2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/config.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "0.6"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define MAX_RX_RING_SIZE 4096
52 #define PHY_RETRIES 1000
53 #define ETH_JUMBO_MTU 9000
54 #define TX_WATCHDOG (5 * HZ)
55 #define NAPI_WEIGHT 64
56 #define BLINK_HZ (HZ/4)
57 #define LINK_POLL_HZ (HZ/10)
59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
60 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
64 static const u32 default_msg
65 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
66 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
68 static int debug = -1; /* defaults above */
69 module_param(debug, int, 0);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72 static const struct pci_device_id skge_id_table[] = {
73 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940,
74 PCI_ANY_ID, PCI_ANY_ID },
75 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B,
76 PCI_ANY_ID, PCI_ANY_ID },
77 { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE,
78 PCI_ANY_ID, PCI_ANY_ID },
79 { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU,
80 PCI_ANY_ID, PCI_ANY_ID },
81 { PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */
82 PCI_ANY_ID, PCI_ANY_ID },
83 { PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T,
84 PCI_ANY_ID, PCI_ANY_ID },
85 { PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */
86 PCI_ANY_ID, PCI_ANY_ID },
87 { PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */
88 PCI_ANY_ID, PCI_ANY_ID },
89 { PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD,
90 PCI_ANY_ID, PCI_ANY_ID },
91 { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032,
92 PCI_ANY_ID, PCI_ANY_ID },
93 { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064,
94 PCI_ANY_ID, PCI_ANY_ID },
97 MODULE_DEVICE_TABLE(pci, skge_id_table);
99 static int skge_up(struct net_device *dev);
100 static int skge_down(struct net_device *dev);
101 static void skge_tx_clean(struct skge_port *skge);
102 static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
103 static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
104 static void genesis_get_stats(struct skge_port *skge, u64 *data);
105 static void yukon_get_stats(struct skge_port *skge, u64 *data);
106 static void yukon_init(struct skge_hw *hw, int port);
107 static void yukon_reset(struct skge_hw *hw, int port);
108 static void genesis_mac_init(struct skge_hw *hw, int port);
109 static void genesis_reset(struct skge_hw *hw, int port);
111 static const int txqaddr[] = { Q_XA1, Q_XA2 };
112 static const int rxqaddr[] = { Q_R1, Q_R2 };
113 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
114 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
116 /* Don't need to look at whole 16K.
117 * last interesting register is descriptor poll timer.
119 #define SKGE_REGS_LEN (29*128)
121 static int skge_get_regs_len(struct net_device *dev)
123 return SKGE_REGS_LEN;
127 * Returns copy of control register region
128 * I/O region is divided into banks and certain regions are unreadable
130 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133 const struct skge_port *skge = netdev_priv(dev);
135 const void __iomem *io = skge->hw->regs;
136 static const unsigned long bankmap
137 = (1<<0) | (1<<2) | (1<<8) | (1<<9)
138 | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
139 | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
140 | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
143 for (offs = 0; offs < regs->len; offs += 128) {
144 u32 len = min_t(u32, 128, regs->len - offs);
146 if (bankmap & (1<<(offs/128)))
147 memcpy_fromio(p + offs, io + offs, len);
149 memset(p + offs, 0, len);
153 /* Wake on Lan only supported on Yukon chps with rev 1 or above */
154 static int wol_supported(const struct skge_hw *hw)
156 return !((hw->chip_id == CHIP_ID_GENESIS ||
157 (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)));
160 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
162 struct skge_port *skge = netdev_priv(dev);
164 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
165 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
168 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
170 struct skge_port *skge = netdev_priv(dev);
171 struct skge_hw *hw = skge->hw;
173 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
176 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
179 skge->wol = wol->wolopts == WAKE_MAGIC;
182 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
184 skge_write16(hw, WOL_CTRL_STAT,
185 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
186 WOL_CTL_ENA_MAGIC_PKT_UNIT);
188 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
194 static int skge_get_settings(struct net_device *dev,
195 struct ethtool_cmd *ecmd)
197 struct skge_port *skge = netdev_priv(dev);
198 struct skge_hw *hw = skge->hw;
200 ecmd->transceiver = XCVR_INTERNAL;
203 if (hw->chip_id == CHIP_ID_GENESIS)
204 ecmd->supported = SUPPORTED_1000baseT_Full
205 | SUPPORTED_1000baseT_Half
206 | SUPPORTED_Autoneg | SUPPORTED_TP;
208 ecmd->supported = SUPPORTED_10baseT_Half
209 | SUPPORTED_10baseT_Full
210 | SUPPORTED_100baseT_Half
211 | SUPPORTED_100baseT_Full
212 | SUPPORTED_1000baseT_Half
213 | SUPPORTED_1000baseT_Full
214 | SUPPORTED_Autoneg| SUPPORTED_TP;
216 if (hw->chip_id == CHIP_ID_YUKON)
217 ecmd->supported &= ~SUPPORTED_1000baseT_Half;
219 else if (hw->chip_id == CHIP_ID_YUKON_FE)
220 ecmd->supported &= ~(SUPPORTED_1000baseT_Half
221 | SUPPORTED_1000baseT_Full);
224 ecmd->port = PORT_TP;
225 ecmd->phy_address = hw->phy_addr;
227 ecmd->supported = SUPPORTED_1000baseT_Full
231 ecmd->port = PORT_FIBRE;
234 ecmd->advertising = skge->advertising;
235 ecmd->autoneg = skge->autoneg;
236 ecmd->speed = skge->speed;
237 ecmd->duplex = skge->duplex;
241 static u32 skge_modes(const struct skge_hw *hw)
243 u32 modes = ADVERTISED_Autoneg
244 | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
245 | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
246 | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
249 modes |= ADVERTISED_TP;
250 switch(hw->chip_id) {
251 case CHIP_ID_GENESIS:
252 modes &= ~(ADVERTISED_100baseT_Full
253 | ADVERTISED_100baseT_Half
254 | ADVERTISED_10baseT_Full
255 | ADVERTISED_10baseT_Half);
259 modes &= ~ADVERTISED_1000baseT_Half;
262 case CHIP_ID_YUKON_FE:
263 modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
267 modes |= ADVERTISED_FIBRE;
268 modes &= ~ADVERTISED_1000baseT_Half;
273 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
275 struct skge_port *skge = netdev_priv(dev);
276 const struct skge_hw *hw = skge->hw;
278 if (ecmd->autoneg == AUTONEG_ENABLE) {
279 if (ecmd->advertising & skge_modes(hw))
282 switch(ecmd->speed) {
284 if (hw->chip_id == CHIP_ID_YUKON_FE)
289 if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
297 skge->autoneg = ecmd->autoneg;
298 skge->speed = ecmd->speed;
299 skge->duplex = ecmd->duplex;
300 skge->advertising = ecmd->advertising;
302 if (netif_running(dev)) {
309 static void skge_get_drvinfo(struct net_device *dev,
310 struct ethtool_drvinfo *info)
312 struct skge_port *skge = netdev_priv(dev);
314 strcpy(info->driver, DRV_NAME);
315 strcpy(info->version, DRV_VERSION);
316 strcpy(info->fw_version, "N/A");
317 strcpy(info->bus_info, pci_name(skge->hw->pdev));
320 static const struct skge_stat {
321 char name[ETH_GSTRING_LEN];
325 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
326 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
328 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
329 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
330 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
331 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
332 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
333 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
334 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
335 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
337 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
338 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
339 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
340 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
341 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
342 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
344 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
345 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
346 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
347 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
348 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
351 static int skge_get_stats_count(struct net_device *dev)
353 return ARRAY_SIZE(skge_stats);
356 static void skge_get_ethtool_stats(struct net_device *dev,
357 struct ethtool_stats *stats, u64 *data)
359 struct skge_port *skge = netdev_priv(dev);
361 if (skge->hw->chip_id == CHIP_ID_GENESIS)
362 genesis_get_stats(skge, data);
364 yukon_get_stats(skge, data);
367 /* Use hardware MIB variables for critical path statistics and
368 * transmit feedback not reported at interrupt.
369 * Other errors are accounted for in interrupt handler.
371 static struct net_device_stats *skge_get_stats(struct net_device *dev)
373 struct skge_port *skge = netdev_priv(dev);
374 u64 data[ARRAY_SIZE(skge_stats)];
376 if (skge->hw->chip_id == CHIP_ID_GENESIS)
377 genesis_get_stats(skge, data);
379 yukon_get_stats(skge, data);
381 skge->net_stats.tx_bytes = data[0];
382 skge->net_stats.rx_bytes = data[1];
383 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
384 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
385 skge->net_stats.multicast = data[5] + data[7];
386 skge->net_stats.collisions = data[10];
387 skge->net_stats.tx_aborted_errors = data[12];
389 return &skge->net_stats;
392 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
398 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
399 memcpy(data + i * ETH_GSTRING_LEN,
400 skge_stats[i].name, ETH_GSTRING_LEN);
405 static void skge_get_ring_param(struct net_device *dev,
406 struct ethtool_ringparam *p)
408 struct skge_port *skge = netdev_priv(dev);
410 p->rx_max_pending = MAX_RX_RING_SIZE;
411 p->tx_max_pending = MAX_TX_RING_SIZE;
412 p->rx_mini_max_pending = 0;
413 p->rx_jumbo_max_pending = 0;
415 p->rx_pending = skge->rx_ring.count;
416 p->tx_pending = skge->tx_ring.count;
417 p->rx_mini_pending = 0;
418 p->rx_jumbo_pending = 0;
421 static int skge_set_ring_param(struct net_device *dev,
422 struct ethtool_ringparam *p)
424 struct skge_port *skge = netdev_priv(dev);
426 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
427 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
430 skge->rx_ring.count = p->rx_pending;
431 skge->tx_ring.count = p->tx_pending;
433 if (netif_running(dev)) {
441 static u32 skge_get_msglevel(struct net_device *netdev)
443 struct skge_port *skge = netdev_priv(netdev);
444 return skge->msg_enable;
447 static void skge_set_msglevel(struct net_device *netdev, u32 value)
449 struct skge_port *skge = netdev_priv(netdev);
450 skge->msg_enable = value;
453 static int skge_nway_reset(struct net_device *dev)
455 struct skge_port *skge = netdev_priv(dev);
456 struct skge_hw *hw = skge->hw;
457 int port = skge->port;
459 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
462 spin_lock_bh(&hw->phy_lock);
463 if (hw->chip_id == CHIP_ID_GENESIS) {
464 genesis_reset(hw, port);
465 genesis_mac_init(hw, port);
467 yukon_reset(hw, port);
468 yukon_init(hw, port);
470 spin_unlock_bh(&hw->phy_lock);
474 static int skge_set_sg(struct net_device *dev, u32 data)
476 struct skge_port *skge = netdev_priv(dev);
477 struct skge_hw *hw = skge->hw;
479 if (hw->chip_id == CHIP_ID_GENESIS && data)
481 return ethtool_op_set_sg(dev, data);
484 static int skge_set_tx_csum(struct net_device *dev, u32 data)
486 struct skge_port *skge = netdev_priv(dev);
487 struct skge_hw *hw = skge->hw;
489 if (hw->chip_id == CHIP_ID_GENESIS && data)
492 return ethtool_op_set_tx_csum(dev, data);
495 static u32 skge_get_rx_csum(struct net_device *dev)
497 struct skge_port *skge = netdev_priv(dev);
499 return skge->rx_csum;
502 /* Only Yukon supports checksum offload. */
503 static int skge_set_rx_csum(struct net_device *dev, u32 data)
505 struct skge_port *skge = netdev_priv(dev);
507 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
510 skge->rx_csum = data;
514 /* Only Yukon II supports TSO (not implemented yet) */
515 static int skge_set_tso(struct net_device *dev, u32 data)
522 static void skge_get_pauseparam(struct net_device *dev,
523 struct ethtool_pauseparam *ecmd)
525 struct skge_port *skge = netdev_priv(dev);
527 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
528 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
529 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
530 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
532 ecmd->autoneg = skge->autoneg;
535 static int skge_set_pauseparam(struct net_device *dev,
536 struct ethtool_pauseparam *ecmd)
538 struct skge_port *skge = netdev_priv(dev);
540 skge->autoneg = ecmd->autoneg;
541 if (ecmd->rx_pause && ecmd->tx_pause)
542 skge->flow_control = FLOW_MODE_SYMMETRIC;
543 else if(ecmd->rx_pause && !ecmd->tx_pause)
544 skge->flow_control = FLOW_MODE_REM_SEND;
545 else if(!ecmd->rx_pause && ecmd->tx_pause)
546 skge->flow_control = FLOW_MODE_LOC_SEND;
548 skge->flow_control = FLOW_MODE_NONE;
550 if (netif_running(dev)) {
557 /* Chip internal frequency for clock calculations */
558 static inline u32 hwkhz(const struct skge_hw *hw)
560 if (hw->chip_id == CHIP_ID_GENESIS)
561 return 53215; /* or: 53.125 MHz */
562 else if (hw->chip_id == CHIP_ID_YUKON_EC)
563 return 125000; /* or: 125.000 MHz */
565 return 78215; /* or: 78.125 MHz */
568 /* Chip hz to microseconds */
569 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
571 return (ticks * 1000) / hwkhz(hw);
574 /* Microseconds to chip hz */
575 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
577 return hwkhz(hw) * usec / 1000;
580 static int skge_get_coalesce(struct net_device *dev,
581 struct ethtool_coalesce *ecmd)
583 struct skge_port *skge = netdev_priv(dev);
584 struct skge_hw *hw = skge->hw;
585 int port = skge->port;
587 ecmd->rx_coalesce_usecs = 0;
588 ecmd->tx_coalesce_usecs = 0;
590 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
591 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
592 u32 msk = skge_read32(hw, B2_IRQM_MSK);
594 if (msk & rxirqmask[port])
595 ecmd->rx_coalesce_usecs = delay;
596 if (msk & txirqmask[port])
597 ecmd->tx_coalesce_usecs = delay;
603 /* Note: interrupt timer is per board, but can turn on/off per port */
604 static int skge_set_coalesce(struct net_device *dev,
605 struct ethtool_coalesce *ecmd)
607 struct skge_port *skge = netdev_priv(dev);
608 struct skge_hw *hw = skge->hw;
609 int port = skge->port;
610 u32 msk = skge_read32(hw, B2_IRQM_MSK);
613 if (ecmd->rx_coalesce_usecs == 0)
614 msk &= ~rxirqmask[port];
615 else if (ecmd->rx_coalesce_usecs < 25 ||
616 ecmd->rx_coalesce_usecs > 33333)
619 msk |= rxirqmask[port];
620 delay = ecmd->rx_coalesce_usecs;
623 if (ecmd->tx_coalesce_usecs == 0)
624 msk &= ~txirqmask[port];
625 else if (ecmd->tx_coalesce_usecs < 25 ||
626 ecmd->tx_coalesce_usecs > 33333)
629 msk |= txirqmask[port];
630 delay = min(delay, ecmd->rx_coalesce_usecs);
633 skge_write32(hw, B2_IRQM_MSK, msk);
635 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
637 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
638 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
643 static void skge_led_on(struct skge_hw *hw, int port)
645 if (hw->chip_id == CHIP_ID_GENESIS) {
646 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
647 skge_write8(hw, B0_LED, LED_STAT_ON);
649 skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON);
650 skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100);
651 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
653 switch (hw->phy_type) {
655 skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
659 skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
663 skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON);
664 skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100);
665 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
668 skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
669 skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
670 PHY_M_LED_MO_DUP(MO_LED_ON) |
671 PHY_M_LED_MO_10(MO_LED_ON) |
672 PHY_M_LED_MO_100(MO_LED_ON) |
673 PHY_M_LED_MO_1000(MO_LED_ON) |
674 PHY_M_LED_MO_RX(MO_LED_ON));
678 static void skge_led_off(struct skge_hw *hw, int port)
680 if (hw->chip_id == CHIP_ID_GENESIS) {
681 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF);
682 skge_write8(hw, B0_LED, LED_STAT_OFF);
684 skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0);
685 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF);
687 switch (hw->phy_type) {
689 skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
693 skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
697 skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0);
698 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF);
701 skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
702 skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
703 PHY_M_LED_MO_DUP(MO_LED_OFF) |
704 PHY_M_LED_MO_10(MO_LED_OFF) |
705 PHY_M_LED_MO_100(MO_LED_OFF) |
706 PHY_M_LED_MO_1000(MO_LED_OFF) |
707 PHY_M_LED_MO_RX(MO_LED_OFF));
711 static void skge_blink_timer(unsigned long data)
713 struct skge_port *skge = (struct skge_port *) data;
714 struct skge_hw *hw = skge->hw;
717 spin_lock_irqsave(&hw->phy_lock, flags);
719 skge_led_on(hw, skge->port);
721 skge_led_off(hw, skge->port);
722 spin_unlock_irqrestore(&hw->phy_lock, flags);
724 skge->blink_on = !skge->blink_on;
725 mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
728 /* blink LED's for finding board */
729 static int skge_phys_id(struct net_device *dev, u32 data)
731 struct skge_port *skge = netdev_priv(dev);
733 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
734 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
738 mod_timer(&skge->led_blink, jiffies+1);
740 msleep_interruptible(data * 1000);
741 del_timer_sync(&skge->led_blink);
743 skge_led_off(skge->hw, skge->port);
748 static struct ethtool_ops skge_ethtool_ops = {
749 .get_settings = skge_get_settings,
750 .set_settings = skge_set_settings,
751 .get_drvinfo = skge_get_drvinfo,
752 .get_regs_len = skge_get_regs_len,
753 .get_regs = skge_get_regs,
754 .get_wol = skge_get_wol,
755 .set_wol = skge_set_wol,
756 .get_msglevel = skge_get_msglevel,
757 .set_msglevel = skge_set_msglevel,
758 .nway_reset = skge_nway_reset,
759 .get_link = ethtool_op_get_link,
760 .get_ringparam = skge_get_ring_param,
761 .set_ringparam = skge_set_ring_param,
762 .get_pauseparam = skge_get_pauseparam,
763 .set_pauseparam = skge_set_pauseparam,
764 .get_coalesce = skge_get_coalesce,
765 .set_coalesce = skge_set_coalesce,
766 .get_tso = ethtool_op_get_tso,
767 .set_tso = skge_set_tso,
768 .get_sg = ethtool_op_get_sg,
769 .set_sg = skge_set_sg,
770 .get_tx_csum = ethtool_op_get_tx_csum,
771 .set_tx_csum = skge_set_tx_csum,
772 .get_rx_csum = skge_get_rx_csum,
773 .set_rx_csum = skge_set_rx_csum,
774 .get_strings = skge_get_strings,
775 .phys_id = skge_phys_id,
776 .get_stats_count = skge_get_stats_count,
777 .get_ethtool_stats = skge_get_ethtool_stats,
781 * Allocate ring elements and chain them together
782 * One-to-one association of board descriptors with ring elements
784 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
786 struct skge_tx_desc *d;
787 struct skge_element *e;
790 ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
794 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
796 if (i == ring->count - 1) {
797 e->next = ring->start;
798 d->next_offset = base;
801 d->next_offset = base + (i+1) * sizeof(*d);
804 ring->to_use = ring->to_clean = ring->start;
809 /* Setup buffer for receiving */
810 static inline int skge_rx_alloc(struct skge_port *skge,
811 struct skge_element *e)
813 unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
814 struct skge_rx_desc *rd = e->desc;
818 skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
819 if (unlikely(!skb)) {
820 printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
825 skb->dev = skge->netdev;
826 skb_reserve(skb, NET_IP_ALIGN);
828 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
832 rd->dma_hi = map >> 32;
834 rd->csum1_start = ETH_HLEN;
835 rd->csum2_start = ETH_HLEN;
841 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
842 pci_unmap_addr_set(e, mapaddr, map);
843 pci_unmap_len_set(e, maplen, bufsize);
847 /* Free all unused buffers in receive ring, assumes receiver stopped */
848 static void skge_rx_clean(struct skge_port *skge)
850 struct skge_hw *hw = skge->hw;
851 struct skge_ring *ring = &skge->rx_ring;
852 struct skge_element *e;
854 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
855 struct skge_rx_desc *rd = e->desc;
858 pci_unmap_single(hw->pdev,
859 pci_unmap_addr(e, mapaddr),
860 pci_unmap_len(e, maplen),
862 dev_kfree_skb(e->skb);
868 /* Allocate buffers for receive ring
869 * For receive: to_use is refill location
870 * to_clean is next received frame.
872 * if (to_use == to_clean)
873 * then ring all frames in ring need buffers
874 * if (to_use->next == to_clean)
875 * then ring all frames in ring have buffers
877 static int skge_rx_fill(struct skge_port *skge)
879 struct skge_ring *ring = &skge->rx_ring;
880 struct skge_element *e;
883 for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
884 if (skge_rx_alloc(skge, e)) {
895 static void skge_link_up(struct skge_port *skge)
897 netif_carrier_on(skge->netdev);
898 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
899 netif_wake_queue(skge->netdev);
901 if (netif_msg_link(skge))
903 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
904 skge->netdev->name, skge->speed,
905 skge->duplex == DUPLEX_FULL ? "full" : "half",
906 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
907 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
908 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
909 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
913 static void skge_link_down(struct skge_port *skge)
915 netif_carrier_off(skge->netdev);
916 netif_stop_queue(skge->netdev);
918 if (netif_msg_link(skge))
919 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
922 static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg)
927 skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
928 v = skge_xm_read16(hw, port, XM_PHY_DATA);
929 if (hw->phy_type != SK_PHY_XMAC) {
930 for (i = 0; i < PHY_RETRIES; i++) {
932 if (skge_xm_read16(hw, port, XM_MMU_CMD)
937 printk(KERN_WARNING PFX "%s: phy read timed out\n",
938 hw->dev[port]->name);
941 v = skge_xm_read16(hw, port, XM_PHY_DATA);
947 static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
951 skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
952 for (i = 0; i < PHY_RETRIES; i++) {
953 if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
957 printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
958 hw->dev[port]->name);
962 skge_xm_write16(hw, port, XM_PHY_DATA, val);
963 for (i = 0; i < PHY_RETRIES; i++) {
965 if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
968 printk(KERN_WARNING PFX "%s: phy write timed out\n",
969 hw->dev[port]->name);
972 static void genesis_init(struct skge_hw *hw)
974 /* set blink source counter */
975 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
976 skge_write8(hw, B2_BSC_CTRL, BSC_START);
978 /* configure mac arbiter */
979 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
981 /* configure mac arbiter timeout values */
982 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
983 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
984 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
985 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
987 skge_write8(hw, B3_MA_RCINI_RX1, 0);
988 skge_write8(hw, B3_MA_RCINI_RX2, 0);
989 skge_write8(hw, B3_MA_RCINI_TX1, 0);
990 skge_write8(hw, B3_MA_RCINI_TX2, 0);
992 /* configure packet arbiter timeout */
993 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
994 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
995 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
996 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
997 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1000 static void genesis_reset(struct skge_hw *hw, int port)
1005 /* reset the statistics module */
1006 skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1007 skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1008 skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1009 skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1010 skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1012 /* disable all PHY IRQs */
1013 if (hw->phy_type == SK_PHY_BCOM)
1014 skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1016 skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
1017 for (i = 0; i < 15; i++)
1018 skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
1019 skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
1023 static void genesis_mac_init(struct skge_hw *hw, int port)
1025 struct skge_port *skge = netdev_priv(hw->dev[port]);
1029 u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
1031 /* magic workaround patterns for Broadcom */
1032 static const struct {
1036 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1037 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1038 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1039 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1041 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1042 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1046 /* initialize Rx, Tx and Link LED */
1047 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
1048 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
1050 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
1051 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
1053 /* Unreset the XMAC. */
1054 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1057 * Perform additional initialization for external PHYs,
1058 * namely for the 1000baseTX cards that use the XMAC's
1061 spin_lock_bh(&hw->phy_lock);
1062 if (hw->phy_type != SK_PHY_XMAC) {
1063 /* Take PHY out of reset. */
1064 r = skge_read32(hw, B2_GP_IO);
1066 r |= GP_DIR_0|GP_IO_0;
1068 r |= GP_DIR_2|GP_IO_2;
1070 skge_write32(hw, B2_GP_IO, r);
1071 skge_read32(hw, B2_GP_IO);
1073 /* Enable GMII mode on the XMAC. */
1074 skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1076 id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1);
1078 /* Optimize MDIO transfer by suppressing preamble. */
1079 skge_xm_write16(hw, port, XM_MMU_CMD,
1080 skge_xm_read16(hw, port, XM_MMU_CMD)
1083 if (id1 == PHY_BCOM_ID1_C0) {
1085 * Workaround BCOM Errata for the C0 type.
1086 * Write magic patterns to reserved registers.
1088 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1089 skge_xm_phy_write(hw, port,
1090 C0hack[i].reg, C0hack[i].val);
1092 } else if (id1 == PHY_BCOM_ID1_A1) {
1094 * Workaround BCOM Errata for the A1 type.
1095 * Write magic patterns to reserved registers.
1097 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1098 skge_xm_phy_write(hw, port,
1099 A1hack[i].reg, A1hack[i].val);
1103 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1104 * Disable Power Management after reset.
1106 r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1107 skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
1111 skge_xm_read16(hw, port, XM_ISRC);
1113 r = skge_xm_read32(hw, port, XM_MODE);
1114 skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
1116 /* We don't need the FCS appended to the packet. */
1117 r = skge_xm_read16(hw, port, XM_RX_CMD);
1118 skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
1120 /* We want short frames padded to 60 bytes. */
1121 r = skge_xm_read16(hw, port, XM_TX_CMD);
1122 skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
1125 * Enable the reception of all error frames. This is is
1126 * a necessary evil due to the design of the XMAC. The
1127 * XMAC's receive FIFO is only 8K in size, however jumbo
1128 * frames can be up to 9000 bytes in length. When bad
1129 * frame filtering is enabled, the XMAC's RX FIFO operates
1130 * in 'store and forward' mode. For this to work, the
1131 * entire frame has to fit into the FIFO, but that means
1132 * that jumbo frames larger than 8192 bytes will be
1133 * truncated. Disabling all bad frame filtering causes
1134 * the RX FIFO to operate in streaming mode, in which
1135 * case the XMAC will start transfering frames out of the
1136 * RX FIFO as soon as the FIFO threshold is reached.
1138 r = skge_xm_read32(hw, port, XM_MODE);
1139 skge_xm_write32(hw, port, XM_MODE,
1140 XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
1141 XM_MD_RX_ERR|XM_MD_RX_IRLE);
1143 skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
1144 skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
1147 * Bump up the transmit threshold. This helps hold off transmit
1148 * underruns when we're blasting traffic from both ports at once.
1150 skge_xm_write16(hw, port, XM_TX_THR, 512);
1152 /* Configure MAC arbiter */
1153 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1155 /* configure timeout values */
1156 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1157 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1158 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1159 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1161 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1162 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1163 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1164 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1166 /* Configure Rx MAC FIFO */
1167 skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1168 skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1169 skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1171 /* Configure Tx MAC FIFO */
1172 skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1173 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1174 skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1176 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1177 /* Enable frame flushing if jumbo frames used */
1178 skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1180 /* enable timeout timers if normal frames */
1181 skge_write16(hw, B3_PA_CTRL,
1182 port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1186 r = skge_xm_read16(hw, port, XM_RX_CMD);
1187 if (hw->dev[port]->mtu > ETH_DATA_LEN)
1188 skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
1190 skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
1192 switch (hw->phy_type) {
1194 if (skge->autoneg == AUTONEG_ENABLE) {
1195 ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
1197 switch (skge->flow_control) {
1198 case FLOW_MODE_NONE:
1199 ctrl1 |= PHY_X_P_NO_PAUSE;
1201 case FLOW_MODE_LOC_SEND:
1202 ctrl1 |= PHY_X_P_ASYM_MD;
1204 case FLOW_MODE_SYMMETRIC:
1205 ctrl1 |= PHY_X_P_SYM_MD;
1207 case FLOW_MODE_REM_SEND:
1208 ctrl1 |= PHY_X_P_BOTH_MD;
1212 skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
1213 ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
1216 if (skge->duplex == DUPLEX_FULL)
1217 ctrl2 |= PHY_CT_DUP_MD;
1220 skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
1224 ctrl1 = PHY_CT_SP1000;
1226 ctrl3 = PHY_SEL_TYPE;
1227 ctrl4 = PHY_B_PEC_EN_LTR;
1228 ctrl5 = PHY_B_AC_TX_TST;
1230 if (skge->autoneg == AUTONEG_ENABLE) {
1232 * Workaround BCOM Errata #1 for the C5 type.
1233 * 1000Base-T Link Acquisition Failure in Slave Mode
1234 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1236 ctrl2 |= PHY_B_1000C_RD;
1237 if (skge->advertising & ADVERTISED_1000baseT_Half)
1238 ctrl2 |= PHY_B_1000C_AHD;
1239 if (skge->advertising & ADVERTISED_1000baseT_Full)
1240 ctrl2 |= PHY_B_1000C_AFD;
1242 /* Set Flow-control capabilities */
1243 switch (skge->flow_control) {
1244 case FLOW_MODE_NONE:
1245 ctrl3 |= PHY_B_P_NO_PAUSE;
1247 case FLOW_MODE_LOC_SEND:
1248 ctrl3 |= PHY_B_P_ASYM_MD;
1250 case FLOW_MODE_SYMMETRIC:
1251 ctrl3 |= PHY_B_P_SYM_MD;
1253 case FLOW_MODE_REM_SEND:
1254 ctrl3 |= PHY_B_P_BOTH_MD;
1258 /* Restart Auto-negotiation */
1259 ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
1261 if (skge->duplex == DUPLEX_FULL)
1262 ctrl1 |= PHY_CT_DUP_MD;
1264 ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
1267 skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
1268 skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
1270 if (skge->netdev->mtu > ETH_DATA_LEN) {
1271 ctrl4 |= PHY_B_PEC_HIGH_LA;
1272 ctrl5 |= PHY_B_AC_LONG_PACK;
1274 skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
1277 skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
1278 skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
1281 spin_unlock_bh(&hw->phy_lock);
1283 /* Clear MIB counters */
1284 skge_xm_write16(hw, port, XM_STAT_CMD,
1285 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1286 /* Clear two times according to Errata #3 */
1287 skge_xm_write16(hw, port, XM_STAT_CMD,
1288 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1290 /* Start polling for link status */
1291 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1294 static void genesis_stop(struct skge_port *skge)
1296 struct skge_hw *hw = skge->hw;
1297 int port = skge->port;
1299 /* Clear Tx packet arbiter timeout IRQ */
1300 skge_write16(hw, B3_PA_CTRL,
1301 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1304 * If the transfer stucks at the MAC the STOP command will not
1305 * terminate if we don't flush the XMAC's transmit FIFO !
1307 skge_xm_write32(hw, port, XM_MODE,
1308 skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1312 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1314 /* For external PHYs there must be special handling */
1315 if (hw->phy_type != SK_PHY_XMAC) {
1316 u32 reg = skge_read32(hw, B2_GP_IO);
1325 skge_write32(hw, B2_GP_IO, reg);
1326 skge_read32(hw, B2_GP_IO);
1329 skge_xm_write16(hw, port, XM_MMU_CMD,
1330 skge_xm_read16(hw, port, XM_MMU_CMD)
1331 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1333 skge_xm_read16(hw, port, XM_MMU_CMD);
1337 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1339 struct skge_hw *hw = skge->hw;
1340 int port = skge->port;
1342 unsigned long timeout = jiffies + HZ;
1344 skge_xm_write16(hw, port,
1345 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1347 /* wait for update to complete */
1348 while (skge_xm_read16(hw, port, XM_STAT_CMD)
1349 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1350 if (time_after(jiffies, timeout))
1355 /* special case for 64 bit octet counter */
1356 data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32
1357 | skge_xm_read32(hw, port, XM_TXO_OK_LO);
1358 data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32
1359 | skge_xm_read32(hw, port, XM_RXO_OK_LO);
1361 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1362 data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset);
1365 static void genesis_mac_intr(struct skge_hw *hw, int port)
1367 struct skge_port *skge = netdev_priv(hw->dev[port]);
1368 u16 status = skge_xm_read16(hw, port, XM_ISRC);
1370 pr_debug("genesis_intr status %x\n", status);
1371 if (hw->phy_type == SK_PHY_XMAC) {
1372 /* LInk down, start polling for state change */
1373 if (status & XM_IS_INP_ASS) {
1374 skge_xm_write16(hw, port, XM_IMSK,
1375 skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
1376 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1378 else if (status & XM_IS_AND)
1379 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1382 if (status & XM_IS_TXF_UR) {
1383 skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1384 ++skge->net_stats.tx_fifo_errors;
1386 if (status & XM_IS_RXF_OV) {
1387 skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1388 ++skge->net_stats.rx_fifo_errors;
1392 static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1396 skge_gma_write16(hw, port, GM_SMI_DATA, val);
1397 skge_gma_write16(hw, port, GM_SMI_CTRL,
1398 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1399 for (i = 0; i < PHY_RETRIES; i++) {
1402 if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1407 static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1411 skge_gma_write16(hw, port, GM_SMI_CTRL,
1412 GM_SMI_CT_PHY_AD(hw->phy_addr)
1413 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1415 for (i = 0; i < PHY_RETRIES; i++) {
1417 if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1421 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1422 hw->dev[port]->name);
1425 return skge_gma_read16(hw, port, GM_SMI_DATA);
1428 static void genesis_link_down(struct skge_port *skge)
1430 struct skge_hw *hw = skge->hw;
1431 int port = skge->port;
1433 pr_debug("genesis_link_down\n");
1435 skge_xm_write16(hw, port, XM_MMU_CMD,
1436 skge_xm_read16(hw, port, XM_MMU_CMD)
1437 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1439 /* dummy read to ensure writing */
1440 (void) skge_xm_read16(hw, port, XM_MMU_CMD);
1442 skge_link_down(skge);
1445 static void genesis_link_up(struct skge_port *skge)
1447 struct skge_hw *hw = skge->hw;
1448 int port = skge->port;
1452 pr_debug("genesis_link_up\n");
1453 cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
1456 * enabling pause frame reception is required for 1000BT
1457 * because the XMAC is not reset if the link is going down
1459 if (skge->flow_control == FLOW_MODE_NONE ||
1460 skge->flow_control == FLOW_MODE_LOC_SEND)
1461 cmd |= XM_MMU_IGN_PF;
1463 /* Enable Pause Frame Reception */
1464 cmd &= ~XM_MMU_IGN_PF;
1466 skge_xm_write16(hw, port, XM_MMU_CMD, cmd);
1468 mode = skge_xm_read32(hw, port, XM_MODE);
1469 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1470 skge->flow_control == FLOW_MODE_LOC_SEND) {
1472 * Configure Pause Frame Generation
1473 * Use internal and external Pause Frame Generation.
1474 * Sending pause frames is edge triggered.
1475 * Send a Pause frame with the maximum pause time if
1476 * internal oder external FIFO full condition occurs.
1477 * Send a zero pause time frame to re-start transmission.
1479 /* XM_PAUSE_DA = '010000C28001' (default) */
1480 /* XM_MAC_PTIME = 0xffff (maximum) */
1481 /* remember this value is defined in big endian (!) */
1482 skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1484 mode |= XM_PAUSE_MODE;
1485 skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1488 * disable pause frame generation is required for 1000BT
1489 * because the XMAC is not reset if the link is going down
1491 /* Disable Pause Mode in Mode Register */
1492 mode &= ~XM_PAUSE_MODE;
1494 skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1497 skge_xm_write32(hw, port, XM_MODE, mode);
1500 if (hw->phy_type != SK_PHY_XMAC)
1501 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1503 skge_xm_write16(hw, port, XM_IMSK, msk);
1504 skge_xm_read16(hw, port, XM_ISRC);
1506 /* get MMU Command Reg. */
1507 cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
1508 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1509 cmd |= XM_MMU_GMII_FD;
1511 if (hw->phy_type == SK_PHY_BCOM) {
1513 * Workaround BCOM Errata (#10523) for all BCom Phys
1514 * Enable Power Management after link up
1516 skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1517 skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1518 & ~PHY_B_AC_DIS_PM);
1519 skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
1524 skge_xm_write16(hw, port, XM_MMU_CMD,
1525 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1530 static void genesis_bcom_intr(struct skge_port *skge)
1532 struct skge_hw *hw = skge->hw;
1533 int port = skge->port;
1534 u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1536 pr_debug("genesis_bcom intr stat=%x\n", stat);
1538 /* Workaround BCom Errata:
1539 * enable and disable loopback mode if "NO HCD" occurs.
1541 if (stat & PHY_B_IS_NO_HDCL) {
1542 u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL);
1543 skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
1544 ctrl | PHY_CT_LOOP);
1545 skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
1546 ctrl & ~PHY_CT_LOOP);
1549 stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT);
1550 if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
1551 u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1552 if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
1553 genesis_link_down(skge);
1555 else if (stat & PHY_B_IS_LST_CHANGE) {
1556 if (aux & PHY_B_AS_AN_C) {
1557 switch (aux & PHY_B_AS_AN_RES_MSK) {
1558 case PHY_B_RES_1000FD:
1559 skge->duplex = DUPLEX_FULL;
1561 case PHY_B_RES_1000HD:
1562 skge->duplex = DUPLEX_HALF;
1566 switch (aux & PHY_B_AS_PAUSE_MSK) {
1567 case PHY_B_AS_PAUSE_MSK:
1568 skge->flow_control = FLOW_MODE_SYMMETRIC;
1571 skge->flow_control = FLOW_MODE_REM_SEND;
1574 skge->flow_control = FLOW_MODE_LOC_SEND;
1577 skge->flow_control = FLOW_MODE_NONE;
1579 skge->speed = SPEED_1000;
1581 genesis_link_up(skge);
1584 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1588 /* Perodic poll of phy status to check for link transistion */
1589 static void skge_link_timer(unsigned long __arg)
1591 struct skge_port *skge = (struct skge_port *) __arg;
1592 struct skge_hw *hw = skge->hw;
1593 int port = skge->port;
1595 if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
1598 spin_lock_bh(&hw->phy_lock);
1599 if (hw->phy_type == SK_PHY_BCOM)
1600 genesis_bcom_intr(skge);
1603 for (i = 0; i < 3; i++)
1604 if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1608 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1610 genesis_link_up(skge);
1612 spin_unlock_bh(&hw->phy_lock);
1615 /* Marvell Phy Initailization */
1616 static void yukon_init(struct skge_hw *hw, int port)
1618 struct skge_port *skge = netdev_priv(hw->dev[port]);
1619 u16 ctrl, ct1000, adv;
1620 u16 ledctrl, ledover;
1622 pr_debug("yukon_init\n");
1623 if (skge->autoneg == AUTONEG_ENABLE) {
1624 u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1626 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1627 PHY_M_EC_MAC_S_MSK);
1628 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1630 /* on PHY 88E1111 there is a change for downshift control */
1631 if (hw->chip_id == CHIP_ID_YUKON_EC)
1632 ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
1634 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1636 skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1639 ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL);
1640 if (skge->autoneg == AUTONEG_DISABLE)
1641 ctrl &= ~PHY_CT_ANE;
1643 ctrl |= PHY_CT_RESET;
1644 skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1650 if (skge->autoneg == AUTONEG_ENABLE) {
1652 if (skge->advertising & ADVERTISED_1000baseT_Full)
1653 ct1000 |= PHY_M_1000C_AFD;
1654 if (skge->advertising & ADVERTISED_1000baseT_Half)
1655 ct1000 |= PHY_M_1000C_AHD;
1656 if (skge->advertising & ADVERTISED_100baseT_Full)
1657 adv |= PHY_M_AN_100_FD;
1658 if (skge->advertising & ADVERTISED_100baseT_Half)
1659 adv |= PHY_M_AN_100_HD;
1660 if (skge->advertising & ADVERTISED_10baseT_Full)
1661 adv |= PHY_M_AN_10_FD;
1662 if (skge->advertising & ADVERTISED_10baseT_Half)
1663 adv |= PHY_M_AN_10_HD;
1665 /* Set Flow-control capabilities */
1666 switch (skge->flow_control) {
1667 case FLOW_MODE_NONE:
1668 adv |= PHY_B_P_NO_PAUSE;
1670 case FLOW_MODE_LOC_SEND:
1671 adv |= PHY_B_P_ASYM_MD;
1673 case FLOW_MODE_SYMMETRIC:
1674 adv |= PHY_B_P_SYM_MD;
1676 case FLOW_MODE_REM_SEND:
1677 adv |= PHY_B_P_BOTH_MD;
1680 } else { /* special defines for FIBER (88E1011S only) */
1681 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1683 /* Set Flow-control capabilities */
1684 switch (skge->flow_control) {
1685 case FLOW_MODE_NONE:
1686 adv |= PHY_M_P_NO_PAUSE_X;
1688 case FLOW_MODE_LOC_SEND:
1689 adv |= PHY_M_P_ASYM_MD_X;
1691 case FLOW_MODE_SYMMETRIC:
1692 adv |= PHY_M_P_SYM_MD_X;
1694 case FLOW_MODE_REM_SEND:
1695 adv |= PHY_M_P_BOTH_MD_X;
1699 /* Restart Auto-negotiation */
1700 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1702 /* forced speed/duplex settings */
1703 ct1000 = PHY_M_1000C_MSE;
1705 if (skge->duplex == DUPLEX_FULL)
1706 ctrl |= PHY_CT_DUP_MD;
1708 switch (skge->speed) {
1710 ctrl |= PHY_CT_SP1000;
1713 ctrl |= PHY_CT_SP100;
1717 ctrl |= PHY_CT_RESET;
1720 if (hw->chip_id != CHIP_ID_YUKON_FE)
1721 skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1723 skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1724 skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1726 /* Setup Phy LED's */
1727 ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
1730 if (hw->chip_id == CHIP_ID_YUKON_FE) {
1731 /* on 88E3082 these bits are at 11..9 (shifted left) */
1732 ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
1734 skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
1735 ((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
1737 & ~PHY_M_FELP_LED1_MSK)
1738 | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
1740 /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
1741 ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
1743 /* turn off the Rx LED (LED_RX) */
1744 ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
1747 /* disable blink mode (LED_DUPLEX) on collisions */
1748 ctrl |= PHY_M_LEDC_DP_CTRL;
1749 skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
1751 if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
1752 /* turn on 100 Mbps LED (LED_LINK100) */
1753 ledover |= PHY_M_LED_MO_100(MO_LED_ON);
1757 skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
1759 /* Enable phy interrupt on autonegotiation complete (or link up) */
1760 if (skge->autoneg == AUTONEG_ENABLE)
1761 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
1763 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1766 static void yukon_reset(struct skge_hw *hw, int port)
1768 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1769 skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1770 skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1771 skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1772 skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1774 skge_gma_write16(hw, port, GM_RX_CTRL,
1775 skge_gma_read16(hw, port, GM_RX_CTRL)
1776 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1779 static void yukon_mac_init(struct skge_hw *hw, int port)
1781 struct skge_port *skge = netdev_priv(hw->dev[port]);
1784 const u8 *addr = hw->dev[port]->dev_addr;
1786 /* WA code for COMA mode -- set PHY reset */
1787 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1788 chip_rev(hw) == CHIP_REV_YU_LITE_A3)
1789 skge_write32(hw, B2_GP_IO,
1790 (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
1793 skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET);
1794 skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET);
1796 /* WA code for COMA mode -- clear PHY reset */
1797 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1798 chip_rev(hw) == CHIP_REV_YU_LITE_A3)
1799 skge_write32(hw, B2_GP_IO,
1800 (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
1803 /* Set hardware config mode */
1804 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1805 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1806 reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1808 /* Clear GMC reset */
1809 skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1810 skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1811 skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1812 if (skge->autoneg == AUTONEG_DISABLE) {
1813 reg = GM_GPCR_AU_ALL_DIS;
1814 skge_gma_write16(hw, port, GM_GP_CTRL,
1815 skge_gma_read16(hw, port, GM_GP_CTRL) | reg);
1817 switch (skge->speed) {
1819 reg |= GM_GPCR_SPEED_1000;
1822 reg |= GM_GPCR_SPEED_100;
1825 if (skge->duplex == DUPLEX_FULL)
1826 reg |= GM_GPCR_DUP_FULL;
1828 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1829 switch (skge->flow_control) {
1830 case FLOW_MODE_NONE:
1831 skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1832 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1834 case FLOW_MODE_LOC_SEND:
1835 /* disable Rx flow-control */
1836 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1839 skge_gma_write16(hw, port, GM_GP_CTRL, reg);
1840 skge_read16(hw, GMAC_IRQ_SRC);
1842 spin_lock_bh(&hw->phy_lock);
1843 yukon_init(hw, port);
1844 spin_unlock_bh(&hw->phy_lock);
1847 reg = skge_gma_read16(hw, port, GM_PHY_ADDR);
1848 skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1850 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1851 skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1852 skge_gma_write16(hw, port, GM_PHY_ADDR, reg);
1854 /* transmit control */
1855 skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1857 /* receive control reg: unicast + multicast + no FCS */
1858 skge_gma_write16(hw, port, GM_RX_CTRL,
1859 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1861 /* transmit flow control */
1862 skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1864 /* transmit parameter */
1865 skge_gma_write16(hw, port, GM_TX_PARAM,
1866 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1867 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1868 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1870 /* serial mode register */
1871 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1872 if (hw->dev[port]->mtu > 1500)
1873 reg |= GM_SMOD_JUMBO_ENA;
1875 skge_gma_write16(hw, port, GM_SERIAL_MODE, reg);
1877 /* physical address: used for pause frames */
1878 skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1879 /* virtual address for data */
1880 skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1882 /* enable interrupt mask for counter overflows */
1883 skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1884 skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1885 skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1887 /* Initialize Mac Fifo */
1889 /* Configure Rx MAC FIFO */
1890 skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1891 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1892 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1893 chip_rev(hw) == CHIP_REV_YU_LITE_A3)
1894 reg &= ~GMF_RX_F_FL_ON;
1895 skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1896 skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg);
1897 skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
1899 /* Configure Tx MAC FIFO */
1900 skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1901 skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1904 static void yukon_stop(struct skge_port *skge)
1906 struct skge_hw *hw = skge->hw;
1907 int port = skge->port;
1909 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1910 chip_rev(hw) == CHIP_REV_YU_LITE_A3) {
1911 skge_write32(hw, B2_GP_IO,
1912 skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
1915 skge_gma_write16(hw, port, GM_GP_CTRL,
1916 skge_gma_read16(hw, port, GM_GP_CTRL)
1917 & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
1918 skge_gma_read16(hw, port, GM_GP_CTRL);
1920 /* set GPHY Control reset */
1921 skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
1922 skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
1925 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1927 struct skge_hw *hw = skge->hw;
1928 int port = skge->port;
1931 data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32
1932 | skge_gma_read32(hw, port, GM_TXO_OK_LO);
1933 data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32
1934 | skge_gma_read32(hw, port, GM_RXO_OK_LO);
1936 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1937 data[i] = skge_gma_read32(hw, port,
1938 skge_stats[i].gma_offset);
1941 static void yukon_mac_intr(struct skge_hw *hw, int port)
1943 struct skge_port *skge = netdev_priv(hw->dev[port]);
1944 u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC));
1946 pr_debug("yukon_intr status %x\n", status);
1947 if (status & GM_IS_RX_FF_OR) {
1948 ++skge->net_stats.rx_fifo_errors;
1949 skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
1951 if (status & GM_IS_TX_FF_UR) {
1952 ++skge->net_stats.tx_fifo_errors;
1953 skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
1958 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1960 if (hw->chip_id == CHIP_ID_YUKON_FE)
1961 return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
1963 switch(aux & PHY_M_PS_SPEED_MSK) {
1964 case PHY_M_PS_SPEED_1000:
1966 case PHY_M_PS_SPEED_100:
1973 static void yukon_link_up(struct skge_port *skge)
1975 struct skge_hw *hw = skge->hw;
1976 int port = skge->port;
1979 pr_debug("yukon_link_up\n");
1981 /* Enable Transmit FIFO Underrun */
1982 skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
1984 reg = skge_gma_read16(hw, port, GM_GP_CTRL);
1985 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1986 reg |= GM_GPCR_DUP_FULL;
1989 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1990 skge_gma_write16(hw, port, GM_GP_CTRL, reg);
1992 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1996 static void yukon_link_down(struct skge_port *skge)
1998 struct skge_hw *hw = skge->hw;
1999 int port = skge->port;
2001 pr_debug("yukon_link_down\n");
2002 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
2003 skge_gm_phy_write(hw, port, GM_GP_CTRL,
2004 skge_gm_phy_read(hw, port, GM_GP_CTRL)
2005 & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
2007 if (hw->chip_id != CHIP_ID_YUKON_FE &&
2008 skge->flow_control == FLOW_MODE_REM_SEND) {
2009 /* restore Asymmetric Pause bit */
2010 skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
2011 skge_gm_phy_read(hw, port,
2017 yukon_reset(hw, port);
2018 skge_link_down(skge);
2020 yukon_init(hw, port);
2023 static void yukon_phy_intr(struct skge_port *skge)
2025 struct skge_hw *hw = skge->hw;
2026 int port = skge->port;
2027 const char *reason = NULL;
2028 u16 istatus, phystat;
2030 istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2031 phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2032 pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
2034 if (istatus & PHY_M_IS_AN_COMPL) {
2035 if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2037 reason = "remote fault";
2041 if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
2042 && (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
2043 & PHY_B_1000S_MSF)) {
2044 reason = "master/slave fault";
2048 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2049 reason = "speed/duplex";
2053 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2054 ? DUPLEX_FULL : DUPLEX_HALF;
2055 skge->speed = yukon_speed(hw, phystat);
2057 /* Tx & Rx Pause Enabled bits are at 9..8 */
2058 if (hw->chip_id == CHIP_ID_YUKON_XL)
2061 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2062 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2063 case PHY_M_PS_PAUSE_MSK:
2064 skge->flow_control = FLOW_MODE_SYMMETRIC;
2066 case PHY_M_PS_RX_P_EN:
2067 skge->flow_control = FLOW_MODE_REM_SEND;
2069 case PHY_M_PS_TX_P_EN:
2070 skge->flow_control = FLOW_MODE_LOC_SEND;
2073 skge->flow_control = FLOW_MODE_NONE;
2076 if (skge->flow_control == FLOW_MODE_NONE ||
2077 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2078 skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2080 skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2081 yukon_link_up(skge);
2085 if (istatus & PHY_M_IS_LSP_CHANGE)
2086 skge->speed = yukon_speed(hw, phystat);
2088 if (istatus & PHY_M_IS_DUP_CHANGE)
2089 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2090 if (istatus & PHY_M_IS_LST_CHANGE) {
2091 if (phystat & PHY_M_PS_LINK_UP)
2092 yukon_link_up(skge);
2094 yukon_link_down(skge);
2098 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2099 skge->netdev->name, reason);
2101 /* XXX restart autonegotiation? */
2104 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2110 end = start + len - 1;
2112 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2113 skge_write32(hw, RB_ADDR(q, RB_START), start);
2114 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2115 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2116 skge_write32(hw, RB_ADDR(q, RB_END), end);
2118 if (q == Q_R1 || q == Q_R2) {
2119 /* Set thresholds on receive queue's */
2120 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2122 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2125 /* Enable store & forward on Tx queue's because
2126 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2128 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2131 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2134 /* Setup Bus Memory Interface */
2135 static void skge_qset(struct skge_port *skge, u16 q,
2136 const struct skge_element *e)
2138 struct skge_hw *hw = skge->hw;
2139 u32 watermark = 0x600;
2140 u64 base = skge->dma + (e->desc - skge->mem);
2142 /* optimization to reduce window on 32bit/33mhz */
2143 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2146 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2147 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2148 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2149 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2152 static int skge_up(struct net_device *dev)
2154 struct skge_port *skge = netdev_priv(dev);
2155 struct skge_hw *hw = skge->hw;
2156 int port = skge->port;
2157 u32 chunk, ram_addr;
2158 size_t rx_size, tx_size;
2161 if (netif_msg_ifup(skge))
2162 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2164 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2165 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2166 skge->mem_size = tx_size + rx_size;
2167 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2171 memset(skge->mem, 0, skge->mem_size);
2173 if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
2176 if (skge_rx_fill(skge))
2179 if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2180 skge->dma + rx_size)))
2183 skge->tx_avail = skge->tx_ring.count - 1;
2186 if (hw->chip_id == CHIP_ID_GENESIS)
2187 genesis_mac_init(hw, port);
2189 yukon_mac_init(hw, port);
2191 /* Configure RAMbuffers */
2192 chunk = hw->ram_size / (isdualport(hw) ? 4 : 2);
2193 ram_addr = hw->ram_offset + 2 * chunk * port;
2195 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2196 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2198 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2199 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2200 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2202 /* Start receiver BMU */
2204 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2206 pr_debug("skge_up completed\n");
2210 skge_rx_clean(skge);
2211 kfree(skge->rx_ring.start);
2213 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2218 static int skge_down(struct net_device *dev)
2220 struct skge_port *skge = netdev_priv(dev);
2221 struct skge_hw *hw = skge->hw;
2222 int port = skge->port;
2224 if (netif_msg_ifdown(skge))
2225 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2227 netif_stop_queue(dev);
2229 del_timer_sync(&skge->led_blink);
2230 del_timer_sync(&skge->link_check);
2232 /* Stop transmitter */
2233 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2234 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2235 RB_RST_SET|RB_DIS_OP_MD);
2237 if (hw->chip_id == CHIP_ID_GENESIS)
2242 /* Disable Force Sync bit and Enable Alloc bit */
2243 skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL),
2244 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2246 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2247 skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L);
2248 skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L);
2250 /* Reset PCI FIFO */
2251 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2252 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2254 /* Reset the RAM Buffer async Tx queue */
2255 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2257 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2258 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2259 RB_RST_SET|RB_DIS_OP_MD);
2260 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2262 if (hw->chip_id == CHIP_ID_GENESIS) {
2263 skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2264 skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2265 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP);
2266 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP);
2268 skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2269 skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2272 /* turn off led's */
2273 skge_write16(hw, B0_LED, LED_STAT_OFF);
2275 skge_tx_clean(skge);
2276 skge_rx_clean(skge);
2278 kfree(skge->rx_ring.start);
2279 kfree(skge->tx_ring.start);
2280 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2284 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2286 struct skge_port *skge = netdev_priv(dev);
2287 struct skge_hw *hw = skge->hw;
2288 struct skge_ring *ring = &skge->tx_ring;
2289 struct skge_element *e;
2290 struct skge_tx_desc *td;
2294 unsigned long flags;
2296 skb = skb_padto(skb, ETH_ZLEN);
2298 return NETDEV_TX_OK;
2300 local_irq_save(flags);
2301 if (!spin_trylock(&skge->tx_lock)) {
2302 /* Collision - tell upper layer to requeue */
2303 local_irq_restore(flags);
2304 return NETDEV_TX_LOCKED;
2307 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
2308 netif_stop_queue(dev);
2309 spin_unlock_irqrestore(&skge->tx_lock, flags);
2311 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2313 return NETDEV_TX_BUSY;
2319 len = skb_headlen(skb);
2320 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2321 pci_unmap_addr_set(e, mapaddr, map);
2322 pci_unmap_len_set(e, maplen, len);
2325 td->dma_hi = map >> 32;
2327 if (skb->ip_summed == CHECKSUM_HW) {
2328 const struct iphdr *ip
2329 = (const struct iphdr *) (skb->data + ETH_HLEN);
2330 int offset = skb->h.raw - skb->data;
2332 /* This seems backwards, but it is what the sk98lin
2333 * does. Looks like hardware is wrong?
2335 if (ip->protocol == IPPROTO_UDP
2336 && chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON)
2337 control = BMU_TCP_CHECK;
2339 control = BMU_UDP_CHECK;
2342 td->csum_start = offset;
2343 td->csum_write = offset + skb->csum;
2345 control = BMU_CHECK;
2347 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2348 control |= BMU_EOF| BMU_IRQ_EOF;
2350 struct skge_tx_desc *tf = td;
2352 control |= BMU_STFWD;
2353 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2354 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2356 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2357 frag->size, PCI_DMA_TODEVICE);
2363 tf->dma_hi = (u64) map >> 32;
2364 pci_unmap_addr_set(e, mapaddr, map);
2365 pci_unmap_len_set(e, maplen, frag->size);
2367 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2369 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2371 /* Make sure all the descriptors written */
2373 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2376 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2378 if (netif_msg_tx_queued(skge))
2379 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2380 dev->name, e - ring->start, skb->len);
2382 ring->to_use = e->next;
2383 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
2384 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
2385 pr_debug("%s: transmit queue full\n", dev->name);
2386 netif_stop_queue(dev);
2389 dev->trans_start = jiffies;
2390 spin_unlock_irqrestore(&skge->tx_lock, flags);
2392 return NETDEV_TX_OK;
2395 static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
2398 pci_unmap_single(hw->pdev,
2399 pci_unmap_addr(e, mapaddr),
2400 pci_unmap_len(e, maplen),
2402 dev_kfree_skb_any(e->skb);
2405 pci_unmap_page(hw->pdev,
2406 pci_unmap_addr(e, mapaddr),
2407 pci_unmap_len(e, maplen),
2412 static void skge_tx_clean(struct skge_port *skge)
2414 struct skge_ring *ring = &skge->tx_ring;
2415 struct skge_element *e;
2416 unsigned long flags;
2418 spin_lock_irqsave(&skge->tx_lock, flags);
2419 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2421 skge_tx_free(skge->hw, e);
2424 spin_unlock_irqrestore(&skge->tx_lock, flags);
2427 static void skge_tx_timeout(struct net_device *dev)
2429 struct skge_port *skge = netdev_priv(dev);
2431 if (netif_msg_timer(skge))
2432 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2434 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2435 skge_tx_clean(skge);
2438 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2442 if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2447 if (netif_running(dev)) {
2455 static void genesis_set_multicast(struct net_device *dev)
2457 struct skge_port *skge = netdev_priv(dev);
2458 struct skge_hw *hw = skge->hw;
2459 int port = skge->port;
2460 int i, count = dev->mc_count;
2461 struct dev_mc_list *list = dev->mc_list;
2465 mode = skge_xm_read32(hw, port, XM_MODE);
2466 mode |= XM_MD_ENA_HASH;
2467 if (dev->flags & IFF_PROMISC)
2468 mode |= XM_MD_ENA_PROM;
2470 mode &= ~XM_MD_ENA_PROM;
2472 if (dev->flags & IFF_ALLMULTI)
2473 memset(filter, 0xff, sizeof(filter));
2475 memset(filter, 0, sizeof(filter));
2476 for(i = 0; list && i < count; i++, list = list->next) {
2477 u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
2478 u8 bit = 63 - (crc & 63);
2480 filter[bit/8] |= 1 << (bit%8);
2484 skge_xm_outhash(hw, port, XM_HSM, filter);
2486 skge_xm_write32(hw, port, XM_MODE, mode);
2489 static void yukon_set_multicast(struct net_device *dev)
2491 struct skge_port *skge = netdev_priv(dev);
2492 struct skge_hw *hw = skge->hw;
2493 int port = skge->port;
2494 struct dev_mc_list *list = dev->mc_list;
2498 memset(filter, 0, sizeof(filter));
2500 reg = skge_gma_read16(hw, port, GM_RX_CTRL);
2501 reg |= GM_RXCR_UCF_ENA;
2503 if (dev->flags & IFF_PROMISC) /* promiscious */
2504 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2505 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2506 memset(filter, 0xff, sizeof(filter));
2507 else if (dev->mc_count == 0) /* no multicast */
2508 reg &= ~GM_RXCR_MCF_ENA;
2511 reg |= GM_RXCR_MCF_ENA;
2513 for(i = 0; list && i < dev->mc_count; i++, list = list->next) {
2514 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2515 filter[bit/8] |= 1 << (bit%8);
2520 skge_gma_write16(hw, port, GM_MC_ADDR_H1,
2521 (u16)filter[0] | ((u16)filter[1] << 8));
2522 skge_gma_write16(hw, port, GM_MC_ADDR_H2,
2523 (u16)filter[2] | ((u16)filter[3] << 8));
2524 skge_gma_write16(hw, port, GM_MC_ADDR_H3,
2525 (u16)filter[4] | ((u16)filter[5] << 8));
2526 skge_gma_write16(hw, port, GM_MC_ADDR_H4,
2527 (u16)filter[6] | ((u16)filter[7] << 8));
2529 skge_gma_write16(hw, port, GM_RX_CTRL, reg);
2532 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2534 if (hw->chip_id == CHIP_ID_GENESIS)
2535 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2537 return (status & GMR_FS_ANY_ERR) ||
2538 (status & GMR_FS_RX_OK) == 0;
2541 static void skge_rx_error(struct skge_port *skge, int slot,
2542 u32 control, u32 status)
2544 if (netif_msg_rx_err(skge))
2545 printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
2546 skge->netdev->name, slot, control, status);
2548 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
2549 || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
2550 skge->net_stats.rx_length_errors++;
2552 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2553 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2554 skge->net_stats.rx_length_errors++;
2555 if (status & XMR_FS_FRA_ERR)
2556 skge->net_stats.rx_frame_errors++;
2557 if (status & XMR_FS_FCS_ERR)
2558 skge->net_stats.rx_crc_errors++;
2560 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2561 skge->net_stats.rx_length_errors++;
2562 if (status & GMR_FS_FRAGMENT)
2563 skge->net_stats.rx_frame_errors++;
2564 if (status & GMR_FS_CRC_ERR)
2565 skge->net_stats.rx_crc_errors++;
2570 static int skge_poll(struct net_device *dev, int *budget)
2572 struct skge_port *skge = netdev_priv(dev);
2573 struct skge_hw *hw = skge->hw;
2574 struct skge_ring *ring = &skge->rx_ring;
2575 struct skge_element *e;
2576 unsigned int to_do = min(dev->quota, *budget);
2577 unsigned int work_done = 0;
2579 static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
2581 for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
2583 struct skge_rx_desc *rd = e->desc;
2584 struct sk_buff *skb = e->skb;
2585 u32 control, len, status;
2588 control = rd->control;
2589 if (control & BMU_OWN)
2592 len = control & BMU_BBC;
2595 pci_unmap_single(hw->pdev,
2596 pci_unmap_addr(e, mapaddr),
2597 pci_unmap_len(e, maplen),
2598 PCI_DMA_FROMDEVICE);
2600 status = rd->status;
2601 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
2602 || len > dev->mtu + VLAN_ETH_HLEN
2603 || bad_phy_status(hw, status)) {
2604 skge_rx_error(skge, e - ring->start, control, status);
2609 if (netif_msg_rx_status(skge))
2610 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2611 dev->name, e - ring->start, rd->status, len);
2614 skb->protocol = eth_type_trans(skb, dev);
2616 if (skge->rx_csum) {
2617 skb->csum = le16_to_cpu(rd->csum2);
2618 skb->ip_summed = CHECKSUM_HW;
2621 dev->last_rx = jiffies;
2622 netif_receive_skb(skb);
2628 *budget -= work_done;
2629 dev->quota -= work_done;
2630 done = work_done < to_do;
2632 if (skge_rx_fill(skge))
2635 /* restart receiver */
2637 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
2638 CSR_START | CSR_IRQ_CL_F);
2641 local_irq_disable();
2642 hw->intr_mask |= irqmask[skge->port];
2643 /* Order is important since data can get interrupted */
2644 skge_write32(hw, B0_IMSK, hw->intr_mask);
2645 __netif_rx_complete(dev);
2652 static inline void skge_tx_intr(struct net_device *dev)
2654 struct skge_port *skge = netdev_priv(dev);
2655 struct skge_hw *hw = skge->hw;
2656 struct skge_ring *ring = &skge->tx_ring;
2657 struct skge_element *e;
2659 spin_lock(&skge->tx_lock);
2660 for(e = ring->to_clean; e != ring->to_use; e = e->next) {
2661 struct skge_tx_desc *td = e->desc;
2665 control = td->control;
2666 if (control & BMU_OWN)
2669 if (unlikely(netif_msg_tx_done(skge)))
2670 printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
2671 dev->name, e - ring->start, td->status);
2673 skge_tx_free(hw, e);
2678 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2680 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
2681 netif_wake_queue(dev);
2683 spin_unlock(&skge->tx_lock);
2686 static void skge_mac_parity(struct skge_hw *hw, int port)
2688 printk(KERN_ERR PFX "%s: mac data parity error\n",
2689 hw->dev[port] ? hw->dev[port]->name
2690 : (port == 0 ? "(port A)": "(port B"));
2692 if (hw->chip_id == CHIP_ID_GENESIS)
2693 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1),
2696 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2697 skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T),
2698 (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
2699 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2702 static void skge_pci_clear(struct skge_hw *hw)
2706 status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS));
2707 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2708 skge_write16(hw, SKGEPCI_REG(PCI_STATUS),
2709 status | PCI_STATUS_ERROR_BITS);
2710 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2713 static void skge_mac_intr(struct skge_hw *hw, int port)
2715 if (hw->chip_id == CHIP_ID_GENESIS)
2716 genesis_mac_intr(hw, port);
2718 yukon_mac_intr(hw, port);
2721 /* Handle device specific framing and timeout interrupts */
2722 static void skge_error_irq(struct skge_hw *hw)
2724 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2726 if (hw->chip_id == CHIP_ID_GENESIS) {
2727 /* clear xmac errors */
2728 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2729 skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
2730 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2731 skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
2733 /* Timestamp (unused) overflow */
2734 if (hwstatus & IS_IRQ_TIST_OV)
2735 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2737 if (hwstatus & IS_IRQ_SENSOR) {
2738 /* no sensors on 32-bit Yukon */
2739 if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
2740 printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
2741 skge_write32(hw, B0_HWE_IMSK,
2742 IS_ERR_MSK & ~IS_IRQ_SENSOR);
2744 printk(KERN_WARNING PFX "sensor interrupt\n");
2750 if (hwstatus & IS_RAM_RD_PAR) {
2751 printk(KERN_ERR PFX "Ram read data parity error\n");
2752 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2755 if (hwstatus & IS_RAM_WR_PAR) {
2756 printk(KERN_ERR PFX "Ram write data parity error\n");
2757 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2760 if (hwstatus & IS_M1_PAR_ERR)
2761 skge_mac_parity(hw, 0);
2763 if (hwstatus & IS_M2_PAR_ERR)
2764 skge_mac_parity(hw, 1);
2766 if (hwstatus & IS_R1_PAR_ERR)
2767 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2769 if (hwstatus & IS_R2_PAR_ERR)
2770 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2772 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2773 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
2778 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2779 if (hwstatus & IS_IRQ_STAT) {
2780 printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
2782 hw->intr_mask &= ~IS_HW_ERR;
2788 * Interrrupt from PHY are handled in tasklet (soft irq)
2789 * because accessing phy registers requires spin wait which might
2790 * cause excess interrupt latency.
2792 static void skge_extirq(unsigned long data)
2794 struct skge_hw *hw = (struct skge_hw *) data;
2797 spin_lock(&hw->phy_lock);
2798 for (port = 0; port < 2; port++) {
2799 struct net_device *dev = hw->dev[port];
2801 if (dev && netif_running(dev)) {
2802 struct skge_port *skge = netdev_priv(dev);
2804 if (hw->chip_id != CHIP_ID_GENESIS)
2805 yukon_phy_intr(skge);
2806 else if (hw->phy_type == SK_PHY_BCOM)
2807 genesis_bcom_intr(skge);
2810 spin_unlock(&hw->phy_lock);
2812 local_irq_disable();
2813 hw->intr_mask |= IS_EXT_REG;
2814 skge_write32(hw, B0_IMSK, hw->intr_mask);
2818 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2820 struct skge_hw *hw = dev_id;
2821 u32 status = skge_read32(hw, B0_SP_ISRC);
2823 if (status == 0 || status == ~0) /* hotplug or shared irq */
2826 status &= hw->intr_mask;
2828 if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
2830 hw->intr_mask &= ~IS_R1_F;
2831 skge_write32(hw, B0_IMSK, hw->intr_mask);
2832 __netif_rx_schedule(hw->dev[0]);
2835 if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
2837 hw->intr_mask &= ~IS_R2_F;
2838 skge_write32(hw, B0_IMSK, hw->intr_mask);
2839 __netif_rx_schedule(hw->dev[1]);
2842 if (status & IS_XA1_F)
2843 skge_tx_intr(hw->dev[0]);
2845 if (status & IS_XA2_F)
2846 skge_tx_intr(hw->dev[1]);
2848 if (status & IS_MAC1)
2849 skge_mac_intr(hw, 0);
2851 if (status & IS_MAC2)
2852 skge_mac_intr(hw, 1);
2854 if (status & IS_HW_ERR)
2857 if (status & IS_EXT_REG) {
2858 hw->intr_mask &= ~IS_EXT_REG;
2859 tasklet_schedule(&hw->ext_tasklet);
2863 skge_write32(hw, B0_IMSK, hw->intr_mask);
2868 #ifdef CONFIG_NET_POLL_CONTROLLER
2869 static void skge_netpoll(struct net_device *dev)
2871 struct skge_port *skge = netdev_priv(dev);
2873 disable_irq(dev->irq);
2874 skge_intr(dev->irq, skge->hw, NULL);
2875 enable_irq(dev->irq);
2879 static int skge_set_mac_address(struct net_device *dev, void *p)
2881 struct skge_port *skge = netdev_priv(dev);
2882 struct sockaddr *addr = p;
2885 if (!is_valid_ether_addr(addr->sa_data))
2886 return -EADDRNOTAVAIL;
2889 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2890 memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
2891 dev->dev_addr, ETH_ALEN);
2892 memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
2893 dev->dev_addr, ETH_ALEN);
2894 if (dev->flags & IFF_UP)
2899 static const struct {
2903 { CHIP_ID_GENESIS, "Genesis" },
2904 { CHIP_ID_YUKON, "Yukon" },
2905 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2906 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2907 { CHIP_ID_YUKON_XL, "Yukon-2 XL"},
2908 { CHIP_ID_YUKON_EC, "YUKON-2 EC"},
2909 { CHIP_ID_YUKON_FE, "YUKON-2 FE"},
2912 static const char *skge_board_name(const struct skge_hw *hw)
2915 static char buf[16];
2917 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2918 if (skge_chips[i].id == hw->chip_id)
2919 return skge_chips[i].name;
2921 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2927 * Setup the board data structure, but don't bring up
2930 static int skge_reset(struct skge_hw *hw)
2936 ctst = skge_read16(hw, B0_CTST);
2939 skge_write8(hw, B0_CTST, CS_RST_SET);
2940 skge_write8(hw, B0_CTST, CS_RST_CLR);
2942 /* clear PCI errors, if any */
2945 skge_write8(hw, B0_CTST, CS_MRST_CLR);
2947 /* restore CLK_RUN bits (for Yukon-Lite) */
2948 skge_write16(hw, B0_CTST,
2949 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
2951 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
2952 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
2953 hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
2955 switch(hw->chip_id) {
2956 case CHIP_ID_GENESIS:
2957 switch (hw->phy_type) {
2959 hw->phy_addr = PHY_ADDR_XMAC;
2962 hw->phy_addr = PHY_ADDR_BCOM;
2965 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
2966 pci_name(hw->pdev), hw->phy_type);
2972 case CHIP_ID_YUKON_LITE:
2973 case CHIP_ID_YUKON_LP:
2974 if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
2975 hw->phy_type = SK_PHY_MARV_COPPER;
2977 hw->phy_addr = PHY_ADDR_MARV;
2979 hw->phy_type = SK_PHY_MARV_FIBER;
2984 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
2985 pci_name(hw->pdev), hw->chip_id);
2989 hw->mac_cfg = skge_read8(hw, B2_MAC_CFG);
2990 ports = isdualport(hw) ? 2 : 1;
2992 /* read the adapters RAM size */
2993 t8 = skge_read8(hw, B2_E_0);
2994 if (hw->chip_id == CHIP_ID_GENESIS) {
2996 /* special case: 4 x 64k x 36, offset = 0x80000 */
2997 hw->ram_size = 0x100000;
2998 hw->ram_offset = 0x80000;
3000 hw->ram_size = t8 * 512;
3003 hw->ram_size = 0x20000;
3005 hw->ram_size = t8 * 4096;
3007 if (hw->chip_id == CHIP_ID_GENESIS)
3010 /* switch power to VCC (WA for VAUX problem) */
3011 skge_write8(hw, B0_POWER_CTRL,
3012 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3013 for (i = 0; i < ports; i++) {
3014 skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3015 skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3019 /* turn off hardware timer (unused) */
3020 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3021 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3022 skge_write8(hw, B0_LED, LED_STAT_ON);
3024 /* enable the Tx Arbiters */
3025 for (i = 0; i < ports; i++)
3026 skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB);
3028 /* Initialize ram interface */
3029 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3031 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3032 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3033 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3034 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3035 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3036 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3037 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3038 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3039 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3040 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3041 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3042 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3044 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3046 /* Set interrupt moderation for Transmit only
3047 * Receive interrupts avoided by NAPI
3049 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3050 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3051 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3053 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3055 hw->intr_mask |= IS_PORT_2;
3056 skge_write32(hw, B0_IMSK, hw->intr_mask);
3058 if (hw->chip_id != CHIP_ID_GENESIS)
3059 skge_write8(hw, GMAC_IRQ_MSK, 0);
3061 spin_lock_bh(&hw->phy_lock);
3062 for (i = 0; i < ports; i++) {
3063 if (hw->chip_id == CHIP_ID_GENESIS)
3064 genesis_reset(hw, i);
3068 spin_unlock_bh(&hw->phy_lock);
3073 /* Initialize network device */
3074 static struct net_device *skge_devinit(struct skge_hw *hw, int port)
3076 struct skge_port *skge;
3077 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3080 printk(KERN_ERR "skge etherdev alloc failed");
3084 SET_MODULE_OWNER(dev);
3085 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3086 dev->open = skge_up;
3087 dev->stop = skge_down;
3088 dev->hard_start_xmit = skge_xmit_frame;
3089 dev->get_stats = skge_get_stats;
3090 if (hw->chip_id == CHIP_ID_GENESIS)
3091 dev->set_multicast_list = genesis_set_multicast;
3093 dev->set_multicast_list = yukon_set_multicast;
3095 dev->set_mac_address = skge_set_mac_address;
3096 dev->change_mtu = skge_change_mtu;
3097 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3098 dev->tx_timeout = skge_tx_timeout;
3099 dev->watchdog_timeo = TX_WATCHDOG;
3100 dev->poll = skge_poll;
3101 dev->weight = NAPI_WEIGHT;
3102 #ifdef CONFIG_NET_POLL_CONTROLLER
3103 dev->poll_controller = skge_netpoll;
3105 dev->irq = hw->pdev->irq;
3106 dev->features = NETIF_F_LLTX;
3108 skge = netdev_priv(dev);
3111 skge->msg_enable = netif_msg_init(debug, default_msg);
3112 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3113 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3115 /* Auto speed and flow control */
3116 skge->autoneg = AUTONEG_ENABLE;
3117 skge->flow_control = FLOW_MODE_SYMMETRIC;
3120 skge->advertising = skge_modes(hw);
3122 hw->dev[port] = dev;
3126 spin_lock_init(&skge->tx_lock);
3128 init_timer(&skge->link_check);
3129 skge->link_check.function = skge_link_timer;
3130 skge->link_check.data = (unsigned long) skge;
3132 init_timer(&skge->led_blink);
3133 skge->led_blink.function = skge_blink_timer;
3134 skge->led_blink.data = (unsigned long) skge;
3136 if (hw->chip_id != CHIP_ID_GENESIS) {
3137 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3141 /* read the mac address */
3142 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3144 /* device is off until link detection */
3145 netif_carrier_off(dev);
3146 netif_stop_queue(dev);
3151 static void __devinit skge_show_addr(struct net_device *dev)
3153 const struct skge_port *skge = netdev_priv(dev);
3155 if (netif_msg_probe(skge))
3156 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3158 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3159 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3162 static int __devinit skge_probe(struct pci_dev *pdev,
3163 const struct pci_device_id *ent)
3165 struct net_device *dev, *dev1;
3167 int err, using_dac = 0;
3169 if ((err = pci_enable_device(pdev))) {
3170 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3175 if ((err = pci_request_regions(pdev, DRV_NAME))) {
3176 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3178 goto err_out_disable_pdev;
3181 pci_set_master(pdev);
3183 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
3185 else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3186 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3188 goto err_out_free_regions;
3192 /* byte swap decriptors in hardware */
3196 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3197 reg |= PCI_REV_DESC;
3198 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3203 hw = kmalloc(sizeof(*hw), GFP_KERNEL);
3205 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3207 goto err_out_free_regions;
3210 memset(hw, 0, sizeof(*hw));
3212 spin_lock_init(&hw->phy_lock);
3213 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
3215 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3217 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3219 goto err_out_free_hw;
3222 if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
3223 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3224 pci_name(pdev), pdev->irq);
3225 goto err_out_iounmap;
3227 pci_set_drvdata(pdev, hw);
3229 err = skge_reset(hw);
3231 goto err_out_free_irq;
3233 printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
3234 pci_resource_start(pdev, 0), pdev->irq,
3235 skge_board_name(hw), chip_rev(hw));
3237 if ((dev = skge_devinit(hw, 0)) == NULL)
3238 goto err_out_led_off;
3241 dev->features |= NETIF_F_HIGHDMA;
3243 if ((err = register_netdev(dev))) {
3244 printk(KERN_ERR PFX "%s: cannot register net device\n",
3246 goto err_out_free_netdev;
3249 skge_show_addr(dev);
3251 if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) {
3253 dev1->features |= NETIF_F_HIGHDMA;
3255 if (register_netdev(dev1) == 0)
3256 skge_show_addr(dev1);
3258 /* Failure to register second port need not be fatal */
3259 printk(KERN_WARNING PFX "register of second port failed\n");
3267 err_out_free_netdev:
3270 skge_write16(hw, B0_LED, LED_STAT_OFF);
3272 free_irq(pdev->irq, hw);
3277 err_out_free_regions:
3278 pci_release_regions(pdev);
3279 err_out_disable_pdev:
3280 pci_disable_device(pdev);
3281 pci_set_drvdata(pdev, NULL);
3286 static void __devexit skge_remove(struct pci_dev *pdev)
3288 struct skge_hw *hw = pci_get_drvdata(pdev);
3289 struct net_device *dev0, *dev1;
3294 if ((dev1 = hw->dev[1]))
3295 unregister_netdev(dev1);
3297 unregister_netdev(dev0);
3299 tasklet_kill(&hw->ext_tasklet);
3301 free_irq(pdev->irq, hw);
3302 pci_release_regions(pdev);
3303 pci_disable_device(pdev);
3307 skge_write16(hw, B0_LED, LED_STAT_OFF);
3310 pci_set_drvdata(pdev, NULL);
3314 static int skge_suspend(struct pci_dev *pdev, u32 state)
3316 struct skge_hw *hw = pci_get_drvdata(pdev);
3319 for(i = 0; i < 2; i++) {
3320 struct net_device *dev = hw->dev[i];
3323 struct skge_port *skge = netdev_priv(dev);
3324 if (netif_running(dev)) {
3325 netif_carrier_off(dev);
3328 netif_device_detach(dev);
3333 pci_save_state(pdev);
3334 pci_enable_wake(pdev, state, wol);
3335 pci_disable_device(pdev);
3336 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3341 static int skge_resume(struct pci_dev *pdev)
3343 struct skge_hw *hw = pci_get_drvdata(pdev);
3346 pci_set_power_state(pdev, PCI_D0);
3347 pci_restore_state(pdev);
3348 pci_enable_wake(pdev, PCI_D0, 0);
3352 for(i = 0; i < 2; i++) {
3353 struct net_device *dev = hw->dev[i];
3355 netif_device_attach(dev);
3356 if(netif_running(dev))
3364 static struct pci_driver skge_driver = {
3366 .id_table = skge_id_table,
3367 .probe = skge_probe,
3368 .remove = __devexit_p(skge_remove),
3370 .suspend = skge_suspend,
3371 .resume = skge_resume,
3375 static int __init skge_init_module(void)
3377 return pci_module_init(&skge_driver);
3380 static void __exit skge_cleanup_module(void)
3382 pci_unregister_driver(&skge_driver);
3385 module_init(skge_init_module);
3386 module_exit(skge_cleanup_module);