2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
27 #include <asm/meminit.h>
29 #include <asm/sections.h>
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
35 struct early_node_data {
36 struct ia64_node_data *node_data;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 unsigned long num_physpages;
40 #ifdef CONFIG_ZONE_DMA
41 unsigned long num_dma_physpages;
43 unsigned long min_pfn;
44 unsigned long max_pfn;
47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
48 static nodemask_t memory_less_mask __initdata;
50 pg_data_t *pgdat_list[MAX_NUMNODES];
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node) \
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
74 static int __init build_node_maps(unsigned long start, unsigned long len,
77 unsigned long spfn, epfn, end = start + len;
78 struct bootmem_data *bdp = &bootmem_node_data[node];
80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
83 if (!bdp->node_low_pfn) {
84 bdp->node_min_pfn = spfn;
85 bdp->node_low_pfn = epfn;
87 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
95 * early_nr_cpus_node - return number of cpus on a given node
96 * @node: node to check
98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100 * called yet. Note that node 0 will also count all non-existent cpus.
102 static int __meminit early_nr_cpus_node(int node)
106 for_each_possible_early_cpu(cpu)
107 if (node == node_cpuid[cpu].nid)
114 * compute_pernodesize - compute size of pernode data
115 * @node: the node id.
117 static unsigned long __meminit compute_pernodesize(int node)
119 unsigned long pernodesize = 0, cpus;
121 cpus = early_nr_cpus_node(node);
122 pernodesize += PERCPU_PAGE_SIZE * cpus;
123 pernodesize += node * L1_CACHE_BYTES;
124 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
127 pernodesize = PAGE_ALIGN(pernodesize);
132 * per_cpu_node_setup - setup per-cpu areas on each node
133 * @cpu_data: per-cpu area on this node
134 * @node: node to setup
136 * Copy the static per-cpu data into the region we just set aside and then
137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
138 * the end of the area.
140 static void *per_cpu_node_setup(void *cpu_data, int node)
145 for_each_possible_early_cpu(cpu) {
147 void *cpu0_data = __cpu0_per_cpu;
148 __per_cpu_offset[cpu] = (char*)cpu0_data -
150 } else if (node == node_cpuid[cpu].nid) {
151 memcpy(__va(cpu_data), __phys_per_cpu_start,
152 __per_cpu_end - __per_cpu_start);
153 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
155 cpu_data += PERCPU_PAGE_SIZE;
163 * fill_pernode - initialize pernode data.
164 * @node: the node id.
165 * @pernode: physical address of pernode data
166 * @pernodesize: size of the pernode data
168 static void __init fill_pernode(int node, unsigned long pernode,
169 unsigned long pernodesize)
172 int cpus = early_nr_cpus_node(node);
173 struct bootmem_data *bdp = &bootmem_node_data[node];
175 mem_data[node].pernode_addr = pernode;
176 mem_data[node].pernode_size = pernodesize;
177 memset(__va(pernode), 0, pernodesize);
179 cpu_data = (void *)pernode;
180 pernode += PERCPU_PAGE_SIZE * cpus;
181 pernode += node * L1_CACHE_BYTES;
183 pgdat_list[node] = __va(pernode);
184 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
186 mem_data[node].node_data = __va(pernode);
187 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
189 pgdat_list[node]->bdata = bdp;
190 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
192 cpu_data = per_cpu_node_setup(cpu_data, node);
198 * find_pernode_space - allocate memory for memory map and per-node structures
199 * @start: physical start of range
200 * @len: length of range
201 * @node: node where this range resides
203 * This routine reserves space for the per-cpu data struct, the list of
204 * pg_data_ts and the per-node data struct. Each node will have something like
205 * the following in the first chunk of addr. space large enough to hold it.
207 * ________________________
209 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
210 * | PERCPU_PAGE_SIZE * | start and length big enough
211 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
212 * |------------------------|
213 * | local pg_data_t * |
214 * |------------------------|
215 * | local ia64_node_data |
216 * |------------------------|
218 * |________________________|
220 * Once this space has been set aside, the bootmem maps are initialized. We
221 * could probably move the allocation of the per-cpu and ia64_node_data space
222 * outside of this function and use alloc_bootmem_node(), but doing it here
223 * is straightforward and we get the alignments we want so...
225 static int __init find_pernode_space(unsigned long start, unsigned long len,
228 unsigned long spfn, epfn;
229 unsigned long pernodesize = 0, pernode, pages, mapsize;
230 struct bootmem_data *bdp = &bootmem_node_data[node];
232 spfn = start >> PAGE_SHIFT;
233 epfn = (start + len) >> PAGE_SHIFT;
235 pages = bdp->node_low_pfn - bdp->node_min_pfn;
236 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
239 * Make sure this memory falls within this node's usable memory
240 * since we may have thrown some away in build_maps().
242 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
245 /* Don't setup this node's local space twice... */
246 if (mem_data[node].pernode_addr)
250 * Calculate total size needed, incl. what's necessary
251 * for good alignment and alias prevention.
253 pernodesize = compute_pernodesize(node);
254 pernode = NODEDATA_ALIGN(start, node);
256 /* Is this range big enough for what we want to store here? */
257 if (start + len > (pernode + pernodesize + mapsize))
258 fill_pernode(node, pernode, pernodesize);
264 * free_node_bootmem - free bootmem allocator memory for use
265 * @start: physical start of range
266 * @len: length of range
267 * @node: node where this range resides
269 * Simply calls the bootmem allocator to free the specified ranged from
270 * the given pg_data_t's bdata struct. After this function has been called
271 * for all the entries in the EFI memory map, the bootmem allocator will
272 * be ready to service allocation requests.
274 static int __init free_node_bootmem(unsigned long start, unsigned long len,
277 free_bootmem_node(pgdat_list[node], start, len);
283 * reserve_pernode_space - reserve memory for per-node space
285 * Reserve the space used by the bootmem maps & per-node space in the boot
286 * allocator so that when we actually create the real mem maps we don't
289 static void __init reserve_pernode_space(void)
291 unsigned long base, size, pages;
292 struct bootmem_data *bdp;
295 for_each_online_node(node) {
296 pg_data_t *pdp = pgdat_list[node];
298 if (node_isset(node, memory_less_mask))
303 /* First the bootmem_map itself */
304 pages = bdp->node_low_pfn - bdp->node_min_pfn;
305 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
306 base = __pa(bdp->node_bootmem_map);
307 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
309 /* Now the per-node space */
310 size = mem_data[node].pernode_size;
311 base = __pa(mem_data[node].pernode_addr);
312 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
316 static void __meminit scatter_node_data(void)
322 * for_each_online_node() can't be used at here.
323 * node_online_map is not set for hot-added nodes at this time,
324 * because we are halfway through initialization of the new node's
325 * structures. If for_each_online_node() is used, a new node's
326 * pg_data_ptrs will be not initialized. Instead of using it,
327 * pgdat_list[] is checked.
329 for_each_node(node) {
330 if (pgdat_list[node]) {
331 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
332 memcpy(dst, pgdat_list, sizeof(pgdat_list));
338 * initialize_pernode_data - fixup per-cpu & per-node pointers
340 * Each node's per-node area has a copy of the global pg_data_t list, so
341 * we copy that to each node here, as well as setting the per-cpu pointer
342 * to the local node data structure. The active_cpus field of the per-node
343 * structure gets setup by the platform_cpu_init() function later.
345 static void __init initialize_pernode_data(void)
352 /* Set the node_data pointer for each per-cpu struct */
353 for_each_possible_early_cpu(cpu) {
354 node = node_cpuid[cpu].nid;
355 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
359 struct cpuinfo_ia64 *cpu0_cpu_info;
361 node = node_cpuid[cpu].nid;
362 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
363 ((char *)&per_cpu__cpu_info - __per_cpu_start));
364 cpu0_cpu_info->node_data = mem_data[node].node_data;
366 #endif /* CONFIG_SMP */
370 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
371 * node but fall back to any other node when __alloc_bootmem_node fails
374 * @pernodesize: size of this node's pernode data
376 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
380 int bestnode = -1, node, anynode = 0;
382 for_each_online_node(node) {
383 if (node_isset(node, memory_less_mask))
385 else if (node_distance(nid, node) < best) {
386 best = node_distance(nid, node);
395 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
396 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
402 * memory_less_nodes - allocate and initialize CPU only nodes pernode
405 static void __init memory_less_nodes(void)
407 unsigned long pernodesize;
411 for_each_node_mask(node, memory_less_mask) {
412 pernodesize = compute_pernodesize(node);
413 pernode = memory_less_node_alloc(node, pernodesize);
414 fill_pernode(node, __pa(pernode), pernodesize);
421 * find_memory - walk the EFI memory map and setup the bootmem allocator
423 * Called early in boot to setup the bootmem allocator, and to
424 * allocate the per-cpu and per-node structures.
426 void __init find_memory(void)
432 if (num_online_nodes() == 0) {
433 printk(KERN_ERR "node info missing!\n");
437 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
441 /* These actually end up getting called by call_pernode_memory() */
442 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
443 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
444 efi_memmap_walk(find_max_min_low_pfn, NULL);
446 for_each_online_node(node)
447 if (bootmem_node_data[node].node_low_pfn) {
448 node_clear(node, memory_less_mask);
449 mem_data[node].min_pfn = ~0UL;
452 efi_memmap_walk(filter_memory, register_active_ranges);
455 * Initialize the boot memory maps in reverse order since that's
456 * what the bootmem allocator expects
458 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
459 unsigned long pernode, pernodesize, map;
460 struct bootmem_data *bdp;
462 if (!node_online(node))
464 else if (node_isset(node, memory_less_mask))
467 bdp = &bootmem_node_data[node];
468 pernode = mem_data[node].pernode_addr;
469 pernodesize = mem_data[node].pernode_size;
470 map = pernode + pernodesize;
472 init_bootmem_node(pgdat_list[node],
478 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
480 reserve_pernode_space();
482 initialize_pernode_data();
484 max_pfn = max_low_pfn;
491 * per_cpu_init - setup per-cpu variables
493 * find_pernode_space() does most of this already, we just need to set
494 * local_per_cpu_offset
496 void __cpuinit *per_cpu_init(void)
499 static int first_time = 1;
503 for_each_possible_early_cpu(cpu)
504 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
507 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
509 #endif /* CONFIG_SMP */
512 * show_mem - give short summary of memory stats
514 * Shows a simple page count of reserved and used pages in the system.
515 * For discontig machines, it does this on a per-pgdat basis.
519 int i, total_reserved = 0;
520 int total_shared = 0, total_cached = 0;
521 unsigned long total_present = 0;
524 printk(KERN_INFO "Mem-info:\n");
526 printk(KERN_INFO "Node memory in pages:\n");
527 for_each_online_pgdat(pgdat) {
528 unsigned long present;
530 int shared = 0, cached = 0, reserved = 0;
532 pgdat_resize_lock(pgdat, &flags);
533 present = pgdat->node_present_pages;
534 for(i = 0; i < pgdat->node_spanned_pages; i++) {
536 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
537 touch_nmi_watchdog();
538 if (pfn_valid(pgdat->node_start_pfn + i))
539 page = pfn_to_page(pgdat->node_start_pfn + i);
541 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
545 if (PageReserved(page))
547 else if (PageSwapCache(page))
549 else if (page_count(page))
550 shared += page_count(page)-1;
552 pgdat_resize_unlock(pgdat, &flags);
553 total_present += present;
554 total_reserved += reserved;
555 total_cached += cached;
556 total_shared += shared;
557 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
558 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
559 present, reserved, shared, cached);
561 printk(KERN_INFO "%ld pages of RAM\n", total_present);
562 printk(KERN_INFO "%d reserved pages\n", total_reserved);
563 printk(KERN_INFO "%d pages shared\n", total_shared);
564 printk(KERN_INFO "%d pages swap cached\n", total_cached);
565 printk(KERN_INFO "Total of %ld pages in page table cache\n",
566 quicklist_total_size());
567 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
571 * call_pernode_memory - use SRAT to call callback functions with node info
572 * @start: physical start of range
573 * @len: length of range
574 * @arg: function to call for each range
576 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
577 * out to which node a block of memory belongs. Ignore memory that we cannot
578 * identify, and split blocks that run across multiple nodes.
580 * Take this opportunity to round the start address up and the end address
581 * down to page boundaries.
583 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
585 unsigned long rs, re, end = start + len;
586 void (*func)(unsigned long, unsigned long, int);
589 start = PAGE_ALIGN(start);
596 if (!num_node_memblks) {
597 /* No SRAT table, so assume one node (node 0) */
599 (*func)(start, end - start, 0);
603 for (i = 0; i < num_node_memblks; i++) {
604 rs = max(start, node_memblk[i].start_paddr);
605 re = min(end, node_memblk[i].start_paddr +
606 node_memblk[i].size);
609 (*func)(rs, re - rs, node_memblk[i].nid);
617 * count_node_pages - callback to build per-node memory info structures
618 * @start: physical start of range
619 * @len: length of range
620 * @node: node where this range resides
622 * Each node has it's own number of physical pages, DMAable pages, start, and
623 * end page frame number. This routine will be called by call_pernode_memory()
624 * for each piece of usable memory and will setup these values for each node.
625 * Very similar to build_maps().
627 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
629 unsigned long end = start + len;
631 mem_data[node].num_physpages += len >> PAGE_SHIFT;
632 #ifdef CONFIG_ZONE_DMA
633 if (start <= __pa(MAX_DMA_ADDRESS))
634 mem_data[node].num_dma_physpages +=
635 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
637 start = GRANULEROUNDDOWN(start);
638 end = GRANULEROUNDUP(end);
639 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
641 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
642 start >> PAGE_SHIFT);
648 * paging_init - setup page tables
650 * paging_init() sets up the page tables for each node of the system and frees
651 * the bootmem allocator memory for general use.
653 void __init paging_init(void)
655 unsigned long max_dma;
656 unsigned long pfn_offset = 0;
657 unsigned long max_pfn = 0;
659 unsigned long max_zone_pfns[MAX_NR_ZONES];
661 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
663 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
665 sparse_memory_present_with_active_regions(MAX_NUMNODES);
668 #ifdef CONFIG_VIRTUAL_MEM_MAP
669 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
670 sizeof(struct page));
671 vmem_map = (struct page *) vmalloc_end;
672 efi_memmap_walk(create_mem_map_page_table, NULL);
673 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
676 for_each_online_node(node) {
677 num_physpages += mem_data[node].num_physpages;
678 pfn_offset = mem_data[node].min_pfn;
680 #ifdef CONFIG_VIRTUAL_MEM_MAP
681 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
683 if (mem_data[node].max_pfn > max_pfn)
684 max_pfn = mem_data[node].max_pfn;
687 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
688 #ifdef CONFIG_ZONE_DMA
689 max_zone_pfns[ZONE_DMA] = max_dma;
691 max_zone_pfns[ZONE_NORMAL] = max_pfn;
692 free_area_init_nodes(max_zone_pfns);
694 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
697 #ifdef CONFIG_MEMORY_HOTPLUG
698 pg_data_t *arch_alloc_nodedata(int nid)
700 unsigned long size = compute_pernodesize(nid);
702 return kzalloc(size, GFP_KERNEL);
705 void arch_free_nodedata(pg_data_t *pgdat)
710 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
712 pgdat_list[update_node] = update_pgdat;
717 #ifdef CONFIG_SPARSEMEM_VMEMMAP
718 int __meminit vmemmap_populate(struct page *start_page,
719 unsigned long size, int node)
721 return vmemmap_populate_basepages(start_page, size, node);