2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00pci.h"
41 * Allow hardware encryption to be disabled.
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
71 mutex_lock(&rt2x00dev->csr_mutex);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
79 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
87 mutex_unlock(&rt2x00dev->csr_mutex);
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
107 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, ®);
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
129 mutex_lock(&rt2x00dev->csr_mutex);
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
135 if (WAIT_FOR_RF(rt2x00dev, ®)) {
137 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
138 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
139 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
142 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
146 mutex_unlock(&rt2x00dev->csr_mutex);
149 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
150 const u8 command, const u8 token,
151 const u8 arg0, const u8 arg1)
155 mutex_lock(&rt2x00dev->csr_mutex);
158 * Wait until the MCU becomes available, afterwards we
159 * can safely write the new data into the register.
161 if (WAIT_FOR_MCU(rt2x00dev, ®)) {
162 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
163 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
164 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
165 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
166 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
168 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®);
169 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
170 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
171 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
174 mutex_unlock(&rt2x00dev->csr_mutex);
178 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
180 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
185 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
186 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
187 eeprom->reg_data_clock =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
189 eeprom->reg_chip_select =
190 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
193 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
198 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
199 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
200 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
201 !!eeprom->reg_data_clock);
202 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
203 !!eeprom->reg_chip_select);
205 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static const struct rt2x00debug rt61pci_rt2x00debug = {
210 .owner = THIS_MODULE,
212 .read = rt2x00pci_register_read,
213 .write = rt2x00pci_register_write,
214 .flags = RT2X00DEBUGFS_OFFSET,
215 .word_base = CSR_REG_BASE,
216 .word_size = sizeof(u32),
217 .word_count = CSR_REG_SIZE / sizeof(u32),
220 .read = rt2x00_eeprom_read,
221 .write = rt2x00_eeprom_write,
222 .word_base = EEPROM_BASE,
223 .word_size = sizeof(u16),
224 .word_count = EEPROM_SIZE / sizeof(u16),
227 .read = rt61pci_bbp_read,
228 .write = rt61pci_bbp_write,
229 .word_base = BBP_BASE,
230 .word_size = sizeof(u8),
231 .word_count = BBP_SIZE / sizeof(u8),
234 .read = rt2x00_rf_read,
235 .write = rt61pci_rf_write,
236 .word_base = RF_BASE,
237 .word_size = sizeof(u32),
238 .word_count = RF_SIZE / sizeof(u32),
241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
243 #ifdef CONFIG_RT2X00_LIB_RFKILL
244 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
248 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
249 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
252 #define rt61pci_rfkill_poll NULL
253 #endif /* CONFIG_RT2X00_LIB_RFKILL */
255 #ifdef CONFIG_RT2X00_LIB_LEDS
256 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
257 enum led_brightness brightness)
259 struct rt2x00_led *led =
260 container_of(led_cdev, struct rt2x00_led, led_dev);
261 unsigned int enabled = brightness != LED_OFF;
262 unsigned int a_mode =
263 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
264 unsigned int bg_mode =
265 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
267 if (led->type == LED_TYPE_RADIO) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_RADIO_STATUS, enabled);
271 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
272 (led->rt2x00dev->led_mcu_reg & 0xff),
273 ((led->rt2x00dev->led_mcu_reg >> 8)));
274 } else if (led->type == LED_TYPE_ASSOC) {
275 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
277 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
278 MCU_LEDCS_LINK_A_STATUS, a_mode);
280 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
281 (led->rt2x00dev->led_mcu_reg & 0xff),
282 ((led->rt2x00dev->led_mcu_reg >> 8)));
283 } else if (led->type == LED_TYPE_QUALITY) {
285 * The brightness is divided into 6 levels (0 - 5),
286 * this means we need to convert the brightness
287 * argument into the matching level within that range.
289 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
290 brightness / (LED_FULL / 6), 0);
294 static int rt61pci_blink_set(struct led_classdev *led_cdev,
295 unsigned long *delay_on,
296 unsigned long *delay_off)
298 struct rt2x00_led *led =
299 container_of(led_cdev, struct rt2x00_led, led_dev);
302 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, ®);
303 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
304 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
305 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
310 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
311 struct rt2x00_led *led,
314 led->rt2x00dev = rt2x00dev;
316 led->led_dev.brightness_set = rt61pci_brightness_set;
317 led->led_dev.blink_set = rt61pci_blink_set;
318 led->flags = LED_INITIALIZED;
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
323 * Configuration handlers.
325 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
326 struct rt2x00lib_crypto *crypto,
327 struct ieee80211_key_conf *key)
329 struct hw_key_entry key_entry;
330 struct rt2x00_field32 field;
334 if (crypto->cmd == SET_KEY) {
336 * rt2x00lib can't determine the correct free
337 * key_idx for shared keys. We have 1 register
338 * with key valid bits. The goal is simple, read
339 * the register, if that is full we have no slots
341 * Note that each BSS is allowed to have up to 4
342 * shared keys, so put a mask over the allowed
345 mask = (0xf << crypto->bssidx);
347 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®);
350 if (reg && reg == mask)
353 key->hw_key_idx += reg ? ffz(reg) : 0;
356 * Upload key to hardware
358 memcpy(key_entry.key, crypto->key,
359 sizeof(key_entry.key));
360 memcpy(key_entry.tx_mic, crypto->tx_mic,
361 sizeof(key_entry.tx_mic));
362 memcpy(key_entry.rx_mic, crypto->rx_mic,
363 sizeof(key_entry.rx_mic));
365 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
366 rt2x00pci_register_multiwrite(rt2x00dev, reg,
367 &key_entry, sizeof(key_entry));
370 * The cipher types are stored over 2 registers.
371 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372 * bssidx 1 and 2 keys are stored in SEC_CSR5.
373 * Using the correct defines correctly will cause overhead,
374 * so just calculate the correct offset.
376 if (key->hw_key_idx < 8) {
377 field.bit_offset = (3 * key->hw_key_idx);
378 field.bit_mask = 0x7 << field.bit_offset;
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, ®);
381 rt2x00_set_field32(®, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
384 field.bit_offset = (3 * (key->hw_key_idx - 8));
385 field.bit_mask = 0x7 << field.bit_offset;
387 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, ®);
388 rt2x00_set_field32(®, field, crypto->cipher);
389 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided seperately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
405 * SEC_CSR0 contains only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead we use
408 * a calculation to determine the correct bit directly.
410 mask = 1 << key->hw_key_idx;
412 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®);
413 if (crypto->cmd == SET_KEY)
415 else if (crypto->cmd == DISABLE_KEY)
417 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
422 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
423 struct rt2x00lib_crypto *crypto,
424 struct ieee80211_key_conf *key)
426 struct hw_pairwise_ta_entry addr_entry;
427 struct hw_key_entry key_entry;
431 if (crypto->cmd == SET_KEY) {
433 * rt2x00lib can't determine the correct free
434 * key_idx for pairwise keys. We have 2 registers
435 * with key valid bits. The goal is simple, read
436 * the first register, if that is full move to
438 * When both registers are full, we drop the key,
439 * otherwise we use the first invalid entry.
441 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®);
442 if (reg && reg == ~0) {
443 key->hw_key_idx = 32;
444 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®);
445 if (reg && reg == ~0)
449 key->hw_key_idx += reg ? ffz(reg) : 0;
452 * Upload key to hardware
454 memcpy(key_entry.key, crypto->key,
455 sizeof(key_entry.key));
456 memcpy(key_entry.tx_mic, crypto->tx_mic,
457 sizeof(key_entry.tx_mic));
458 memcpy(key_entry.rx_mic, crypto->rx_mic,
459 sizeof(key_entry.rx_mic));
461 memset(&addr_entry, 0, sizeof(addr_entry));
462 memcpy(&addr_entry, crypto->address, ETH_ALEN);
463 addr_entry.cipher = crypto->cipher;
465 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
466 rt2x00pci_register_multiwrite(rt2x00dev, reg,
467 &key_entry, sizeof(key_entry));
469 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
470 rt2x00pci_register_multiwrite(rt2x00dev, reg,
471 &addr_entry, sizeof(addr_entry));
474 * Enable pairwise lookup table for given BSS idx,
475 * without this received frames will not be decrypted
478 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, ®);
479 reg |= (1 << crypto->bssidx);
480 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
483 * The driver does not support the IV/EIV generation
484 * in hardware. However it doesn't support the IV/EIV
485 * inside the ieee80211 frame either, but requires it
486 * to be provided seperately for the descriptor.
487 * rt2x00lib will cut the IV/EIV data out of all frames
488 * given to us by mac80211, but we must tell mac80211
489 * to generate the IV/EIV data.
491 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
495 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496 * a particular key is valid. Because using the FIELD32()
497 * defines directly will cause a lot of overhead we use
498 * a calculation to determine the correct bit directly.
500 if (key->hw_key_idx < 32) {
501 mask = 1 << key->hw_key_idx;
503 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®);
504 if (crypto->cmd == SET_KEY)
506 else if (crypto->cmd == DISABLE_KEY)
508 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
510 mask = 1 << (key->hw_key_idx - 32);
512 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®);
513 if (crypto->cmd == SET_KEY)
515 else if (crypto->cmd == DISABLE_KEY)
517 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
523 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
524 const unsigned int filter_flags)
529 * Start configuration steps.
530 * Note that the version error will always be dropped
531 * and broadcast frames will always be accepted since
532 * there is no filter for it at this time.
534 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
535 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
536 !(filter_flags & FIF_FCSFAIL));
537 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
538 !(filter_flags & FIF_PLCPFAIL));
539 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
540 !(filter_flags & FIF_CONTROL));
541 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
542 !(filter_flags & FIF_PROMISC_IN_BSS));
543 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
544 !(filter_flags & FIF_PROMISC_IN_BSS) &&
545 !rt2x00dev->intf_ap_count);
546 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
547 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
548 !(filter_flags & FIF_ALLMULTI));
549 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
550 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
551 !(filter_flags & FIF_CONTROL));
552 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
555 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
556 struct rt2x00_intf *intf,
557 struct rt2x00intf_conf *conf,
558 const unsigned int flags)
560 unsigned int beacon_base;
563 if (flags & CONFIG_UPDATE_TYPE) {
565 * Clear current synchronisation setup.
566 * For the Beacon base registers we only need to clear
567 * the first byte since that byte contains the VALID and OWNER
568 * bits which (when set to 0) will invalidate the entire beacon.
570 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
571 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
574 * Enable synchronisation.
576 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
577 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
578 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
579 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
580 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
583 if (flags & CONFIG_UPDATE_MAC) {
584 reg = le32_to_cpu(conf->mac[1]);
585 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
586 conf->mac[1] = cpu_to_le32(reg);
588 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
589 conf->mac, sizeof(conf->mac));
592 if (flags & CONFIG_UPDATE_BSSID) {
593 reg = le32_to_cpu(conf->bssid[1]);
594 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
595 conf->bssid[1] = cpu_to_le32(reg);
597 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
598 conf->bssid, sizeof(conf->bssid));
602 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_erp *erp)
607 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
608 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
611 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
612 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
613 !!erp->short_preamble);
614 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
619 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®);
623 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
641 rt2x00_rf(&rt2x00dev->chip, RF5325));
644 * Configure the RX antenna.
647 case ANTENNA_HW_DIVERSITY:
648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677 struct antenna_setup *ant)
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
688 rt2x00_rf(&rt2x00dev->chip, RF2529));
689 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
693 * Configure the RX antenna.
696 case ANTENNA_HW_DIVERSITY:
697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
710 rt61pci_bbp_write(rt2x00dev, 77, r77);
711 rt61pci_bbp_write(rt2x00dev, 3, r3);
712 rt61pci_bbp_write(rt2x00dev, 4, r4);
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716 const int p1, const int p2)
720 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
722 rt2x00_set_field32(®, MAC_CSR13_BIT4, p1);
723 rt2x00_set_field32(®, MAC_CSR13_BIT12, 0);
725 rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2);
726 rt2x00_set_field32(®, MAC_CSR13_BIT11, 0);
728 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
732 struct antenna_setup *ant)
738 rt61pci_bbp_read(rt2x00dev, 3, &r3);
739 rt61pci_bbp_read(rt2x00dev, 4, &r4);
740 rt61pci_bbp_read(rt2x00dev, 77, &r77);
743 * Configure the RX antenna.
747 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
751 case ANTENNA_HW_DIVERSITY:
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
759 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
765 rt61pci_bbp_write(rt2x00dev, 77, r77);
766 rt61pci_bbp_write(rt2x00dev, 3, r3);
767 rt61pci_bbp_write(rt2x00dev, 4, r4);
773 * value[0] -> non-LNA
779 static const struct antenna_sel antenna_sel_a[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
790 static const struct antenna_sel antenna_sel_bg[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
801 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802 struct antenna_setup *ant)
804 const struct antenna_sel *sel;
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
813 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814 ant->tx == ANTENNA_SW_DIVERSITY);
816 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
818 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
820 sel = antenna_sel_bg;
821 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
824 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
827 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®);
829 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
830 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
831 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
832 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
834 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
836 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837 rt2x00_rf(&rt2x00dev->chip, RF5325))
838 rt61pci_config_antenna_5x(rt2x00dev, ant);
839 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
843 rt61pci_config_antenna_2x(rt2x00dev, ant);
845 rt61pci_config_antenna_2529(rt2x00dev, ant);
849 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850 struct rt2x00lib_conf *libconf)
855 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
862 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
869 rt2x00dev->lna_gain = lna_gain;
872 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873 struct rf_channel *rf, const int txpower)
879 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
882 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883 rt2x00_rf(&rt2x00dev->chip, RF2527));
885 rt61pci_bbp_read(rt2x00dev, 3, &r3);
886 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887 rt61pci_bbp_write(rt2x00dev, 3, r3);
890 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891 r94 += txpower - MAX_TXPOWER;
892 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
894 rt61pci_bbp_write(rt2x00dev, 94, r94);
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
918 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
921 struct rf_channel rf;
923 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
928 rt61pci_config_channel(rt2x00dev, &rf, txpower);
931 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
932 struct rt2x00lib_conf *libconf)
936 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
937 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
944 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
949 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
950 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
951 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
953 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
954 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
955 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
957 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
958 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
959 libconf->conf->beacon_int * 16);
960 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
963 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
964 struct rt2x00lib_conf *libconf)
966 enum dev_state state =
967 (libconf->conf->flags & IEEE80211_CONF_PS) ?
968 STATE_SLEEP : STATE_AWAKE;
971 if (state == STATE_SLEEP) {
972 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®);
973 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN,
974 libconf->conf->beacon_int - 10);
975 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP,
976 libconf->conf->listen_interval - 1);
977 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5);
979 /* We must first disable autowake before it can be enabled */
980 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
981 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
983 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1);
984 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
986 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
987 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
988 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
990 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
992 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®);
993 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0);
994 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
995 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
996 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0);
997 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
999 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
1000 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
1001 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
1003 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1007 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1008 struct rt2x00lib_conf *libconf,
1009 const unsigned int flags)
1011 /* Always recalculate LNA gain before changing configuration */
1012 rt61pci_config_lna_gain(rt2x00dev, libconf);
1014 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1015 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1016 libconf->conf->power_level);
1017 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1018 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1019 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1020 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1021 rt61pci_config_retry_limit(rt2x00dev, libconf);
1022 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1023 rt61pci_config_duration(rt2x00dev, libconf);
1024 if (flags & IEEE80211_CONF_CHANGE_PS)
1025 rt61pci_config_ps(rt2x00dev, libconf);
1031 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1032 struct link_qual *qual)
1037 * Update FCS error count from register.
1039 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1040 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1043 * Update False CCA count from register.
1045 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1046 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1049 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, u8 vgc_level)
1051 if (rt2x00dev->link.vgc_level != vgc_level) {
1052 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1053 rt2x00dev->link.vgc_level = vgc_level;
1054 rt2x00dev->link.vgc_level_reg = vgc_level;
1058 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1060 rt61pci_set_vgc(rt2x00dev, 0x20);
1063 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1065 struct link *link = &rt2x00dev->link;
1066 int rssi = rt2x00_get_link_rssi(link);
1071 * Determine r17 bounds.
1073 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1076 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1083 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1090 * If we are not associated, we should go straight to the
1091 * dynamic CCA tuning.
1093 if (!rt2x00dev->intf_associated)
1094 goto dynamic_cca_tune;
1097 * Special big-R17 for very short distance
1100 rt61pci_set_vgc(rt2x00dev, 0x60);
1105 * Special big-R17 for short distance
1108 rt61pci_set_vgc(rt2x00dev, up_bound);
1113 * Special big-R17 for middle-short distance
1116 rt61pci_set_vgc(rt2x00dev, low_bound + 0x10);
1121 * Special mid-R17 for middle distance
1124 rt61pci_set_vgc(rt2x00dev, low_bound + 0x08);
1129 * Special case: Change up_bound based on the rssi.
1130 * Lower up_bound when rssi is weaker then -74 dBm.
1132 up_bound -= 2 * (-74 - rssi);
1133 if (low_bound > up_bound)
1134 up_bound = low_bound;
1136 if (link->vgc_level > up_bound) {
1137 rt61pci_set_vgc(rt2x00dev, up_bound);
1144 * r17 does not yet exceed upper limit, continue and base
1145 * the r17 tuning on the false CCA count.
1147 if ((link->qual.false_cca > 512) && (link->vgc_level < up_bound))
1148 rt61pci_set_vgc(rt2x00dev, ++link->vgc_level);
1149 else if ((link->qual.false_cca < 100) && (link->vgc_level > low_bound))
1150 rt61pci_set_vgc(rt2x00dev, --link->vgc_level);
1154 * Firmware functions
1156 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1160 switch (rt2x00dev->chip.rt) {
1162 fw_name = FIRMWARE_RT2561;
1165 fw_name = FIRMWARE_RT2561s;
1168 fw_name = FIRMWARE_RT2661;
1178 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1183 * Use the crc itu-t algorithm.
1184 * The last 2 bytes in the firmware array are the crc checksum itself,
1185 * this means that we should never pass those 2 bytes to the crc
1188 crc = crc_itu_t(0, data, len - 2);
1189 crc = crc_itu_t_byte(crc, 0);
1190 crc = crc_itu_t_byte(crc, 0);
1195 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1202 * Wait for stable hardware.
1204 for (i = 0; i < 100; i++) {
1205 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
1212 ERROR(rt2x00dev, "Unstable hardware.\n");
1217 * Prepare MCU and mailbox for firmware loading.
1220 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
1221 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1222 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1223 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1224 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1227 * Write firmware to device.
1230 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
1231 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
1232 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1237 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
1238 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1240 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
1241 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243 for (i = 0; i < 100; i++) {
1244 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
1245 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1251 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1256 * Hardware needs another millisecond before it is ready.
1261 * Reset MAC and BBP registers.
1264 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1265 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1266 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1269 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1270 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1271 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1273 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1274 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1275 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1281 * Initialization functions.
1283 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1285 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1288 if (entry->queue->qid == QID_RX) {
1289 rt2x00_desc_read(entry_priv->desc, 0, &word);
1291 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1293 rt2x00_desc_read(entry_priv->desc, 0, &word);
1295 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1296 rt2x00_get_field32(word, TXD_W0_VALID));
1300 static void rt61pci_clear_entry(struct queue_entry *entry)
1302 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1303 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1306 if (entry->queue->qid == QID_RX) {
1307 rt2x00_desc_read(entry_priv->desc, 5, &word);
1308 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1310 rt2x00_desc_write(entry_priv->desc, 5, word);
1312 rt2x00_desc_read(entry_priv->desc, 0, &word);
1313 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1314 rt2x00_desc_write(entry_priv->desc, 0, word);
1316 rt2x00_desc_read(entry_priv->desc, 0, &word);
1317 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1318 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1319 rt2x00_desc_write(entry_priv->desc, 0, word);
1323 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1325 struct queue_entry_priv_pci *entry_priv;
1329 * Initialize registers.
1331 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®);
1332 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
1333 rt2x00dev->tx[0].limit);
1334 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
1335 rt2x00dev->tx[1].limit);
1336 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
1337 rt2x00dev->tx[2].limit);
1338 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
1339 rt2x00dev->tx[3].limit);
1340 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1342 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®);
1343 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
1344 rt2x00dev->tx[0].desc_size / 4);
1345 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1347 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1348 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®);
1349 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
1350 entry_priv->desc_dma);
1351 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1353 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1354 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®);
1355 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
1356 entry_priv->desc_dma);
1357 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1359 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1360 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®);
1361 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
1362 entry_priv->desc_dma);
1363 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1365 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1366 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®);
1367 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
1368 entry_priv->desc_dma);
1369 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1371 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®);
1372 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1373 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
1374 rt2x00dev->rx->desc_size / 4);
1375 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1376 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1378 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1379 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®);
1380 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
1381 entry_priv->desc_dma);
1382 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1384 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
1385 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
1386 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
1387 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
1388 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
1389 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1391 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
1392 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1393 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1394 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1395 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1396 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1398 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1399 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
1400 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1405 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1409 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1410 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1411 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1412 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1413 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1415 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®);
1416 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1417 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1418 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1419 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1420 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1421 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1422 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1423 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1424 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1427 * CCK TXD BBP registers
1429 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®);
1430 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1431 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1432 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1433 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1434 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1435 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1436 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1437 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1438 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1441 * OFDM TXD BBP registers
1443 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®);
1444 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1445 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1446 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1447 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1448 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1449 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1450 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1452 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®);
1453 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1454 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1455 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1456 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1457 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1459 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®);
1460 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1461 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1462 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1463 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1464 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1466 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1467 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
1468 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1469 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
1470 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1471 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1472 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1473 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1475 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1477 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1479 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
1480 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1481 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1483 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1485 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1488 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1491 * Invalidate all Shared Keys (SEC_CSR0),
1492 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1494 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1495 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1496 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1498 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1499 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1500 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1501 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1503 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1505 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1507 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1511 * For the Beacon base registers we only need to clear
1512 * the first byte since that byte contains the VALID and OWNER
1513 * bits which (when set to 0) will invalidate the entire beacon.
1515 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1516 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1517 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1518 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1521 * We must clear the error counters.
1522 * These registers are cleared on read,
1523 * so we may pass a useless variable to store the value.
1525 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1526 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1527 rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®);
1530 * Reset MAC and BBP registers.
1532 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1533 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1534 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1535 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1538 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1539 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1540 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1542 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1543 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1544 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1549 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1554 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1555 rt61pci_bbp_read(rt2x00dev, 0, &value);
1556 if ((value != 0xff) && (value != 0x00))
1558 udelay(REGISTER_BUSY_DELAY);
1561 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1565 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1572 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1575 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1576 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1577 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1578 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1579 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1580 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1581 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1582 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1583 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1584 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1585 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1586 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1587 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1588 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1589 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1590 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1591 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1592 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1593 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1594 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1595 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1596 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1597 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1598 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1600 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1601 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1603 if (eeprom != 0xffff && eeprom != 0x0000) {
1604 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1605 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1606 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1614 * Device state switch handlers.
1616 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1617 enum dev_state state)
1621 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1622 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
1623 (state == STATE_RADIO_RX_OFF) ||
1624 (state == STATE_RADIO_RX_OFF_LINK));
1625 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1628 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1629 enum dev_state state)
1631 int mask = (state == STATE_RADIO_IRQ_OFF);
1635 * When interrupts are being enabled, the interrupt registers
1636 * should clear the register to assure a clean state.
1638 if (state == STATE_RADIO_IRQ_ON) {
1639 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1640 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1642 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
1643 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1647 * Only toggle the interrupts bits we are going to use.
1648 * Non-checked interrupt bits are disabled by default.
1650 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®);
1651 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
1652 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
1653 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1654 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1655 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1657 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
1658 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
1659 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
1660 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
1661 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
1662 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
1663 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
1664 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
1665 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
1666 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1669 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1674 * Initialize all registers.
1676 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1677 rt61pci_init_registers(rt2x00dev) ||
1678 rt61pci_init_bbp(rt2x00dev)))
1684 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1685 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1686 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1691 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1695 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1698 * Disable synchronisation.
1700 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1705 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1706 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1707 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1708 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1709 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1710 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1713 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1719 put_to_sleep = (state != STATE_AWAKE);
1721 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1722 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1723 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1724 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1727 * Device is not guaranteed to be in the requested state yet.
1728 * We must wait until the register indicates that the
1729 * device has entered the correct state.
1731 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1732 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1733 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1734 if (state == !put_to_sleep)
1742 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1743 enum dev_state state)
1748 case STATE_RADIO_ON:
1749 retval = rt61pci_enable_radio(rt2x00dev);
1751 case STATE_RADIO_OFF:
1752 rt61pci_disable_radio(rt2x00dev);
1754 case STATE_RADIO_RX_ON:
1755 case STATE_RADIO_RX_ON_LINK:
1756 case STATE_RADIO_RX_OFF:
1757 case STATE_RADIO_RX_OFF_LINK:
1758 rt61pci_toggle_rx(rt2x00dev, state);
1760 case STATE_RADIO_IRQ_ON:
1761 case STATE_RADIO_IRQ_OFF:
1762 rt61pci_toggle_irq(rt2x00dev, state);
1764 case STATE_DEEP_SLEEP:
1768 retval = rt61pci_set_state(rt2x00dev, state);
1775 if (unlikely(retval))
1776 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1783 * TX descriptor initialization
1785 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1786 struct sk_buff *skb,
1787 struct txentry_desc *txdesc)
1789 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1790 __le32 *txd = skbdesc->desc;
1794 * Start writing the descriptor words.
1796 rt2x00_desc_read(txd, 1, &word);
1797 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1798 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1799 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1800 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1801 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1802 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1803 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1804 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1805 rt2x00_desc_write(txd, 1, word);
1807 rt2x00_desc_read(txd, 2, &word);
1808 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1809 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1810 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1811 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1812 rt2x00_desc_write(txd, 2, word);
1814 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1815 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1816 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1819 rt2x00_desc_read(txd, 5, &word);
1820 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1821 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1822 skbdesc->entry->entry_idx);
1823 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1824 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1825 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1826 rt2x00_desc_write(txd, 5, word);
1828 rt2x00_desc_read(txd, 6, &word);
1829 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1831 rt2x00_desc_write(txd, 6, word);
1833 if (skbdesc->desc_len > TXINFO_SIZE) {
1834 rt2x00_desc_read(txd, 11, &word);
1835 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1836 rt2x00_desc_write(txd, 11, word);
1839 rt2x00_desc_read(txd, 0, &word);
1840 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1841 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1842 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1843 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1844 rt2x00_set_field32(&word, TXD_W0_ACK,
1845 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1846 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1847 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1848 rt2x00_set_field32(&word, TXD_W0_OFDM,
1849 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1850 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1851 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1852 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1853 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1854 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1855 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1856 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1857 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1858 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1859 rt2x00_set_field32(&word, TXD_W0_BURST,
1860 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1861 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1862 rt2x00_desc_write(txd, 0, word);
1866 * TX data initialization
1868 static void rt61pci_write_beacon(struct queue_entry *entry)
1870 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1871 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872 unsigned int beacon_base;
1876 * Disable beaconing while we are reloading the beacon data,
1877 * otherwise we might be sending out invalid data.
1879 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1880 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1881 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1882 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1883 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1886 * Write entire beacon with descriptor to register.
1888 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1889 rt2x00pci_register_multiwrite(rt2x00dev,
1891 skbdesc->desc, skbdesc->desc_len);
1892 rt2x00pci_register_multiwrite(rt2x00dev,
1893 beacon_base + skbdesc->desc_len,
1894 entry->skb->data, entry->skb->len);
1897 * Clean up beacon skb.
1899 dev_kfree_skb_any(entry->skb);
1903 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1904 const enum data_queue_qid queue)
1908 if (queue == QID_BEACON) {
1910 * For Wi-Fi faily generated beacons between participating
1911 * stations. Set TBTT phase adaptive adjustment step to 8us.
1913 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1915 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1916 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1917 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1918 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1919 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1920 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1925 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1926 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1927 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1928 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1929 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1930 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1934 * RX control handlers
1936 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1938 u8 offset = rt2x00dev->lna_gain;
1941 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1956 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1957 if (lna == 3 || lna == 2)
1961 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1964 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1965 struct rxdone_entry_desc *rxdesc)
1967 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1968 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1972 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1973 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1975 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1976 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1978 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1980 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1981 rxdesc->cipher_status =
1982 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1985 if (rxdesc->cipher != CIPHER_NONE) {
1986 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1987 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1988 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1990 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1991 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1994 * Hardware has stripped IV/EIV data from 802.11 frame during
1995 * decryption. It has provided the data seperately but rt2x00lib
1996 * should decide if it should be reinserted.
1998 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2001 * FIXME: Legacy driver indicates that the frame does
2002 * contain the Michael Mic. Unfortunately, in rt2x00
2003 * the MIC seems to be missing completely...
2005 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2007 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2008 rxdesc->flags |= RX_FLAG_DECRYPTED;
2009 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2010 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2014 * Obtain the status about this packet.
2015 * When frame was received with an OFDM bitrate,
2016 * the signal is the PLCP value. If it was received with
2017 * a CCK bitrate the signal is the rate in 100kbit/s.
2019 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2020 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2021 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2023 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2024 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2026 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2027 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2028 rxdesc->dev_flags |= RXDONE_MY_BSS;
2032 * Interrupt functions.
2034 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2036 struct data_queue *queue;
2037 struct queue_entry *entry;
2038 struct queue_entry *entry_done;
2039 struct queue_entry_priv_pci *entry_priv;
2040 struct txdone_entry_desc txdesc;
2048 * During each loop we will compare the freshly read
2049 * STA_CSR4 register value with the value read from
2050 * the previous loop. If the 2 values are equal then
2051 * we should stop processing because the chance it
2052 * quite big that the device has been unplugged and
2053 * we risk going into an endless loop.
2058 rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®);
2059 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2067 * Skip this entry when it contains an invalid
2068 * queue identication number.
2070 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2071 queue = rt2x00queue_get_queue(rt2x00dev, type);
2072 if (unlikely(!queue))
2076 * Skip this entry when it contains an invalid
2079 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2080 if (unlikely(index >= queue->limit))
2083 entry = &queue->entries[index];
2084 entry_priv = entry->priv_data;
2085 rt2x00_desc_read(entry_priv->desc, 0, &word);
2087 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2088 !rt2x00_get_field32(word, TXD_W0_VALID))
2091 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2092 while (entry != entry_done) {
2094 * Just report any entries we missed as failed.
2097 "TX status report missed for entry %d\n",
2098 entry_done->entry_idx);
2101 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2104 rt2x00lib_txdone(entry_done, &txdesc);
2105 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2109 * Obtain the status about this packet.
2112 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2113 case 0: /* Success, maybe with retry */
2114 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2116 case 6: /* Failure, excessive retries */
2117 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2118 /* Don't break, this is a failed frame! */
2119 default: /* Failure */
2120 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2122 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2124 rt2x00lib_txdone(entry, &txdesc);
2128 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2130 struct rt2x00_dev *rt2x00dev = dev_instance;
2135 * Get the interrupt sources & saved to local variable.
2136 * Write register value back to clear pending interrupts.
2138 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
2139 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2141 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
2142 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2144 if (!reg && !reg_mcu)
2147 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2151 * Handle interrupts, walk through all bits
2152 * and run the tasks, the bits are checked in order of
2157 * 1 - Rx ring done interrupt.
2159 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2160 rt2x00pci_rxdone(rt2x00dev);
2163 * 2 - Tx ring done interrupt.
2165 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2166 rt61pci_txdone(rt2x00dev);
2169 * 3 - Handle MCU command done.
2172 rt2x00pci_register_write(rt2x00dev,
2173 M2H_CMD_DONE_CSR, 0xffffffff);
2179 * Device probe functions.
2181 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2183 struct eeprom_93cx6 eeprom;
2189 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
2191 eeprom.data = rt2x00dev;
2192 eeprom.register_read = rt61pci_eepromregister_read;
2193 eeprom.register_write = rt61pci_eepromregister_write;
2194 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2195 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2196 eeprom.reg_data_in = 0;
2197 eeprom.reg_data_out = 0;
2198 eeprom.reg_data_clock = 0;
2199 eeprom.reg_chip_select = 0;
2201 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2202 EEPROM_SIZE / sizeof(u16));
2205 * Start validation of the data that has been read.
2207 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2208 if (!is_valid_ether_addr(mac)) {
2209 random_ether_addr(mac);
2210 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2213 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2214 if (word == 0xffff) {
2215 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2216 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2218 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2220 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2221 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2222 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2223 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2224 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2225 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2228 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2229 if (word == 0xffff) {
2230 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2231 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2232 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2233 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2234 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2235 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2236 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2237 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2240 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2241 if (word == 0xffff) {
2242 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2244 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2245 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2248 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2249 if (word == 0xffff) {
2250 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2251 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2252 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2253 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2256 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2257 if (word == 0xffff) {
2258 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2259 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2260 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2261 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2263 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2264 if (value < -10 || value > 10)
2265 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2266 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2267 if (value < -10 || value > 10)
2268 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2269 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2272 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2273 if (word == 0xffff) {
2274 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2275 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2276 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2277 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2279 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2280 if (value < -10 || value > 10)
2281 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2282 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2283 if (value < -10 || value > 10)
2284 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2285 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2291 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2299 * Read EEPROM word for configuration.
2301 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2304 * Identify RF chipset.
2305 * To determine the RT chip we have to read the
2306 * PCI header of the device.
2308 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2309 PCI_CONFIG_HEADER_DEVICE, &device);
2310 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2311 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
2312 rt2x00_set_chip(rt2x00dev, device, value, reg);
2314 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2315 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2316 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2317 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2318 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2323 * Determine number of antenna's.
2325 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2326 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2329 * Identify default antenna configuration.
2331 rt2x00dev->default_ant.tx =
2332 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2333 rt2x00dev->default_ant.rx =
2334 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2337 * Read the Frame type.
2339 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2340 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2343 * Detect if this device has an hardware controlled radio.
2345 #ifdef CONFIG_RT2X00_LIB_RFKILL
2346 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2347 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2348 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2351 * Read frequency offset and RF programming sequence.
2353 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2354 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2355 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2357 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2360 * Read external LNA informations.
2362 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2364 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2365 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2366 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2367 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2370 * When working with a RF2529 chip without double antenna
2371 * the antenna settings should be gathered from the NIC
2374 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2375 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2376 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2378 rt2x00dev->default_ant.tx = ANTENNA_B;
2379 rt2x00dev->default_ant.rx = ANTENNA_A;
2382 rt2x00dev->default_ant.tx = ANTENNA_B;
2383 rt2x00dev->default_ant.rx = ANTENNA_B;
2386 rt2x00dev->default_ant.tx = ANTENNA_A;
2387 rt2x00dev->default_ant.rx = ANTENNA_A;
2390 rt2x00dev->default_ant.tx = ANTENNA_A;
2391 rt2x00dev->default_ant.rx = ANTENNA_B;
2395 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2396 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2397 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2398 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2402 * Store led settings, for correct led behaviour.
2403 * If the eeprom value is invalid,
2404 * switch to default led mode.
2406 #ifdef CONFIG_RT2X00_LIB_LEDS
2407 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2408 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2410 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2411 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2412 if (value == LED_MODE_SIGNAL_STRENGTH)
2413 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2416 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2417 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2418 rt2x00_get_field16(eeprom,
2419 EEPROM_LED_POLARITY_GPIO_0));
2420 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2421 rt2x00_get_field16(eeprom,
2422 EEPROM_LED_POLARITY_GPIO_1));
2423 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2424 rt2x00_get_field16(eeprom,
2425 EEPROM_LED_POLARITY_GPIO_2));
2426 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2427 rt2x00_get_field16(eeprom,
2428 EEPROM_LED_POLARITY_GPIO_3));
2429 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2430 rt2x00_get_field16(eeprom,
2431 EEPROM_LED_POLARITY_GPIO_4));
2432 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2433 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2434 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2435 rt2x00_get_field16(eeprom,
2436 EEPROM_LED_POLARITY_RDY_G));
2437 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2438 rt2x00_get_field16(eeprom,
2439 EEPROM_LED_POLARITY_RDY_A));
2440 #endif /* CONFIG_RT2X00_LIB_LEDS */
2446 * RF value list for RF5225 & RF5325
2447 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2449 static const struct rf_channel rf_vals_noseq[] = {
2450 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2451 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2452 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2453 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2454 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2455 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2456 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2457 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2458 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2459 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2460 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2461 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2462 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2463 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2465 /* 802.11 UNI / HyperLan 2 */
2466 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2467 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2468 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2469 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2470 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2471 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2472 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2473 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2475 /* 802.11 HyperLan 2 */
2476 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2477 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2478 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2479 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2480 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2481 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2482 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2483 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2484 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2485 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2488 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2489 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2490 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2491 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2492 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2493 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2495 /* MMAC(Japan)J52 ch 34,38,42,46 */
2496 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2497 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2498 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2499 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2503 * RF value list for RF5225 & RF5325
2504 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2506 static const struct rf_channel rf_vals_seq[] = {
2507 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2508 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2509 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2510 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2511 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2512 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2513 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2514 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2515 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2516 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2517 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2518 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2519 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2520 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2522 /* 802.11 UNI / HyperLan 2 */
2523 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2524 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2525 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2526 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2527 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2528 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2529 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2530 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2532 /* 802.11 HyperLan 2 */
2533 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2534 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2535 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2536 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2537 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2538 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2539 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2540 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2541 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2542 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2545 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2546 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2547 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2548 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2549 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2550 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2552 /* MMAC(Japan)J52 ch 34,38,42,46 */
2553 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2554 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2555 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2556 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2559 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2561 struct hw_mode_spec *spec = &rt2x00dev->spec;
2562 struct channel_info *info;
2567 * Initialize all hw fields.
2569 rt2x00dev->hw->flags =
2570 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2571 IEEE80211_HW_SIGNAL_DBM;
2572 rt2x00dev->hw->extra_tx_headroom = 0;
2574 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2575 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2576 rt2x00_eeprom_addr(rt2x00dev,
2577 EEPROM_MAC_ADDR_0));
2580 * Initialize hw_mode information.
2582 spec->supported_bands = SUPPORT_BAND_2GHZ;
2583 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2585 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2586 spec->num_channels = 14;
2587 spec->channels = rf_vals_noseq;
2589 spec->num_channels = 14;
2590 spec->channels = rf_vals_seq;
2593 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2594 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2595 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2596 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2600 * Create channel information array
2602 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2606 spec->channels_info = info;
2608 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2609 for (i = 0; i < 14; i++)
2610 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2612 if (spec->num_channels > 14) {
2613 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2614 for (i = 14; i < spec->num_channels; i++)
2615 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2621 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2626 * Allocate eeprom data.
2628 retval = rt61pci_validate_eeprom(rt2x00dev);
2632 retval = rt61pci_init_eeprom(rt2x00dev);
2637 * Initialize hw specifications.
2639 retval = rt61pci_probe_hw_mode(rt2x00dev);
2644 * This device requires firmware and DMA mapped skbs.
2646 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2647 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2648 if (!modparam_nohwcrypt)
2649 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2652 * Set the rssi offset.
2654 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2660 * IEEE80211 stack callback functions.
2662 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2663 const struct ieee80211_tx_queue_params *params)
2665 struct rt2x00_dev *rt2x00dev = hw->priv;
2666 struct data_queue *queue;
2667 struct rt2x00_field32 field;
2672 * First pass the configuration through rt2x00lib, that will
2673 * update the queue settings and validate the input. After that
2674 * we are free to update the registers based on the value
2675 * in the queue parameter.
2677 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2681 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2683 /* Update WMM TXOP register */
2684 if (queue_idx < 2) {
2685 field.bit_offset = queue_idx * 16;
2686 field.bit_mask = 0xffff << field.bit_offset;
2688 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®);
2689 rt2x00_set_field32(®, field, queue->txop);
2690 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2691 } else if (queue_idx < 4) {
2692 field.bit_offset = (queue_idx - 2) * 16;
2693 field.bit_mask = 0xffff << field.bit_offset;
2695 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®);
2696 rt2x00_set_field32(®, field, queue->txop);
2697 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2700 /* Update WMM registers */
2701 field.bit_offset = queue_idx * 4;
2702 field.bit_mask = 0xf << field.bit_offset;
2704 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, ®);
2705 rt2x00_set_field32(®, field, queue->aifs);
2706 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2708 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, ®);
2709 rt2x00_set_field32(®, field, queue->cw_min);
2710 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2712 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, ®);
2713 rt2x00_set_field32(®, field, queue->cw_max);
2714 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2719 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2721 struct rt2x00_dev *rt2x00dev = hw->priv;
2725 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®);
2726 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2727 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®);
2728 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2733 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2735 .start = rt2x00mac_start,
2736 .stop = rt2x00mac_stop,
2737 .add_interface = rt2x00mac_add_interface,
2738 .remove_interface = rt2x00mac_remove_interface,
2739 .config = rt2x00mac_config,
2740 .config_interface = rt2x00mac_config_interface,
2741 .configure_filter = rt2x00mac_configure_filter,
2742 .set_key = rt2x00mac_set_key,
2743 .get_stats = rt2x00mac_get_stats,
2744 .bss_info_changed = rt2x00mac_bss_info_changed,
2745 .conf_tx = rt61pci_conf_tx,
2746 .get_tx_stats = rt2x00mac_get_tx_stats,
2747 .get_tsf = rt61pci_get_tsf,
2750 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2751 .irq_handler = rt61pci_interrupt,
2752 .probe_hw = rt61pci_probe_hw,
2753 .get_firmware_name = rt61pci_get_firmware_name,
2754 .get_firmware_crc = rt61pci_get_firmware_crc,
2755 .load_firmware = rt61pci_load_firmware,
2756 .initialize = rt2x00pci_initialize,
2757 .uninitialize = rt2x00pci_uninitialize,
2758 .get_entry_state = rt61pci_get_entry_state,
2759 .clear_entry = rt61pci_clear_entry,
2760 .set_device_state = rt61pci_set_device_state,
2761 .rfkill_poll = rt61pci_rfkill_poll,
2762 .link_stats = rt61pci_link_stats,
2763 .reset_tuner = rt61pci_reset_tuner,
2764 .link_tuner = rt61pci_link_tuner,
2765 .write_tx_desc = rt61pci_write_tx_desc,
2766 .write_tx_data = rt2x00pci_write_tx_data,
2767 .write_beacon = rt61pci_write_beacon,
2768 .kick_tx_queue = rt61pci_kick_tx_queue,
2769 .fill_rxdone = rt61pci_fill_rxdone,
2770 .config_shared_key = rt61pci_config_shared_key,
2771 .config_pairwise_key = rt61pci_config_pairwise_key,
2772 .config_filter = rt61pci_config_filter,
2773 .config_intf = rt61pci_config_intf,
2774 .config_erp = rt61pci_config_erp,
2775 .config_ant = rt61pci_config_ant,
2776 .config = rt61pci_config,
2779 static const struct data_queue_desc rt61pci_queue_rx = {
2780 .entry_num = RX_ENTRIES,
2781 .data_size = DATA_FRAME_SIZE,
2782 .desc_size = RXD_DESC_SIZE,
2783 .priv_size = sizeof(struct queue_entry_priv_pci),
2786 static const struct data_queue_desc rt61pci_queue_tx = {
2787 .entry_num = TX_ENTRIES,
2788 .data_size = DATA_FRAME_SIZE,
2789 .desc_size = TXD_DESC_SIZE,
2790 .priv_size = sizeof(struct queue_entry_priv_pci),
2793 static const struct data_queue_desc rt61pci_queue_bcn = {
2794 .entry_num = 4 * BEACON_ENTRIES,
2795 .data_size = 0, /* No DMA required for beacons */
2796 .desc_size = TXINFO_SIZE,
2797 .priv_size = sizeof(struct queue_entry_priv_pci),
2800 static const struct rt2x00_ops rt61pci_ops = {
2801 .name = KBUILD_MODNAME,
2804 .eeprom_size = EEPROM_SIZE,
2806 .tx_queues = NUM_TX_QUEUES,
2807 .rx = &rt61pci_queue_rx,
2808 .tx = &rt61pci_queue_tx,
2809 .bcn = &rt61pci_queue_bcn,
2810 .lib = &rt61pci_rt2x00_ops,
2811 .hw = &rt61pci_mac80211_ops,
2812 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2813 .debugfs = &rt61pci_rt2x00debug,
2814 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2818 * RT61pci module information.
2820 static struct pci_device_id rt61pci_device_table[] = {
2822 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2824 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2826 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2830 MODULE_AUTHOR(DRV_PROJECT);
2831 MODULE_VERSION(DRV_VERSION);
2832 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2833 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2834 "PCI & PCMCIA chipset based cards");
2835 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2836 MODULE_FIRMWARE(FIRMWARE_RT2561);
2837 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2838 MODULE_FIRMWARE(FIRMWARE_RT2661);
2839 MODULE_LICENSE("GPL");
2841 static struct pci_driver rt61pci_driver = {
2842 .name = KBUILD_MODNAME,
2843 .id_table = rt61pci_device_table,
2844 .probe = rt2x00pci_probe,
2845 .remove = __devexit_p(rt2x00pci_remove),
2846 .suspend = rt2x00pci_suspend,
2847 .resume = rt2x00pci_resume,
2850 static int __init rt61pci_init(void)
2852 return pci_register_driver(&rt61pci_driver);
2855 static void __exit rt61pci_exit(void)
2857 pci_unregister_driver(&rt61pci_driver);
2860 module_init(rt61pci_init);
2861 module_exit(rt61pci_exit);