -EINVAL;
2029 }
2030
2031 static void udf_error(struct super_block *sb, const char *function,
2032                       const char *fmt, ...)
2033 {
2034         va_list args;
2035
2036         if (!(sb->s_flags & MS_RDONLY)) {
2037                 /* mark sb error */
2038                 sb->s_dirt = 1;
2039         }
2040         va_start(args, fmt);
2041         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2042         va_end(args);
2043         printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2044                 sb->s_id, function, error_buf);
2045 }
2046
2047 void udf_warning(struct super_block *sb, const char *function,
2048                  const char *fmt, ...)
2049 {
2050         va_list args;
2051
2052         va_start(args, fmt);
2053         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2054         va_end(args);
2055         printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2056                sb->s_id, function, error_buf);
2057 }
2058
2059 static void udf_put_super(struct super_block *sb)
2060 {
2061         int i;
2062         struct udf_sb_info *sbi;
2063
2064         sbi = UDF_SB(sb);
2065         if (sbi->s_vat_inode)
2066                 iput(sbi->s_vat_inode);
2067         if (sbi->s_partitions)
2068                 for (i = 0; i < sbi->s_partitions; i++)
2069                         udf_free_partition(&sbi->s_partmaps[i]);
2070 #ifdef CONFIG_UDF_NLS
2071         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2072                 unload_nls(sbi->s_nls_map);
2073 #endif
2074         if (!(sb->s_flags & MS_RDONLY))
2075                 udf_close_lvid(sb);
2076         brelse(sbi->s_lvid_bh);
2077         kfree(sbi->s_partmaps);
2078         kfree(sb->s_fs_info);
2079         sb->s_fs_info = NULL;
2080 }
2081
2082 static int udf_sync_fs(struct super_block *sb, int wait)
2083 {
2084         struct udf_sb_info *sbi = UDF_SB(sb);
2085
2086         mutex_lock(&sbi->s_alloc_mutex);
2087         if (sbi->s_lvid_dirty) {
2088                 /*
2089                  * Blockdevice will be synced later so we don't have to submit
2090                  * the buffer for IO
2091                  */
2092                 mark_buffer_dirty(sbi->s_lvid_bh);
2093                 sb->s_dirt = 0;
2094                 sbi->s_lvid_dirty = 0;
2095         }
2096         mutex_unlock(&sbi->s_alloc_mutex);
2097
2098         return 0;
2099 }
2100
2101 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2102 {
2103         struct super_block *sb = dentry->d_sb;
2104         struct udf_sb_info *sbi = UDF_SB(sb);
2105         struct logicalVolIntegrityDescImpUse *lvidiu;
2106         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2107
2108         if (sbi->s_lvid_bh != NULL)
2109                 lvidiu = udf_sb_lvidiu(sbi);
2110         else
2111                 lvidiu = NULL;
2112
2113         buf->f_type = UDF_SUPER_MAGIC;
2114         buf->f_bsize = sb->s_blocksize;
2115         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2116         buf->f_bfree = udf_count_free(sb);
2117         buf->f_bavail = buf->f_bfree;
2118         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2119                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2120                         + buf->f_bfree;
2121         buf->f_ffree = buf->f_bfree;
2122         buf->f_namelen = UDF_NAME_LEN - 2;
2123         buf->f_fsid.val[0] = (u32)id;
2124         buf->f_fsid.val[1] = (u32)(id >> 32);
2125
2126         return 0;
2127 }
2128
2129 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2130                                           struct udf_bitmap *bitmap)
2131 {
2132         struct buffer_head *bh = NULL;
2133         unsigned int accum = 0;
2134         int index;
2135         int block = 0, newblock;
2136         struct kernel_lb_addr loc;
2137         uint32_t bytes;
2138         uint8_t *ptr;
2139         uint16_t ident;
2140         struct spaceBitmapDesc *bm;
2141
2142         lock_kernel();
2143
2144         loc.logicalBlockNum = bitmap->s_extPosition;
2145         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2146         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2147
2148         if (!bh) {
2149                 printk(KERN_ERR "udf: udf_count_free failed\n");
2150                 goto out;
2151         } else if (ident != TAG_IDENT_SBD) {
2152                 brelse(bh);
2153                 printk(KERN_ERR "udf: udf_count_free failed\n");
2154                 goto out;
2155         }
2156
2157         bm = (struct spaceBitmapDesc *)bh->b_data;
2158         bytes = le32_to_cpu(bm->numOfBytes);
2159         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2160         ptr = (uint8_t *)bh->b_data;
2161
2162         while (bytes > 0) {
2163                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2164                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2165                                         cur_bytes * 8);
2166                 bytes -= cur_bytes;
2167                 if (bytes) {
2168                         brelse(bh);
2169                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2170                         bh = udf_tread(sb, newblock);
2171                         if (!bh) {
2172                                 udf_debug("read failed\n");
2173                                 goto out;
2174                         }
2175                         index = 0;
2176                         ptr = (uint8_t *)bh->b_data;
2177                 }
2178         }
2179         brelse(bh);
2180
2181 out:
2182         unlock_kernel();
2183
2184         return accum;
2185 }
2186
2187 static unsigned int udf_count_free_table(struct super_block *sb,
2188                                          struct inode *table)
2189 {
2190         unsigned int accum = 0;
2191         uint32_t elen;
2192         struct kernel_lb_addr eloc;
2193         int8_t etype;
2194         struct extent_position epos;
2195
2196         lock_kernel();
2197
2198         epos.block = UDF_I(table)->i_location;
2199         epos.offset = sizeof(struct unallocSpaceEntry);
2200         epos.bh = NULL;
2201
2202         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2203                 accum += (elen >> table->i_sb->s_blocksize_bits);
2204
2205         brelse(epos.bh);
2206
2207         unlock_kernel();
2208
2209         return accum;
2210 }
2211
2212 static unsigned int udf_count_free(struct super_block *sb)
2213 {
2214         unsigned int accum = 0;
2215         struct udf_sb_info *sbi;
2216         struct udf_part_map *map;
2217
2218         sbi = UDF_SB(sb);
2219         if (sbi->s_lvid_bh) {
2220                 struct logicalVolIntegrityDesc *lvid =
2221                         (struct logicalVolIntegrityDesc *)
2222                         sbi->s_lvid_bh->b_data;
2223                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2224                         accum = le32_to_cpu(
2225                                         lvid->freeSpaceTable[sbi->s_partition]);
2226                         if (accum == 0xFFFFFFFF)
2227                                 accum = 0;
2228                 }
2229         }
2230
2231         if (accum)
2232                 return accum;
2233
2234         map = &sbi->s_partmaps[sbi->s_partition];
2235         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2236                 accum += udf_count_free_bitmap(sb,
2237                                                map->s_uspace.s_bitmap);
2238         }
2239         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2240                 accum += udf_count_free_bitmap(sb,
2241                                                map->s_fspace.s_bitmap);
2242         }
2243         if (accum)
2244                 return accum;
2245
2246         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2247                 accum += udf_count_free_table(sb,
2248                                               map->s_uspace.s_table);
2249         }
2250         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2251                 accum += udf_count_free_table(sb,
2252                                               map->s_fspace.s_table);
2253         }
2254
2255         return accum;
2256 }