4 * AES Cipher Algorithm.
6 * Based on Brian Gladman's code.
9 * Alexander Kjeldaas <astor@fast.no>
10 * Herbert Valerio Riedel <hvr@hvrlab.org>
11 * Kyle McMartin <kyle@debian.org>
12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
13 * Andreas Steinmetz <ast@domdv.de> (adapted to x86_64 assembler)
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * ---------------------------------------------------------------------------
21 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
22 * All rights reserved.
26 * The free distribution and use of this software in both source and binary
27 * form is allowed (with or without changes) provided that:
29 * 1. distributions of this source code include the above copyright
30 * notice, this list of conditions and the following disclaimer;
32 * 2. distributions in binary form include the above copyright
33 * notice, this list of conditions and the following disclaimer
34 * in the documentation and/or other associated materials;
36 * 3. the copyright holder's name is not used to endorse products
37 * built using this software without specific written permission.
39 * ALTERNATIVELY, provided that this notice is retained in full, this product
40 * may be distributed under the terms of the GNU General Public License (GPL),
41 * in which case the provisions of the GPL apply INSTEAD OF those given above.
45 * This software is provided 'as is' with no explicit or implied warranties
46 * in respect of its properties, including, but not limited to, correctness
47 * and/or fitness for purpose.
48 * ---------------------------------------------------------------------------
51 /* Some changes from the Gladman version:
52 s/RIJNDAEL(e_key)/E_KEY/g
53 s/RIJNDAEL(d_key)/D_KEY/g
56 #include <asm/byteorder.h>
57 #include <linux/bitops.h>
58 #include <linux/crypto.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/module.h>
62 #include <linux/types.h>
64 #define AES_MIN_KEY_SIZE 16
65 #define AES_MAX_KEY_SIZE 32
67 #define AES_BLOCK_SIZE 16
70 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
72 static inline u8 byte(const u32 x, const unsigned n)
87 static u8 pow_tab[256] __initdata;
88 static u8 log_tab[256] __initdata;
89 static u8 sbx_tab[256] __initdata;
90 static u8 isb_tab[256] __initdata;
91 static u32 rco_tab[10];
92 u32 aes_ft_tab[4][256];
93 u32 aes_it_tab[4][256];
95 u32 aes_fl_tab[4][256];
96 u32 aes_il_tab[4][256];
98 static inline u8 f_mult(u8 a, u8 b)
100 u8 aa = log_tab[a], cc = aa + log_tab[b];
102 return pow_tab[cc + (cc < aa ? 1 : 0)];
105 #define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
108 (aes_fl_tab[0][byte(x, 0)] ^ \
109 aes_fl_tab[1][byte(x, 1)] ^ \
110 aes_fl_tab[2][byte(x, 2)] ^ \
111 aes_fl_tab[3][byte(x, 3)])
113 static void __init gen_tabs(void)
118 /* log and power tables for GF(2**8) finite field with
119 0x011b as modular polynomial - the simplest primitive
120 root is 0x03, used here to generate the tables */
122 for (i = 0, p = 1; i < 256; ++i) {
126 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
131 for (i = 0, p = 1; i < 10; ++i) {
134 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
137 for (i = 0; i < 256; ++i) {
138 p = (i ? pow_tab[255 - log_tab[i]] : 0);
139 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
140 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
145 for (i = 0; i < 256; ++i) {
149 aes_fl_tab[0][i] = t;
150 aes_fl_tab[1][i] = rol32(t, 8);
151 aes_fl_tab[2][i] = rol32(t, 16);
152 aes_fl_tab[3][i] = rol32(t, 24);
154 t = ((u32)ff_mult(2, p)) |
156 ((u32)p << 16) | ((u32)ff_mult(3, p) << 24);
158 aes_ft_tab[0][i] = t;
159 aes_ft_tab[1][i] = rol32(t, 8);
160 aes_ft_tab[2][i] = rol32(t, 16);
161 aes_ft_tab[3][i] = rol32(t, 24);
166 aes_il_tab[0][i] = t;
167 aes_il_tab[1][i] = rol32(t, 8);
168 aes_il_tab[2][i] = rol32(t, 16);
169 aes_il_tab[3][i] = rol32(t, 24);
171 t = ((u32)ff_mult(14, p)) |
172 ((u32)ff_mult(9, p) << 8) |
173 ((u32)ff_mult(13, p) << 16) |
174 ((u32)ff_mult(11, p) << 24);
176 aes_it_tab[0][i] = t;
177 aes_it_tab[1][i] = rol32(t, 8);
178 aes_it_tab[2][i] = rol32(t, 16);
179 aes_it_tab[3][i] = rol32(t, 24);
183 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
185 #define imix_col(y, x) \
191 (y) ^= ror32(u ^ t, 8) ^ \
195 /* initialise the key schedule from the user supplied key */
199 t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
200 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
201 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
202 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
203 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
208 t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
209 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
210 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
211 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
212 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
213 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
214 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
219 t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
220 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
221 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
222 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
223 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
224 t = E_KEY[8 * i + 4] ^ ls_box(t); \
225 E_KEY[8 * i + 12] = t; \
226 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
227 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
228 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
231 static int aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len,
234 struct aes_ctx *ctx = ctx_arg;
235 const __le32 *key = (const __le32 *)in_key;
236 u32 i, j, t, u, v, w;
238 if (key_len != 16 && key_len != 24 && key_len != 32) {
239 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
243 ctx->key_length = key_len;
245 D_KEY[key_len + 24] = E_KEY[0] = le32_to_cpu(key[0]);
246 D_KEY[key_len + 25] = E_KEY[1] = le32_to_cpu(key[1]);
247 D_KEY[key_len + 26] = E_KEY[2] = le32_to_cpu(key[2]);
248 D_KEY[key_len + 27] = E_KEY[3] = le32_to_cpu(key[3]);
253 for (i = 0; i < 10; ++i)
258 E_KEY[4] = le32_to_cpu(key[4]);
259 t = E_KEY[5] = le32_to_cpu(key[5]);
260 for (i = 0; i < 8; ++i)
265 E_KEY[4] = le32_to_cpu(key[4]);
266 E_KEY[5] = le32_to_cpu(key[5]);
267 E_KEY[6] = le32_to_cpu(key[6]);
268 t = E_KEY[7] = le32_to_cpu(key[7]);
269 for (i = 0; i < 7; ++i)
274 D_KEY[0] = E_KEY[key_len + 24];
275 D_KEY[1] = E_KEY[key_len + 25];
276 D_KEY[2] = E_KEY[key_len + 26];
277 D_KEY[3] = E_KEY[key_len + 27];
279 for (i = 4; i < key_len + 24; ++i) {
280 j = key_len + 24 - (i & ~3) + (i & 3);
281 imix_col(D_KEY[j], E_KEY[i]);
287 extern void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in);
288 extern void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in);
290 static struct crypto_alg aes_alg = {
292 .cra_driver_name = "aes-x86_64",
294 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
295 .cra_blocksize = AES_BLOCK_SIZE,
296 .cra_ctxsize = sizeof(struct aes_ctx),
297 .cra_module = THIS_MODULE,
298 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
301 .cia_min_keysize = AES_MIN_KEY_SIZE,
302 .cia_max_keysize = AES_MAX_KEY_SIZE,
303 .cia_setkey = aes_set_key,
304 .cia_encrypt = aes_encrypt,
305 .cia_decrypt = aes_decrypt
310 static int __init aes_init(void)
313 return crypto_register_alg(&aes_alg);
316 static void __exit aes_fini(void)
318 crypto_unregister_alg(&aes_alg);
321 module_init(aes_init);
322 module_exit(aes_fini);
324 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
325 MODULE_LICENSE("GPL");