1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
192 static struct ipw2100_fw ipw2100_firmware;
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
226 "unused", /* HOST_ATTENTION */
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
232 "unused", /* SET_IMR */
235 "AUTHENTICATION_TYPE",
238 "INTERNATIONAL_MODE",
253 "CLEAR_ALL_MULTICAST",
274 "AP_OR_STATION_TABLE",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
631 out += snprintf(buf + out, count - out, "%c", c);
635 out += snprintf(buf + out, count - out, " ");
641 static void printk_buf(int level, const u8 * data, u32 len)
645 if (!(ipw2100_debug_level & level))
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
714 ("Attempt to send command while hardware in fatal error condition.\n");
719 if (!(priv->status & STATUS_RUNNING)) {
721 ("Attempt to send command while hardware is not running.\n");
726 if (priv->status & STATUS_CMD_ACTIVE) {
728 ("Attempt to send command while another command is pending.\n");
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
775 wait_event_interruptible_timeout(priv->wait_command_queue,
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
805 spin_unlock_irqrestore(&priv->low_lock, flags);
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 if (val1 == data1 && val2 == data2)
850 * Loop until the CARD_DISABLED bit is the same value as the
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
862 u32 len = sizeof(card_state);
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
883 priv->status &= ~STATUS_ENABLED;
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1005 err = ipw2100_verify(priv);
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1154 priv->status |= STATUS_RF_KILL_HW;
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1204 * Start firmware execution after power on and intialization
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1344 priv->status &= ~STATUS_RESET_PENDING;
1348 ("exit - waited too long for master assert stop\n");
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1428 err = ipw2100_hw_send_command(priv, &cmd);
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1447 mutex_unlock(&priv->adapter_mutex);
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1463 if (!(priv->status & STATUS_RUNNING))
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1598 mutex_unlock(&priv->adapter_mutex);
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1675 static const struct ieee80211_geo ipw_geos[] = {
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1780 /* Send all of the commands that must be sent prior to
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1821 .sa_family = ARPHRD_ETHER}
1823 int associated = priv->status & STATUS_ASSOCIATED;
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1858 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861 if (priv->config & CFG_C3_DISABLED) {
1862 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863 acpi_set_cstate_limit(priv->cstate_limit);
1864 priv->config &= ~CFG_C3_DISABLED;
1868 /* We have to signal any supplicant if we are disassociating */
1870 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873 netif_carrier_off(priv->net_dev);
1874 netif_stop_queue(priv->net_dev);
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1879 struct ipw2100_priv *priv =
1880 container_of(work, struct ipw2100_priv, reset_work.work);
1881 unsigned long flags;
1882 union iwreq_data wrqu = {
1884 .sa_family = ARPHRD_ETHER}
1886 int associated = priv->status & STATUS_ASSOCIATED;
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892 priv->status |= STATUS_SECURITY_UPDATED;
1894 /* Force a power cycle even if interface hasn't been opened
1896 cancel_delayed_work(&priv->reset_work);
1897 priv->status |= STATUS_RESET_PENDING;
1898 spin_unlock_irqrestore(&priv->low_lock, flags);
1900 mutex_lock(&priv->action_mutex);
1901 /* stop timed checks so that they don't interfere with reset */
1902 priv->stop_hang_check = 1;
1903 cancel_delayed_work(&priv->hang_check);
1905 /* We have to signal any supplicant if we are disassociating */
1907 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909 ipw2100_up(priv, 0);
1910 mutex_unlock(&priv->action_mutex);
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918 int ret, len, essid_len;
1919 char essid[IW_ESSID_MAX_SIZE];
1926 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927 * an actual MAC of the AP. Seems like FW sets this
1928 * address too late. Read it later and expose through
1929 * /proc or schedule a later task to query and update
1932 essid_len = IW_ESSID_MAX_SIZE;
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1936 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1942 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1944 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1957 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1959 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1963 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1966 case TX_RATE_1_MBIT:
1967 txratename = "1Mbps";
1969 case TX_RATE_2_MBIT:
1970 txratename = "2Mbsp";
1972 case TX_RATE_5_5_MBIT:
1973 txratename = "5.5Mbps";
1975 case TX_RATE_11_MBIT:
1976 txratename = "11Mbps";
1979 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980 txratename = "unknown rate";
1984 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1986 priv->net_dev->name, escape_essid(essid, essid_len),
1987 txratename, chan, MAC_ARG(bssid));
1989 /* now we copy read ssid into dev */
1990 if (!(priv->config & CFG_STATIC_ESSID)) {
1991 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992 memcpy(priv->essid, essid, priv->essid_len);
1994 priv->channel = chan;
1995 memcpy(priv->bssid, bssid, ETH_ALEN);
1997 priv->status |= STATUS_ASSOCIATING;
1998 priv->connect_start = get_seconds();
2000 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004 int length, int batch_mode)
2006 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007 struct host_command cmd = {
2008 .host_command = SSID,
2009 .host_command_sequence = 0,
2010 .host_command_length = ssid_len
2014 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2017 memcpy(cmd.host_command_parameters, essid, ssid_len);
2020 err = ipw2100_disable_adapter(priv);
2025 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026 * disable auto association -- so we cheat by setting a bogus SSID */
2027 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2029 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031 bogus[i] = 0x18 + i;
2032 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2035 /* NOTE: We always send the SSID command even if the provided ESSID is
2036 * the same as what we currently think is set. */
2038 err = ipw2100_hw_send_command(priv, &cmd);
2040 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041 memcpy(priv->essid, essid, ssid_len);
2042 priv->essid_len = ssid_len;
2046 if (ipw2100_enable_adapter(priv))
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2055 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056 "disassociated: '%s' " MAC_FMT " \n",
2057 escape_essid(priv->essid, priv->essid_len),
2058 MAC_ARG(priv->bssid));
2060 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2062 if (priv->status & STATUS_STOPPING) {
2063 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2067 memset(priv->bssid, 0, ETH_ALEN);
2068 memset(priv->ieee->bssid, 0, ETH_ALEN);
2070 netif_carrier_off(priv->net_dev);
2071 netif_stop_queue(priv->net_dev);
2073 if (!(priv->status & STATUS_RUNNING))
2076 if (priv->status & STATUS_SECURITY_UPDATED)
2077 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2079 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2084 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085 priv->net_dev->name);
2087 /* RF_KILL is now enabled (else we wouldn't be here) */
2088 priv->status |= STATUS_RF_KILL_HW;
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091 if (priv->config & CFG_C3_DISABLED) {
2092 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093 acpi_set_cstate_limit(priv->cstate_limit);
2094 priv->config &= ~CFG_C3_DISABLED;
2098 /* Make sure the RF Kill check timer is running */
2099 priv->stop_rf_kill = 0;
2100 cancel_delayed_work(&priv->rf_kill);
2101 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2106 IPW_DEBUG_SCAN("scan complete\n");
2107 /* Age the scan results... */
2108 priv->ieee->scans++;
2109 priv->status &= ~STATUS_SCANNING;
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2116 void (*cb) (struct ipw2100_priv * priv, u32 status);
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2123 void (*cb) (struct ipw2100_priv * priv, u32 status);
2125 #endif /* CONFIG_IPW2100_DEBUG */
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2129 IPW_DEBUG_SCAN("Scanning...\n");
2130 priv->status |= STATUS_SCANNING;
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146 IPW2100_HANDLER(-1, NULL)
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2153 if (status == IPW_STATE_SCANNING &&
2154 priv->status & STATUS_ASSOCIATED &&
2155 !(priv->status & STATUS_SCANNING)) {
2156 IPW_DEBUG_INFO("Scan detected while associated, with "
2157 "no scan request. Restarting firmware.\n");
2159 /* Wake up any sleeping jobs */
2160 schedule_reset(priv);
2163 for (i = 0; status_handlers[i].status != -1; i++) {
2164 if (status == status_handlers[i].status) {
2165 IPW_DEBUG_NOTIF("Status change: %s\n",
2166 status_handlers[i].name);
2167 if (status_handlers[i].cb)
2168 status_handlers[i].cb(priv, status);
2169 priv->wstats.status = status;
2174 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178 struct ipw2100_cmd_header *cmd)
2180 #ifdef CONFIG_IPW2100_DEBUG
2181 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183 command_types[cmd->host_command_reg],
2184 cmd->host_command_reg);
2187 if (cmd->host_command_reg == HOST_COMPLETE)
2188 priv->status |= STATUS_ENABLED;
2190 if (cmd->host_command_reg == CARD_DISABLE)
2191 priv->status &= ~STATUS_ENABLED;
2193 priv->status &= ~STATUS_CMD_ACTIVE;
2195 wake_up_interruptible(&priv->wait_command_queue);
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200 "COMMAND_STATUS_VAL",
2201 "STATUS_CHANGE_VAL",
2204 "HOST_NOTIFICATION_VAL"
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209 struct ipw2100_rx_packet *packet)
2211 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2215 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217 sizeof(struct ipw2100_rx),
2218 PCI_DMA_FROMDEVICE);
2219 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2225 #define SEARCH_ERROR 0xffffffff
2226 #define SEARCH_FAIL 0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2235 if (!priv->snapshot[0])
2237 for (i = 0; i < 0x30; i++)
2238 kfree(priv->snapshot[i]);
2239 priv->snapshot[0] = NULL;
2242 #ifdef IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2246 if (priv->snapshot[0])
2248 for (i = 0; i < 0x30; i++) {
2249 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250 if (!priv->snapshot[i]) {
2251 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252 "buffer %d\n", priv->net_dev->name, i);
2254 kfree(priv->snapshot[--i]);
2255 priv->snapshot[0] = NULL;
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264 size_t len, int mode)
2272 if (mode == SEARCH_SNAPSHOT) {
2273 if (!ipw2100_snapshot_alloc(priv))
2274 mode = SEARCH_DISCARD;
2277 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278 read_nic_dword(priv->net_dev, i, &tmp);
2279 if (mode == SEARCH_SNAPSHOT)
2280 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281 if (ret == SEARCH_FAIL) {
2283 for (j = 0; j < 4; j++) {
2292 if ((s - in_buf) == len)
2293 ret = (i + j) - len + 1;
2295 } else if (mode == SEARCH_DISCARD)
2305 * 0) Disconnect the SKB from the firmware (just unmap)
2306 * 1) Pack the ETH header into the SKB
2307 * 2) Pass the SKB to the network stack
2309 * When packet is provided by the firmware, it contains the following:
2312 * . ieee80211_snap_hdr
2314 * The size of the constructed ethernet
2317 #ifdef IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2323 #ifdef IPW2100_DEBUG_C3
2324 struct ipw2100_status *status = &priv->status_queue.drv[i];
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2332 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333 i * sizeof(struct ipw2100_status));
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337 limit = acpi_get_cstate_limit();
2339 priv->cstate_limit = limit;
2340 acpi_set_cstate_limit(2);
2341 priv->config |= CFG_C3_DISABLED;
2345 #ifdef IPW2100_DEBUG_C3
2346 /* Halt the fimrware so we can get a good image */
2347 write_register(priv->net_dev, IPW_REG_RESET_REG,
2348 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2351 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2354 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2358 match = ipw2100_match_buf(priv, (u8 *) status,
2359 sizeof(struct ipw2100_status),
2361 if (match < SEARCH_SUCCESS)
2362 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363 "offset 0x%06X, length %d:\n",
2364 priv->net_dev->name, match,
2365 sizeof(struct ipw2100_status));
2367 IPW_DEBUG_INFO("%s: No DMA status match in "
2368 "Firmware.\n", priv->net_dev->name);
2370 printk_buf((u8 *) priv->status_queue.drv,
2371 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2374 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375 priv->ieee->stats.rx_errors++;
2376 schedule_reset(priv);
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380 struct ieee80211_rx_stats *stats)
2382 struct ipw2100_status *status = &priv->status_queue.drv[i];
2383 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2385 IPW_DEBUG_RX("Handler...\n");
2387 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2390 priv->net_dev->name,
2391 status->frame_size, skb_tailroom(packet->skb));
2392 priv->ieee->stats.rx_errors++;
2396 if (unlikely(!netif_running(priv->net_dev))) {
2397 priv->ieee->stats.rx_errors++;
2398 priv->wstats.discard.misc++;
2399 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2403 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404 !(priv->status & STATUS_ASSOCIATED))) {
2405 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406 priv->wstats.discard.misc++;
2410 pci_unmap_single(priv->pci_dev,
2412 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2414 skb_put(packet->skb, status->frame_size);
2416 #ifdef IPW2100_RX_DEBUG
2417 /* Make a copy of the frame so we can dump it to the logs if
2418 * ieee80211_rx fails */
2419 skb_copy_from_linear_data(packet->skb, packet_data,
2420 min_t(u32, status->frame_size,
2421 IPW_RX_NIC_BUFFER_LENGTH));
2424 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2425 #ifdef IPW2100_RX_DEBUG
2426 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2427 priv->net_dev->name);
2428 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2430 priv->ieee->stats.rx_errors++;
2432 /* ieee80211_rx failed, so it didn't free the SKB */
2433 dev_kfree_skb_any(packet->skb);
2437 /* We need to allocate a new SKB and attach it to the RDB. */
2438 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2439 printk(KERN_WARNING DRV_NAME ": "
2440 "%s: Unable to allocate SKB onto RBD ring - disabling "
2441 "adapter.\n", priv->net_dev->name);
2442 /* TODO: schedule adapter shutdown */
2443 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2446 /* Update the RDB entry */
2447 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2450 #ifdef CONFIG_IPW2100_MONITOR
2452 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2453 struct ieee80211_rx_stats *stats)
2455 struct ipw2100_status *status = &priv->status_queue.drv[i];
2456 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2458 /* Magic struct that slots into the radiotap header -- no reason
2459 * to build this manually element by element, we can write it much
2460 * more efficiently than we can parse it. ORDER MATTERS HERE */
2462 struct ieee80211_radiotap_header rt_hdr;
2463 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2466 IPW_DEBUG_RX("Handler...\n");
2468 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2469 sizeof(struct ipw_rt_hdr))) {
2470 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 priv->net_dev->name,
2474 skb_tailroom(packet->skb));
2475 priv->ieee->stats.rx_errors++;
2479 if (unlikely(!netif_running(priv->net_dev))) {
2480 priv->ieee->stats.rx_errors++;
2481 priv->wstats.discard.misc++;
2482 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2486 if (unlikely(priv->config & CFG_CRC_CHECK &&
2487 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2488 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2489 priv->ieee->stats.rx_errors++;
2493 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2494 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2495 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2496 packet->skb->data, status->frame_size);
2498 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2500 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2501 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2502 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2504 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2506 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2508 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2510 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2511 priv->ieee->stats.rx_errors++;
2513 /* ieee80211_rx failed, so it didn't free the SKB */
2514 dev_kfree_skb_any(packet->skb);
2518 /* We need to allocate a new SKB and attach it to the RDB. */
2519 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2521 "%s: Unable to allocate SKB onto RBD ring - disabling "
2522 "adapter.\n", priv->net_dev->name);
2523 /* TODO: schedule adapter shutdown */
2524 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2527 /* Update the RDB entry */
2528 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2535 struct ipw2100_status *status = &priv->status_queue.drv[i];
2536 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2537 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2539 switch (frame_type) {
2540 case COMMAND_STATUS_VAL:
2541 return (status->frame_size != sizeof(u->rx_data.command));
2542 case STATUS_CHANGE_VAL:
2543 return (status->frame_size != sizeof(u->rx_data.status));
2544 case HOST_NOTIFICATION_VAL:
2545 return (status->frame_size < sizeof(u->rx_data.notification));
2546 case P80211_DATA_VAL:
2547 case P8023_DATA_VAL:
2548 #ifdef CONFIG_IPW2100_MONITOR
2551 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2552 case IEEE80211_FTYPE_MGMT:
2553 case IEEE80211_FTYPE_CTL:
2555 case IEEE80211_FTYPE_DATA:
2556 return (status->frame_size >
2557 IPW_MAX_802_11_PAYLOAD_LENGTH);
2566 * ipw2100 interrupts are disabled at this point, and the ISR
2567 * is the only code that calls this method. So, we do not need
2568 * to play with any locks.
2570 * RX Queue works as follows:
2572 * Read index - firmware places packet in entry identified by the
2573 * Read index and advances Read index. In this manner,
2574 * Read index will always point to the next packet to
2575 * be filled--but not yet valid.
2577 * Write index - driver fills this entry with an unused RBD entry.
2578 * This entry has not filled by the firmware yet.
2580 * In between the W and R indexes are the RBDs that have been received
2581 * but not yet processed.
2583 * The process of handling packets will start at WRITE + 1 and advance
2584 * until it reaches the READ index.
2586 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2589 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2591 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2592 struct ipw2100_status_queue *sq = &priv->status_queue;
2593 struct ipw2100_rx_packet *packet;
2596 struct ipw2100_rx *u;
2597 struct ieee80211_rx_stats stats = {
2598 .mac_time = jiffies,
2601 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2602 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2604 if (r >= rxq->entries) {
2605 IPW_DEBUG_RX("exit - bad read index\n");
2609 i = (rxq->next + 1) % rxq->entries;
2612 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2613 r, rxq->next, i); */
2615 packet = &priv->rx_buffers[i];
2617 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2618 * the correct values */
2619 pci_dma_sync_single_for_cpu(priv->pci_dev,
2621 sizeof(struct ipw2100_status) * i,
2622 sizeof(struct ipw2100_status),
2623 PCI_DMA_FROMDEVICE);
2625 /* Sync the DMA for the RX buffer so CPU is sure to get
2626 * the correct values */
2627 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2628 sizeof(struct ipw2100_rx),
2629 PCI_DMA_FROMDEVICE);
2631 if (unlikely(ipw2100_corruption_check(priv, i))) {
2632 ipw2100_corruption_detected(priv, i);
2637 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2638 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2639 stats.len = sq->drv[i].frame_size;
2642 if (stats.rssi != 0)
2643 stats.mask |= IEEE80211_STATMASK_RSSI;
2644 stats.freq = IEEE80211_24GHZ_BAND;
2646 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2647 priv->net_dev->name, frame_types[frame_type],
2650 switch (frame_type) {
2651 case COMMAND_STATUS_VAL:
2652 /* Reset Rx watchdog */
2653 isr_rx_complete_command(priv, &u->rx_data.command);
2656 case STATUS_CHANGE_VAL:
2657 isr_status_change(priv, u->rx_data.status);
2660 case P80211_DATA_VAL:
2661 case P8023_DATA_VAL:
2662 #ifdef CONFIG_IPW2100_MONITOR
2663 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2664 isr_rx_monitor(priv, i, &stats);
2668 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2670 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2671 case IEEE80211_FTYPE_MGMT:
2672 ieee80211_rx_mgt(priv->ieee,
2673 &u->rx_data.header, &stats);
2676 case IEEE80211_FTYPE_CTL:
2679 case IEEE80211_FTYPE_DATA:
2680 isr_rx(priv, i, &stats);
2688 /* clear status field associated with this RBD */
2689 rxq->drv[i].status.info.field = 0;
2691 i = (i + 1) % rxq->entries;
2695 /* backtrack one entry, wrapping to end if at 0 */
2696 rxq->next = (i ? i : rxq->entries) - 1;
2698 write_register(priv->net_dev,
2699 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2704 * __ipw2100_tx_process
2706 * This routine will determine whether the next packet on
2707 * the fw_pend_list has been processed by the firmware yet.
2709 * If not, then it does nothing and returns.
2711 * If so, then it removes the item from the fw_pend_list, frees
2712 * any associated storage, and places the item back on the
2713 * free list of its source (either msg_free_list or tx_free_list)
2715 * TX Queue works as follows:
2717 * Read index - points to the next TBD that the firmware will
2718 * process. The firmware will read the data, and once
2719 * done processing, it will advance the Read index.
2721 * Write index - driver fills this entry with an constructed TBD
2722 * entry. The Write index is not advanced until the
2723 * packet has been configured.
2725 * In between the W and R indexes are the TBDs that have NOT been
2726 * processed. Lagging behind the R index are packets that have
2727 * been processed but have not been freed by the driver.
2729 * In order to free old storage, an internal index will be maintained
2730 * that points to the next packet to be freed. When all used
2731 * packets have been freed, the oldest index will be the same as the
2732 * firmware's read index.
2734 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2736 * Because the TBD structure can not contain arbitrary data, the
2737 * driver must keep an internal queue of cached allocations such that
2738 * it can put that data back into the tx_free_list and msg_free_list
2739 * for use by future command and data packets.
2742 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2744 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2745 struct ipw2100_bd *tbd;
2746 struct list_head *element;
2747 struct ipw2100_tx_packet *packet;
2748 int descriptors_used;
2750 u32 r, w, frag_num = 0;
2752 if (list_empty(&priv->fw_pend_list))
2755 element = priv->fw_pend_list.next;
2757 packet = list_entry(element, struct ipw2100_tx_packet, list);
2758 tbd = &txq->drv[packet->index];
2760 /* Determine how many TBD entries must be finished... */
2761 switch (packet->type) {
2763 /* COMMAND uses only one slot; don't advance */
2764 descriptors_used = 1;
2769 /* DATA uses two slots; advance and loop position. */
2770 descriptors_used = tbd->num_fragments;
2771 frag_num = tbd->num_fragments - 1;
2772 e = txq->oldest + frag_num;
2777 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2778 priv->net_dev->name);
2782 /* if the last TBD is not done by NIC yet, then packet is
2783 * not ready to be released.
2786 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2788 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2791 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2792 priv->net_dev->name);
2795 * txq->next is the index of the last packet written txq->oldest is
2796 * the index of the r is the index of the next packet to be read by
2801 * Quick graphic to help you visualize the following
2802 * if / else statement
2804 * ===>| s---->|===============
2806 * | a | b | c | d | e | f | g | h | i | j | k | l
2810 * w - updated by driver
2811 * r - updated by firmware
2812 * s - start of oldest BD entry (txq->oldest)
2813 * e - end of oldest BD entry
2816 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2817 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2822 DEC_STAT(&priv->fw_pend_stat);
2824 #ifdef CONFIG_IPW2100_DEBUG
2826 int i = txq->oldest;
2827 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2829 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2830 txq->drv[i].host_addr, txq->drv[i].buf_length);
2832 if (packet->type == DATA) {
2833 i = (i + 1) % txq->entries;
2835 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2837 (u32) (txq->nic + i *
2838 sizeof(struct ipw2100_bd)),
2839 (u32) txq->drv[i].host_addr,
2840 txq->drv[i].buf_length);
2845 switch (packet->type) {
2847 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2848 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2849 "Expecting DATA TBD but pulled "
2850 "something else: ids %d=%d.\n",
2851 priv->net_dev->name, txq->oldest, packet->index);
2853 /* DATA packet; we have to unmap and free the SKB */
2854 for (i = 0; i < frag_num; i++) {
2855 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2857 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2858 (packet->index + 1 + i) % txq->entries,
2859 tbd->host_addr, tbd->buf_length);
2861 pci_unmap_single(priv->pci_dev,
2863 tbd->buf_length, PCI_DMA_TODEVICE);
2866 ieee80211_txb_free(packet->info.d_struct.txb);
2867 packet->info.d_struct.txb = NULL;
2869 list_add_tail(element, &priv->tx_free_list);
2870 INC_STAT(&priv->tx_free_stat);
2872 /* We have a free slot in the Tx queue, so wake up the
2873 * transmit layer if it is stopped. */
2874 if (priv->status & STATUS_ASSOCIATED)
2875 netif_wake_queue(priv->net_dev);
2877 /* A packet was processed by the hardware, so update the
2879 priv->net_dev->trans_start = jiffies;
2884 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2885 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2886 "Expecting COMMAND TBD but pulled "
2887 "something else: ids %d=%d.\n",
2888 priv->net_dev->name, txq->oldest, packet->index);
2890 #ifdef CONFIG_IPW2100_DEBUG
2891 if (packet->info.c_struct.cmd->host_command_reg <
2892 ARRAY_SIZE(command_types))
2893 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2894 command_types[packet->info.c_struct.cmd->
2896 packet->info.c_struct.cmd->
2898 packet->info.c_struct.cmd->cmd_status_reg);
2901 list_add_tail(element, &priv->msg_free_list);
2902 INC_STAT(&priv->msg_free_stat);
2906 /* advance oldest used TBD pointer to start of next entry */
2907 txq->oldest = (e + 1) % txq->entries;
2908 /* increase available TBDs number */
2909 txq->available += descriptors_used;
2910 SET_STAT(&priv->txq_stat, txq->available);
2912 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2913 jiffies - packet->jiffy_start);
2915 return (!list_empty(&priv->fw_pend_list));
2918 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2922 while (__ipw2100_tx_process(priv) && i < 200)
2926 printk(KERN_WARNING DRV_NAME ": "
2927 "%s: Driver is running slow (%d iters).\n",
2928 priv->net_dev->name, i);
2932 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2934 struct list_head *element;
2935 struct ipw2100_tx_packet *packet;
2936 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2937 struct ipw2100_bd *tbd;
2938 int next = txq->next;
2940 while (!list_empty(&priv->msg_pend_list)) {
2941 /* if there isn't enough space in TBD queue, then
2942 * don't stuff a new one in.
2943 * NOTE: 3 are needed as a command will take one,
2944 * and there is a minimum of 2 that must be
2945 * maintained between the r and w indexes
2947 if (txq->available <= 3) {
2948 IPW_DEBUG_TX("no room in tx_queue\n");
2952 element = priv->msg_pend_list.next;
2954 DEC_STAT(&priv->msg_pend_stat);
2956 packet = list_entry(element, struct ipw2100_tx_packet, list);
2958 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2959 &txq->drv[txq->next],
2960 (void *)(txq->nic + txq->next *
2961 sizeof(struct ipw2100_bd)));
2963 packet->index = txq->next;
2965 tbd = &txq->drv[txq->next];
2967 /* initialize TBD */
2968 tbd->host_addr = packet->info.c_struct.cmd_phys;
2969 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2970 /* not marking number of fragments causes problems
2971 * with f/w debug version */
2972 tbd->num_fragments = 1;
2973 tbd->status.info.field =
2974 IPW_BD_STATUS_TX_FRAME_COMMAND |
2975 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2977 /* update TBD queue counters */
2979 txq->next %= txq->entries;
2981 DEC_STAT(&priv->txq_stat);
2983 list_add_tail(element, &priv->fw_pend_list);
2984 INC_STAT(&priv->fw_pend_stat);
2987 if (txq->next != next) {
2988 /* kick off the DMA by notifying firmware the
2989 * write index has moved; make sure TBD stores are sync'd */
2991 write_register(priv->net_dev,
2992 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2998 * ipw2100_tx_send_data
3001 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3003 struct list_head *element;
3004 struct ipw2100_tx_packet *packet;
3005 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3006 struct ipw2100_bd *tbd;
3007 int next = txq->next;
3009 struct ipw2100_data_header *ipw_hdr;
3010 struct ieee80211_hdr_3addr *hdr;
3012 while (!list_empty(&priv->tx_pend_list)) {
3013 /* if there isn't enough space in TBD queue, then
3014 * don't stuff a new one in.
3015 * NOTE: 4 are needed as a data will take two,
3016 * and there is a minimum of 2 that must be
3017 * maintained between the r and w indexes
3019 element = priv->tx_pend_list.next;
3020 packet = list_entry(element, struct ipw2100_tx_packet, list);
3022 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3024 /* TODO: Support merging buffers if more than
3025 * IPW_MAX_BDS are used */
3026 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3027 "Increase fragmentation level.\n",
3028 priv->net_dev->name);
3031 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3032 IPW_DEBUG_TX("no room in tx_queue\n");
3037 DEC_STAT(&priv->tx_pend_stat);
3039 tbd = &txq->drv[txq->next];
3041 packet->index = txq->next;
3043 ipw_hdr = packet->info.d_struct.data;
3044 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3047 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3048 /* To DS: Addr1 = BSSID, Addr2 = SA,
3050 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3051 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3052 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3053 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3055 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3056 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3059 ipw_hdr->host_command_reg = SEND;
3060 ipw_hdr->host_command_reg1 = 0;
3062 /* For now we only support host based encryption */
3063 ipw_hdr->needs_encryption = 0;
3064 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3065 if (packet->info.d_struct.txb->nr_frags > 1)
3066 ipw_hdr->fragment_size =
3067 packet->info.d_struct.txb->frag_size -
3068 IEEE80211_3ADDR_LEN;
3070 ipw_hdr->fragment_size = 0;
3072 tbd->host_addr = packet->info.d_struct.data_phys;
3073 tbd->buf_length = sizeof(struct ipw2100_data_header);
3074 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3075 tbd->status.info.field =
3076 IPW_BD_STATUS_TX_FRAME_802_3 |
3077 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3079 txq->next %= txq->entries;
3081 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3082 packet->index, tbd->host_addr, tbd->buf_length);
3083 #ifdef CONFIG_IPW2100_DEBUG
3084 if (packet->info.d_struct.txb->nr_frags > 1)
3085 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3086 packet->info.d_struct.txb->nr_frags);
3089 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3090 tbd = &txq->drv[txq->next];
3091 if (i == packet->info.d_struct.txb->nr_frags - 1)
3092 tbd->status.info.field =
3093 IPW_BD_STATUS_TX_FRAME_802_3 |
3094 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3096 tbd->status.info.field =
3097 IPW_BD_STATUS_TX_FRAME_802_3 |
3098 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3100 tbd->buf_length = packet->info.d_struct.txb->
3101 fragments[i]->len - IEEE80211_3ADDR_LEN;
3103 tbd->host_addr = pci_map_single(priv->pci_dev,
3104 packet->info.d_struct.
3107 IEEE80211_3ADDR_LEN,
3111 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3112 txq->next, tbd->host_addr,
3115 pci_dma_sync_single_for_device(priv->pci_dev,
3121 txq->next %= txq->entries;
3124 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3125 SET_STAT(&priv->txq_stat, txq->available);
3127 list_add_tail(element, &priv->fw_pend_list);
3128 INC_STAT(&priv->fw_pend_stat);
3131 if (txq->next != next) {
3132 /* kick off the DMA by notifying firmware the
3133 * write index has moved; make sure TBD stores are sync'd */
3134 write_register(priv->net_dev,
3135 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3141 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3143 struct net_device *dev = priv->net_dev;
3144 unsigned long flags;
3147 spin_lock_irqsave(&priv->low_lock, flags);
3148 ipw2100_disable_interrupts(priv);
3150 read_register(dev, IPW_REG_INTA, &inta);
3152 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3153 (unsigned long)inta & IPW_INTERRUPT_MASK);
3158 /* We do not loop and keep polling for more interrupts as this
3159 * is frowned upon and doesn't play nicely with other potentially
3161 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3162 (unsigned long)inta & IPW_INTERRUPT_MASK);
3164 if (inta & IPW2100_INTA_FATAL_ERROR) {
3165 printk(KERN_WARNING DRV_NAME
3166 ": Fatal interrupt. Scheduling firmware restart.\n");
3168 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3170 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3171 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3172 priv->net_dev->name, priv->fatal_error);
3174 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3175 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3176 priv->net_dev->name, tmp);
3178 /* Wake up any sleeping jobs */
3179 schedule_reset(priv);
3182 if (inta & IPW2100_INTA_PARITY_ERROR) {
3183 printk(KERN_ERR DRV_NAME
3184 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3186 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3189 if (inta & IPW2100_INTA_RX_TRANSFER) {
3190 IPW_DEBUG_ISR("RX interrupt\n");
3192 priv->rx_interrupts++;
3194 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3196 __ipw2100_rx_process(priv);
3197 __ipw2100_tx_complete(priv);
3200 if (inta & IPW2100_INTA_TX_TRANSFER) {
3201 IPW_DEBUG_ISR("TX interrupt\n");
3203 priv->tx_interrupts++;
3205 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3207 __ipw2100_tx_complete(priv);
3208 ipw2100_tx_send_commands(priv);
3209 ipw2100_tx_send_data(priv);
3212 if (inta & IPW2100_INTA_TX_COMPLETE) {
3213 IPW_DEBUG_ISR("TX complete\n");
3215 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3217 __ipw2100_tx_complete(priv);
3220 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3221 /* ipw2100_handle_event(dev); */
3223 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3226 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3227 IPW_DEBUG_ISR("FW init done interrupt\n");
3230 read_register(dev, IPW_REG_INTA, &tmp);
3231 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3232 IPW2100_INTA_PARITY_ERROR)) {
3233 write_register(dev, IPW_REG_INTA,
3234 IPW2100_INTA_FATAL_ERROR |
3235 IPW2100_INTA_PARITY_ERROR);
3238 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3241 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3242 IPW_DEBUG_ISR("Status change interrupt\n");
3244 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3247 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3248 IPW_DEBUG_ISR("slave host mode interrupt\n");
3250 write_register(dev, IPW_REG_INTA,
3251 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3255 ipw2100_enable_interrupts(priv);
3257 spin_unlock_irqrestore(&priv->low_lock, flags);
3259 IPW_DEBUG_ISR("exit\n");
3262 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3264 struct ipw2100_priv *priv = data;
3265 u32 inta, inta_mask;
3270 spin_lock(&priv->low_lock);
3272 /* We check to see if we should be ignoring interrupts before
3273 * we touch the hardware. During ucode load if we try and handle
3274 * an interrupt we can cause keyboard problems as well as cause
3275 * the ucode to fail to initialize */
3276 if (!(priv->status & STATUS_INT_ENABLED)) {
3281 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3282 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3284 if (inta == 0xFFFFFFFF) {
3285 /* Hardware disappeared */
3286 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3290 inta &= IPW_INTERRUPT_MASK;
3292 if (!(inta & inta_mask)) {
3293 /* Shared interrupt */
3297 /* We disable the hardware interrupt here just to prevent unneeded
3298 * calls to be made. We disable this again within the actual
3299 * work tasklet, so if another part of the code re-enables the
3300 * interrupt, that is fine */
3301 ipw2100_disable_interrupts(priv);
3303 tasklet_schedule(&priv->irq_tasklet);
3304 spin_unlock(&priv->low_lock);
3308 spin_unlock(&priv->low_lock);
3312 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3315 struct ipw2100_priv *priv = ieee80211_priv(dev);
3316 struct list_head *element;
3317 struct ipw2100_tx_packet *packet;
3318 unsigned long flags;
3320 spin_lock_irqsave(&priv->low_lock, flags);
3322 if (!(priv->status & STATUS_ASSOCIATED)) {
3323 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3324 priv->ieee->stats.tx_carrier_errors++;
3325 netif_stop_queue(dev);
3329 if (list_empty(&priv->tx_free_list))
3332 element = priv->tx_free_list.next;
3333 packet = list_entry(element, struct ipw2100_tx_packet, list);
3335 packet->info.d_struct.txb = txb;
3337 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3338 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3340 packet->jiffy_start = jiffies;
3343 DEC_STAT(&priv->tx_free_stat);
3345 list_add_tail(element, &priv->tx_pend_list);
3346 INC_STAT(&priv->tx_pend_stat);
3348 ipw2100_tx_send_data(priv);
3350 spin_unlock_irqrestore(&priv->low_lock, flags);
3354 netif_stop_queue(dev);
3355 spin_unlock_irqrestore(&priv->low_lock, flags);
3359 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3361 int i, j, err = -EINVAL;
3366 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3370 if (!priv->msg_buffers) {
3371 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3372 "buffers.\n", priv->net_dev->name);
3376 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3377 v = pci_alloc_consistent(priv->pci_dev,
3378 sizeof(struct ipw2100_cmd_header), &p);
3380 printk(KERN_ERR DRV_NAME ": "
3381 "%s: PCI alloc failed for msg "
3382 "buffers.\n", priv->net_dev->name);
3387 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3389 priv->msg_buffers[i].type = COMMAND;
3390 priv->msg_buffers[i].info.c_struct.cmd =
3391 (struct ipw2100_cmd_header *)v;
3392 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3395 if (i == IPW_COMMAND_POOL_SIZE)
3398 for (j = 0; j < i; j++) {
3399 pci_free_consistent(priv->pci_dev,
3400 sizeof(struct ipw2100_cmd_header),
3401 priv->msg_buffers[j].info.c_struct.cmd,
3402 priv->msg_buffers[j].info.c_struct.
3406 kfree(priv->msg_buffers);
3407 priv->msg_buffers = NULL;
3412 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3416 INIT_LIST_HEAD(&priv->msg_free_list);
3417 INIT_LIST_HEAD(&priv->msg_pend_list);
3419 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3420 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3421 SET_STAT(&priv->msg_free_stat, i);
3426 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3430 if (!priv->msg_buffers)
3433 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3434 pci_free_consistent(priv->pci_dev,
3435 sizeof(struct ipw2100_cmd_header),
3436 priv->msg_buffers[i].info.c_struct.cmd,
3437 priv->msg_buffers[i].info.c_struct.
3441 kfree(priv->msg_buffers);
3442 priv->msg_buffers = NULL;
3445 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3448 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3453 for (i = 0; i < 16; i++) {
3454 out += sprintf(out, "[%08X] ", i * 16);
3455 for (j = 0; j < 16; j += 4) {
3456 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3457 out += sprintf(out, "%08X ", val);
3459 out += sprintf(out, "\n");
3465 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3467 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3470 struct ipw2100_priv *p = d->driver_data;
3471 return sprintf(buf, "0x%08x\n", (int)p->config);
3474 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3476 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3479 struct ipw2100_priv *p = d->driver_data;
3480 return sprintf(buf, "0x%08x\n", (int)p->status);
3483 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3485 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3488 struct ipw2100_priv *p = d->driver_data;
3489 return sprintf(buf, "0x%08x\n", (int)p->capability);
3492 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3494 #define IPW2100_REG(x) { IPW_ ##x, #x }
3495 static const struct {
3499 IPW2100_REG(REG_GP_CNTRL),
3500 IPW2100_REG(REG_GPIO),
3501 IPW2100_REG(REG_INTA),
3502 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3503 #define IPW2100_NIC(x, s) { x, #x, s }
3504 static const struct {
3509 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3510 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3511 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3512 static const struct {
3517 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3518 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3519 "successful Host Tx's (MSDU)"),
3520 IPW2100_ORD(STAT_TX_DIR_DATA,
3521 "successful Directed Tx's (MSDU)"),
3522 IPW2100_ORD(STAT_TX_DIR_DATA1,
3523 "successful Directed Tx's (MSDU) @ 1MB"),
3524 IPW2100_ORD(STAT_TX_DIR_DATA2,
3525 "successful Directed Tx's (MSDU) @ 2MB"),
3526 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3527 "successful Directed Tx's (MSDU) @ 5_5MB"),
3528 IPW2100_ORD(STAT_TX_DIR_DATA11,
3529 "successful Directed Tx's (MSDU) @ 11MB"),
3530 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3531 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3532 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3533 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3534 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3535 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3536 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3537 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3538 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3539 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3540 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3541 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3542 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3543 IPW2100_ORD(STAT_TX_ASSN_RESP,
3544 "successful Association response Tx's"),
3545 IPW2100_ORD(STAT_TX_REASSN,
3546 "successful Reassociation Tx's"),
3547 IPW2100_ORD(STAT_TX_REASSN_RESP,
3548 "successful Reassociation response Tx's"),
3549 IPW2100_ORD(STAT_TX_PROBE,
3550 "probes successfully transmitted"),
3551 IPW2100_ORD(STAT_TX_PROBE_RESP,
3552 "probe responses successfully transmitted"),
3553 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3554 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3555 IPW2100_ORD(STAT_TX_DISASSN,
3556 "successful Disassociation TX"),
3557 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3558 IPW2100_ORD(STAT_TX_DEAUTH,
3559 "successful Deauthentication TX"),
3560 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3561 "Total successful Tx data bytes"),
3562 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3563 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3564 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3566 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3567 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3568 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3569 "times max tries in a hop failed"),
3570 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3571 "times disassociation failed"),
3572 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3573 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3574 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3575 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3578 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3579 "directed packets at 5.5MB"),
3580 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3581 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3583 "nondirected packets at 1MB"),
3584 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3585 "nondirected packets at 2MB"),
3586 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3587 "nondirected packets at 5.5MB"),
3588 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3589 "nondirected packets at 11MB"),
3590 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3591 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3593 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3594 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3595 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3596 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3597 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3598 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3599 IPW2100_ORD(STAT_RX_REASSN_RESP,
3600 "Reassociation response Rx's"),
3601 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3602 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3603 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3604 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3605 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3606 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3607 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3608 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3609 "Total rx data bytes received"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3614 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3615 IPW2100_ORD(STAT_RX_DUPLICATE1,
3616 "duplicate rx packets at 1MB"),
3617 IPW2100_ORD(STAT_RX_DUPLICATE2,
3618 "duplicate rx packets at 2MB"),
3619 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3620 "duplicate rx packets at 5.5MB"),
3621 IPW2100_ORD(STAT_RX_DUPLICATE11,
3622 "duplicate rx packets at 11MB"),
3623 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3624 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3625 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3626 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3627 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3628 "rx frames with invalid protocol"),
3629 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3630 IPW2100_ORD(STAT_RX_NO_BUFFER,
3631 "rx frames rejected due to no buffer"),
3632 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3633 "rx frames dropped due to missing fragment"),
3634 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3635 "rx frames dropped due to non-sequential fragment"),
3636 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3637 "rx frames dropped due to unmatched 1st frame"),
3638 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3639 "rx frames dropped due to uncompleted frame"),
3640 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3641 "ICV errors during decryption"),
3642 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3643 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3644 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3645 "poll response timeouts"),
3646 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3647 "timeouts waiting for last {broad,multi}cast pkt"),
3648 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3649 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3650 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3651 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3652 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3653 "current calculation of % missed beacons"),
3654 IPW2100_ORD(STAT_PERCENT_RETRIES,
3655 "current calculation of % missed tx retries"),
3656 IPW2100_ORD(ASSOCIATED_AP_PTR,
3657 "0 if not associated, else pointer to AP table entry"),
3658 IPW2100_ORD(AVAILABLE_AP_CNT,
3659 "AP's decsribed in the AP table"),
3660 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3661 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3662 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3663 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3664 "failures due to response fail"),
3665 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3666 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3667 IPW2100_ORD(STAT_ROAM_INHIBIT,
3668 "times roaming was inhibited due to activity"),
3669 IPW2100_ORD(RSSI_AT_ASSN,
3670 "RSSI of associated AP at time of association"),
3671 IPW2100_ORD(STAT_ASSN_CAUSE1,
3672 "reassociation: no probe response or TX on hop"),
3673 IPW2100_ORD(STAT_ASSN_CAUSE2,
3674 "reassociation: poor tx/rx quality"),
3675 IPW2100_ORD(STAT_ASSN_CAUSE3,
3676 "reassociation: tx/rx quality (excessive AP load"),
3677 IPW2100_ORD(STAT_ASSN_CAUSE4,
3678 "reassociation: AP RSSI level"),
3679 IPW2100_ORD(STAT_ASSN_CAUSE5,
3680 "reassociations due to load leveling"),
3681 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3682 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3683 "times authentication response failed"),
3684 IPW2100_ORD(STATION_TABLE_CNT,
3685 "entries in association table"),
3686 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3687 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3688 IPW2100_ORD(COUNTRY_CODE,
3689 "IEEE country code as recv'd from beacon"),
3690 IPW2100_ORD(COUNTRY_CHANNELS,
3691 "channels suported by country"),
3692 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3693 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3694 IPW2100_ORD(ANTENNA_DIVERSITY,
3695 "TRUE if antenna diversity is disabled"),
3696 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3697 IPW2100_ORD(OUR_FREQ,
3698 "current radio freq lower digits - channel ID"),
3699 IPW2100_ORD(RTC_TIME, "current RTC time"),
3700 IPW2100_ORD(PORT_TYPE, "operating mode"),
3701 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3702 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3703 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3704 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3705 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3706 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3707 IPW2100_ORD(CAPABILITIES,
3708 "Management frame capability field"),
3709 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3710 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3711 IPW2100_ORD(RTS_THRESHOLD,
3712 "Min packet length for RTS handshaking"),
3713 IPW2100_ORD(INT_MODE, "International mode"),
3714 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3715 "protocol frag threshold"),
3716 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3717 "EEPROM offset in SRAM"),
3718 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3719 "EEPROM size in SRAM"),
3720 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3721 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3722 "EEPROM IBSS 11b channel set"),
3723 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3724 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3725 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3726 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3727 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3729 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3733 struct ipw2100_priv *priv = dev_get_drvdata(d);
3734 struct net_device *dev = priv->net_dev;
3738 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3740 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3741 read_register(dev, hw_data[i].addr, &val);
3742 out += sprintf(out, "%30s [%08X] : %08X\n",
3743 hw_data[i].name, hw_data[i].addr, val);
3749 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3751 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3754 struct ipw2100_priv *priv = dev_get_drvdata(d);
3755 struct net_device *dev = priv->net_dev;
3759 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3761 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3766 switch (nic_data[i].size) {
3768 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3769 out += sprintf(out, "%30s [%08X] : %02X\n",
3770 nic_data[i].name, nic_data[i].addr,
3774 read_nic_word(dev, nic_data[i].addr, &tmp16);
3775 out += sprintf(out, "%30s [%08X] : %04X\n",
3776 nic_data[i].name, nic_data[i].addr,
3780 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3781 out += sprintf(out, "%30s [%08X] : %08X\n",
3782 nic_data[i].name, nic_data[i].addr,
3790 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3792 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3795 struct ipw2100_priv *priv = dev_get_drvdata(d);
3796 struct net_device *dev = priv->net_dev;
3797 static unsigned long loop = 0;
3803 if (loop >= 0x30000)
3806 /* sysfs provides us PAGE_SIZE buffer */
3807 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3809 if (priv->snapshot[0])
3810 for (i = 0; i < 4; i++)
3812 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3814 for (i = 0; i < 4; i++)
3815 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3818 len += sprintf(buf + len,
3823 ((u8 *) buffer)[0x0],
3824 ((u8 *) buffer)[0x1],
3825 ((u8 *) buffer)[0x2],
3826 ((u8 *) buffer)[0x3],
3827 ((u8 *) buffer)[0x4],
3828 ((u8 *) buffer)[0x5],
3829 ((u8 *) buffer)[0x6],
3830 ((u8 *) buffer)[0x7],
3831 ((u8 *) buffer)[0x8],
3832 ((u8 *) buffer)[0x9],
3833 ((u8 *) buffer)[0xa],
3834 ((u8 *) buffer)[0xb],
3835 ((u8 *) buffer)[0xc],
3836 ((u8 *) buffer)[0xd],
3837 ((u8 *) buffer)[0xe],
3838 ((u8 *) buffer)[0xf]);
3840 len += sprintf(buf + len, "%s\n",
3841 snprint_line(line, sizeof(line),
3842 (u8 *) buffer, 16, loop));
3849 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3850 const char *buf, size_t count)
3852 struct ipw2100_priv *priv = dev_get_drvdata(d);
3853 struct net_device *dev = priv->net_dev;
3854 const char *p = buf;
3856 (void)dev; /* kill unused-var warning for debug-only code */
3862 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3863 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3867 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3868 tolower(p[1]) == 'f')) {
3869 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3873 } else if (tolower(p[0]) == 'r') {
3874 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3875 ipw2100_snapshot_free(priv);
3878 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3879 "reset = clear memory snapshot\n", dev->name);
3884 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3886 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3889 struct ipw2100_priv *priv = dev_get_drvdata(d);
3893 static int loop = 0;
3895 if (priv->status & STATUS_RF_KILL_MASK)
3898 if (loop >= ARRAY_SIZE(ord_data))
3901 /* sysfs provides us PAGE_SIZE buffer */
3902 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3903 val_len = sizeof(u32);
3905 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3908 ord_data[loop].index,
3909 ord_data[loop].desc);
3911 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3912 ord_data[loop].index, val,
3913 ord_data[loop].desc);
3920 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3922 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3925 struct ipw2100_priv *priv = dev_get_drvdata(d);
3928 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3929 priv->interrupts, priv->tx_interrupts,
3930 priv->rx_interrupts, priv->inta_other);
3931 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3932 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3933 #ifdef CONFIG_IPW2100_DEBUG
3934 out += sprintf(out, "packet mismatch image: %s\n",
3935 priv->snapshot[0] ? "YES" : "NO");
3941 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3943 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3947 if (mode == priv->ieee->iw_mode)
3950 err = ipw2100_disable_adapter(priv);
3952 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3953 priv->net_dev->name, err);
3959 priv->net_dev->type = ARPHRD_ETHER;
3962 priv->net_dev->type = ARPHRD_ETHER;
3964 #ifdef CONFIG_IPW2100_MONITOR
3965 case IW_MODE_MONITOR:
3966 priv->last_mode = priv->ieee->iw_mode;
3967 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969 #endif /* CONFIG_IPW2100_MONITOR */
3972 priv->ieee->iw_mode = mode;
3975 /* Indicate ipw2100_download_firmware download firmware
3976 * from disk instead of memory. */
3977 ipw2100_firmware.version = 0;
3980 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3981 priv->reset_backoff = 0;
3982 schedule_reset(priv);
3987 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3990 struct ipw2100_priv *priv = dev_get_drvdata(d);
3993 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3995 if (priv->status & STATUS_ASSOCIATED)
3996 len += sprintf(buf + len, "connected: %lu\n",
3997 get_seconds() - priv->connect_start);
3999 len += sprintf(buf + len, "not connected\n");
4001 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4002 DUMP_VAR(status, "08lx");
4003 DUMP_VAR(config, "08lx");
4004 DUMP_VAR(capability, "08lx");
4007 sprintf(buf + len, "last_rtc: %lu\n",
4008 (unsigned long)priv->last_rtc);
4010 DUMP_VAR(fatal_error, "d");
4011 DUMP_VAR(stop_hang_check, "d");
4012 DUMP_VAR(stop_rf_kill, "d");
4013 DUMP_VAR(messages_sent, "d");
4015 DUMP_VAR(tx_pend_stat.value, "d");
4016 DUMP_VAR(tx_pend_stat.hi, "d");
4018 DUMP_VAR(tx_free_stat.value, "d");
4019 DUMP_VAR(tx_free_stat.lo, "d");
4021 DUMP_VAR(msg_free_stat.value, "d");
4022 DUMP_VAR(msg_free_stat.lo, "d");
4024 DUMP_VAR(msg_pend_stat.value, "d");
4025 DUMP_VAR(msg_pend_stat.hi, "d");
4027 DUMP_VAR(fw_pend_stat.value, "d");
4028 DUMP_VAR(fw_pend_stat.hi, "d");
4030 DUMP_VAR(txq_stat.value, "d");
4031 DUMP_VAR(txq_stat.lo, "d");
4033 DUMP_VAR(ieee->scans, "d");
4034 DUMP_VAR(reset_backoff, "d");
4039 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4041 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4044 struct ipw2100_priv *priv = dev_get_drvdata(d);
4045 char essid[IW_ESSID_MAX_SIZE + 1];
4052 if (priv->status & STATUS_RF_KILL_MASK)
4055 memset(essid, 0, sizeof(essid));
4056 memset(bssid, 0, sizeof(bssid));
4058 length = IW_ESSID_MAX_SIZE;
4059 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4064 length = sizeof(bssid);
4065 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4068 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4071 length = sizeof(u32);
4072 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4077 out += sprintf(out, "ESSID: %s\n", essid);
4078 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4079 bssid[0], bssid[1], bssid[2],
4080 bssid[3], bssid[4], bssid[5]);
4081 out += sprintf(out, "Channel: %d\n", chan);
4086 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4088 #ifdef CONFIG_IPW2100_DEBUG
4089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4091 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4094 static ssize_t store_debug_level(struct device_driver *d,
4095 const char *buf, size_t count)
4097 char *p = (char *)buf;
4100 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102 if (p[0] == 'x' || p[0] == 'X')
4104 val = simple_strtoul(p, &p, 16);
4106 val = simple_strtoul(p, &p, 10);
4108 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110 ipw2100_debug_level = val;
4112 return strnlen(buf, count);
4115 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117 #endif /* CONFIG_IPW2100_DEBUG */
4119 static ssize_t show_fatal_error(struct device *d,
4120 struct device_attribute *attr, char *buf)
4122 struct ipw2100_priv *priv = dev_get_drvdata(d);
4126 if (priv->fatal_error)
4127 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129 out += sprintf(out, "0\n");
4131 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4132 if (!priv->fatal_errors[(priv->fatal_index - i) %
4133 IPW2100_ERROR_QUEUE])
4136 out += sprintf(out, "%d. 0x%08X\n", i,
4137 priv->fatal_errors[(priv->fatal_index - i) %
4138 IPW2100_ERROR_QUEUE]);
4144 static ssize_t store_fatal_error(struct device *d,
4145 struct device_attribute *attr, const char *buf,
4148 struct ipw2100_priv *priv = dev_get_drvdata(d);
4149 schedule_reset(priv);
4153 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4156 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4159 struct ipw2100_priv *priv = dev_get_drvdata(d);
4160 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4163 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4164 const char *buf, size_t count)
4166 struct ipw2100_priv *priv = dev_get_drvdata(d);
4167 struct net_device *dev = priv->net_dev;
4168 char buffer[] = "00000000";
4170 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4174 (void)dev; /* kill unused-var warning for debug-only code */
4176 IPW_DEBUG_INFO("enter\n");
4178 strncpy(buffer, buf, len);
4181 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183 if (p[0] == 'x' || p[0] == 'X')
4185 val = simple_strtoul(p, &p, 16);
4187 val = simple_strtoul(p, &p, 10);
4189 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191 priv->ieee->scan_age = val;
4192 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4195 IPW_DEBUG_INFO("exit\n");
4199 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4201 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4204 /* 0 - RF kill not enabled
4205 1 - SW based RF kill active (sysfs)
4206 2 - HW based RF kill active
4207 3 - Both HW and SW baed RF kill active */
4208 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4209 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4210 (rf_kill_active(priv) ? 0x2 : 0x0);
4211 return sprintf(buf, "%i\n", val);
4214 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4216 if ((disable_radio ? 1 : 0) ==
4217 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4220 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4221 disable_radio ? "OFF" : "ON");
4223 mutex_lock(&priv->action_mutex);
4225 if (disable_radio) {
4226 priv->status |= STATUS_RF_KILL_SW;
4229 priv->status &= ~STATUS_RF_KILL_SW;
4230 if (rf_kill_active(priv)) {
4231 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4232 "disabled by HW switch\n");
4233 /* Make sure the RF_KILL check timer is running */
4234 priv->stop_rf_kill = 0;
4235 cancel_delayed_work(&priv->rf_kill);
4236 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4238 schedule_reset(priv);
4241 mutex_unlock(&priv->action_mutex);
4245 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4246 const char *buf, size_t count)
4248 struct ipw2100_priv *priv = dev_get_drvdata(d);
4249 ipw_radio_kill_sw(priv, buf[0] == '1');
4253 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4255 static struct attribute *ipw2100_sysfs_entries[] = {
4256 &dev_attr_hardware.attr,
4257 &dev_attr_registers.attr,
4258 &dev_attr_ordinals.attr,
4260 &dev_attr_stats.attr,
4261 &dev_attr_internals.attr,
4262 &dev_attr_bssinfo.attr,
4263 &dev_attr_memory.attr,
4264 &dev_attr_scan_age.attr,
4265 &dev_attr_fatal_error.attr,
4266 &dev_attr_rf_kill.attr,
4268 &dev_attr_status.attr,
4269 &dev_attr_capability.attr,
4273 static struct attribute_group ipw2100_attribute_group = {
4274 .attrs = ipw2100_sysfs_entries,
4277 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4279 struct ipw2100_status_queue *q = &priv->status_queue;
4281 IPW_DEBUG_INFO("enter\n");
4283 q->size = entries * sizeof(struct ipw2100_status);
4285 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4288 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4292 memset(q->drv, 0, q->size);
4294 IPW_DEBUG_INFO("exit\n");
4299 static void status_queue_free(struct ipw2100_priv *priv)
4301 IPW_DEBUG_INFO("enter\n");
4303 if (priv->status_queue.drv) {
4304 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4305 priv->status_queue.drv,
4306 priv->status_queue.nic);
4307 priv->status_queue.drv = NULL;
4310 IPW_DEBUG_INFO("exit\n");
4313 static int bd_queue_allocate(struct ipw2100_priv *priv,
4314 struct ipw2100_bd_queue *q, int entries)
4316 IPW_DEBUG_INFO("enter\n");
4318 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4320 q->entries = entries;
4321 q->size = entries * sizeof(struct ipw2100_bd);
4322 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4325 ("can't allocate shared memory for buffer descriptors\n");
4328 memset(q->drv, 0, q->size);
4330 IPW_DEBUG_INFO("exit\n");
4335 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4337 IPW_DEBUG_INFO("enter\n");
4343 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4347 IPW_DEBUG_INFO("exit\n");
4350 static void bd_queue_initialize(struct ipw2100_priv *priv,
4351 struct ipw2100_bd_queue *q, u32 base, u32 size,
4354 IPW_DEBUG_INFO("enter\n");
4356 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4359 write_register(priv->net_dev, base, q->nic);
4360 write_register(priv->net_dev, size, q->entries);
4361 write_register(priv->net_dev, r, q->oldest);
4362 write_register(priv->net_dev, w, q->next);
4364 IPW_DEBUG_INFO("exit\n");
4367 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4369 if (priv->workqueue) {
4370 priv->stop_rf_kill = 1;
4371 priv->stop_hang_check = 1;
4372 cancel_delayed_work(&priv->reset_work);
4373 cancel_delayed_work(&priv->security_work);
4374 cancel_delayed_work(&priv->wx_event_work);
4375 cancel_delayed_work(&priv->hang_check);
4376 cancel_delayed_work(&priv->rf_kill);
4377 destroy_workqueue(priv->workqueue);
4378 priv->workqueue = NULL;
4382 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4384 int i, j, err = -EINVAL;
4388 IPW_DEBUG_INFO("enter\n");
4390 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4392 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4393 priv->net_dev->name);
4398 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4402 if (!priv->tx_buffers) {
4403 printk(KERN_ERR DRV_NAME
4404 ": %s: alloc failed form tx buffers.\n",
4405 priv->net_dev->name);
4406 bd_queue_free(priv, &priv->tx_queue);
4410 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4411 v = pci_alloc_consistent(priv->pci_dev,
4412 sizeof(struct ipw2100_data_header),
4415 printk(KERN_ERR DRV_NAME
4416 ": %s: PCI alloc failed for tx " "buffers.\n",
4417 priv->net_dev->name);
4422 priv->tx_buffers[i].type = DATA;
4423 priv->tx_buffers[i].info.d_struct.data =
4424 (struct ipw2100_data_header *)v;
4425 priv->tx_buffers[i].info.d_struct.data_phys = p;
4426 priv->tx_buffers[i].info.d_struct.txb = NULL;
4429 if (i == TX_PENDED_QUEUE_LENGTH)
4432 for (j = 0; j < i; j++) {
4433 pci_free_consistent(priv->pci_dev,
4434 sizeof(struct ipw2100_data_header),
4435 priv->tx_buffers[j].info.d_struct.data,
4436 priv->tx_buffers[j].info.d_struct.
4440 kfree(priv->tx_buffers);
4441 priv->tx_buffers = NULL;
4446 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4450 IPW_DEBUG_INFO("enter\n");
4453 * reinitialize packet info lists
4455 INIT_LIST_HEAD(&priv->fw_pend_list);
4456 INIT_STAT(&priv->fw_pend_stat);
4459 * reinitialize lists
4461 INIT_LIST_HEAD(&priv->tx_pend_list);
4462 INIT_LIST_HEAD(&priv->tx_free_list);
4463 INIT_STAT(&priv->tx_pend_stat);
4464 INIT_STAT(&priv->tx_free_stat);
4466 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4467 /* We simply drop any SKBs that have been queued for
4469 if (priv->tx_buffers[i].info.d_struct.txb) {
4470 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4472 priv->tx_buffers[i].info.d_struct.txb = NULL;
4475 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4478 SET_STAT(&priv->tx_free_stat, i);
4480 priv->tx_queue.oldest = 0;
4481 priv->tx_queue.available = priv->tx_queue.entries;
4482 priv->tx_queue.next = 0;
4483 INIT_STAT(&priv->txq_stat);
4484 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4486 bd_queue_initialize(priv, &priv->tx_queue,
4487 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4492 IPW_DEBUG_INFO("exit\n");
4496 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4500 IPW_DEBUG_INFO("enter\n");
4502 bd_queue_free(priv, &priv->tx_queue);
4504 if (!priv->tx_buffers)
4507 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508 if (priv->tx_buffers[i].info.d_struct.txb) {
4509 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4511 priv->tx_buffers[i].info.d_struct.txb = NULL;
4513 if (priv->tx_buffers[i].info.d_struct.data)
4514 pci_free_consistent(priv->pci_dev,
4515 sizeof(struct ipw2100_data_header),
4516 priv->tx_buffers[i].info.d_struct.
4518 priv->tx_buffers[i].info.d_struct.
4522 kfree(priv->tx_buffers);
4523 priv->tx_buffers = NULL;
4525 IPW_DEBUG_INFO("exit\n");
4528 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4530 int i, j, err = -EINVAL;
4532 IPW_DEBUG_INFO("enter\n");
4534 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4536 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4540 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4542 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4543 bd_queue_free(priv, &priv->rx_queue);
4550 priv->rx_buffers = (struct ipw2100_rx_packet *)
4551 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4553 if (!priv->rx_buffers) {
4554 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4556 bd_queue_free(priv, &priv->rx_queue);
4558 status_queue_free(priv);
4563 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4564 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4566 err = ipw2100_alloc_skb(priv, packet);
4567 if (unlikely(err)) {
4572 /* The BD holds the cache aligned address */
4573 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4574 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4575 priv->status_queue.drv[i].status_fields = 0;
4578 if (i == RX_QUEUE_LENGTH)
4581 for (j = 0; j < i; j++) {
4582 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4583 sizeof(struct ipw2100_rx_packet),
4584 PCI_DMA_FROMDEVICE);
4585 dev_kfree_skb(priv->rx_buffers[j].skb);
4588 kfree(priv->rx_buffers);
4589 priv->rx_buffers = NULL;
4591 bd_queue_free(priv, &priv->rx_queue);
4593 status_queue_free(priv);
4598 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4600 IPW_DEBUG_INFO("enter\n");
4602 priv->rx_queue.oldest = 0;
4603 priv->rx_queue.available = priv->rx_queue.entries - 1;
4604 priv->rx_queue.next = priv->rx_queue.entries - 1;
4606 INIT_STAT(&priv->rxq_stat);
4607 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4609 bd_queue_initialize(priv, &priv->rx_queue,
4610 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4611 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4612 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4613 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4615 /* set up the status queue */
4616 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4617 priv->status_queue.nic);
4619 IPW_DEBUG_INFO("exit\n");
4622 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4626 IPW_DEBUG_INFO("enter\n");
4628 bd_queue_free(priv, &priv->rx_queue);
4629 status_queue_free(priv);
4631 if (!priv->rx_buffers)
4634 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4635 if (priv->rx_buffers[i].rxp) {
4636 pci_unmap_single(priv->pci_dev,
4637 priv->rx_buffers[i].dma_addr,
4638 sizeof(struct ipw2100_rx),
4639 PCI_DMA_FROMDEVICE);
4640 dev_kfree_skb(priv->rx_buffers[i].skb);
4644 kfree(priv->rx_buffers);
4645 priv->rx_buffers = NULL;
4647 IPW_DEBUG_INFO("exit\n");
4650 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4652 u32 length = ETH_ALEN;
4657 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4659 IPW_DEBUG_INFO("MAC address read failed\n");
4662 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4663 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4665 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4670 /********************************************************************
4674 ********************************************************************/
4676 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4678 struct host_command cmd = {
4679 .host_command = ADAPTER_ADDRESS,
4680 .host_command_sequence = 0,
4681 .host_command_length = ETH_ALEN
4685 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4687 IPW_DEBUG_INFO("enter\n");
4689 if (priv->config & CFG_CUSTOM_MAC) {
4690 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4691 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4693 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4696 err = ipw2100_hw_send_command(priv, &cmd);
4698 IPW_DEBUG_INFO("exit\n");
4702 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4705 struct host_command cmd = {
4706 .host_command = PORT_TYPE,
4707 .host_command_sequence = 0,
4708 .host_command_length = sizeof(u32)
4712 switch (port_type) {
4714 cmd.host_command_parameters[0] = IPW_BSS;
4717 cmd.host_command_parameters[0] = IPW_IBSS;
4721 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4722 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4725 err = ipw2100_disable_adapter(priv);
4727 printk(KERN_ERR DRV_NAME
4728 ": %s: Could not disable adapter %d\n",
4729 priv->net_dev->name, err);
4734 /* send cmd to firmware */
4735 err = ipw2100_hw_send_command(priv, &cmd);
4738 ipw2100_enable_adapter(priv);
4743 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4746 struct host_command cmd = {
4747 .host_command = CHANNEL,
4748 .host_command_sequence = 0,
4749 .host_command_length = sizeof(u32)
4753 cmd.host_command_parameters[0] = channel;
4755 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4757 /* If BSS then we don't support channel selection */
4758 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4761 if ((channel != 0) &&
4762 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4766 err = ipw2100_disable_adapter(priv);
4771 err = ipw2100_hw_send_command(priv, &cmd);
4773 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4778 priv->config |= CFG_STATIC_CHANNEL;
4780 priv->config &= ~CFG_STATIC_CHANNEL;
4782 priv->channel = channel;
4785 err = ipw2100_enable_adapter(priv);
4793 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4795 struct host_command cmd = {
4796 .host_command = SYSTEM_CONFIG,
4797 .host_command_sequence = 0,
4798 .host_command_length = 12,
4800 u32 ibss_mask, len = sizeof(u32);
4803 /* Set system configuration */
4806 err = ipw2100_disable_adapter(priv);
4811 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4812 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4814 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4815 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4817 if (!(priv->config & CFG_LONG_PREAMBLE))
4818 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4820 err = ipw2100_get_ordinal(priv,
4821 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4824 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4826 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4827 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4830 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4832 err = ipw2100_hw_send_command(priv, &cmd);
4836 /* If IPv6 is configured in the kernel then we don't want to filter out all
4837 * of the multicast packets as IPv6 needs some. */
4838 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4839 cmd.host_command = ADD_MULTICAST;
4840 cmd.host_command_sequence = 0;
4841 cmd.host_command_length = 0;
4843 ipw2100_hw_send_command(priv, &cmd);
4846 err = ipw2100_enable_adapter(priv);
4854 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4857 struct host_command cmd = {
4858 .host_command = BASIC_TX_RATES,
4859 .host_command_sequence = 0,
4860 .host_command_length = 4
4864 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4867 err = ipw2100_disable_adapter(priv);
4872 /* Set BASIC TX Rate first */
4873 ipw2100_hw_send_command(priv, &cmd);
4876 cmd.host_command = TX_RATES;
4877 ipw2100_hw_send_command(priv, &cmd);
4879 /* Set MSDU TX Rate */
4880 cmd.host_command = MSDU_TX_RATES;
4881 ipw2100_hw_send_command(priv, &cmd);
4884 err = ipw2100_enable_adapter(priv);
4889 priv->tx_rates = rate;
4894 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4896 struct host_command cmd = {
4897 .host_command = POWER_MODE,
4898 .host_command_sequence = 0,
4899 .host_command_length = 4
4903 cmd.host_command_parameters[0] = power_level;
4905 err = ipw2100_hw_send_command(priv, &cmd);
4909 if (power_level == IPW_POWER_MODE_CAM)
4910 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4912 priv->power_mode = IPW_POWER_ENABLED | power_level;
4914 #ifdef IPW2100_TX_POWER
4915 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4916 /* Set beacon interval */
4917 cmd.host_command = TX_POWER_INDEX;
4918 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4920 err = ipw2100_hw_send_command(priv, &cmd);
4929 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4931 struct host_command cmd = {
4932 .host_command = RTS_THRESHOLD,
4933 .host_command_sequence = 0,
4934 .host_command_length = 4
4938 if (threshold & RTS_DISABLED)
4939 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4941 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4943 err = ipw2100_hw_send_command(priv, &cmd);
4947 priv->rts_threshold = threshold;
4953 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4954 u32 threshold, int batch_mode)
4956 struct host_command cmd = {
4957 .host_command = FRAG_THRESHOLD,
4958 .host_command_sequence = 0,
4959 .host_command_length = 4,
4960 .host_command_parameters[0] = 0,
4965 err = ipw2100_disable_adapter(priv);
4971 threshold = DEFAULT_FRAG_THRESHOLD;
4973 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4974 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4977 cmd.host_command_parameters[0] = threshold;
4979 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4981 err = ipw2100_hw_send_command(priv, &cmd);
4984 ipw2100_enable_adapter(priv);
4987 priv->frag_threshold = threshold;
4993 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4995 struct host_command cmd = {
4996 .host_command = SHORT_RETRY_LIMIT,
4997 .host_command_sequence = 0,
4998 .host_command_length = 4
5002 cmd.host_command_parameters[0] = retry;
5004 err = ipw2100_hw_send_command(priv, &cmd);
5008 priv->short_retry_limit = retry;
5013 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5015 struct host_command cmd = {
5016 .host_command = LONG_RETRY_LIMIT,
5017 .host_command_sequence = 0,
5018 .host_command_length = 4
5022 cmd.host_command_parameters[0] = retry;
5024 err = ipw2100_hw_send_command(priv, &cmd);
5028 priv->long_retry_limit = retry;
5033 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5036 struct host_command cmd = {
5037 .host_command = MANDATORY_BSSID,
5038 .host_command_sequence = 0,
5039 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5043 #ifdef CONFIG_IPW2100_DEBUG
5045 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5046 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5049 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5051 /* if BSSID is empty then we disable mandatory bssid mode */
5053 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5056 err = ipw2100_disable_adapter(priv);
5061 err = ipw2100_hw_send_command(priv, &cmd);
5064 ipw2100_enable_adapter(priv);
5069 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5071 struct host_command cmd = {
5072 .host_command = DISASSOCIATION_BSSID,
5073 .host_command_sequence = 0,
5074 .host_command_length = ETH_ALEN
5079 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5082 /* The Firmware currently ignores the BSSID and just disassociates from
5083 * the currently associated AP -- but in the off chance that a future
5084 * firmware does use the BSSID provided here, we go ahead and try and
5085 * set it to the currently associated AP's BSSID */
5086 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5088 err = ipw2100_hw_send_command(priv, &cmd);
5093 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5094 struct ipw2100_wpa_assoc_frame *, int)
5095 __attribute__ ((unused));
5097 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5098 struct ipw2100_wpa_assoc_frame *wpa_frame,
5101 struct host_command cmd = {
5102 .host_command = SET_WPA_IE,
5103 .host_command_sequence = 0,
5104 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5108 IPW_DEBUG_HC("SET_WPA_IE\n");
5111 err = ipw2100_disable_adapter(priv);
5116 memcpy(cmd.host_command_parameters, wpa_frame,
5117 sizeof(struct ipw2100_wpa_assoc_frame));
5119 err = ipw2100_hw_send_command(priv, &cmd);
5122 if (ipw2100_enable_adapter(priv))
5129 struct security_info_params {
5130 u32 allowed_ciphers;
5133 u8 replay_counters_number;
5134 u8 unicast_using_group;
5135 } __attribute__ ((packed));
5137 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5140 int unicast_using_group,
5143 struct host_command cmd = {
5144 .host_command = SET_SECURITY_INFORMATION,
5145 .host_command_sequence = 0,
5146 .host_command_length = sizeof(struct security_info_params)
5148 struct security_info_params *security =
5149 (struct security_info_params *)&cmd.host_command_parameters;
5151 memset(security, 0, sizeof(*security));
5153 /* If shared key AP authentication is turned on, then we need to
5154 * configure the firmware to try and use it.
5156 * Actual data encryption/decryption is handled by the host. */
5157 security->auth_mode = auth_mode;
5158 security->unicast_using_group = unicast_using_group;
5160 switch (security_level) {
5163 security->allowed_ciphers = IPW_NONE_CIPHER;
5166 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170 security->allowed_ciphers = IPW_WEP40_CIPHER |
5171 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5173 case SEC_LEVEL_2_CKIP:
5174 security->allowed_ciphers = IPW_WEP40_CIPHER |
5175 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5178 security->allowed_ciphers = IPW_WEP40_CIPHER |
5179 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5184 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5185 security->auth_mode, security->allowed_ciphers, security_level);
5187 security->replay_counters_number = 0;
5190 err = ipw2100_disable_adapter(priv);
5195 err = ipw2100_hw_send_command(priv, &cmd);
5198 ipw2100_enable_adapter(priv);
5203 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5205 struct host_command cmd = {
5206 .host_command = TX_POWER_INDEX,
5207 .host_command_sequence = 0,
5208 .host_command_length = 4
5213 if (tx_power != IPW_TX_POWER_DEFAULT)
5214 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5215 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5217 cmd.host_command_parameters[0] = tmp;
5219 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5220 err = ipw2100_hw_send_command(priv, &cmd);
5222 priv->tx_power = tx_power;
5227 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5228 u32 interval, int batch_mode)
5230 struct host_command cmd = {
5231 .host_command = BEACON_INTERVAL,
5232 .host_command_sequence = 0,
5233 .host_command_length = 4
5237 cmd.host_command_parameters[0] = interval;
5239 IPW_DEBUG_INFO("enter\n");
5241 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5243 err = ipw2100_disable_adapter(priv);
5248 ipw2100_hw_send_command(priv, &cmd);
5251 err = ipw2100_enable_adapter(priv);
5257 IPW_DEBUG_INFO("exit\n");
5262 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5264 ipw2100_tx_initialize(priv);
5265 ipw2100_rx_initialize(priv);
5266 ipw2100_msg_initialize(priv);
5269 void ipw2100_queues_free(struct ipw2100_priv *priv)
5271 ipw2100_tx_free(priv);
5272 ipw2100_rx_free(priv);
5273 ipw2100_msg_free(priv);
5276 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5278 if (ipw2100_tx_allocate(priv) ||
5279 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5285 ipw2100_tx_free(priv);
5286 ipw2100_rx_free(priv);
5287 ipw2100_msg_free(priv);
5291 #define IPW_PRIVACY_CAPABLE 0x0008
5293 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5296 struct host_command cmd = {
5297 .host_command = WEP_FLAGS,
5298 .host_command_sequence = 0,
5299 .host_command_length = 4
5303 cmd.host_command_parameters[0] = flags;
5305 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5308 err = ipw2100_disable_adapter(priv);
5310 printk(KERN_ERR DRV_NAME
5311 ": %s: Could not disable adapter %d\n",
5312 priv->net_dev->name, err);
5317 /* send cmd to firmware */
5318 err = ipw2100_hw_send_command(priv, &cmd);
5321 ipw2100_enable_adapter(priv);
5326 struct ipw2100_wep_key {
5332 /* Macros to ease up priting WEP keys */
5333 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5334 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5335 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5336 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5341 * @priv: struct to work on
5342 * @idx: index of the key we want to set
5343 * @key: ptr to the key data to set
5344 * @len: length of the buffer at @key
5345 * @batch_mode: FIXME perform the operation in batch mode, not
5346 * disabling the device.
5348 * @returns 0 if OK, < 0 errno code on error.
5350 * Fill out a command structure with the new wep key, length an
5351 * index and send it down the wire.
5353 static int ipw2100_set_key(struct ipw2100_priv *priv,
5354 int idx, char *key, int len, int batch_mode)
5356 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5357 struct host_command cmd = {
5358 .host_command = WEP_KEY_INFO,
5359 .host_command_sequence = 0,
5360 .host_command_length = sizeof(struct ipw2100_wep_key),
5362 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5365 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5368 /* NOTE: We don't check cached values in case the firmware was reset
5369 * or some other problem is occurring. If the user is setting the key,
5370 * then we push the change */
5373 wep_key->len = keylen;
5376 memcpy(wep_key->key, key, len);
5377 memset(wep_key->key + len, 0, keylen - len);
5380 /* Will be optimized out on debug not being configured in */
5382 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5383 priv->net_dev->name, wep_key->idx);
5384 else if (keylen == 5)
5385 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5386 priv->net_dev->name, wep_key->idx, wep_key->len,
5387 WEP_STR_64(wep_key->key));
5389 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5391 priv->net_dev->name, wep_key->idx, wep_key->len,
5392 WEP_STR_128(wep_key->key));
5395 err = ipw2100_disable_adapter(priv);
5396 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5398 printk(KERN_ERR DRV_NAME
5399 ": %s: Could not disable adapter %d\n",
5400 priv->net_dev->name, err);
5405 /* send cmd to firmware */
5406 err = ipw2100_hw_send_command(priv, &cmd);
5409 int err2 = ipw2100_enable_adapter(priv);
5416 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5417 int idx, int batch_mode)
5419 struct host_command cmd = {
5420 .host_command = WEP_KEY_INDEX,
5421 .host_command_sequence = 0,
5422 .host_command_length = 4,
5423 .host_command_parameters = {idx},
5427 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5429 if (idx < 0 || idx > 3)
5433 err = ipw2100_disable_adapter(priv);
5435 printk(KERN_ERR DRV_NAME
5436 ": %s: Could not disable adapter %d\n",
5437 priv->net_dev->name, err);
5442 /* send cmd to firmware */
5443 err = ipw2100_hw_send_command(priv, &cmd);
5446 ipw2100_enable_adapter(priv);
5451 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5453 int i, err, auth_mode, sec_level, use_group;
5455 if (!(priv->status & STATUS_RUNNING))
5459 err = ipw2100_disable_adapter(priv);
5464 if (!priv->ieee->sec.enabled) {
5466 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5469 auth_mode = IPW_AUTH_OPEN;
5470 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5471 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5472 auth_mode = IPW_AUTH_SHARED;
5473 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5474 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5477 sec_level = SEC_LEVEL_0;
5478 if (priv->ieee->sec.flags & SEC_LEVEL)
5479 sec_level = priv->ieee->sec.level;
5482 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5483 use_group = priv->ieee->sec.unicast_uses_group;
5486 ipw2100_set_security_information(priv, auth_mode, sec_level,
5493 if (priv->ieee->sec.enabled) {
5494 for (i = 0; i < 4; i++) {
5495 if (!(priv->ieee->sec.flags & (1 << i))) {
5496 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5497 priv->ieee->sec.key_sizes[i] = 0;
5499 err = ipw2100_set_key(priv, i,
5500 priv->ieee->sec.keys[i],
5508 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5511 /* Always enable privacy so the Host can filter WEP packets if
5512 * encrypted data is sent up */
5514 ipw2100_set_wep_flags(priv,
5516 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5520 priv->status &= ~STATUS_SECURITY_UPDATED;
5524 ipw2100_enable_adapter(priv);
5529 static void ipw2100_security_work(struct work_struct *work)
5531 struct ipw2100_priv *priv =
5532 container_of(work, struct ipw2100_priv, security_work.work);
5534 /* If we happen to have reconnected before we get a chance to
5535 * process this, then update the security settings--which causes
5536 * a disassociation to occur */
5537 if (!(priv->status & STATUS_ASSOCIATED) &&
5538 priv->status & STATUS_SECURITY_UPDATED)
5539 ipw2100_configure_security(priv, 0);
5542 static void shim__set_security(struct net_device *dev,
5543 struct ieee80211_security *sec)
5545 struct ipw2100_priv *priv = ieee80211_priv(dev);
5546 int i, force_update = 0;
5548 mutex_lock(&priv->action_mutex);
5549 if (!(priv->status & STATUS_INITIALIZED))
5552 for (i = 0; i < 4; i++) {
5553 if (sec->flags & (1 << i)) {
5554 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5555 if (sec->key_sizes[i] == 0)
5556 priv->ieee->sec.flags &= ~(1 << i);
5558 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5560 if (sec->level == SEC_LEVEL_1) {
5561 priv->ieee->sec.flags |= (1 << i);
5562 priv->status |= STATUS_SECURITY_UPDATED;
5564 priv->ieee->sec.flags &= ~(1 << i);
5568 if ((sec->flags & SEC_ACTIVE_KEY) &&
5569 priv->ieee->sec.active_key != sec->active_key) {
5570 if (sec->active_key <= 3) {
5571 priv->ieee->sec.active_key = sec->active_key;
5572 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5574 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5576 priv->status |= STATUS_SECURITY_UPDATED;
5579 if ((sec->flags & SEC_AUTH_MODE) &&
5580 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5581 priv->ieee->sec.auth_mode = sec->auth_mode;
5582 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5583 priv->status |= STATUS_SECURITY_UPDATED;
5586 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5587 priv->ieee->sec.flags |= SEC_ENABLED;
5588 priv->ieee->sec.enabled = sec->enabled;
5589 priv->status |= STATUS_SECURITY_UPDATED;
5593 if (sec->flags & SEC_ENCRYPT)
5594 priv->ieee->sec.encrypt = sec->encrypt;
5596 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5597 priv->ieee->sec.level = sec->level;
5598 priv->ieee->sec.flags |= SEC_LEVEL;
5599 priv->status |= STATUS_SECURITY_UPDATED;
5602 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5603 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5604 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5613 /* As a temporary work around to enable WPA until we figure out why
5614 * wpa_supplicant toggles the security capability of the driver, which
5615 * forces a disassocation with force_update...
5617 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5618 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5619 ipw2100_configure_security(priv, 0);
5621 mutex_unlock(&priv->action_mutex);
5624 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5630 IPW_DEBUG_INFO("enter\n");
5632 err = ipw2100_disable_adapter(priv);
5635 #ifdef CONFIG_IPW2100_MONITOR
5636 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5637 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5641 IPW_DEBUG_INFO("exit\n");
5645 #endif /* CONFIG_IPW2100_MONITOR */
5647 err = ipw2100_read_mac_address(priv);
5651 err = ipw2100_set_mac_address(priv, batch_mode);
5655 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5659 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5660 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5665 err = ipw2100_system_config(priv, batch_mode);
5669 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5673 /* Default to power mode OFF */
5674 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5678 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5682 if (priv->config & CFG_STATIC_BSSID)
5683 bssid = priv->bssid;
5686 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5690 if (priv->config & CFG_STATIC_ESSID)
5691 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5694 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5698 err = ipw2100_configure_security(priv, batch_mode);
5702 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704 ipw2100_set_ibss_beacon_interval(priv,
5705 priv->beacon_interval,
5710 err = ipw2100_set_tx_power(priv, priv->tx_power);
5716 err = ipw2100_set_fragmentation_threshold(
5717 priv, priv->frag_threshold, batch_mode);
5722 IPW_DEBUG_INFO("exit\n");
5727 /*************************************************************************
5729 * EXTERNALLY CALLED METHODS
5731 *************************************************************************/
5733 /* This method is called by the network layer -- not to be confused with
5734 * ipw2100_set_mac_address() declared above called by this driver (and this
5735 * method as well) to talk to the firmware */
5736 static int ipw2100_set_address(struct net_device *dev, void *p)
5738 struct ipw2100_priv *priv = ieee80211_priv(dev);
5739 struct sockaddr *addr = p;
5742 if (!is_valid_ether_addr(addr->sa_data))
5743 return -EADDRNOTAVAIL;
5745 mutex_lock(&priv->action_mutex);
5747 priv->config |= CFG_CUSTOM_MAC;
5748 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5750 err = ipw2100_set_mac_address(priv, 0);
5754 priv->reset_backoff = 0;
5755 mutex_unlock(&priv->action_mutex);
5756 ipw2100_reset_adapter(&priv->reset_work.work);
5760 mutex_unlock(&priv->action_mutex);
5764 static int ipw2100_open(struct net_device *dev)
5766 struct ipw2100_priv *priv = ieee80211_priv(dev);
5767 unsigned long flags;
5768 IPW_DEBUG_INFO("dev->open\n");
5770 spin_lock_irqsave(&priv->low_lock, flags);
5771 if (priv->status & STATUS_ASSOCIATED) {
5772 netif_carrier_on(dev);
5773 netif_start_queue(dev);
5775 spin_unlock_irqrestore(&priv->low_lock, flags);
5780 static int ipw2100_close(struct net_device *dev)
5782 struct ipw2100_priv *priv = ieee80211_priv(dev);
5783 unsigned long flags;
5784 struct list_head *element;
5785 struct ipw2100_tx_packet *packet;
5787 IPW_DEBUG_INFO("enter\n");
5789 spin_lock_irqsave(&priv->low_lock, flags);
5791 if (priv->status & STATUS_ASSOCIATED)
5792 netif_carrier_off(dev);
5793 netif_stop_queue(dev);
5795 /* Flush the TX queue ... */
5796 while (!list_empty(&priv->tx_pend_list)) {
5797 element = priv->tx_pend_list.next;
5798 packet = list_entry(element, struct ipw2100_tx_packet, list);
5801 DEC_STAT(&priv->tx_pend_stat);
5803 ieee80211_txb_free(packet->info.d_struct.txb);
5804 packet->info.d_struct.txb = NULL;
5806 list_add_tail(element, &priv->tx_free_list);
5807 INC_STAT(&priv->tx_free_stat);
5809 spin_unlock_irqrestore(&priv->low_lock, flags);
5811 IPW_DEBUG_INFO("exit\n");
5817 * TODO: Fix this function... its just wrong
5819 static void ipw2100_tx_timeout(struct net_device *dev)
5821 struct ipw2100_priv *priv = ieee80211_priv(dev);
5823 priv->ieee->stats.tx_errors++;
5825 #ifdef CONFIG_IPW2100_MONITOR
5826 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5830 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5832 schedule_reset(priv);
5835 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5837 /* This is called when wpa_supplicant loads and closes the driver
5839 priv->ieee->wpa_enabled = value;
5843 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846 struct ieee80211_device *ieee = priv->ieee;
5847 struct ieee80211_security sec = {
5848 .flags = SEC_AUTH_MODE,
5852 if (value & IW_AUTH_ALG_SHARED_KEY) {
5853 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5856 sec.auth_mode = WLAN_AUTH_OPEN;
5858 } else if (value & IW_AUTH_ALG_LEAP) {
5859 sec.auth_mode = WLAN_AUTH_LEAP;
5864 if (ieee->set_security)
5865 ieee->set_security(ieee->dev, &sec);
5872 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5873 char *wpa_ie, int wpa_ie_len)
5876 struct ipw2100_wpa_assoc_frame frame;
5878 frame.fixed_ie_mask = 0;
5881 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5882 frame.var_ie_len = wpa_ie_len;
5884 /* make sure WPA is enabled */
5885 ipw2100_wpa_enable(priv, 1);
5886 ipw2100_set_wpa_ie(priv, &frame, 0);
5889 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5890 struct ethtool_drvinfo *info)
5892 struct ipw2100_priv *priv = ieee80211_priv(dev);
5893 char fw_ver[64], ucode_ver[64];
5895 strcpy(info->driver, DRV_NAME);
5896 strcpy(info->version, DRV_VERSION);
5898 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5899 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5901 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5902 fw_ver, priv->eeprom_version, ucode_ver);
5904 strcpy(info->bus_info, pci_name(priv->pci_dev));
5907 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5909 struct ipw2100_priv *priv = ieee80211_priv(dev);
5910 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5913 static const struct ethtool_ops ipw2100_ethtool_ops = {
5914 .get_link = ipw2100_ethtool_get_link,
5915 .get_drvinfo = ipw_ethtool_get_drvinfo,
5918 static void ipw2100_hang_check(struct work_struct *work)
5920 struct ipw2100_priv *priv =
5921 container_of(work, struct ipw2100_priv, hang_check.work);
5922 unsigned long flags;
5923 u32 rtc = 0xa5a5a5a5;
5924 u32 len = sizeof(rtc);
5927 spin_lock_irqsave(&priv->low_lock, flags);
5929 if (priv->fatal_error != 0) {
5930 /* If fatal_error is set then we need to restart */
5931 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932 priv->net_dev->name);
5935 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936 (rtc == priv->last_rtc)) {
5937 /* Check if firmware is hung */
5938 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939 priv->net_dev->name);
5946 priv->stop_hang_check = 1;
5949 /* Restart the NIC */
5950 schedule_reset(priv);
5953 priv->last_rtc = rtc;
5955 if (!priv->stop_hang_check)
5956 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5958 spin_unlock_irqrestore(&priv->low_lock, flags);
5961 static void ipw2100_rf_kill(struct work_struct *work)
5963 struct ipw2100_priv *priv =
5964 container_of(work, struct ipw2100_priv, rf_kill.work);
5965 unsigned long flags;
5967 spin_lock_irqsave(&priv->low_lock, flags);
5969 if (rf_kill_active(priv)) {
5970 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971 if (!priv->stop_rf_kill)
5972 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5976 /* RF Kill is now disabled, so bring the device back up */
5978 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5979 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5981 schedule_reset(priv);
5983 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5987 spin_unlock_irqrestore(&priv->low_lock, flags);
5990 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5992 /* Look into using netdev destructor to shutdown ieee80211? */
5994 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5995 void __iomem * base_addr,
5996 unsigned long mem_start,
5997 unsigned long mem_len)
5999 struct ipw2100_priv *priv;
6000 struct net_device *dev;
6002 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6005 priv = ieee80211_priv(dev);
6006 priv->ieee = netdev_priv(dev);
6007 priv->pci_dev = pci_dev;
6008 priv->net_dev = dev;
6010 priv->ieee->hard_start_xmit = ipw2100_tx;
6011 priv->ieee->set_security = shim__set_security;
6013 priv->ieee->perfect_rssi = -20;
6014 priv->ieee->worst_rssi = -85;
6016 dev->open = ipw2100_open;
6017 dev->stop = ipw2100_close;
6018 dev->init = ipw2100_net_init;
6019 dev->ethtool_ops = &ipw2100_ethtool_ops;
6020 dev->tx_timeout = ipw2100_tx_timeout;
6021 dev->wireless_handlers = &ipw2100_wx_handler_def;
6022 priv->wireless_data.ieee80211 = priv->ieee;
6023 dev->wireless_data = &priv->wireless_data;
6024 dev->set_mac_address = ipw2100_set_address;
6025 dev->watchdog_timeo = 3 * HZ;
6028 dev->base_addr = (unsigned long)base_addr;
6029 dev->mem_start = mem_start;
6030 dev->mem_end = dev->mem_start + mem_len - 1;
6032 /* NOTE: We don't use the wireless_handlers hook
6033 * in dev as the system will start throwing WX requests
6034 * to us before we're actually initialized and it just
6035 * ends up causing problems. So, we just handle
6036 * the WX extensions through the ipw2100_ioctl interface */
6038 /* memset() puts everything to 0, so we only have explicitely set
6039 * those values that need to be something else */
6041 /* If power management is turned on, default to AUTO mode */
6042 priv->power_mode = IPW_POWER_AUTO;
6044 #ifdef CONFIG_IPW2100_MONITOR
6045 priv->config |= CFG_CRC_CHECK;
6047 priv->ieee->wpa_enabled = 0;
6048 priv->ieee->drop_unencrypted = 0;
6049 priv->ieee->privacy_invoked = 0;
6050 priv->ieee->ieee802_1x = 1;
6052 /* Set module parameters */
6055 priv->ieee->iw_mode = IW_MODE_ADHOC;
6057 #ifdef CONFIG_IPW2100_MONITOR
6059 priv->ieee->iw_mode = IW_MODE_MONITOR;
6064 priv->ieee->iw_mode = IW_MODE_INFRA;
6069 priv->status |= STATUS_RF_KILL_SW;
6072 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073 priv->config |= CFG_STATIC_CHANNEL;
6074 priv->channel = channel;
6078 priv->config |= CFG_ASSOCIATE;
6080 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085 priv->tx_power = IPW_TX_POWER_DEFAULT;
6086 priv->tx_rates = DEFAULT_TX_RATES;
6088 strcpy(priv->nick, "ipw2100");
6090 spin_lock_init(&priv->low_lock);
6091 mutex_init(&priv->action_mutex);
6092 mutex_init(&priv->adapter_mutex);
6094 init_waitqueue_head(&priv->wait_command_queue);
6096 netif_carrier_off(dev);
6098 INIT_LIST_HEAD(&priv->msg_free_list);
6099 INIT_LIST_HEAD(&priv->msg_pend_list);
6100 INIT_STAT(&priv->msg_free_stat);
6101 INIT_STAT(&priv->msg_pend_stat);
6103 INIT_LIST_HEAD(&priv->tx_free_list);
6104 INIT_LIST_HEAD(&priv->tx_pend_list);
6105 INIT_STAT(&priv->tx_free_stat);
6106 INIT_STAT(&priv->tx_pend_stat);
6108 INIT_LIST_HEAD(&priv->fw_pend_list);
6109 INIT_STAT(&priv->fw_pend_stat);
6111 priv->workqueue = create_workqueue(DRV_NAME);
6113 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6114 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6115 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6116 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6117 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6119 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6120 ipw2100_irq_tasklet, (unsigned long)priv);
6122 /* NOTE: We do not start the deferred work for status checks yet */
6123 priv->stop_rf_kill = 1;
6124 priv->stop_hang_check = 1;
6129 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6130 const struct pci_device_id *ent)
6132 unsigned long mem_start, mem_len, mem_flags;
6133 void __iomem *base_addr = NULL;
6134 struct net_device *dev = NULL;
6135 struct ipw2100_priv *priv = NULL;
6140 IPW_DEBUG_INFO("enter\n");
6142 mem_start = pci_resource_start(pci_dev, 0);
6143 mem_len = pci_resource_len(pci_dev, 0);
6144 mem_flags = pci_resource_flags(pci_dev, 0);
6146 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6147 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6152 base_addr = ioremap_nocache(mem_start, mem_len);
6154 printk(KERN_WARNING DRV_NAME
6155 "Error calling ioremap_nocache.\n");
6160 /* allocate and initialize our net_device */
6161 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6163 printk(KERN_WARNING DRV_NAME
6164 "Error calling ipw2100_alloc_device.\n");
6169 /* set up PCI mappings for device */
6170 err = pci_enable_device(pci_dev);
6172 printk(KERN_WARNING DRV_NAME
6173 "Error calling pci_enable_device.\n");
6177 priv = ieee80211_priv(dev);
6179 pci_set_master(pci_dev);
6180 pci_set_drvdata(pci_dev, priv);
6182 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6184 printk(KERN_WARNING DRV_NAME
6185 "Error calling pci_set_dma_mask.\n");
6186 pci_disable_device(pci_dev);
6190 err = pci_request_regions(pci_dev, DRV_NAME);
6192 printk(KERN_WARNING DRV_NAME
6193 "Error calling pci_request_regions.\n");
6194 pci_disable_device(pci_dev);
6198 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6199 * PCI Tx retries from interfering with C3 CPU state */
6200 pci_read_config_dword(pci_dev, 0x40, &val);
6201 if ((val & 0x0000ff00) != 0)
6202 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6204 pci_set_power_state(pci_dev, PCI_D0);
6206 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Device not found via register read.\n");
6213 SET_NETDEV_DEV(dev, &pci_dev->dev);
6215 /* Force interrupts to be shut off on the device */
6216 priv->status |= STATUS_INT_ENABLED;
6217 ipw2100_disable_interrupts(priv);
6219 /* Allocate and initialize the Tx/Rx queues and lists */
6220 if (ipw2100_queues_allocate(priv)) {
6221 printk(KERN_WARNING DRV_NAME
6222 "Error calling ipw2100_queues_allocate.\n");
6226 ipw2100_queues_initialize(priv);
6228 err = request_irq(pci_dev->irq,
6229 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6231 printk(KERN_WARNING DRV_NAME
6232 "Error calling request_irq: %d.\n", pci_dev->irq);
6235 dev->irq = pci_dev->irq;
6237 IPW_DEBUG_INFO("Attempting to register device...\n");
6239 SET_MODULE_OWNER(dev);
6241 printk(KERN_INFO DRV_NAME
6242 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6244 /* Bring up the interface. Pre 0.46, after we registered the
6245 * network device we would call ipw2100_up. This introduced a race
6246 * condition with newer hotplug configurations (network was coming
6247 * up and making calls before the device was initialized).
6249 * If we called ipw2100_up before we registered the device, then the
6250 * device name wasn't registered. So, we instead use the net_dev->init
6251 * member to call a function that then just turns and calls ipw2100_up.
6252 * net_dev->init is called after name allocation but before the
6253 * notifier chain is called */
6254 err = register_netdev(dev);
6256 printk(KERN_WARNING DRV_NAME
6257 "Error calling register_netdev.\n");
6261 mutex_lock(&priv->action_mutex);
6264 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6266 /* perform this after register_netdev so that dev->name is set */
6267 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271 /* If the RF Kill switch is disabled, go ahead and complete the
6272 * startup sequence */
6273 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6274 /* Enable the adapter - sends HOST_COMPLETE */
6275 if (ipw2100_enable_adapter(priv)) {
6276 printk(KERN_WARNING DRV_NAME
6277 ": %s: failed in call to enable adapter.\n",
6278 priv->net_dev->name);
6279 ipw2100_hw_stop_adapter(priv);
6284 /* Start a scan . . . */
6285 ipw2100_set_scan_options(priv);
6286 ipw2100_start_scan(priv);
6289 IPW_DEBUG_INFO("exit\n");
6291 priv->status |= STATUS_INITIALIZED;
6293 mutex_unlock(&priv->action_mutex);
6298 mutex_unlock(&priv->action_mutex);
6303 unregister_netdev(dev);
6305 ipw2100_hw_stop_adapter(priv);
6307 ipw2100_disable_interrupts(priv);
6310 free_irq(dev->irq, priv);
6312 ipw2100_kill_workqueue(priv);
6314 /* These are safe to call even if they weren't allocated */
6315 ipw2100_queues_free(priv);
6316 sysfs_remove_group(&pci_dev->dev.kobj,
6317 &ipw2100_attribute_group);
6319 free_ieee80211(dev);
6320 pci_set_drvdata(pci_dev, NULL);
6326 pci_release_regions(pci_dev);
6327 pci_disable_device(pci_dev);
6332 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6334 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6335 struct net_device *dev;
6338 mutex_lock(&priv->action_mutex);
6340 priv->status &= ~STATUS_INITIALIZED;
6342 dev = priv->net_dev;
6343 sysfs_remove_group(&pci_dev->dev.kobj,
6344 &ipw2100_attribute_group);
6347 if (ipw2100_firmware.version)
6348 ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 /* Take down the hardware */
6353 /* Release the mutex so that the network subsystem can
6354 * complete any needed calls into the driver... */
6355 mutex_unlock(&priv->action_mutex);
6357 /* Unregister the device first - this results in close()
6358 * being called if the device is open. If we free storage
6359 * first, then close() will crash. */
6360 unregister_netdev(dev);
6362 /* ipw2100_down will ensure that there is no more pending work
6363 * in the workqueue's, so we can safely remove them now. */
6364 ipw2100_kill_workqueue(priv);
6366 ipw2100_queues_free(priv);
6368 /* Free potential debugging firmware snapshot */
6369 ipw2100_snapshot_free(priv);
6372 free_irq(dev->irq, priv);
6375 iounmap((void __iomem *)dev->base_addr);
6377 free_ieee80211(dev);
6380 pci_release_regions(pci_dev);
6381 pci_disable_device(pci_dev);
6383 IPW_DEBUG_INFO("exit\n");
6387 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6389 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6390 struct net_device *dev = priv->net_dev;
6392 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6394 mutex_lock(&priv->action_mutex);
6395 if (priv->status & STATUS_INITIALIZED) {
6396 /* Take down the device; powers it off, etc. */
6400 /* Remove the PRESENT state of the device */
6401 netif_device_detach(dev);
6403 pci_save_state(pci_dev);
6404 pci_disable_device(pci_dev);
6405 pci_set_power_state(pci_dev, PCI_D3hot);
6407 mutex_unlock(&priv->action_mutex);
6412 static int ipw2100_resume(struct pci_dev *pci_dev)
6414 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6415 struct net_device *dev = priv->net_dev;
6419 if (IPW2100_PM_DISABLED)
6422 mutex_lock(&priv->action_mutex);
6424 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6426 pci_set_power_state(pci_dev, PCI_D0);
6427 err = pci_enable_device(pci_dev);
6429 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6433 pci_restore_state(pci_dev);
6436 * Suspend/Resume resets the PCI configuration space, so we have to
6437 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6438 * from interfering with C3 CPU state. pci_restore_state won't help
6439 * here since it only restores the first 64 bytes pci config header.
6441 pci_read_config_dword(pci_dev, 0x40, &val);
6442 if ((val & 0x0000ff00) != 0)
6443 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6445 /* Set the device back into the PRESENT state; this will also wake
6446 * the queue of needed */
6447 netif_device_attach(dev);
6449 /* Bring the device back up */
6450 if (!(priv->status & STATUS_RF_KILL_SW))
6451 ipw2100_up(priv, 0);
6453 mutex_unlock(&priv->action_mutex);
6459 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6461 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6462 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6463 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6464 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6465 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6466 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6467 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6468 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6469 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6470 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6473 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6474 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6476 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6477 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6478 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6480 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6483 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6484 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6485 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6486 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6488 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6492 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6493 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6494 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6495 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6497 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6498 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6501 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6502 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6503 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6505 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6511 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6513 static struct pci_driver ipw2100_pci_driver = {
6515 .id_table = ipw2100_pci_id_table,
6516 .probe = ipw2100_pci_init_one,
6517 .remove = __devexit_p(ipw2100_pci_remove_one),
6519 .suspend = ipw2100_suspend,
6520 .resume = ipw2100_resume,
6525 * Initialize the ipw2100 driver/module
6527 * @returns 0 if ok, < 0 errno node con error.
6529 * Note: we cannot init the /proc stuff until the PCI driver is there,
6530 * or we risk an unlikely race condition on someone accessing
6531 * uninitialized data in the PCI dev struct through /proc.
6533 static int __init ipw2100_init(void)
6537 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6538 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6540 ret = pci_register_driver(&ipw2100_pci_driver);
6544 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6545 #ifdef CONFIG_IPW2100_DEBUG
6546 ipw2100_debug_level = debug;
6547 ret = driver_create_file(&ipw2100_pci_driver.driver,
6548 &driver_attr_debug_level);
6556 * Cleanup ipw2100 driver registration
6558 static void __exit ipw2100_exit(void)
6560 /* FIXME: IPG: check that we have no instances of the devices open */
6561 #ifdef CONFIG_IPW2100_DEBUG
6562 driver_remove_file(&ipw2100_pci_driver.driver,
6563 &driver_attr_debug_level);
6565 pci_unregister_driver(&ipw2100_pci_driver);
6566 remove_acceptable_latency("ipw2100");
6569 module_init(ipw2100_init);
6570 module_exit(ipw2100_exit);
6572 #define WEXT_USECHANNELS 1
6574 static const long ipw2100_frequencies[] = {
6575 2412, 2417, 2422, 2427,
6576 2432, 2437, 2442, 2447,
6577 2452, 2457, 2462, 2467,
6581 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6582 sizeof(ipw2100_frequencies[0]))
6584 static const long ipw2100_rates_11b[] = {
6591 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6593 static int ipw2100_wx_get_name(struct net_device *dev,
6594 struct iw_request_info *info,
6595 union iwreq_data *wrqu, char *extra)
6598 * This can be called at any time. No action lock required
6601 struct ipw2100_priv *priv = ieee80211_priv(dev);
6602 if (!(priv->status & STATUS_ASSOCIATED))
6603 strcpy(wrqu->name, "unassociated");
6605 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6607 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6611 static int ipw2100_wx_set_freq(struct net_device *dev,
6612 struct iw_request_info *info,
6613 union iwreq_data *wrqu, char *extra)
6615 struct ipw2100_priv *priv = ieee80211_priv(dev);
6616 struct iw_freq *fwrq = &wrqu->freq;
6619 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6622 mutex_lock(&priv->action_mutex);
6623 if (!(priv->status & STATUS_INITIALIZED)) {
6628 /* if setting by freq convert to channel */
6630 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6631 int f = fwrq->m / 100000;
6634 while ((c < REG_MAX_CHANNEL) &&
6635 (f != ipw2100_frequencies[c]))
6638 /* hack to fall through */
6644 if (fwrq->e > 0 || fwrq->m > 1000) {
6647 } else { /* Set the channel */
6648 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6649 err = ipw2100_set_channel(priv, fwrq->m, 0);
6653 mutex_unlock(&priv->action_mutex);
6657 static int ipw2100_wx_get_freq(struct net_device *dev,
6658 struct iw_request_info *info,
6659 union iwreq_data *wrqu, char *extra)
6662 * This can be called at any time. No action lock required
6665 struct ipw2100_priv *priv = ieee80211_priv(dev);
6669 /* If we are associated, trying to associate, or have a statically
6670 * configured CHANNEL then return that; otherwise return ANY */
6671 if (priv->config & CFG_STATIC_CHANNEL ||
6672 priv->status & STATUS_ASSOCIATED)
6673 wrqu->freq.m = priv->channel;
6677 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6682 static int ipw2100_wx_set_mode(struct net_device *dev,
6683 struct iw_request_info *info,
6684 union iwreq_data *wrqu, char *extra)
6686 struct ipw2100_priv *priv = ieee80211_priv(dev);
6689 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6691 if (wrqu->mode == priv->ieee->iw_mode)
6694 mutex_lock(&priv->action_mutex);
6695 if (!(priv->status & STATUS_INITIALIZED)) {
6700 switch (wrqu->mode) {
6701 #ifdef CONFIG_IPW2100_MONITOR
6702 case IW_MODE_MONITOR:
6703 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6705 #endif /* CONFIG_IPW2100_MONITOR */
6707 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6712 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6717 mutex_unlock(&priv->action_mutex);
6721 static int ipw2100_wx_get_mode(struct net_device *dev,
6722 struct iw_request_info *info,
6723 union iwreq_data *wrqu, char *extra)
6726 * This can be called at any time. No action lock required
6729 struct ipw2100_priv *priv = ieee80211_priv(dev);
6731 wrqu->mode = priv->ieee->iw_mode;
6732 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6737 #define POWER_MODES 5
6739 /* Values are in microsecond */
6740 static const s32 timeout_duration[POWER_MODES] = {
6748 static const s32 period_duration[POWER_MODES] = {
6756 static int ipw2100_wx_get_range(struct net_device *dev,
6757 struct iw_request_info *info,
6758 union iwreq_data *wrqu, char *extra)
6761 * This can be called at any time. No action lock required
6764 struct ipw2100_priv *priv = ieee80211_priv(dev);
6765 struct iw_range *range = (struct iw_range *)extra;
6769 wrqu->data.length = sizeof(*range);
6770 memset(range, 0, sizeof(*range));
6772 /* Let's try to keep this struct in the same order as in
6773 * linux/include/wireless.h
6776 /* TODO: See what values we can set, and remove the ones we can't
6777 * set, or fill them with some default data.
6780 /* ~5 Mb/s real (802.11b) */
6781 range->throughput = 5 * 1000 * 1000;
6783 // range->sensitivity; /* signal level threshold range */
6785 range->max_qual.qual = 100;
6786 /* TODO: Find real max RSSI and stick here */
6787 range->max_qual.level = 0;
6788 range->max_qual.noise = 0;
6789 range->max_qual.updated = 7; /* Updated all three */
6791 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6792 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6793 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6794 range->avg_qual.noise = 0;
6795 range->avg_qual.updated = 7; /* Updated all three */
6797 range->num_bitrates = RATE_COUNT;
6799 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6800 range->bitrate[i] = ipw2100_rates_11b[i];
6803 range->min_rts = MIN_RTS_THRESHOLD;
6804 range->max_rts = MAX_RTS_THRESHOLD;
6805 range->min_frag = MIN_FRAG_THRESHOLD;
6806 range->max_frag = MAX_FRAG_THRESHOLD;
6808 range->min_pmp = period_duration[0]; /* Minimal PM period */
6809 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6810 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6811 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6813 /* How to decode max/min PM period */
6814 range->pmp_flags = IW_POWER_PERIOD;
6815 /* How to decode max/min PM period */
6816 range->pmt_flags = IW_POWER_TIMEOUT;
6817 /* What PM options are supported */
6818 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6820 range->encoding_size[0] = 5;
6821 range->encoding_size[1] = 13; /* Different token sizes */
6822 range->num_encoding_sizes = 2; /* Number of entry in the list */
6823 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6824 // range->encoding_login_index; /* token index for login token */
6826 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6827 range->txpower_capa = IW_TXPOW_DBM;
6828 range->num_txpower = IW_MAX_TXPOWER;
6829 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6832 ((IPW_TX_POWER_MAX_DBM -
6833 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6834 range->txpower[i] = level / 16;
6836 range->txpower_capa = 0;
6837 range->num_txpower = 0;
6840 /* Set the Wireless Extension versions */
6841 range->we_version_compiled = WIRELESS_EXT;
6842 range->we_version_source = 18;
6844 // range->retry_capa; /* What retry options are supported */
6845 // range->retry_flags; /* How to decode max/min retry limit */
6846 // range->r_time_flags; /* How to decode max/min retry life */
6847 // range->min_retry; /* Minimal number of retries */
6848 // range->max_retry; /* Maximal number of retries */
6849 // range->min_r_time; /* Minimal retry lifetime */
6850 // range->max_r_time; /* Maximal retry lifetime */
6852 range->num_channels = FREQ_COUNT;
6855 for (i = 0; i < FREQ_COUNT; i++) {
6856 // TODO: Include only legal frequencies for some countries
6857 // if (local->channel_mask & (1 << i)) {
6858 range->freq[val].i = i + 1;
6859 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6860 range->freq[val].e = 1;
6863 if (val == IW_MAX_FREQUENCIES)
6866 range->num_frequency = val;
6868 /* Event capability (kernel + driver) */
6869 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6870 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6871 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6873 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6874 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6876 IPW_DEBUG_WX("GET Range\n");
6881 static int ipw2100_wx_set_wap(struct net_device *dev,
6882 struct iw_request_info *info,
6883 union iwreq_data *wrqu, char *extra)
6885 struct ipw2100_priv *priv = ieee80211_priv(dev);
6888 static const unsigned char any[] = {
6889 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6891 static const unsigned char off[] = {
6892 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6896 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6899 mutex_lock(&priv->action_mutex);
6900 if (!(priv->status & STATUS_INITIALIZED)) {
6905 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6906 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6907 /* we disable mandatory BSSID association */
6908 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6909 priv->config &= ~CFG_STATIC_BSSID;
6910 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6914 priv->config |= CFG_STATIC_BSSID;
6915 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6917 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6919 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6920 wrqu->ap_addr.sa_data[0] & 0xff,
6921 wrqu->ap_addr.sa_data[1] & 0xff,
6922 wrqu->ap_addr.sa_data[2] & 0xff,
6923 wrqu->ap_addr.sa_data[3] & 0xff,
6924 wrqu->ap_addr.sa_data[4] & 0xff,
6925 wrqu->ap_addr.sa_data[5] & 0xff);
6928 mutex_unlock(&priv->action_mutex);
6932 static int ipw2100_wx_get_wap(struct net_device *dev,
6933 struct iw_request_info *info,
6934 union iwreq_data *wrqu, char *extra)
6937 * This can be called at any time. No action lock required
6940 struct ipw2100_priv *priv = ieee80211_priv(dev);
6942 /* If we are associated, trying to associate, or have a statically
6943 * configured BSSID then return that; otherwise return ANY */
6944 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6945 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6946 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6948 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6950 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6951 MAC_ARG(wrqu->ap_addr.sa_data));
6955 static int ipw2100_wx_set_essid(struct net_device *dev,
6956 struct iw_request_info *info,
6957 union iwreq_data *wrqu, char *extra)
6959 struct ipw2100_priv *priv = ieee80211_priv(dev);
6960 char *essid = ""; /* ANY */
6964 mutex_lock(&priv->action_mutex);
6965 if (!(priv->status & STATUS_INITIALIZED)) {
6970 if (wrqu->essid.flags && wrqu->essid.length) {
6971 length = wrqu->essid.length;
6976 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6977 priv->config &= ~CFG_STATIC_ESSID;
6978 err = ipw2100_set_essid(priv, NULL, 0, 0);
6982 length = min(length, IW_ESSID_MAX_SIZE);
6984 priv->config |= CFG_STATIC_ESSID;
6986 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6987 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6992 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6995 priv->essid_len = length;
6996 memcpy(priv->essid, essid, priv->essid_len);
6998 err = ipw2100_set_essid(priv, essid, length, 0);
7001 mutex_unlock(&priv->action_mutex);
7005 static int ipw2100_wx_get_essid(struct net_device *dev,
7006 struct iw_request_info *info,
7007 union iwreq_data *wrqu, char *extra)
7010 * This can be called at any time. No action lock required
7013 struct ipw2100_priv *priv = ieee80211_priv(dev);
7015 /* If we are associated, trying to associate, or have a statically
7016 * configured ESSID then return that; otherwise return ANY */
7017 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7018 IPW_DEBUG_WX("Getting essid: '%s'\n",
7019 escape_essid(priv->essid, priv->essid_len));
7020 memcpy(extra, priv->essid, priv->essid_len);
7021 wrqu->essid.length = priv->essid_len;
7022 wrqu->essid.flags = 1; /* active */
7024 IPW_DEBUG_WX("Getting essid: ANY\n");
7025 wrqu->essid.length = 0;
7026 wrqu->essid.flags = 0; /* active */
7032 static int ipw2100_wx_set_nick(struct net_device *dev,
7033 struct iw_request_info *info,
7034 union iwreq_data *wrqu, char *extra)
7037 * This can be called at any time. No action lock required
7040 struct ipw2100_priv *priv = ieee80211_priv(dev);
7042 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7045 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7046 memset(priv->nick, 0, sizeof(priv->nick));
7047 memcpy(priv->nick, extra, wrqu->data.length);
7049 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7054 static int ipw2100_wx_get_nick(struct net_device *dev,
7055 struct iw_request_info *info,
7056 union iwreq_data *wrqu, char *extra)
7059 * This can be called at any time. No action lock required
7062 struct ipw2100_priv *priv = ieee80211_priv(dev);
7064 wrqu->data.length = strlen(priv->nick);
7065 memcpy(extra, priv->nick, wrqu->data.length);
7066 wrqu->data.flags = 1; /* active */
7068 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7073 static int ipw2100_wx_set_rate(struct net_device *dev,
7074 struct iw_request_info *info,
7075 union iwreq_data *wrqu, char *extra)
7077 struct ipw2100_priv *priv = ieee80211_priv(dev);
7078 u32 target_rate = wrqu->bitrate.value;
7082 mutex_lock(&priv->action_mutex);
7083 if (!(priv->status & STATUS_INITIALIZED)) {
7090 if (target_rate == 1000000 ||
7091 (!wrqu->bitrate.fixed && target_rate > 1000000))
7092 rate |= TX_RATE_1_MBIT;
7093 if (target_rate == 2000000 ||
7094 (!wrqu->bitrate.fixed && target_rate > 2000000))
7095 rate |= TX_RATE_2_MBIT;
7096 if (target_rate == 5500000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 5500000))
7098 rate |= TX_RATE_5_5_MBIT;
7099 if (target_rate == 11000000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 11000000))
7101 rate |= TX_RATE_11_MBIT;
7103 rate = DEFAULT_TX_RATES;
7105 err = ipw2100_set_tx_rates(priv, rate, 0);
7107 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7109 mutex_unlock(&priv->action_mutex);
7113 static int ipw2100_wx_get_rate(struct net_device *dev,
7114 struct iw_request_info *info,
7115 union iwreq_data *wrqu, char *extra)
7117 struct ipw2100_priv *priv = ieee80211_priv(dev);
7119 int len = sizeof(val);
7122 if (!(priv->status & STATUS_ENABLED) ||
7123 priv->status & STATUS_RF_KILL_MASK ||
7124 !(priv->status & STATUS_ASSOCIATED)) {
7125 wrqu->bitrate.value = 0;
7129 mutex_lock(&priv->action_mutex);
7130 if (!(priv->status & STATUS_INITIALIZED)) {
7135 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7137 IPW_DEBUG_WX("failed querying ordinals.\n");
7141 switch (val & TX_RATE_MASK) {
7142 case TX_RATE_1_MBIT:
7143 wrqu->bitrate.value = 1000000;
7145 case TX_RATE_2_MBIT:
7146 wrqu->bitrate.value = 2000000;
7148 case TX_RATE_5_5_MBIT:
7149 wrqu->bitrate.value = 5500000;
7151 case TX_RATE_11_MBIT:
7152 wrqu->bitrate.value = 11000000;
7155 wrqu->bitrate.value = 0;
7158 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7161 mutex_unlock(&priv->action_mutex);
7165 static int ipw2100_wx_set_rts(struct net_device *dev,
7166 struct iw_request_info *info,
7167 union iwreq_data *wrqu, char *extra)
7169 struct ipw2100_priv *priv = ieee80211_priv(dev);
7172 /* Auto RTS not yet supported */
7173 if (wrqu->rts.fixed == 0)
7176 mutex_lock(&priv->action_mutex);
7177 if (!(priv->status & STATUS_INITIALIZED)) {
7182 if (wrqu->rts.disabled)
7183 value = priv->rts_threshold | RTS_DISABLED;
7185 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7189 value = wrqu->rts.value;
7192 err = ipw2100_set_rts_threshold(priv, value);
7194 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7196 mutex_unlock(&priv->action_mutex);
7200 static int ipw2100_wx_get_rts(struct net_device *dev,
7201 struct iw_request_info *info,
7202 union iwreq_data *wrqu, char *extra)
7205 * This can be called at any time. No action lock required
7208 struct ipw2100_priv *priv = ieee80211_priv(dev);
7210 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7211 wrqu->rts.fixed = 1; /* no auto select */
7213 /* If RTS is set to the default value, then it is disabled */
7214 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7216 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7221 static int ipw2100_wx_set_txpow(struct net_device *dev,
7222 struct iw_request_info *info,
7223 union iwreq_data *wrqu, char *extra)
7225 struct ipw2100_priv *priv = ieee80211_priv(dev);
7228 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7229 return -EINPROGRESS;
7231 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7234 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7237 if (wrqu->txpower.fixed == 0)
7238 value = IPW_TX_POWER_DEFAULT;
7240 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7241 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7244 value = wrqu->txpower.value;
7247 mutex_lock(&priv->action_mutex);
7248 if (!(priv->status & STATUS_INITIALIZED)) {
7253 err = ipw2100_set_tx_power(priv, value);
7255 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7258 mutex_unlock(&priv->action_mutex);
7262 static int ipw2100_wx_get_txpow(struct net_device *dev,
7263 struct iw_request_info *info,
7264 union iwreq_data *wrqu, char *extra)
7267 * This can be called at any time. No action lock required
7270 struct ipw2100_priv *priv = ieee80211_priv(dev);
7272 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7274 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7275 wrqu->txpower.fixed = 0;
7276 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7278 wrqu->txpower.fixed = 1;
7279 wrqu->txpower.value = priv->tx_power;
7282 wrqu->txpower.flags = IW_TXPOW_DBM;
7284 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7289 static int ipw2100_wx_set_frag(struct net_device *dev,
7290 struct iw_request_info *info,
7291 union iwreq_data *wrqu, char *extra)
7294 * This can be called at any time. No action lock required
7297 struct ipw2100_priv *priv = ieee80211_priv(dev);
7299 if (!wrqu->frag.fixed)
7302 if (wrqu->frag.disabled) {
7303 priv->frag_threshold |= FRAG_DISABLED;
7304 priv->ieee->fts = DEFAULT_FTS;
7306 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7307 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7310 priv->ieee->fts = wrqu->frag.value & ~0x1;
7311 priv->frag_threshold = priv->ieee->fts;
7314 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7319 static int ipw2100_wx_get_frag(struct net_device *dev,
7320 struct iw_request_info *info,
7321 union iwreq_data *wrqu, char *extra)
7324 * This can be called at any time. No action lock required
7327 struct ipw2100_priv *priv = ieee80211_priv(dev);
7328 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7329 wrqu->frag.fixed = 0; /* no auto select */
7330 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7332 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7337 static int ipw2100_wx_set_retry(struct net_device *dev,
7338 struct iw_request_info *info,
7339 union iwreq_data *wrqu, char *extra)
7341 struct ipw2100_priv *priv = ieee80211_priv(dev);
7344 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7347 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7350 mutex_lock(&priv->action_mutex);
7351 if (!(priv->status & STATUS_INITIALIZED)) {
7356 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7357 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7358 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7363 if (wrqu->retry.flags & IW_RETRY_LONG) {
7364 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7365 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7370 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7377 mutex_unlock(&priv->action_mutex);
7381 static int ipw2100_wx_get_retry(struct net_device *dev,
7382 struct iw_request_info *info,
7383 union iwreq_data *wrqu, char *extra)
7386 * This can be called at any time. No action lock required
7389 struct ipw2100_priv *priv = ieee80211_priv(dev);
7391 wrqu->retry.disabled = 0; /* can't be disabled */
7393 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7396 if (wrqu->retry.flags & IW_RETRY_LONG) {
7397 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7398 wrqu->retry.value = priv->long_retry_limit;
7401 (priv->short_retry_limit !=
7402 priv->long_retry_limit) ?
7403 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7405 wrqu->retry.value = priv->short_retry_limit;
7408 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7413 static int ipw2100_wx_set_scan(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *extra)
7417 struct ipw2100_priv *priv = ieee80211_priv(dev);
7420 mutex_lock(&priv->action_mutex);
7421 if (!(priv->status & STATUS_INITIALIZED)) {
7426 IPW_DEBUG_WX("Initiating scan...\n");
7427 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7428 IPW_DEBUG_WX("Start scan failed.\n");
7430 /* TODO: Mark a scan as pending so when hardware initialized
7435 mutex_unlock(&priv->action_mutex);
7439 static int ipw2100_wx_get_scan(struct net_device *dev,
7440 struct iw_request_info *info,
7441 union iwreq_data *wrqu, char *extra)
7444 * This can be called at any time. No action lock required
7447 struct ipw2100_priv *priv = ieee80211_priv(dev);
7448 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7452 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7454 static int ipw2100_wx_set_encode(struct net_device *dev,
7455 struct iw_request_info *info,
7456 union iwreq_data *wrqu, char *key)
7459 * No check of STATUS_INITIALIZED required
7462 struct ipw2100_priv *priv = ieee80211_priv(dev);
7463 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7466 static int ipw2100_wx_get_encode(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *key)
7471 * This can be called at any time. No action lock required
7474 struct ipw2100_priv *priv = ieee80211_priv(dev);
7475 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7478 static int ipw2100_wx_set_power(struct net_device *dev,
7479 struct iw_request_info *info,
7480 union iwreq_data *wrqu, char *extra)
7482 struct ipw2100_priv *priv = ieee80211_priv(dev);
7485 mutex_lock(&priv->action_mutex);
7486 if (!(priv->status & STATUS_INITIALIZED)) {
7491 if (wrqu->power.disabled) {
7492 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7493 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7494 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7498 switch (wrqu->power.flags & IW_POWER_MODE) {
7499 case IW_POWER_ON: /* If not specified */
7500 case IW_POWER_MODE: /* If set all mask */
7501 case IW_POWER_ALL_R: /* If explicitely state all */
7503 default: /* Otherwise we don't support it */
7504 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7510 /* If the user hasn't specified a power management mode yet, default
7512 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7513 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7515 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7518 mutex_unlock(&priv->action_mutex);
7523 static int ipw2100_wx_get_power(struct net_device *dev,
7524 struct iw_request_info *info,
7525 union iwreq_data *wrqu, char *extra)
7528 * This can be called at any time. No action lock required
7531 struct ipw2100_priv *priv = ieee80211_priv(dev);
7533 if (!(priv->power_mode & IPW_POWER_ENABLED))
7534 wrqu->power.disabled = 1;
7536 wrqu->power.disabled = 0;
7537 wrqu->power.flags = 0;
7540 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7550 static int ipw2100_wx_set_genie(struct net_device *dev,
7551 struct iw_request_info *info,
7552 union iwreq_data *wrqu, char *extra)
7555 struct ipw2100_priv *priv = ieee80211_priv(dev);
7556 struct ieee80211_device *ieee = priv->ieee;
7559 if (!ieee->wpa_enabled)
7562 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7563 (wrqu->data.length && extra == NULL))
7566 if (wrqu->data.length) {
7567 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7571 kfree(ieee->wpa_ie);
7573 ieee->wpa_ie_len = wrqu->data.length;
7575 kfree(ieee->wpa_ie);
7576 ieee->wpa_ie = NULL;
7577 ieee->wpa_ie_len = 0;
7580 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7586 static int ipw2100_wx_get_genie(struct net_device *dev,
7587 struct iw_request_info *info,
7588 union iwreq_data *wrqu, char *extra)
7590 struct ipw2100_priv *priv = ieee80211_priv(dev);
7591 struct ieee80211_device *ieee = priv->ieee;
7593 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7594 wrqu->data.length = 0;
7598 if (wrqu->data.length < ieee->wpa_ie_len)
7601 wrqu->data.length = ieee->wpa_ie_len;
7602 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7608 static int ipw2100_wx_set_auth(struct net_device *dev,
7609 struct iw_request_info *info,
7610 union iwreq_data *wrqu, char *extra)
7612 struct ipw2100_priv *priv = ieee80211_priv(dev);
7613 struct ieee80211_device *ieee = priv->ieee;
7614 struct iw_param *param = &wrqu->param;
7615 struct ieee80211_crypt_data *crypt;
7616 unsigned long flags;
7619 switch (param->flags & IW_AUTH_INDEX) {
7620 case IW_AUTH_WPA_VERSION:
7621 case IW_AUTH_CIPHER_PAIRWISE:
7622 case IW_AUTH_CIPHER_GROUP:
7623 case IW_AUTH_KEY_MGMT:
7625 * ipw2200 does not use these parameters
7629 case IW_AUTH_TKIP_COUNTERMEASURES:
7630 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7631 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7634 flags = crypt->ops->get_flags(crypt->priv);
7637 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7639 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641 crypt->ops->set_flags(flags, crypt->priv);
7645 case IW_AUTH_DROP_UNENCRYPTED:{
7648 * wpa_supplicant calls set_wpa_enabled when the driver
7649 * is loaded and unloaded, regardless of if WPA is being
7650 * used. No other calls are made which can be used to
7651 * determine if encryption will be used or not prior to
7652 * association being expected. If encryption is not being
7653 * used, drop_unencrypted is set to false, else true -- we
7654 * can use this to determine if the CAP_PRIVACY_ON bit should
7657 struct ieee80211_security sec = {
7658 .flags = SEC_ENABLED,
7659 .enabled = param->value,
7661 priv->ieee->drop_unencrypted = param->value;
7662 /* We only change SEC_LEVEL for open mode. Others
7663 * are set by ipw_wpa_set_encryption.
7665 if (!param->value) {
7666 sec.flags |= SEC_LEVEL;
7667 sec.level = SEC_LEVEL_0;
7669 sec.flags |= SEC_LEVEL;
7670 sec.level = SEC_LEVEL_1;
7672 if (priv->ieee->set_security)
7673 priv->ieee->set_security(priv->ieee->dev, &sec);
7677 case IW_AUTH_80211_AUTH_ALG:
7678 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7681 case IW_AUTH_WPA_ENABLED:
7682 ret = ipw2100_wpa_enable(priv, param->value);
7685 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7686 ieee->ieee802_1x = param->value;
7689 //case IW_AUTH_ROAMING_CONTROL:
7690 case IW_AUTH_PRIVACY_INVOKED:
7691 ieee->privacy_invoked = param->value;
7701 static int ipw2100_wx_get_auth(struct net_device *dev,
7702 struct iw_request_info *info,
7703 union iwreq_data *wrqu, char *extra)
7705 struct ipw2100_priv *priv = ieee80211_priv(dev);
7706 struct ieee80211_device *ieee = priv->ieee;
7707 struct ieee80211_crypt_data *crypt;
7708 struct iw_param *param = &wrqu->param;
7711 switch (param->flags & IW_AUTH_INDEX) {
7712 case IW_AUTH_WPA_VERSION:
7713 case IW_AUTH_CIPHER_PAIRWISE:
7714 case IW_AUTH_CIPHER_GROUP:
7715 case IW_AUTH_KEY_MGMT:
7717 * wpa_supplicant will control these internally
7722 case IW_AUTH_TKIP_COUNTERMEASURES:
7723 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7724 if (!crypt || !crypt->ops->get_flags) {
7725 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7726 "crypt not set!\n");
7730 param->value = (crypt->ops->get_flags(crypt->priv) &
7731 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7735 case IW_AUTH_DROP_UNENCRYPTED:
7736 param->value = ieee->drop_unencrypted;
7739 case IW_AUTH_80211_AUTH_ALG:
7740 param->value = priv->ieee->sec.auth_mode;
7743 case IW_AUTH_WPA_ENABLED:
7744 param->value = ieee->wpa_enabled;
7747 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7748 param->value = ieee->ieee802_1x;
7751 case IW_AUTH_ROAMING_CONTROL:
7752 case IW_AUTH_PRIVACY_INVOKED:
7753 param->value = ieee->privacy_invoked;
7762 /* SIOCSIWENCODEEXT */
7763 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7764 struct iw_request_info *info,
7765 union iwreq_data *wrqu, char *extra)
7767 struct ipw2100_priv *priv = ieee80211_priv(dev);
7768 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7771 /* SIOCGIWENCODEEXT */
7772 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7773 struct iw_request_info *info,
7774 union iwreq_data *wrqu, char *extra)
7776 struct ipw2100_priv *priv = ieee80211_priv(dev);
7777 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7781 static int ipw2100_wx_set_mlme(struct net_device *dev,
7782 struct iw_request_info *info,
7783 union iwreq_data *wrqu, char *extra)
7785 struct ipw2100_priv *priv = ieee80211_priv(dev);
7786 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7789 reason = cpu_to_le16(mlme->reason_code);
7791 switch (mlme->cmd) {
7792 case IW_MLME_DEAUTH:
7796 case IW_MLME_DISASSOC:
7797 ipw2100_disassociate_bssid(priv);
7811 #ifdef CONFIG_IPW2100_MONITOR
7812 static int ipw2100_wx_set_promisc(struct net_device *dev,
7813 struct iw_request_info *info,
7814 union iwreq_data *wrqu, char *extra)
7816 struct ipw2100_priv *priv = ieee80211_priv(dev);
7817 int *parms = (int *)extra;
7818 int enable = (parms[0] > 0);
7821 mutex_lock(&priv->action_mutex);
7822 if (!(priv->status & STATUS_INITIALIZED)) {
7828 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7829 err = ipw2100_set_channel(priv, parms[1], 0);
7832 priv->channel = parms[1];
7833 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7835 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7836 err = ipw2100_switch_mode(priv, priv->last_mode);
7839 mutex_unlock(&priv->action_mutex);
7843 static int ipw2100_wx_reset(struct net_device *dev,
7844 struct iw_request_info *info,
7845 union iwreq_data *wrqu, char *extra)
7847 struct ipw2100_priv *priv = ieee80211_priv(dev);
7848 if (priv->status & STATUS_INITIALIZED)
7849 schedule_reset(priv);
7855 static int ipw2100_wx_set_powermode(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7859 struct ipw2100_priv *priv = ieee80211_priv(dev);
7860 int err = 0, mode = *(int *)extra;
7862 mutex_lock(&priv->action_mutex);
7863 if (!(priv->status & STATUS_INITIALIZED)) {
7868 if ((mode < 1) || (mode > POWER_MODES))
7869 mode = IPW_POWER_AUTO;
7871 if (priv->power_mode != mode)
7872 err = ipw2100_set_power_mode(priv, mode);
7874 mutex_unlock(&priv->action_mutex);
7878 #define MAX_POWER_STRING 80
7879 static int ipw2100_wx_get_powermode(struct net_device *dev,
7880 struct iw_request_info *info,
7881 union iwreq_data *wrqu, char *extra)
7884 * This can be called at any time. No action lock required
7887 struct ipw2100_priv *priv = ieee80211_priv(dev);
7888 int level = IPW_POWER_LEVEL(priv->power_mode);
7889 s32 timeout, period;
7891 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7892 snprintf(extra, MAX_POWER_STRING,
7893 "Power save level: %d (Off)", level);
7896 case IPW_POWER_MODE_CAM:
7897 snprintf(extra, MAX_POWER_STRING,
7898 "Power save level: %d (None)", level);
7900 case IPW_POWER_AUTO:
7901 snprintf(extra, MAX_POWER_STRING,
7902 "Power save level: %d (Auto)", 0);
7905 timeout = timeout_duration[level - 1] / 1000;
7906 period = period_duration[level - 1] / 1000;
7907 snprintf(extra, MAX_POWER_STRING,
7908 "Power save level: %d "
7909 "(Timeout %dms, Period %dms)",
7910 level, timeout, period);
7914 wrqu->data.length = strlen(extra) + 1;
7919 static int ipw2100_wx_set_preamble(struct net_device *dev,
7920 struct iw_request_info *info,
7921 union iwreq_data *wrqu, char *extra)
7923 struct ipw2100_priv *priv = ieee80211_priv(dev);
7924 int err, mode = *(int *)extra;
7926 mutex_lock(&priv->action_mutex);
7927 if (!(priv->status & STATUS_INITIALIZED)) {
7933 priv->config |= CFG_LONG_PREAMBLE;
7935 priv->config &= ~CFG_LONG_PREAMBLE;
7941 err = ipw2100_system_config(priv, 0);
7944 mutex_unlock(&priv->action_mutex);
7948 static int ipw2100_wx_get_preamble(struct net_device *dev,
7949 struct iw_request_info *info,
7950 union iwreq_data *wrqu, char *extra)
7953 * This can be called at any time. No action lock required
7956 struct ipw2100_priv *priv = ieee80211_priv(dev);
7958 if (priv->config & CFG_LONG_PREAMBLE)
7959 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7961 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7966 #ifdef CONFIG_IPW2100_MONITOR
7967 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7968 struct iw_request_info *info,
7969 union iwreq_data *wrqu, char *extra)
7971 struct ipw2100_priv *priv = ieee80211_priv(dev);
7972 int err, mode = *(int *)extra;
7974 mutex_lock(&priv->action_mutex);
7975 if (!(priv->status & STATUS_INITIALIZED)) {
7981 priv->config |= CFG_CRC_CHECK;
7983 priv->config &= ~CFG_CRC_CHECK;
7991 mutex_unlock(&priv->action_mutex);
7995 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7996 struct iw_request_info *info,
7997 union iwreq_data *wrqu, char *extra)
8000 * This can be called at any time. No action lock required
8003 struct ipw2100_priv *priv = ieee80211_priv(dev);
8005 if (priv->config & CFG_CRC_CHECK)
8006 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8008 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8012 #endif /* CONFIG_IPW2100_MONITOR */
8014 static iw_handler ipw2100_wx_handlers[] = {
8015 NULL, /* SIOCSIWCOMMIT */
8016 ipw2100_wx_get_name, /* SIOCGIWNAME */
8017 NULL, /* SIOCSIWNWID */
8018 NULL, /* SIOCGIWNWID */
8019 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8020 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8021 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8022 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8023 NULL, /* SIOCSIWSENS */
8024 NULL, /* SIOCGIWSENS */
8025 NULL, /* SIOCSIWRANGE */
8026 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8027 NULL, /* SIOCSIWPRIV */
8028 NULL, /* SIOCGIWPRIV */
8029 NULL, /* SIOCSIWSTATS */
8030 NULL, /* SIOCGIWSTATS */
8031 NULL, /* SIOCSIWSPY */
8032 NULL, /* SIOCGIWSPY */
8033 NULL, /* SIOCGIWTHRSPY */
8034 NULL, /* SIOCWIWTHRSPY */
8035 ipw2100_wx_set_wap, /* SIOCSIWAP */
8036 ipw2100_wx_get_wap, /* SIOCGIWAP */
8037 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8038 NULL, /* SIOCGIWAPLIST -- deprecated */
8039 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8040 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8041 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8042 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8043 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8044 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8045 NULL, /* -- hole -- */
8046 NULL, /* -- hole -- */
8047 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8048 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8049 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8050 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8051 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8052 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8053 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8054 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8055 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8056 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8057 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8058 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8059 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8060 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8061 NULL, /* -- hole -- */
8062 NULL, /* -- hole -- */
8063 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8064 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8065 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8066 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8067 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8068 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8069 NULL, /* SIOCSIWPMKSA */
8072 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8073 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8074 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8075 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8076 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8077 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8078 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8079 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8081 static const struct iw_priv_args ipw2100_private_args[] = {
8083 #ifdef CONFIG_IPW2100_MONITOR
8085 IPW2100_PRIV_SET_MONITOR,
8086 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8089 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8090 #endif /* CONFIG_IPW2100_MONITOR */
8093 IPW2100_PRIV_SET_POWER,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8096 IPW2100_PRIV_GET_POWER,
8097 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8100 IPW2100_PRIV_SET_LONGPREAMBLE,
8101 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8103 IPW2100_PRIV_GET_LONGPREAMBLE,
8104 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8105 #ifdef CONFIG_IPW2100_MONITOR
8107 IPW2100_PRIV_SET_CRC_CHECK,
8108 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8110 IPW2100_PRIV_GET_CRC_CHECK,
8111 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8112 #endif /* CONFIG_IPW2100_MONITOR */
8115 static iw_handler ipw2100_private_handler[] = {
8116 #ifdef CONFIG_IPW2100_MONITOR
8117 ipw2100_wx_set_promisc,
8119 #else /* CONFIG_IPW2100_MONITOR */
8122 #endif /* CONFIG_IPW2100_MONITOR */
8123 ipw2100_wx_set_powermode,
8124 ipw2100_wx_get_powermode,
8125 ipw2100_wx_set_preamble,
8126 ipw2100_wx_get_preamble,
8127 #ifdef CONFIG_IPW2100_MONITOR
8128 ipw2100_wx_set_crc_check,
8129 ipw2100_wx_get_crc_check,
8130 #else /* CONFIG_IPW2100_MONITOR */
8133 #endif /* CONFIG_IPW2100_MONITOR */
8137 * Get wireless statistics.
8138 * Called by /proc/net/wireless
8139 * Also called by SIOCGIWSTATS
8141 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8155 struct ipw2100_priv *priv = ieee80211_priv(dev);
8156 struct iw_statistics *wstats;
8157 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8158 u32 ord_len = sizeof(u32);
8161 return (struct iw_statistics *)NULL;
8163 wstats = &priv->wstats;
8165 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166 * ipw2100_wx_wireless_stats seems to be called before fw is
8167 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8168 * and associated; if not associcated, the values are all meaningless
8169 * anyway, so set them all to NULL and INVALID */
8170 if (!(priv->status & STATUS_ASSOCIATED)) {
8171 wstats->miss.beacon = 0;
8172 wstats->discard.retries = 0;
8173 wstats->qual.qual = 0;
8174 wstats->qual.level = 0;
8175 wstats->qual.noise = 0;
8176 wstats->qual.updated = 7;
8177 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183 &missed_beacons, &ord_len))
8184 goto fail_get_ordinal;
8186 /* If we don't have a connection the quality and level is 0 */
8187 if (!(priv->status & STATUS_ASSOCIATED)) {
8188 wstats->qual.qual = 0;
8189 wstats->qual.level = 0;
8191 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8193 goto fail_get_ordinal;
8194 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8196 rssi_qual = rssi * POOR / 10;
8198 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8200 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8202 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8205 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8208 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209 &tx_retries, &ord_len))
8210 goto fail_get_ordinal;
8212 if (tx_retries > 75)
8213 tx_qual = (90 - tx_retries) * POOR / 15;
8214 else if (tx_retries > 70)
8215 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216 else if (tx_retries > 65)
8217 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218 else if (tx_retries > 50)
8219 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8222 tx_qual = (50 - tx_retries) *
8223 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8225 if (missed_beacons > 50)
8226 beacon_qual = (60 - missed_beacons) * POOR / 10;
8227 else if (missed_beacons > 40)
8228 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8230 else if (missed_beacons > 32)
8231 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8233 else if (missed_beacons > 20)
8234 beacon_qual = (32 - missed_beacons) *
8235 (VERY_GOOD - GOOD) / 20 + GOOD;
8237 beacon_qual = (20 - missed_beacons) *
8238 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8240 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8242 #ifdef CONFIG_IPW2100_DEBUG
8243 if (beacon_qual == quality)
8244 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245 else if (tx_qual == quality)
8246 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247 else if (quality != 100)
8248 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250 IPW_DEBUG_WX("Quality not clamped.\n");
8253 wstats->qual.qual = quality;
8254 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8257 wstats->qual.noise = 0;
8258 wstats->qual.updated = 7;
8259 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261 /* FIXME: this is percent and not a # */
8262 wstats->miss.beacon = missed_beacons;
8264 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265 &tx_failures, &ord_len))
8266 goto fail_get_ordinal;
8267 wstats->discard.retries = tx_failures;
8272 IPW_DEBUG_WX("failed querying ordinals.\n");
8274 return (struct iw_statistics *)NULL;
8277 static struct iw_handler_def ipw2100_wx_handler_def = {
8278 .standard = ipw2100_wx_handlers,
8279 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8280 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8281 .num_private_args = sizeof(ipw2100_private_args) /
8282 sizeof(struct iw_priv_args),
8283 .private = (iw_handler *) ipw2100_private_handler,
8284 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285 .get_wireless_stats = ipw2100_wx_wireless_stats,
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8290 struct ipw2100_priv *priv =
8291 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292 union iwreq_data wrqu;
8295 if (priv->status & STATUS_STOPPING)
8298 mutex_lock(&priv->action_mutex);
8300 IPW_DEBUG_WX("enter\n");
8302 mutex_unlock(&priv->action_mutex);
8304 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8306 /* Fetch BSSID from the hardware */
8307 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308 priv->status & STATUS_RF_KILL_MASK ||
8309 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310 &priv->bssid, &len)) {
8311 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8313 /* We now have the BSSID, so can finish setting to the full
8314 * associated state */
8315 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317 priv->status &= ~STATUS_ASSOCIATING;
8318 priv->status |= STATUS_ASSOCIATED;
8319 netif_carrier_on(priv->net_dev);
8320 netif_wake_queue(priv->net_dev);
8323 if (!(priv->status & STATUS_ASSOCIATED)) {
8324 IPW_DEBUG_WX("Configuring ESSID\n");
8325 mutex_lock(&priv->action_mutex);
8326 /* This is a disassociation event, so kick the firmware to
8327 * look for another AP */
8328 if (priv->config & CFG_STATIC_ESSID)
8329 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8332 ipw2100_set_essid(priv, NULL, 0, 0);
8333 mutex_unlock(&priv->action_mutex);
8336 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346 IPW2100_FW_MAJOR_VERSION)
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8355 BINARY FIRMWARE HEADER FORMAT
8359 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8362 C fw_len firmware data
8363 12 + fw_len uc_len microcode data
8367 struct ipw2100_fw_header {
8370 unsigned int fw_size;
8371 unsigned int uc_size;
8372 } __attribute__ ((packed));
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8376 struct ipw2100_fw_header *h =
8377 (struct ipw2100_fw_header *)fw->fw_entry->data;
8379 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381 "(detected version id of %u). "
8382 "See Documentation/networking/README.ipw2100\n",
8387 fw->version = h->version;
8388 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389 fw->fw.size = h->fw_size;
8390 fw->uc.data = fw->fw.data + h->fw_size;
8391 fw->uc.size = h->uc_size;
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397 struct ipw2100_fw *fw)
8402 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403 priv->net_dev->name);
8405 switch (priv->ieee->iw_mode) {
8407 fw_name = IPW2100_FW_NAME("-i");
8409 #ifdef CONFIG_IPW2100_MONITOR
8410 case IW_MODE_MONITOR:
8411 fw_name = IPW2100_FW_NAME("-p");
8416 fw_name = IPW2100_FW_NAME("");
8420 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8423 printk(KERN_ERR DRV_NAME ": "
8424 "%s: Firmware '%s' not available or load failed.\n",
8425 priv->net_dev->name, fw_name);
8428 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429 fw->fw_entry->size);
8431 ipw2100_mod_firmware_load(fw);
8436 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8437 struct ipw2100_fw *fw)
8441 release_firmware(fw->fw_entry);
8442 fw->fw_entry = NULL;
8445 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8448 char ver[MAX_FW_VERSION_LEN];
8449 u32 len = MAX_FW_VERSION_LEN;
8452 /* firmware version is an ascii string (max len of 14) */
8453 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8458 for (i = 0; i < len; i++)
8464 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468 u32 len = sizeof(ver);
8469 /* microcode version is a 32 bit integer */
8470 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8472 return snprintf(buf, max, "%08X", ver);
8476 * On exit, the firmware will have been freed from the fw list
8478 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8480 /* firmware is constructed of N contiguous entries, each entry is
8484 * 0 4 address to write to
8485 * 4 2 length of data run
8491 const unsigned char *firmware_data = fw->fw.data;
8492 unsigned int firmware_data_left = fw->fw.size;
8494 while (firmware_data_left > 0) {
8495 addr = *(u32 *) (firmware_data);
8497 firmware_data_left -= 4;
8499 len = *(u16 *) (firmware_data);
8501 firmware_data_left -= 2;
8504 printk(KERN_ERR DRV_NAME ": "
8505 "Invalid firmware run-length of %d bytes\n",
8510 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8511 firmware_data += len;
8512 firmware_data_left -= len;
8518 struct symbol_alive_response {
8527 u16 clock_settle_time; // 1us LSB
8528 u16 powerup_settle_time; // 1us LSB
8529 u16 hop_settle_time; // 1us LSB
8530 u8 date[3]; // month, day, year
8531 u8 time[2]; // hours, minutes
8535 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8536 struct ipw2100_fw *fw)
8538 struct net_device *dev = priv->net_dev;
8539 const unsigned char *microcode_data = fw->uc.data;
8540 unsigned int microcode_data_left = fw->uc.size;
8541 void __iomem *reg = (void __iomem *)dev->base_addr;
8543 struct symbol_alive_response response;
8547 /* Symbol control */
8548 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8550 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8556 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8559 /* EN_CS_ACCESS bit to reset control store pointer */
8560 write_nic_byte(dev, 0x210000, 0x40);
8562 write_nic_byte(dev, 0x210000, 0x0);
8564 write_nic_byte(dev, 0x210000, 0x40);
8567 /* copy microcode from buffer into Symbol */
8569 while (microcode_data_left > 0) {
8570 write_nic_byte(dev, 0x210010, *microcode_data++);
8571 write_nic_byte(dev, 0x210010, *microcode_data++);
8572 microcode_data_left -= 2;
8575 /* EN_CS_ACCESS bit to reset the control store pointer */
8576 write_nic_byte(dev, 0x210000, 0x0);
8579 /* Enable System (Reg 0)
8580 * first enable causes garbage in RX FIFO */
8581 write_nic_byte(dev, 0x210000, 0x0);
8583 write_nic_byte(dev, 0x210000, 0x80);
8586 /* Reset External Baseband Reg */
8587 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8589 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8592 /* HW Config (Reg 5) */
8593 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8595 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8598 /* Enable System (Reg 0)
8599 * second enable should be OK */
8600 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8602 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8604 /* check Symbol is enabled - upped this from 5 as it wasn't always
8605 * catching the update */
8606 for (i = 0; i < 10; i++) {
8609 /* check Dino is enabled bit */
8610 read_nic_byte(dev, 0x210000, &data);
8616 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8621 /* Get Symbol alive response */
8622 for (i = 0; i < 30; i++) {
8623 /* Read alive response structure */
8625 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8626 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8628 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8634 printk(KERN_ERR DRV_NAME
8635 ": %s: No response from Symbol - hw not alive\n",
8637 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));